


## Authors

Paula Costa Jayati Ghosh Shane Giles Anniek De Witte

Agilent Technologies, Inc. Santa Clara, CA USA Simultaneous Detection of Copy Number and Copy-Neutral LOH Using a Single Microarray

## **Application Note**

## Abstract

The current SurePrint G3 Human Comparative Genomic Hybridization (CGH) platform has been extended to include a set of Single Nucleotide Polymorphism (SNP) probes on the same microarray. This allows for the simultaneous, high-resolution detection of copy number and copy-neutral variations and eliminates the need to run two separate microarray experiments. The same straightforward Agilent CGH workflow is used to prepare the samples for hybridization to the new SurePrint G3 Human CGH+SNP microarrays. Restriction digestion of genomic DNA allows genotyping of SNPs located in the enzymes' recognition sites. After labeling and hybridization, CGH+SNP microarray data are analyzed using novel algorithms contained within Agilent's Genomic Workbench software. In this application note, we measure SNP genotypes to discover copy-neutral lack or loss of heterozygosity (LOH), as well as copy number variations, to discover cytogenetic abnormalities associated with examples of known syndromes. We conclude that simultaneous high-quality, highresolution copy number and LOH information can be obtained with the new SurePrint G3 Human CGH+SNP microarrays, available in various catalog and custom formats.



#### Introduction

Accurate determination of copy number aberrations is important for understanding developmental disorders. Since array CGH was first described in 1998 by Pinkel et al.<sup>1</sup>, many technical improvements have been made resulting in higher specificity and sensitivity. Recently, oligo microarrays, which have a 1000-fold greater resolution than karyotypes, have revolutionized the field of cytogenetics. Array CGH is now commonly used for investigating genomic DNA aberrations associated with various diseases in many cytogenetic labs.

Until recently, Agilent's SurePrint G3 CGH Microarrays have provided ultra-high resolution copy number analysis but could not detect copy-neutral aberrations such as LOH or uniparental disomy (UPD). In LOH events, several mechanisms can be responsible for the loss of the wildtype allele at a heterozygous locus and the unmasking of a recessive mutant allele.<sup>2</sup> UPD occurs when both members of a chromosome pair or segments of a chromosome pair are inherited from one parent and no chromosomes are inherited from the other parent.3 If the chromosomes involved are imprinted such that the genes on these chromosomes are monoallelically active (i.e. only the maternal or paternal allele of the pair is expressed), the resulting phenotype will be abnormal. We now have developed a novel approach that provides high-resolution copy number analysis and LOH or UPD data on a single microarray. A subset of probes is used to measure SNPs in parallel with copy number by performing the standard CGH enzymatic workflow. In addition to highquality copy number aberration discovery, the new Agilent SurePrint G3 CGH+SNP Microarrays also enable detection of copy-neutral LOH, UPD, consanguinity, and parental or sample origin in genetic studies.

## Table 1. SurePrint G3 CGH+SNP 2x400K and 4x180K microarray specifications

| Format                                  | 2x400K  | 4x180K  |
|-----------------------------------------|---------|---------|
| Design ID                               | 028081  | 029830  |
| Total features                          | 420,288 | 180,880 |
| Control feature count                   | 6,700   | 8,121   |
| Distinct biological CGH probes          | 292,097 | 110,712 |
| Distinct biological SNP probes          | 118,955 | 59,647  |
| Distinct SNPs                           | 64,484* | 59,647  |
| Replicated probes (5x)                  | 600     | 600     |
| Genome build                            | hg19    | hg19    |
| Non-unique probes                       | 506     | 1,467   |
| Homology filtered probes                | 3,950   | 2,931   |
| Intragenic probes                       | 210,298 | 49,963  |
| Intergenic probes                       | 81,799  | 60,749  |
| Exonic probes                           | 113,770 | 6,574   |
| Median probe spacing bp                 |         |         |
| - intragenic                            | 4,453   | 21,264  |
| - intergenic                            | 15,875  | 27,323  |
| - overall                               | 7,170   | 25,288  |
| Average probe spacing bp                |         |         |
| - overall                               | 10,257  | 27,066  |
| Refseq coverage (26,855)                |         |         |
| - at least one probe                    | 24,639  | 16,867  |
| - at least one probe (+/-5kb)           | 25,245  | 20,847  |
| *92% of SNPs use two SNP probes per SNP |         |         |

\*92% of SNPs use two SNP probes per SNP

#### Methods

#### **Microarray design**

The catalog 2x400K SurePrint G3 CGH+SNP array used in this study contains approximately 300,000 CGH probes and 120,000 SNP probes. The genotypes are measured by using two SNP probes per SNP and result in ~5-10 Mb resolution for LOH detection across the entire genome. The CGH probes are gene- and exon-biased (Table 1). The catalog 4x180K SurePrint G3 CGH+SNP array contains approximately 120,000 CGH probes and 60,000 SNP probes. The genotypes on this array are measured by using one SNP probe per SNP and also result in ~5-10 Mb resolution for LOH detection across the entire genome. The CGH probes consist of the entire ISCA (International Standards for Cytogenomic Arrays) Consortium 8x60K version probe set and an additional 60,000 backbone probes. The ISCA 8x60K has an even backbone probe coverage of 60 Kb and high-density coverage of ~500 targeted regions with the spacing of 5 Kb per probe or at least 20 probes per gene region. These targeted regions include telomere and unique centromere FISH clone regions, microdeletion/duplication regions, genes of known haploinsufficiency, and X-linked mental retardation regions. Custom SurePrint G3 CGH+SNP microarrays can be readily designed in eArray, a free webbased application, or eArray XD, the desktop version of eArray (Table 2). The eArray database houses more than 28 million CGH probes and probes for approximately 60,000 SNPs.

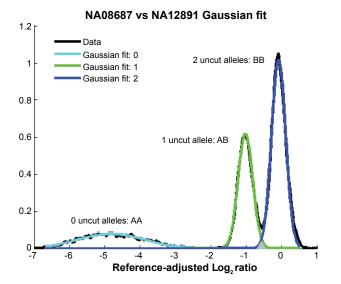
To ensure that additional genotype information from the SNP probes doesn't compromise the quality of the copy number information supplied by the CGH probes and that the results are comparable to legacy CGH arrays, SurePrint G3 CGH microarrays, 4x180K (P/N G4449A) were processed concurrently.

#### Sample preparation, hybridization, and imaging

All samples were obtained from the Coriell Cell Repository (http://www.coriell.org/) and were processed by following the Agilent Oligonucleotide Array-Based CGH for Genomic DNA Analysis, Enzymatic Labeling for Blood, Cells, or Tissues (with a High-Throughput Option) manual, version 6.3 P/N G4410-90010. Genomic DNA was digested with Alul and Rsal in order to enable detection of SNPs located at the enzymes' recognition sites. HapMap samples and samples that have aberrations associated with known cytogenetic disorders were labeled with Cy5 dye. Because the current CGH+SNP assay requires a sample of known genotype as the reference sample, we chose a HapMap sample as a reference, labeled it with Cy3 dye, and hybridized it to the same microarray. The microarray slides were scanned at 3 micron resolution on the Agilent High-Resolution C Scanner and the images were extracted using the Agilent Feature Extraction software (AGW version 6.5).

| -                                                                                   | _        |                     |                     |           |
|-------------------------------------------------------------------------------------|----------|---------------------|---------------------|-----------|
| Catalog Kit                                                                         | 1x1M Kit | 2x400K Kit          | 4x180K Kit          | 8x60K Kit |
| Number of Arrays/Slide                                                              | N/A      | 2                   | 4                   | N/A       |
| Number of Slide/Kit                                                                 | N/A      | 5                   | 3                   | N/A       |
| Catalog Kit P/N                                                                     | N/A      | G4842A              | G4890A              | N/A       |
| Content<br>Number of CGH probes<br>Number of SNP probes<br>Number of probes per SNP | N/A      | ~300K<br>~120K<br>2 | ~120K*<br>~60K<br>1 | N/A       |
| Custom Microarray                                                                   | 1x1M     | 2x400K              | 4x180K              | 8x60K     |
| Number of Arrays/Slide                                                              | 1        | 2                   | 4                   | 8         |
| Number of Slides                                                                    | 1        | 1                   | 1                   | 1         |
| Custom Slide P/N                                                                    | G4882A   | G4883A              | G4884A              | G4885A    |
|                                                                                     |          |                     |                     |           |

## Table 2. Agilent SurePrint G3 Catalog and Custom CGH+SNP Microarrays

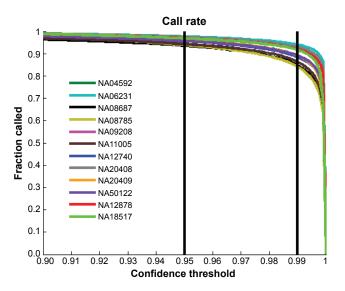

\*includes ISCA 8x60K

# Novel algorithms for measuring total copy number and allele-specific copy number

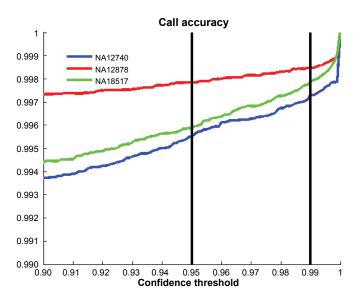
The SNP probes span variant Alul or Rsal restriction enzyme recognition sites and measure the copy number of the uncut allele at those loci. The total copy number of the region encompassing the SNP site is measured by neighboring CGH probes. The copy number of the cut allele can be inferred from the total copy number and the copy number of the uncut allele.

SNP calls are made from the log ratios of the sample probe signal versus a genotyped internal reference, which compensates for labeling and hybridization bias. Since the reference genotype is known, the raw log, ratios are "reference adjusted" to report absolute allele-specific copy numbers for SNP probes. SNPs with zero copies of uncut allele in the reference sample are ignored, and the algorithm subtracts 1 from the log, ratios of SNPs with one copy in the reference sample. When using eArray to design a custom microarray, and when using one of the supported reference samples (NA12878, NA12891, NA18507, NA18517 or NA18579), the user can choose to avoid SNPs with zero reference copies on the array design. The reference-adjusted log ratios fall into three nearly Gaussian peaks corresponding to the copy numbers of the uncut alleles in the sample, which correspond to the three possible diploid genotypes for the SNPs: AA, AB, or BB (Figure 1).

Regions of copy-neutral LOH or UPD are then located by identifying genomic regions with a statistically significant scarcity of heterozygous SNP calls.




**Figure 1.** Reference-adjusted SNP log<sub>2</sub> ratio distributions (probability density function). The black line is the distribution of measured log ratios. The cyan, green, and blue lines are 3 different Gaussian fits to the population of SNPs with 0 (AA), 1 (AB), and 2 (BB) copies of the uncut allele (A represents the cut allele and B represents the uncut allele).


#### **Results**

#### **SNP** call rate and accuracy

To determine the SNP call rate, defined as the fraction of the SNPs called by the algorithm at 95% confidence, and the SNP call accuracy, several HapMap samples with known genotypes were hybridized against another HapMap sample. In this experiment >95% of SNPs were called at a confidence level of >95% (Figure 2), with >99% accuracy (Figure 3).



**Figure 2.** Call rate for 12 samples hybridized against a single HapMap reference sample. More than 95% of SNPs were called at a confidence level of >95% in all 12 samples. The black vertical lines correspond to p-value thresholds (confidence levels) of 0.95 (95%) and 0.99 (99%).



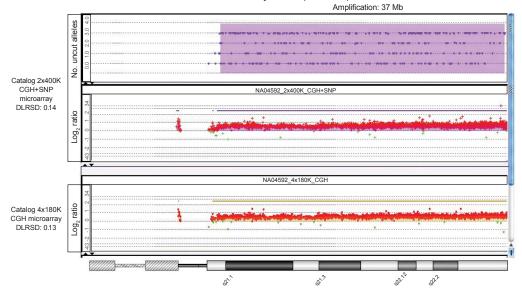
**Figure 3.** Call accuracy for 3 HapMap samples hybridized against a single HapMap reference sample. The call accuracy was >99% in all 3 samples. The black vertical lines correspond to p-value thresholds (confidence levels) of 0.95 (95%) and 0.99 (99%).

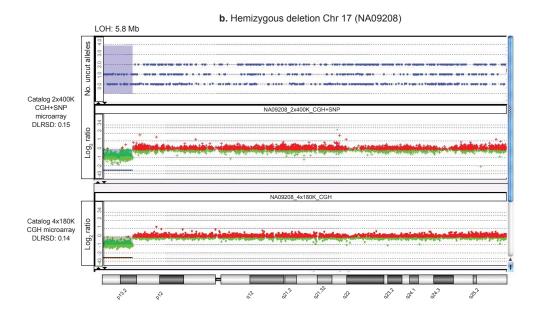
#### **Concurrent analysis of CGH and SNP data**

Data from samples containing known cytogenetic aberrations are displayed in Figure 4. For each image, the Genomic Workbench view is composed of three horizontally stacked panels-the top one displaying the number of uncut alleles for each SNP probe, the middle the CGH log, ratios for the CGH+SNP microarrays, and the bottom one the log, ratios for the CGH-only microarrays. For a normal diploid region of the genome, one expects the 0, 1, and 2 SNP copy numbers of the uncut allele to be randomly distributed, as represented by the three states (red dots) in the SNP panel. In a diploid genome carrying a copy-neutral LOH or UPD aberration, the SNP probes will only report alleles that are homozygously cut and uncut (0 and 2 uncut alleles) and therefore only two states are found. A region of the genome affected by a hemizygous deletion is also seen as two states that, in this case, represent SNPs that only have one copy of the allele, either cut or uncut (0 or 1 copy of the uncut allele). The amplification of a region or entire chromosome adds a state that corresponds to the probes reporting the additional uncut allele (0, 1, 2, 3 ... copies of the uncut allele). Table 3 summarizes the relationship of genotype to SNP status.

The SurePrint G3 CGH+SNP microarrays correctly identified both known copy number and copy-neutral variations. The CGH data was not compromised by the presence of SNP probes on the microarrays—expected gains and losses were consistently and confidently identified based upon published information. All QC metrics passed the Agilent recommended thresholds (Table 4). Copy number aberrations detected on the G3 CGH+SNP microarrays and computed by Agilent Genomic Workbench 6.5 (Figure 4) are comparable to those for G3 CGH microarrays.

## Table 4. QC results of the SurePrint G3 CGH+SNP 2x400K microarrays

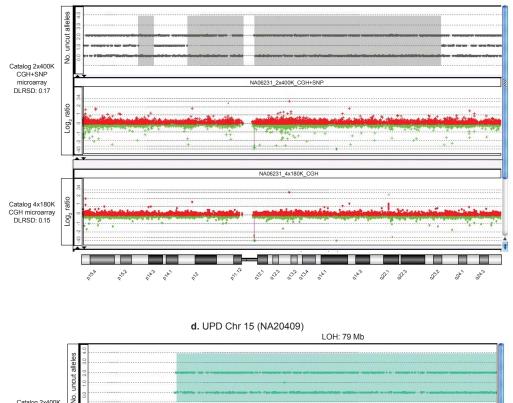

| QC Metric          | HapMap/Reference |
|--------------------|------------------|
| DLRSpread          | $0.14 \pm 0.005$ |
| SignalToNoiseExp   | 126 ± 4          |
| SignalToNoiseRef   | 150 ± 2          |
| SignalIntensityExp | 381 ± 13         |
| SignalIntensityRef | 300 ± 4          |
| BGNoiseExp         | $3.03\pm0.03$    |
| BGNoiseRef         | 2.00 ± 0.01      |
| ReproducibilityExp | $6.33 \pm 0.52$  |
| ReproducibilityRef | $5.98 \pm 0.44$  |


Average scores are provided along with standard deviations across 3 samples. All QC metrics passed, including an excellent DLR Spread (derivative log ratio spread, measure for probe-to-probe log ratio noise, below 0.2).

## Table 3. Relationship of genotype to SNP status (number of uncut alleles)

| Genomic status                              | Genotype           | No. uncut allele |
|---------------------------------------------|--------------------|------------------|
| Normal diploid genome                       | AA, AB, BB         | 0, 1, 2          |
| Diploid genome with copy-neutral LOH or UPD | AA, BB             | 0, 2             |
| Hemizygous LOH                              | А, В               | 0,1              |
| Amplification: e.g. trisomy                 | AAA, AAB, ABB, BBB | 0, 1, 2, 3       |








**Figure 4.** Agilent Genomic Workbench view of the SNP data (number of uncut alleles, top panels), the CGH data (log<sub>2</sub> ratios, middle panels) for the CGH+SNP arrays, and the CGH data for the CGH-only arrays (log<sub>2</sub> ratios, bottom panels) in affected chromosomes: a. trisomy of chromosome 21, b. hemizygous deletion in chromosome 17 (continued on opposite page).

A trisomy of chromosome 21 was identified in one sample (Figure 4a). Several LOH regions as small as ~5 Mb were detected. One sample with a hemizygous deletion was accurately profiled by the CGH and SNP probes (Figure 4b). In one case, extended segments of homozygosity were found throughout the genome as a consequence of parental consanguinity (Figure 4c). In an additional case, the UPD observed was associated with an individual known to have genomic aberrations associated with Angelman syndrome (Figure 4d).





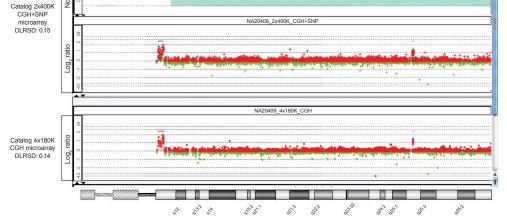



Figure 4 (continued). c. continuous segments of homozygosity due to parental consanguinity, d. UPD of the entire chromosome 15. Settings for CGH aberration calling: ADM-2, threshold 5, minimum of 3 probes,  $\geq$  0.25 log, ratio. Purple: amplification, blue: LOH due to deletion, grey and aqua: copy-neutral LOH.

#### Conclusion

We have shown that the addition of SNP probes to the Agilent SurePrint G3 CGH Microarrays enables the detection of blocks of LOH that could result from UPD or consanguinity. Copy-neutral LOH and UPD are confidently and accurately identified in samples known to have these aberrations. Moreover, SNP calls match copy number calls in regions of hemizygous deletions and amplifications. The addition of SNP probes does not compromise the performance of CGH probes, and CGH aberration calls are not affected by the addition of SNP content to the microarrays. In conclusion, we have demonstrated that the new Agilent SurePrint G3 CGH+SNP Microarrays can simultaneously provide ultra-high-resolution copy number analysis and can detect significant blocks of LOH or UPD. As a result, researchers no longer need to choose between high-resolution copy number data and UPD/LOH or alternatively run two separate microarrays. Now one microarray can detect both.

## References

- 1. Pinkel et al. Nat Genet. 1998;20(2):207-11.
- 2. Cavanee et al. Nature. 1983;305(5937):779-84.
- 3. Engel. Am J Med Genet. 1980;6(2):137-43.

## Required Agilent CGH Processing Components

| Description                                           | Part Number                               |
|-------------------------------------------------------|-------------------------------------------|
| SureTag Complete DNA Labeling Kit                     | 5190-4240                                 |
| Human Cot-1 DNA                                       | 5190-3393                                 |
| Agilent Oligo aCGH Hybridization Kit<br>(25) or (100) | 5188-5220 or<br>5188-5380                 |
| Agilent Oligo aCGH Wash Buffer<br>1 and 2 Set         | 5188-5226                                 |
| Hybridization Chamber, stainless                      | G2534A                                    |
| Hybridization Chamber Gasket Slides                   | Varies by array<br>format and<br>quantity |
| Hybridization Oven                                    | G2545A                                    |
| Hybridization Oven Rotator Rack                       | G2530-60029                               |
| SureScan Microarray Scanner                           | G4900DA                                   |
| Agilent CytoGenomics                                  | G1662AA–G1667AA                           |

#### For more information and to learn more: www.agilent.com/genomics

#### Find an Agilent customer center in your country:

www.agilent.com/genomics/contact

#### U.S. and Canada

1-800-227-9770 agilent\_inquiries@agilent.com

#### Asia Pacific

inquiry\_lsca@agilent.com

#### Europe

info\_agilent@agilent.com

This item is not approved for use in diagnostic procedures. User is responsible for obtaining regulatory approval or clearance from the appropriate authorities prior to diagnostic use.

Agilent Technologies shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

© Agilent Technologies, Inc. 2011 Printed in the USA, December 16, 2011 5990-6274EN

