Sistema per LC capillare Agilent Serie 1100

Manuale del sistema

Avvisi

© Agilent Technologies, Inc. 2002

Nessuna parte di questo manuale può essere riprodotta in alcun formato o con alcun mezzo (inclusa l'archiviazione e la scansione elettroniche o la traduzione in una lingua straniera) senza previo consenso scritto di Agilent Technologies, Inc. secondo le disposizioni di legge sul diritto d'autore degli Stati Uniti, internazionali e locali applicabili.

Codice del manuale

G1388-94001

Edizione

Ottobre 2002

Stampato in Germania

Agilent Technologies Deutschland GmbH Hewlett-Packard-Strasse 8 76337 Waldbronn, Germania

Revisione software

Questa Guida si applica alle revisioni A.01.xx del software Sistema Agilent Cerity di gestione dati in rete per QA/QC in campo farmaceutico, dove xx è un numero compreso tra 00 e 99 e fa riferimento alle revisioni minori del software, che non hanno effetto sull'accuratezza tecnica della presente Guida.

Garanzia

Le informazioni contenute in questo documento sono fornite allo stato corrente e sono soggette a modifiche senza preavviso nelle edizioni future. Agilent non rilascia alcuna garanzia, esplicita o implicita, relativamente al presente manuale e alle informazioni in esso contenute. Salvo il caso di dolo o colpa grave Agilent non sarà responsabile di errori o danni diretti o indiretti relativi alla fornitura o all'uso di auesto documento o delle informazioni in esso contenute. In caso di separato accordo scritto fra Agilent e l'utente con diverse condizioni di garanzia relativamente al contenuto di questo documento in conflitto con le condizioni qui riportate, prevarranno le condizione dell'accordo separato.

Licenze sulla tecnologia

I componenti hardware e/o software descritti in questo documento vengono forniti con licenza e possono essere utilizzati o copiati solo in conformità ai termini di tale licenza.

Indicazione di sicurezza

AVVERTENZA

L'indicazione **AVVERTENZA** segnala un rischio. Richiama l'attenzione su una procedura operativa o analoga operazione che, se non eseguita correttamente o non rispettata, può provocare danni al prodotto o la perdita di dati importanti. Non eseguite mai alcuna operazione ignorando l'**AVVERTENZA**, fatelo solo dopo aver compreso e applicato completamente le indicazioni di Agilent.

ATTENZIONE

L'indicazione ATTENZIONE segnala un rischio serio. Richiama l'attenzione su una procedura operativa o analoga operazione che, se non eseguita correttamente o non rispettata, può provocare lesioni personali o morte. Non eseguite mai alcuna operazione ignorando l'indicazione ATTENZIONE, fatelo solo dopo aver compreso e applicato completamente le indicazioni di Agilent.

In questo manuale...

Il presente manuale contiene informazioni per l'uso del Sistema per LC capillare.

1 Installazione del sistema per LC capillare

Questo capitolo descrive come installare e configurare il sistema per LC capillare.

2 Ottimizzazione delle prestazioni

Questo capitolo spiega come ottimizzare il sistema per LC capillare ed ottenere risultati cromatografici migliori

3 Capillari e raccordi

Questo capitolo fornisce una panoramica dei capillari e dei raccordi utilizzati nel sistema per LC capillare.

4 Verifica e soluzione dei problemi di base del sistema

Il capitolo descrive esempi di problemi comuni e spiega come risolverli.

5 Parti e materiali

Consultare questo capitolo per una descrizione dettagliata delle parti e dei materiali.

6 Opzioni

Il capitolo descrive le diverse opzioni disponibili per il sistema per LC capillare.

7 Specifiche

Questo capitolo elenca le specifiche per le prestazioni dei sistemi per LC capillare

Allegato Informazioni per la sicurezza

Contenuto

1 Installazione del sistema per

LC capillare

Caratteristiche ambientali 2
Specifiche fisiche 4
Procedura per l'installazione del sistema 6
Installazione di un sistema per LC capillare con un campionatore non termostatato 7
Installazione del rivelatore a serie di diodi (DAD) (G1315B) 8 Installazione del comparto colonne termostatato (TCC) (G1316A) 9 Installazione del micro campionatore a micropiastre (G1377A) 10 Installazione della pompa capillare (G1376A) 11 Installazione del micro sistema di degasaggio sotto vuoto (G1379A) 12 Installazione del modulo di erogazione del solvente 13
Installazione di un sistema per LC capillare con un micro campionatore termostatato 14
Installazione del termostato per campionatori Serie 1100 (G1330B) 15 Installazione del micro campionatore (G1387A), del micro campionatore automatico (ALS) o del micro campionatore a micropiastre (G1378A) 16 Installazione del comparto colonne termostatato (TCC) (G1316A) 17 Installazione del rivelatore a serie di diodi (DAD) (G1315B) 18 Installazione della pompa capillare (G1376A) 19 Installazione del micro sistema di degasaggio sotto vuoto (G1379A) 20 Installazione del modulo di erogazione del solvente 21
Preparazione del sistema per la prima iniezione 22 Adescamento manuale dei canali del solvente. 23 Spurgo della pompa. 24 Condizionamento del sistema in base alle condizioni previste dal metodo. 25
Condizionamento dei sistema in base ane condizioni previste dai metodo.

contenuto

	Iniezione del campione di prova 26
	Procedimento 27
	Cromatogramma tipo 27
2	Ottimizzazione delle prestazioni
	Consigli per l'utilizzo efficiente della pompa capillare 30
	Operazioni da effettuare sulla pompa 30
	Operazioni da effettuare sui capillari in silice fusa 31
	Operazioni da effettuare sul campionatore 32
	Operazioni da effettuare sul termostato della colonna 32
	Operazioni da effettuare sul DAD 32
	Informazioni sui solventi 33
	Come evitare il blocco dei filtri del solvente 34
	Verifica dei filtri del solvente 34
	Pulizia dei filtri 35
	Consigli per l'uso del micro sistema di degasaggio sotto vuoto 36
	Quando utilizzare guarnizioni alternative 37
	Come selezionare il flusso primario 38
	Miscelatore statico e filtro 40
	Miscelatore statico standard 40
	Filtro standard 40
	Come ottimizzare le impostazioni di compressibilità 41
	La funzione di modifica rapida della composizione/ricondizionamento 43
	Scopo 43
	Come funziona 43
3	Capillari e raccordi
	Diagramma di flusso capillare 46
	Capillari di collegamento del sistema per LC capillare 47
	Raccordi e ferrule 52

	Istruzioni per il collegamento di un capillare 53
	Consigli per l'utilizzo efficiente di capillari e raccordi 54
4	Verifica e soluzione dei problemi di base del sistema
	System Pressure Abnormally Low (Pressione del sistema troppo bassa) 56
	System Pressure Abnormally High (Pressione del sistema troppo elevata) 57
	EMPV failed to initialize (la EMPV non ha completato l'inizializzazione) (solo modalità micro) 58
	Unstable column flow and/or system pressure (Flusso in colonna e/o pressione del sistema instabile) 59
	Poor peak shape (forma dei picchi non corretta) 61
	Failure to produce peaks, or abnormally small peaks, after injection (Assenza di picchi o picchi troppo piccoli dopo l'iniezione) 62
	Wandering Detector Baseline (Deriva della linea di base del rivelatore) 63 L'interfaccia utente visualizza messaggi di errore specifici per modulo 64
5	Parti e materiali
	Micro sistema di degasaggio sotto vuoto 66
	Parti del coperchio del micro sistema di degasaggio sotto vuoto 68
	Pompa capillare 69
	Comparto dei solventi e gruppo testata bottiglia 71
	Collegamenti idraulici della pompa capillare 72 Testa della pompa 74
	Collegamenti idraulici della pompa capillare 76
	Micro campionatore a micropiastre 77
	Unità di campionamento per micro campionatore a micropiastre 79
	Gruppo della micro testa analitica 81
	Gruppo della micro valvola di iniezione 82 Micro campionatore a micropiastre 83
	Micro campionatore a micropiastre 83 Parti del coperchio del micro campionatore a micropiastre 85
	Micro campionatore automatico termostatato 86

contenuto

Termostato per campionatori 1100 88
Unità di campionamento per micro campionatore automatico 89
Gruppo della micro testa analitica 91
Gruppo della micro valvola di iniezione 92
Parti del coperchio del micro campionatore automatico termostatato 93
Vassoi portacampioni 94
Comparto colonne termostatato 95
Micro valvola di commutazione della colonna 97
Kit delle parti metalliche del comparto colonne termostatato 98
Parti del coperchio del comparto colonne termostatato 99
Parti del dispositivo di gestione perdite del comparto colonne termostatato 100
Rivelatore a serie di diodi 101
DAD - Unità ottica 103
Cella di flusso da 500 nl 105
Parti della ventola 107
Filtro all'ossido di olmio 108
Parti del coperchio del rivelatore a serie di diodi 109
Parti comuni 110
Modulo di controllo (G1323B) 110
Pannello posteriore 111
Guida dell'indicatore luminoso di stato e dell'interruttore di alimentazione 112
Parti del dispositivo di gestione perdite 113
Parti in schiuma di lattice 114
Kit di parti metalliche 114
Kit di accessori per micro sistema di degasaggio 115
Kit per la manutenzione preventiva della pompa capillare G1376-68710 115
Kit di accessori per la pompa capillare 116
Kit di accessori per micro campionatore a micropiastre G1377-68705 117
Kit di accessori per micro campionatore automatico termostatato 118

```
Kit di accessori del comparto colonne con micro valvola di selezione
      della colonna
                       119
   DAD, kit di accessori
                           120
Cavi
       121
                    123
   Cavi analogici
   Cavi di controllo remoto
                              124
   Agilent 1100 ad integratori 3396 Serie II / 3395A
                                                       127
   Cavi BCD
                130
   Cavo ausiliario
                     132
   Cavo CAN
                 132
   Cavo di contatto esterno
                               133
   Kit per cavo RS-232
                          134
   Cavi LAN
                134
Opzioni
Kit per intervalli di flusso estesi (G1376-69707)
                                                  136
   Installazione del kit per intervalli di flusso estesi
                                                       138
Kit capillare per flussi da 0.1 - 2.5 ml/min (5065-4495)
                                                          139
   Installazione del kit per flusso capillare da 0,1 - 2,5 ml/min
                                                                 140
Micro valvola di commutazione della colonna G1388A#055
                                                               143
   Identificazione delle parti della micro valvola di commutazione della
      colonna
                  145
   Sostituzione della quarnizione del rotore della micro valvola di commutazione
      della colonna
   Smontaggio della micro valvola di commutazione della colonna
                                                                         147
   Installazione della micro valvola di commutazione della colonna
                                                                          150
Kit della cella di flusso da 500 nl G1315-68714
   Informazioni supplementari per la manutenzione
                                                       154
   Installazione della cella di flusso
                                       156
   Collegamento di capillari a D.I. ristretto
                                              160
Sostituzione e pulizia delle parti
                                   161
```

contenuto

Specificne per le prestazioni
Specifiche per le prestazioni della pompa capillare Agilent Serie 1100 166
Specifiche per le prestazioni del micro sistema di degasaggio sotto vuoto Agilent Serie 1100 168
Specifiche per le prestazioni del micro campionatore automatico termostatato Agilent Serie 1100 169
Specifiche per le prestazioni del micro campionatore a micropiastre Agilent Serie 1100 170
Specifiche per le prestazioni del comparto colonne termostatato Agilent Serie 1100 171
Specifiche per le prestazioni del rivelatore a serie di diodi Agilent Serie 1100 17

A Informazioni per la sicurezza

Informazioni generali 176
Informazioni sul funzionamento 176
Simboli di sicurezza 177
Informazioni sulle batterie al litio 178
Interferenze radio 178
Emissioni sonore 178
Informazioni sui solventi 179
Agilent Technologies su Internet 179

Indice analitico 181

Agilent Serie 1100 Sistema per LC capillare Manuale di sistema

Installazione del sistema per LC capillare

Caratteristiche ambientali 2

Specifiche fisiche 4

Procedura per l'installazione del sistema 6

Installazione di un sistema per LC capillare con un campionatore non termostatato 7

Installazione di un sistema per LC capillare con un micro campionatore termostatato 14

Preparazione del sistema per la prima iniezione 22

Iniezione del campione di prova 26

Caratteristiche ambientali

Per utilizzare al meglio il sistema per LC è necessario disporre di un ambiente adatto.

Alimentazione

Il sistema di alimentazione è adattabile a più esigenze (vedere la Tabella 1 a pagina 4) e accetta qualsiasi tensione di linea nell'intervallo indicato nella tabella. Quindi, non esiste un selettore di tensione nella parte posteriore del modulo. Inoltre, non esistono fusibili accessibili esternamente, poiché i fusibili elettronici automatici sono compresi nell'alimentatore.

ATTENZIONE

Per scollegare i moduli dalla corrente elettrica, è necessario staccare il cavo di alimentazione. Il sistema di alimentazione continua ad utilizzare un po' di energia anche se l'interruttore sul quadro principale è stato spento.

ATTENZIONE

Se gli strumenti vengono collegati ad una tensione più elevata di quella prevista, la strumentazione e l'ambiente sono a rischio e potrebbero subire danni.

Cavi di alimentazione

Insieme ai moduli, Agilent offre cavi di alimentazione opzionali di tipi diversi. Il terminale femmina di tutti i cavi è identico e deve essere introdotto nell'apposita presa di alimentazione situata nella parte posteriore degli strumenti. L'estremità maschio dei cavi è diversa e progettata per adattarsi alle diverse prese di corrente in uso nei vari paesi.

ATTENZIONE

Non collegare mai lo strumento ad una presa di corrente priva di messa a terra. Non usare mai cavi diversi da quelli appositamente progettati per l'uso nel paese in cui è installato lo strumento.

ATTENZIONE

Non utilizzare mai cavi diversi da quelli forniti da Agilent Technologies per assicurare il funzionamento corretto e la conformità alle normative EMC.

Spazio necessario

Le dimensioni ed il peso della pompa capillare sono tali (vedere la Tabella 2 a pagina 5) da consentirne il posizionamento su qualsiasi banco da laboratorio. Sono necessari inoltre 2,5 cm di spazio aggiuntivi (1,0 pollici) su entrambi i lati ed 8 cm (3,1 pollici) sul lato posteriore per la circolazione dell'aria ed i collegamenti elettrici.

Se è installato un campionatore termostatato a micropiastre è necessario prevedere altri **25 cm (10 pollici)** di spazio su entrambi i lati per consentire la circolazione dell'aria e circa **8 cm (3,1 pollici)** sul lato posteriore per i collegamenti elettrici.

Se sul banco deve essere installato un sistema per cromatografia liquida capillare Agilent completo, assicurarsi che possa reggere il peso di tutti i moduli. In caso di installazione di un sistema completo che comprenda un campionatore a micropiastre termostatato, è consigliabile sistemare i moduli su due pile. Vedere "Procedura per l'installazione del sistema" a pagina 6.

Ambiente

I moduli possono funzionare nell'intervallo di temperature ambientali e di umidità relativa mostrato nella Tabella 1 a pagina 4.

I test della deriva secondo ASTM richiedono variazioni di temperatura inferiori a 2 °C/ora (3,6 °F/ora) per un periodo di un'ora. Le specifiche Agilent relative alla deriva pubblicate (vedere anche "Specifiche per le prestazioni della pompa capillare Agilent Serie 1100" a pagina 166) si riferiscono a condizioni analoghe. Variazioni della temperatura ambientale superiori a questi valori aumentano la deriva.

Solo un controllo più accurato delle variazioni di temperatura consente di risolvere al meglio i problemi provocati dalla deriva. Per ottenere prestazioni più elevate, è necessario ridurre al minimo l'ampiezza e la frequenza delle variazioni di temperatura e verificare che siano inferiori a 1 °C/ora (1,8 °F/ora). Le turbolenze della durata di un minuto o inferiori possono essere ignorate.

AVVERTENZA

Non immagazzinare, spedire o utilizzare i moduli in condizioni nelle quali eventuali sbalzi di temperatura possano causare la formazione di condensa al loro interno e danneggiare il sistema elettronico. Se i moduli sono stati immagazzinati a bassa temperatura, lasciarli nel contenitore di imballaggio fino a quando si stabilizzano a temperatura ambiente per evitare la formazione di condensa.

Specifiche fisiche

Tabella 1 Specifiche fisiche comuni

Tipo	Specifica	Osservazioni
Tensione di linea	100 – 120 o 220 – 240 V CA, ± 10 %	Vasta gamma di opzioni
Frequenza di linea	50 o 60 Hz, ± 5 %	
Temperatura ambiente di esercizio	4 – 55 °C (41 – 131 °F)	
Temperatura di stoccaggio	-40 – 70 °C (-4 – 158 °F)	
Umidità	< 95 %, a 25 – 40 °C (77 – 104 °F)	In assenza di condensa
Altitudine di esercizio	Fino a 2000 m (6500 piedi)	
Altitudine di stoccaggio	Fino a 4600 m (14950 piedi)	Per lo stoccaggio della pompa capillare
Standard di sicurezza: IEC, CSA, UL	Categoria di installazione II, grado di inqui- namento 2	

Tabella 2 Specifiche dei singoli moduli

Modulo Agilent 1100	Codice Agilent	Peso	Dimensioni (alt. × lungh. × larg.)	Consumo energetico
Pompa capillare	G1376A	17 kg 39 libbre	345x435x180 (mm) 13,5x17x7 (pollici)	220 VA max.
Micro sistema di degasaggio sotto vuoto	G1379A	7,5 kg 16,5 libbre	345x435x180 (mm) 13,5x17x3,1 (pollici)	30 VA max.
Micro campionatore automatico termostatato (Micro-ALS)	G1387A	14,2 kg 31,3 libbre	345x435X200 (mm) 13,5x17x8 (pollici)	300 VA max.
Micro campionatore automatico a micropiastre (Micro-WPS)	G1377A/78A	15,5 kg 34,2 libbre	200x345x435 (mm) 8x13,5x17 (pollici)	300 VA max.
Modulo del termostato	G1330A/B	18,5 kg 40,7 libbre	345x435x144 (mm) 13,5x17x5,5 (pollici)	260 VA max.
Comparto colonne termostatato (TCC)	G1316A	10,2 kg 10,21 kg	410x435x140 (mm) 16,1x17x5,5 (pollici)	320 VA max.
Rivelatore a serie di diodi (DAD)	G1315B	11,5 kg 26 libbre	345x435x144 (mm) 13,5x17x5,5 (pollici)	220 VA max.

-1

Procedura per l'installazione del sistema

Imballo danneggiato

Se i contenitori di imballaggio presentano danni, avvisare immediatamente l'ufficio Vendite e Assistenza Agilent più vicino, segnalando anche il problema al servizio di Assistenza tecnica.

Se gli strumenti presentano segni di danni, non procedere all'installazione.

Installazione di un sistema per LC capillare con un campionatore non termostatato

Le istruzioni che seguono si riferiscono all'installazione di una sola pila di moduli, con il rivelatore a serie di diodi (DAD) sul fondo. I cavi, i tubi ed i capillari richiesti per ogni modulo vengono forniti con il sistema oppure si trovano nei kit di accessori del modulo.

NOTA

I codici Agilent relativi ai capillari indicati nel test devono essere usati con la pompa capillare standard, così come viene spedita dalla fabbrica. Se sulla pompa deve essere installato il kit opzionale per intervalli di flusso estesi (G1376-68707), molti di questi capillari, presenti nell'intero sistema, devono essere sostituiti. Per informazioni più dettagliate sul Kit per intervalli di flusso estesi, consultare il capitolo 6.

Consultare il Capitolo 3, "Capillari e raccordi," con inizio a pagina 45 per informazioni dettagliate sui collegamenti idraulici del sistema, i codici Agilent e le descrizioni dei capillari presenti al suo interno.

Il presente manuale fornisce una panoramica delle caratteristiche principali dell'intero sistema per LC capillare. Per informazioni più dettagliate sui singoli moduli, consultare il manuale di riferimento fornito con ognuno di essi.

Installazione del rivelatore a serie di diodi (DAD) (G1315B)

ATTENZIONE

Collegare il cavo di alimentazione solo dopo aver terminato l'installazione di tutti i moduli del sistema.

- 1 Assicurarsi che l'interruttore di accensione situato sulla parte anteriore del modulo sia in posizione OFF.
- 2 Se il sistema deve essere collegato all'interfaccia utente tramite LAN installare la scheda **JetDirect** sul DAD. Vedere la sezione Sostituzione della scheda di interfacciamento nel manuale di riferimento del DAD.
- 3 Collocare il DAD sul banco.
- 4 Collegare un'estremità del cavo a doppino incrociato (5183-4649) al connettore sulla scheda JetDirect. Collegare l'altra estremità del cavo a doppino incrociato della LAN alla ChemStation.
- **5** Collegare il cavo del bus CAN (5181-1516) ad uno dei connettori CAN situati nella parte posteriore del DAD.
- **6** Collegare il cavo di alimentazione alla parte posteriore del modulo. Collegare il cavo di alimentazione solo dopo aver terminato l'installazione di tutti i moduli del sistema.
- 7 Installare la cella di flusso (G1314-68714) del DAD.
- 8 Dirigere il capillare di uscita della cella di flusso del DAD (G1315-68708) sino ad un contenitore di scarico adatto. Il capillare di ingresso della cella di flusso del DAD (G1315-68703) verrà in seguito collegato all'uscita della colonna analitica.
- **9** Collegare il tubo di scarico delle perdite in plastica corrugata a diametro largo all'accessorio di scarico delle perdite del DAD. Dirigere il tubo di scarico verso un contenitore apposito.

Installazione del comparto colonne termostatato (TCC) (G1316A)

ATTENZIONE

Collegare il cavo di alimentazione solo dopo aver terminato l'installazione di tutti i moduli del sistema.

- 1 Assicurarsi che l'interruttore di accensione situato sulla parte anteriore del modulo sia in posizione OFF.
- **2** Collocare il TCC sopra il DAD. Assicurarsi che i due moduli siano correttamente fissati l'uno all'altro.
- **3** Collegare il cavo del bus CAN (5181-1516) ad uno degli appositi connettori CAN situati nella parte posteriore del TCC.
- **4** Collegare il cavo di alimentazione alla parte posteriore del modulo. Collegare il cavo di alimentazione solo dopo aver terminato l'installazione di tutti i moduli del sistema.
- **5** Collegare l'estremità libera del cavo del bus CAN proveniente dal DAD al connettore del bus CAN rimasto inutilizzato nella parte posteriore del TCC.
- **6** Collocare la colonna analitica all'intero del TCC. Osservare la direzione del flusso indicata sulla colonna. La colonna può essere fissata saldamente in seguito, usando un'apposita staffa (5001-3702).
- 7 Collegare il capillare di ingresso della cella di flusso del DAD (G1315-68703) all'uscita della colonna analitica.

NOTA

Posizionare tutti i capillari con cautela per evitare che vengano schiacciati o rotti dai coperchi anteriori del modulo. Evitare di piegarli eccessivamente. Consultare il Capitolo 2 per consigli su come maneggiare i capillari.

NOTA

Se il TCC ha una micro valvola di commutazione della colonna, consultare le relative informazioni riportate nel Capitolo 6 del presente manuale.

Installazione del micro campionatore a micropiastre (G1377A)

ATTENZIONE

Collegare il cavo di alimentazione solo dopo aver terminato l'installazione di tutti i moduli del sistema.

- 1 Assicurarsi che l'interruttore di accensione situato sulla parte anteriore del modulo (micro WPS) sia in posizione OFF.
- **2** Collocare il micro WPS sopra il TCC. Assicurarsi che i due moduli siano correttamente fissati l'uno all'altro.
- 3 Togliere lo strato protettivo in schiuma del contenitore di spedizione.
- **4** Collegare il cavo del bus CAN (5181-1519) ad uno dei connettori CAN situati nella parte posteriore del WPS.
- **5** Collegare il cavo di alimentazione alla presa di corrente situata nella parte posteriore del modulo. Collegare il cavo di alimentazione solo al termine dell'installazione di tutti i moduli del sistema.
- **6** Collegare l'estremità libera del cavo del bus CAN proveniente dal TCC al connettore del bus CAN rimasto inutilizzato nella parte posteriore del micro campionatore.
- 7 Collegare un'estremità del capillare campionatore-colonna (G1375-87304) alla via 6 della valvola di iniezione del campionatore. Collegare l'altra estremità di questo capillare all'ingresso della colonna analitica nel TCC.

NOTA

Posizionare tutti i capillari con cautela per evitare che vengano schiacciati o rotti dai coperchi anteriori del modulo. Evitare di piegarli eccessivamente. Consultare il Capitolo 2 per consigli su come maneggiare i capillari.

Installazione della pompa capillare (G1376A)

ATTENZIONE

Collegare il cavo di alimentazione solo dopo aver terminato l'installazione di tutti i moduli del sistema.

- 1 Assicurarsi che l'interruttore di accensione situato sulla parte anteriore della pompa capillare sia in posizione OFF.
- **2** Collocare la pompa capillare sopra il WPS. Assicurarsi che i due moduli siano correttamente fissati l'uno all'altro.
- 3 Collegare il cavo di alimentazione alla parte posteriore della pompa capillare. Collegare il cavo di alimentazione solo al termine dell'installazione di tutti i moduli del sistema.
- **4** Collegare l'estremità libera del cavo del bus CAN proveniente dal micro campionatore al connettore del bus CAN rimasto inutilizzato nella parte posteriore della pompa capillare.
- 5 Collegare l'estremità pre-terminata del capillare pompa-campionatore (G1375-87310) all'uscita del sensore di flusso della pompa capillare. Collegare l'altra estremità del capillare alla via 1 della valvola di iniezione del campionatore.

NOTA

Posizionare tutti i capillari con cautela per evitare che vengano schiacciati o rotti dai coperchi anteriori del modulo. Evitare di piegarli eccessivamente. Per ulteriori informazioni su come maneggiare i capillari, consultare il Capitolo 2.

6 Collegare il tubo di scarico EMPV in plastica da 1/8" all'accessorio di scarico dell'EMPV. Dirigere il tubo di scarico verso l'apposito contenitore.

Installazione del micro sistema di degasaggio sotto vuoto (G1379A)

ATTENZIONE

Collegare il cavo di alimentazione solo dopo aver terminato l'installazione di tutti i moduli del sistema.

- 1 Assicurarsi che l'interruttore di accensione situato sulla parte anteriore del modulo sia in posizione OFF.
- **2** Collocare il modulo di degasaggio sopra la pompa. Assicurarsi che i due moduli siano correttamente fissati l'uno all'altro.
- **3** Collegare un'estremità del cavo remoto (5061-3378) alla parte posteriore del modulo di degasaggio. Collegare l'altra estremità del cavo alla porta remota situata nella parte posteriore della pompa.
- **4** Il kit di accessori del sistema di degasaggio comprende 4 tubi per solvente (G1322-67300). Ogni tubo è contrassegnato con A,B,C o D. Collegare ogni tubo per solvente alla porta del canale di USCITA designato sul modulo di degasaggio.
- **5** Collegare l'altra estremità del tubo del solvente alla porta corretta in corrispondenza della valvola di selezione del solvente della pompa. Attenersi a quanto riportato nella guida che segue.

Sistema di degasaggio USCITA		Porta della valvola di selezione solvente della pompa	
Da A	а	A1 (metà sinistra, superiore)	
Da B	а	A2 (metà sinistra, inferiore)	
Da C	а	B1 (metà destra, superiore)	
Da D	а	B2 (metà destra, inferiore)	

Installazione del modulo di erogazione del solvente

- 1 Collocare il modulo sopra il sistema di degasaggio. Assicurarsi che i due moduli siano correttamente fissati l'uno all'altro.
- **2** Il kit di accessori del modulo di erogazione solventi ha quattro gruppi di testate delle bottiglie (G1376-60003).
- 3 Collegare un gruppo di testate delle bottiglie ad ognuna delle porte di INGRESSO del sistema di degasaggio. Utilizzare le etichette fornite con ogni gruppo di testate delle bottiglie per identificare tutte le testate.

Installazione di un sistema per LC capillare con un micro campionatore termostatato

Le istruzioni che seguono consentono di disporre il sistema in due pile di moduli. La pila a sinistra è costituita dalla pompa capillare, dal sistema di degasaggio e dal comparto solventi. La pila a destra comprende il micro campionatore termostatato (fondo), il comparto colonne termostatato (TCC) e il rivelatore a serie di diodi (DAD) situato sulla sommità della pila. I cavi, i tubi ed i capillari richiesti per ogni modulo vengono forniti con il sistema oppure si trovano nei kit di accessori del modulo.

NOTA

I codici Agilent relativi ai capillari indicati nel test devono essere usati con la pompa capillare standard, così come viene spedita dalla fabbrica. Se sulla pompa deve essere installato il kit opzionale per intervalli di flusso estesi (G1376-68707), molti di questi capillari, presenti nell'intero sistema, devono essere sostituiti. Per informazioni più dettagliate sul Kit per intervalli di flusso estesi, consultare il capitolo 6.

Consultare il Capitolo 3 per informazioni dettagliate sui collegamenti idraulici del sistema, i codici Agilent e le descrizioni dei capillari presenti al suo interno.

Il presente manuale fornisce una panoramica delle caratteristiche principali dell'intero sistema per LC capillare. Per informazioni più dettagliate sui singoli moduli, consultare il manuale di riferimento fornito con ognuno di essi.

Installazione del termostato per campionatori Serie 1100 (G1330B)

AVVERTENZA

Collegare il cavo di alimentazione alla presa del modulo del termostato solo dopo aver collegato il termostato al cavo del campionatore (G1330-81600) fra il modulo del termostato ed il micro campionatore. La mancata osservanza di tale precauzione potrebbe provocare danni al sistema elettronico del modulo del termostato e del campionatore.

- 1 Collocare il termostato per campionatori 1100 (modulo del termostato) sul banco di laboratorio. Il modulo del termostato non deve trovarsi a più di 25 cm (9,8 pollici) dal bordo anteriore del banco. Il modulo del termostato deve essere sistemato sotto gli altri moduli, sulla pila destra.
- 2 Collegare un'estremità del cavo termostato-campionatore (G1330-81600) al connettore a 26 pin situato nella parte posteriore del modulo del termostato.
- 3 Dirigere il tubo di scarico della condensa a largo diametro ed in plastica corrugata, dalla parte anteriore del termostato direttamente all'apposito contenitore di scarico.

NOTA

È importante che il tubo di scarico della condensa segua un percorso lineare e privo di ostacoli per consentire un drenaggio ottimale della condensa stessa. Il tubo non deve mai essere avvolto e non deve inoltre mai trovarsi al di sotto del livello del liquido nel contenitore di scarico.

Installazione del micro campionatore (G1387A), del micro campionatore automatico (ALS) o del micro campionatore a micropiastre (G1378A)

AVVERTENZA

Collegare il cavo di alimentazione alla presa del modulo del termostato solo dopo aver collegato il termostato al cavo del campionatore (G1330-81600) fra il modulo del termostato ed il campionatore. La mancata osservanza di tale precauzione può provocare danni al sistema elettronico del modulo del termostato e del campionatore.

- 1 Assicurarsi che l'interruttore di accensione situato sulla parte anteriore del modulo sia in posizione OFF.
- **2** Collocare il micro campionatore sopra il modulo del termostato. Assicurarsi che i due moduli siano correttamente fissati l'uno all'altro.
- **3** Togliere lo strato protettivo in schiuma del contenitore di spedizione.
- **4** Collegare un'estremità del cavo termostato-campionatore (G1330-81600) al connettore a 26 pin situato nella parte posteriore del micro campionatore.
- **5** Collegare il cavo del bus CAN (5181-1519) ad uno dei connettori CAN situati nella parte posteriore del micro campionatore.
- 6 Collegare il cavo di alimentazione alla presa di corrente situata nella parte posteriore del modulo. Collegare il cavo di alimentazione alla parte posteriore del modulo del termostato. Collegare il cavo di alimentazione solo al termine dell'installazione di tutti i moduli del sistema.
- 7 Installare l'adattatore del canale aria (G1329-43200) fra il micro campionatore ed il modulo del termostato. Se necessario consultare il manuale di riferimento del campionatore per ulteriori informazioni.
- 8 Collegare un'estremità del capillare campionatore-colonna (G1375-87304) alla via 6 della valvola di iniezione del campionatore. L'altra estremità di questo capillare verrà successivamente collegata all'ingresso della colonna analitica nel TCC.

NOTA

Posizionare tutti i capillari con cautela per evitare che vengano schiacciati o rotti dai coperchi anteriori del modulo. Evitare di piegarli eccessivamente. Per ulteriori informazioni su come maneggiare i capillari, consultare il Capitolo 2.

9 Collegare il tubo di scarico delle perdite in plastica corrugata e diametro largo all'accessorio di scarico delle perdite del micro campionatore. Instradare il tubo di scarico verso un contenitore apposito.

Installazione del comparto colonne termostatato (TCC) (G1316A)

ATTENZIONE

Collegare il cavo di alimentazione solo dopo aver terminato l'installazione di tutti i moduli del sistema.

- 1 Assicurarsi che l'interruttore di accensione situato sulla parte anteriore del comparto colonne (TCC) sia in posizione OFF.
- **2** Collocare il TCC sopra il micro campionatore. Assicurarsi che i due moduli siano correttamente fissati l'uno all'altro.
- **3** Collegare il cavo del bus CAN (5181-1516) ad uno degli appositi connettori CAN situati nella parte posteriore del TCC.
- **4** Collegare il cavo di alimentazione alla parte posteriore del modulo. Collegare il cavo di alimentazione solo dopo aver terminato l'installazione di tutti i moduli del sistema.
- **5** Collegare l'estremità libera del cavo del bus CAN proveniente dal micro campionatore al connettore del bus CAN rimasto inutilizzato nella parte posteriore del TCC.
- **6** Collocare la colonna analitica all'interno del TCC. Osservare la direzione del flusso indicata sulla colonna. La colonna può essere fissata saldamente in seguito, usando un'apposita staffa (5001-3702).
- 7 Collegare l'estremità libera del capillare campionatore-colonna (G1375-87304) all'ingresso della colonna analitica nel TCC.

NOTA

Posizionare tutti i capillari con cautela per evitare che vengano schiacciati o rotti dai coperchi anteriori del modulo. Evitare di piegarli eccessivamente. Per ulteriori informazioni su come maneggiare i capillari, consultare il Capitolo 2.

Installazione del rivelatore a serie di diodi (DAD) (G1315B)

ATTENZIONE

Collegare il cavo di alimentazione solo dopo aver terminato l'installazione di tutti i moduli del sistema.

- 1 Assicurarsi che l'interruttore di accensione situato sulla parte anteriore del DAD sia in posizione OFF.
- 2 Se il sistema deve essere collegato all'interfaccia utente tramite LAN installare la scheda JetDirect sul DAD. Vedere *Sostituzione della scheda di interfacciamento* sul manuale di riferimento del DAD.
- **3** Collocare il DAD sopra il TCC. Assicurarsi che i due moduli siano correttamente fissati l'uno all'altro.
- 4 Collegare un'estremità del cavo a doppino incrociato (5183-4649) al connettore sulla scheda JetDirect. Collegare l'altra estremità del cavo a doppino incrociato della LAN alla ChemStation.
- **5** Collegare il cavo del bus CAN (5181-1516) proveniente dal TCC ad uno degli appositi connettori CAN situati nella parte posteriore del DAD.
- **6** Collegare il cavo di alimentazione alla parte posteriore del modulo. Collegare il cavo di alimentazione solo dopo aver terminato l'installazione di tutti i moduli del sistema.
- 7 Installare la cella di flusso (G1314-68714) del DAD.
- 8 Dirigere il capillare di uscita della cella di flusso del DAD (G1315-68708) sino ad un contenitore di scarico adatto.
- **9** Collegare il capillare di ingresso della cella di flusso del DAD (G1315-68703) all'uscita della colonna analitica.

NOTA

Posizionare tutti i capillari con cautela per evitare che vengano schiacciati o rotti dai coperchi anteriori del modulo. Evitare di piegarli eccessivamente. Per ulteriori informazioni su come maneggiare i capillari, consultare il Capitolo 2.

Installazione della pompa capillare (G1376A)

ATTENZIONE

Collegare il cavo di alimentazione solo dopo aver terminato l'installazione di tutti i moduli del sistema.

- 1 Assicurarsi che l'interruttore di accensione situato sulla parte anteriore della pompa capillare sia in posizione OFF.
- 2 Collocare la pompa capillare sul banco di laboratorio, a sinistra del modulo del termostato del micro campionatore.
- 3 Collegare il cavo di alimentazione alla parte posteriore della pompa capillare. Collegare il cavo di alimentazione solo dopo aver terminato l'installazione di tutti i moduli del sistema.
- **4** Collegare il cavo del bus CAN da 1 metro (5181-1519) da uno dei connettori del bus CAN situati nella parte posteriore della pompa capillare ad un connettore per bus CAN libero nella parte posteriore del micro campionatore.
- 5 Collegare l'estremità pre-terminata del capillare pompa-campionatore (G1375-87310) all'uscita del sensore di flusso della pompa. Collegare l'altra estremità del capillare alla via 1 della valvola di iniezione del campionatore.

NOTA

Posizionare tutti i capillari con cautela per evitare che vengano schiacciati o rotti dai coperchi anteriori del modulo. Evitare di piegarli eccessivamente. Per ulteriori informazioni su come maneggiare i capillari, consultare il Capitolo 2.

- **6** Collegare il tubo di scarico EMPV in plastica da 1/8" all'accessorio di scarico dell'EMPV. Dirigere il tubo di scarico verso l'apposito contenitore.
- 7 Collegare il tubo di scarico delle perdite in plastica corrugata e diametro largo all'accessorio di scarico delle perdite della pompa. Dirigere il tubo di scarico verso l'apposito contenitore.

Installazione del micro sistema di degasaggio sotto vuoto (G1379A)

ATTENZIONE

1

Collegare il cavo di alimentazione solo dopo aver terminato l'installazione di tutti i moduli del sistema.

- 1 Assicurarsi che l'interruttore di accensione situato sulla parte anteriore del modulo (degasaggio) sia in posizione OFF.
- **2** Collocare il modulo di degasaggio sopra la pompa. Assicurarsi che i due moduli siano correttamente fissati l'uno all'altro.
- 3 Collegare un'estremità del cavo remoto (5061-3378) alla parte posteriore del modulo di degasaggio. Collegare l'altra estremità del cavo alla porta remota situata nella parte posteriore della pompa.
- **4** Il kit di accessori del sistema di degasaggio comprende 4 tubi per solvente (G1322-67300). Ogni tubo è contrassegnato con A,B,C o D. Collegare ogni tubo per solvente alla porta del canale di USCITA designato sul modulo di degasaggio.
- **5** Collegare l'altra estremità del tubo del solvente alla porta corretta in corrispondenza della valvola di selezione del solvente della pompa. Attenersi a quanto riportato nella guida che segue.

Sistema di degasaggio USCITA		Porta della valvola di selezione solvente della pompa	
Da A	а	A1 (metà sinistra, superiore)	
Da B	а	A2 (metà sinistra, inferiore)	
С	а	B1 (metà destra, superiore)	
Da D	а	B2 (metà destra, inferiore)	

Installazione del modulo di erogazione del solvente

- 1 Collocare il modulo sopra il sistema di degasaggio. Assicurarsi che i due moduli siano correttamente fissati l'uno all'altro.
- 2 Il kit di accessori del modulo di erogazione solventi ha quattro gruppi di testate delle bottiglie (G1376-60003).
- 3 Collegare un gruppo di testate delle bottiglie ad ognuna delle porte di INGRESSO del sistema di degasaggio. Utilizzare le etichette fornite con ogni gruppo di testate delle bottiglie per identificare tutte le testate.

Preparazione del sistema per la prima iniezione

Se si utilizza il sistema per la prima volta dopo l'installazione, è necessario eseguire la seguente preparazione in tre fasi nell'ordine sotto riportato allo scopo di ottenere migliori risultati.

- 1 Adescamento manuale dei canali del solvente.
- 2 Spurgo della pompa.
- 3 Condizionamento del sistema in base alle condizioni previste dal metodo.

ATTENZIONE

L'apertura dei capillari o dei raccordi dei tubi può provocare la fuoriuscita del solvente. È consigliabile rispettare le procedure di sicurezza adatte (indossare gli occhiali protettivi, i guanti e gli abiti antinfortunistici) come descritto nelle schede di sicurezza fornite dal fabbricante dei solventi, specialmente in caso di utilizzo di sostanze tossiche o pericolose.

Adescamento manuale dei canali del solvente.

NOTA Questa procedura deve essere effettuata prima dell'accensione dei moduli.

- 1 Il kit di accessori del sistema di degasaggio contiene una siringa in plastica da 20 ml e un adattatore per il tubo del solvente per tale siringa. Spingere l'adattatore sulla siringa.
- 2 Versare i solventi analitici da utilizzare nelle bottiglie apposite ed installare queste ultime sui canali del solvente desiderati. Installare l'isopropanolo su canali che non verranno immediatamente utilizzati.
- **3** Mettere un fazzoletto di carta sul sensore delle perdite del vassoio di raccolta perdite della pompa.
- 4 Scollegare il tubo del solvente del canale A dalla via A1 della valvola di selezione del solvente della pompa.

Dal tubo del solvente scollegato potrebbe cadere un po' di liquido. Assicurarsi di adottare misure di sicurezza adequate.

- 5 Collegare l'estremità del tubo del solvente all'adattatore della siringa. Dal tubo del solvente, aspirare lentamente una quantità pari al volume della siringa (20 ml).
- **6** Scollegare il tubo del solvente dall'adattatore della siringa e ricollegare il tubo alla via A1 della valvola di selezione del solvente. Scaricare il contenuto della siringa in un contenitore di scarico adatto.
- **7** Ripetere le operazioni descritte dal punto 4 al punto 6 per i tre canali del solvente rimanenti.
- **8** Se i 4 canali del solvente vengono adescati manualmente, togliere il fazzoletto di carta dal vassoio di raccolta perdite della pompa. Assicurarsi che il sensore delle perdite sia asciutto prima di avviare la pompa.

Spurgo della pompa.

- 1 Assicurarsi che il tubo di scarico in plastica da 1/8 di pollice sia collegato saldamento all'accessorio di scarico nell'EMPV della pompa oltre che adeguatamente convogliato ad un contenitore di scarico adatto.
- 2 Avviare il sistema per LC. Tutti i parametri del sistema devono essere uguali a quelli predefiniti. Anche il sistema di degasaggio deve essere acceso.
- **3** Inizializzare il sistema. Quindi, accedere ai dispositivi di controllo della pompa ed accertarsi che sia impostata in modalità normale.
- 4 Accedere al dispositivo di controllo dello spurgo della pompa. Impostare una tabella di spurgo in grado di spurgare tutti i canali per 5 minuti ciascuno ad un flusso di 2500 μ l/min. Quindi avviare lo spurgo.

NOTA

Se il sistema di pompaggio rimane spento per un certo periodo di tempo (ad esempio durante la notte), l'ossigeno si diffonde di nuovo nel canale del solvente fra il sistema di degasaggio sotto vuoto e la pompa. È consigliabile spurgare tutti i canali a 2500 µl/min per

1 minuto all'inizio di ogni giornata di lavoro.

Condizionamento del sistema in base alle condizioni previste dal metodo.

Se si vuole condizionare la colonna analitica, lasciarla installata nel TCC.

Se per il momento non si intende condizionare la colonna analitica, toglierla dal TCC. Nel TCC collegare il capillare campionatore-colonna (G1375-87304) direttamente al capillare di ingresso della cella di flusso del DAD (G1315-68703). Tale collegamento può essere effettuato con un raccordo ZVD (0100-0900)

Immettere le condizioni del metodo ed avviare la pompa. Lasciar equilibrare il sistema in queste condizioni.

Tabella 3 Selezione dei solventi di adescamento per scopi diversi

Attività	Solvente	Osservazioni
Dopo un'installazione	Isopropanolo	È il miglior solvente per eliminare l'aria dal sistema.
Dopo un'installazione (seconda scelta)	Etanolo o metanolo	Alternativa all'isopropanolo se quest'ultimo non è disponibile
Nel passare dalla fase inversa alla fase normale (per entrambe le fasi)	Isopropanolo	È il miglior solvente per eliminare l'aria dal sistema.
Per la pulizia del sistema quando si usano soluzioni tampone	Acqua bidistillata	È il miglior solvente per ridiscio- gliere i sali
Dopo un cambio di solvente	Acqua bidistillata	È il miglior solvente per ridiscio- gliere i sali
Dopo l'installazione di guarnizioni per fase normale (Codice Agilent 0905-1420)	Esano + isopropanolo al 5%	Buone proprietà di umidificazione
Per la pulizia dei capillari	Acetone	È il miglior solvente per eliminare le impurezze dai capillari

Iniezione del campione di prova

Lo scopo di questa verifica dello strumento è quello di stabilire se tutti i moduli sono stati installati e collegati correttamente. Non si tratta di una prova delle prestazioni dello strumento.

Viene effettuata una sola iniezione del campione isocratico di prova Agilent Technologies (Codice 01080-68704) nelle condizioni sotto descritte previste dal metodo.

Tabella 4 Condizioni previste dal metodo per l'iniezione di un campione di prova

Flusso:	15,0 µl/minuto
Durata:	~7 minuti
Solvente A:	30% (Acqua per HPLC)
Solvente B:	70% (Acetonitrile per HPLC)
Lunghezza d'onda DAD/MWD:	Campione: 254/4 nm, riferimento: 360/80 nm
Volume di iniezione:	200 nl
Temperatura della colonna:	25,0 °C o temperatura ambiente
Sistema per LC capillare Agilent Serie 1100	Sistema di degasaggio Pompa capillare - con sensore da 20 µl/minuto installato Micro campionatore automatico Comparto colonna - opzionale Rivelatore - DAD con cella di flusso da 500 nl installata ChemStation
Colonna:	ZORBAX SB C18, 5 μm, 150 x 0,5 mm Codice Agilent 5064-8256
Standard:	Codice Agilent 01080-68704 0,15% in peso dimetilftalato, 0,15% in peso dietilftalato 0,01% in peso bifenile, 0,03% in peso o-terfenile in metanolo Diluizione 1:10 in acetonitrile

Per configurazioni di sistema diverse da quelle sopra riportate, le condizioni del metodo possono dover essere modificate al fine di ottenere il cromatogramma desiderato.

Procedimento

- 1 Effettuare una sola iniezione di standard per test isocratico, alle condizioni descritte nella Tabella 4 a pagina 26.
- **2** Confrontare il cromatogramma ottenuto al cromatogramma tipo illustrato nella Figura 1.

Cromatogramma tipo

La Figura 1 riporta un cromatogramma tipo per questo genere di analisi. Il profilo esatto del cromatogramma varia a seconda delle condizioni cromatografiche. Variazioni della qualità del solvente, dell'impaccamento della colonna, della concentrazione dello standard e della temperatura della colonna possono influenzare i tempi di ritenzione e la risposta del picco.

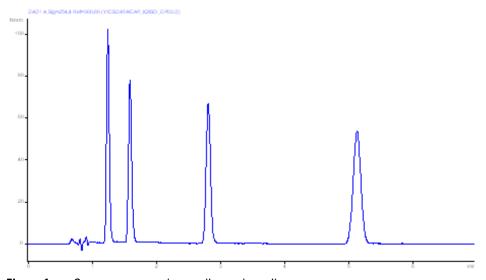


Figura 1 Cromatogramma tipo per il campione di prova

1 Installazione del sistema per LC capillare

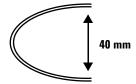
Il presente capitolo spiega come utilizzare al meglio il sistema per LC capillare ed ottenere risultati cromatografici ottimali.

Consigli per l'utilizzo efficiente della pompa capillare

Operazioni da effettuare sulla pompa

- Lavare accuratamente la pompa, utilizzando prima la modalità "Purge **Mode**", quindi applicando pressione per eliminare tutte le bolle di gas. Si consiglia di effettuare queste operazioni usando prima il solvente A al 100% e poi il solvente B al 100%.
- La pressione del sistema deve essere superiore a 20 bar all'uscita della pompa.
- In modalità "Micro Mode" eventuali variazioni del flusso in colonna di notevoli proporzioni indicano la presenza di sporco all'interno del sistema oppure di filtri bloccati o valvole della pompa allentate.
- Collocare il modulo di erogazione del solvente contenente le bottiglie sempre sopra alla pompa capillare (o ad un'altezza superiore).
- Evitare che i filtri dell'iniettore del solvente si blocchino (non usare mai la pompa senza filtro per l'iniettore). Evitare inoltre la proliferazione di alghe.
- Quando si utilizzano soluzioni tampone, lavare il sistema con acqua prima di spegnerlo.
- Quando si sostituiscono le relative guarnizioni controllare che i pistoni della pompa non siano graffiati. I graffi provocano micro perdite e riducono la durata della guarnizione.
- Dopo aver sostituito le guarnizioni dei pistoni, eseguire il procedimento di adattamento. Consultare il manuale di riferimento della pompa.
- Collegare il solvente acquoso al canale A e quello organico al canale B. I valori di compressibilità e di calibrazione del sensore di flusso sono impostati in base ai collegamenti descritti. Utilizzare sempre i valori di calibrazione corretti.
- Per produrre gradienti veloci su colonne di lunghezza limitata, togliere il miscelatore, inserire la configurazione della nuova pompa e selezionare l'intervallo di gradiente veloce per il flusso primario (le prestazioni cromatografiche non ne risentiranno).
- Quando si esegue la modalità " Micro mode" controllare che lo strumento sia impostato correttamente (tipo di sensore di flusso, miscelatore e filtri utilizzati).

- Accertarsi che sia stato impostato almeno il valore minimo per il flusso.
 - Normal mode100 μl/min
 - Micro mode, sensore di flusso da 20 μl: 1 μl/min
 - Micro mode, sensore di flusso da 100 μl:10 μl/min
- Per ottenere una stabilità di flusso ottimale, specialmente in **micro mode**, la percentuale di fluttuazione deve essere compresa entro intervalli accettabili, generalmente non superiore al 2%.


Operazioni da effettuare sui capillari in silice fusa

Per collegare un capillare (specialmente alla colonna) premerlo delicatamente nel raccordo in modo da evitare vuoti d'aria. Una connessione impropria provoca dispersioni che causeranno scodamenti o allargamenti alla base dei picchi.

NOTA

Non stringere eccessivamente i capillari in silice fusa, vedere il Capitolo 3, "Capillari e raccordi," con inizio a pagina 45 per informazioni sull'installazione e la manipolazione dei capillari.

 Prestare molta attenzione nel piegare i capillari in silice fusa. Il diametro non deve essere inferiore a 40 mm.

- Se si sostituisce una parte, ed in particolar modo il capillare, pulirla con acetone.
- Se un capillare in silice fusa dovesse perdere, non cercare di stringerlo con il flusso attivato. Impostare a zero il flusso in colonna, reinserire il capillare, stringere ed impostare di nuovo il flusso per la colonna.
- Evitare l'uso di soluzioni alcaline (pH > 8,5), poiché possono intaccare la silice fusa dei capillari.
- Fare attenzione a non rompere i capillari durante il montaggio degli sportelli dei moduli.

2 Ottimizzazione delle prestazioni

- Un capillare spezzato potrebbe immettere particelle di silice nel sistema (ad es. nella cella) e causare problemi a valle del punto di rottura.
- Un capillare ostruito può spesso essere sbloccato mediante un lavaggio controcorrente. Per tale operazione si consiglia di utilizzare l'acetone come solvente.

Operazioni da effettuare sul campionatore

- Per un gradiente veloce utilizzare la funzione valve to bypass dopo il trasferimento del campione in colonna. Questa funzione consente di ottenere tempi di ritardo più ridotti e curve di gradiente più nette.
- Quando si effettuano analisi in gradiente automatizzate utilizzare la funzione fast composition change/reconditioning per equilibrare il sistema fra un'analisi e l'altra.

Operazioni da effettuare sul termostato della colonna

- Utilizzare i supporti per mettere la colonna in contatto con lo scambiatore di calore.
- Non utilizzare il percorso di pre-riscaldamento del solvente (scambiatore di calore nel comparto della colonna) con le colonne capillari. La dispersione risulterebbe troppo elevata.

Operazioni da effettuare sul DAD

- A flussi molto bassi è possibile che si formino bolle nella cella, a causa della pressione troppo bassa nella stessa. Per questo motivo il segnale del rivelatore potrebbe presentare brusche variazioni e rumore. È possibile ridurre questo effetto aggiungendo un capillare da 50 µm all'uscita della cella.
- Per evitare danni dovuti ad una pressione eccessiva, impostare il limite superiore della pressione a 50 bar in più rispetto alla normale pressione di esercizio.

Informazioni sui solventi

Filtrare sempre i solventi servendosi di filtri da $0,4~\mu m$. Le particelle di piccole dimensioni possono bloccare i capillari e le valvole in modo permanente. Evitare l'uso dei seguenti solventi che possono corrodere l'acciaio.

- Soluzioni di alogenuri alcalini e relativi acidi (ad esempio ioduro di litio, cloruro di potassio ecc.).
- Acidi inorganici ad alta concentrazione, come l'acido nitrico e l'acido solforico, specialmente a temperature elevate (sostituire, se la tecnica cromatografica lo consente, con acido fosforico o con soluzioni tampone di fosfato, che sono meno corrosivi per l'acciaio inossidabile).
- Solventi alogenati o miscele che formano radicali e/o acidi, ad esempio:

$$2\mathrm{CHCl}_3 + \mathrm{O}_2 \longrightarrow 2\mathrm{COCl}_2 + 2\mathrm{HCl}$$

Questa reazione, nella quale l'acciaio inossidabile agisce probabilmente da catalizzatore, avviene rapidamente in presenza di cloroformio anidro, se il processo di disidratazione elimina l'alcool stabilizzatore.

- Gli eteri di grado cromatografico contenenti perossidi (ad esempio, THF, diossano, diisopropiletere) devono essere filtrati con ossido di alluminio anidro, che assorbe i perossidi.
- Solventi contenenti agenti complessanti forti (es. EDTA).
- Le miscele di tetracloruro di carbonio con 2-propanolo o THF solubilizzano l'acciaio inossidabile.
- Evitare l'uso di soluzioni alcaline (pH > 8,5) poiché possono intaccare la silice fusa dei capillari.

2

Come evitare il blocco dei filtri del solvente

I solventi contaminati o la proliferazione di alghe all'interno della bottiglia di solvente riducono la durata del filtro e le prestazioni della pompa capillare. Ciò è particolarmente vero per i solventi acquosi o le soluzioni tampone di fosfato (pH da 4 a 7). I consigli che seguono servono a prolungare la durata del filtro del solvente ed a mantenere intatte le prestazioni della pompa capillare.

- Per rallentare la formazione di alghe usare, se possibile, una bottiglia di colore scuro.
- Filtrare i solventi con filtri o membrane che consentano di eliminare le alghe.
- Sostituire i solventi ogni due giorni o rifiltrarli.
- Se l'applicazione lo consente, aggiungere al solvente da 0,0001 a 0,001 M di sodioazide.
- Mantenere un battente di argon sul solvente.
- Evitare l'esposizione diretta alla luce solare.

Verifica dei filtri del solvente

ATTENZIONE

L'apertura dei capillari o dei raccordi dei tubi può provocare la fuoriuscita del solvente. Pertanto, è consigliabile rispettare le procedure di sicurezza adatte (indossare gli occhiali protettivi, i guanti e gli abiti antinfortunistici) come descritto nelle schede di sicurezza fornite dal fabbricante dei solventi, specialmente in caso di utilizzo di sostanze tossiche o pericolose.

I filtri del solvente si trovano nella parte a bassa pressione della pompa capillare. Quindi un filtro bloccato non influenza i valori di pressione della pompa capillare. I valori di pressione non possono essere usati per verificare se il filtro è bloccato. Se il comparto dei solventi si trova nella parte superiore della pompa, il filtro può essere verificato come segue.

Smontare il tubo del solvente dal condotto di ingresso della valvola di selezione del solvente o dall'adattatore alla valvola di immissione attiva. Se il filtro non è in buone condizioni, il solvente fuoriesce liberamente dal tubo (a causa della pressione idrostatica). Se il filtro è bloccato solo in parte, il solvente non fuoriesce o fuoriesce solo in piccolissime quantità.

Pulizia dei filtri

- Togliere il filtro del solvente dal gruppo della testata della bottiglia e metterlo in un beaker con acido nitrico concentrato (65%) per un'ora.
- Lavare bene il filtro con acqua bidistillata (eliminare tutto l'acido nitrico poiché alcuni tipi di colonne capillari possono essere danneggiate da quest'ultimo).
- Reinstallare il filtro.

Non utilizzare mai il sistema senza aver installato il filtro per il solvente per evitare di causare danni alle valvole della pompa.

Consigli per l'uso del micro sistema di degasaggio sotto vuoto

Se il sistema di degasaggio viene utilizzato per la prima volta, se non è stato utilizzato per un certo periodo di tempo (ad esempio durante la notte) o se le linee dello strumento sono vuote, è necessario adescarlo prima di effettuare qualsiasi analisi.

Il sistema di degasaggio sotto vuoto può essere adescato pompando solvente con la pompa capillare ad un flusso piuttosto elevato (2,5 ml/min). Si consiglia di adescare sempre il sistema quando:

- il sistema di degasaggio viene usato per la prima volta o i condotti di aspirazione sono vuoti;
- devono essere usati solventi immiscibili con il solvente ancora presente nei tubi:
- la pompa capillare è rimasta inutilizzata per un certo periodo di tempo (ad esempio durante la notte) e vengono utilizzate miscele di solventi volatili.

Per ulteriori informazioni consultare il "Manuale di riferimento" del micro sistema di degasaggio sotto vuoto Agilent Serie 1100.

Quando utilizzare guarnizioni alternative

Le guarnizioni standard per la pompa capillare possono essere utilizzate per la maggior parte delle applicazioni. Tuttavia, per le applicazioni che comportano l'uso di solventi in fase normale (ad esempio l'esano) le guarnizioni standard non sono adatte ed è necessario impiegare guarnizioni di tipo diverso, specialmente se queste vengono utilizzate con la pompa capillare per periodi prolungati. In questo caso, è consigliabile utilizzare guarnizioni in propilene, Codice Agilent 0905-1420 (confezione da 2) poiché queste guarnizioni sono meno soggette ad abrasioni rispetto ai tipi tradizionali.

AVVERTENZA

Le guarnizioni in polietilene possono essere utilizzate in un intervallo di pressione limitato, ossia tra 0 e 200 bar. Se impiegate a livelli di pressione superiori ai 200 bar la loro durata risulta notevolmente ridotta. **NON** adottare mai il procedimento di adattamento a 400 bar normalmente impiegato con le guarnizioni standard.

Come selezionare il flusso primario

Il flusso primario è un parametro applicabile solo quando la pompa capillare viene utilizzata in Micro mode. Il flusso primario è il volume e la composizione del flusso disponibili all'ingresso all'EMPV. Quando si utilizza il flusso primario disponibile, EMPV e sensore di flusso lavorano insieme per mantenere e controllare il flusso in colonna richiesto. Il flusso primario in eccesso rispetto al flusso della colonna viene convogliato nello scarico tramite un apposito tubo in plastica da 1/8 di pollice collegato al raccordo di scarico EMPV.

In ogni caso la pompa seleziona automaticamente il miglior flusso primario per il flusso in colonna richiesto. Ciò assicura un'ottima stabilità del flusso in qualsiasi condizione. La scelta del flusso primario varia a seconda della pressione corrente del sistema e dalla configurazione della pompa esistente. Quindi, è importante che la configurazione della pompa, in termini di volume del filtro e del miscelatore, sia corretta.

NOTA

Il flusso primario è sempre molto superiore al flusso in colonna. È necessario tenere questo fattore in considerazione quando si calcola la quantità di solvente necessaria per il funzionamento automatico.

L'utente non può richiedere un valore di flusso primario specifico. Tuttavia è possibile selezionare uno dei tre intervalli di flussi primari disponibili.

Intervallo predefinito (500-800 µl/min)

Offre il miglior compromesso fra prestazioni e consumo di solventi.

Intervallo a basso consumo di solvente (200-500 µl/min)

Alcune analisi in gradiente molto lunghe e poco profonde sono possibili anche con l'intervallo a basso consumo di solvente, sebbene questo intervallo sia decisamente migliore per le analisi isocratiche. La selezione di questo intervallo permette di risparmiare solvente ma riduce anche le prestazioni della colonna.

Intervallo per gradienti rapidi (800-1300 µl/min)

In questo intervallo il tempo di ritardo del gradiente della pompa è il più breve possibile. Tale intervallo è specificamente consigliato per analisi in gradiente veloci (<3 min.). Il consumo di solvente è decisamente superiore in questo caso.

La Tabella 5 elenca i valori di flusso primario approssimativi (in µl/min) in funzione dell'intervallo di flusso primario rispetto alla pressione del sistema.

Tabella 5 Tabella riassuntiva dei flussi primari per configurazioni standard della pompa

	Pressione del sistema O bar	Pressione del sistema 100 bar	Pressione del sistema 200 bar	Pressione del sistema 300 bar	Pressione del sistema 400 bar
Intervallo a basso consumo di solvente	200	225	250	275	300
Intervallo predefinito	500	570	640	710	780
Intervallo per gra- dienti veloci	800	995	1190	385	1580

I valori effettivi del flusso primario possono variare da sistema a sistema. Se la configurazione standard viene modificata, il flusso primario può essere superiore rispetto ai valori riportati nella tabella.

Miscelatore statico e filtro

La pompa capillare è dotata di un miscelatore statico e di un filtro in linea situato davanti alla EMPV.

Miscelatore statico standard

In genere ha un volume di $420~\mu$ l. Per ridurre i volumi di ritardo della pompa capillare è possibile togliere il miscelatore.

Situazioni nelle quali è consigliabile togliere il miscelatore:

- il volume di ritardo della pompa capillare deve essere ridotto al minimo per una risposta più rapida in gradiente;
- il rivelatore viene utilizzato a sensibilità media o bassa.

NOTA

L'eliminazione del miscelatore provoca un aumento della variabilità della composizione ed un incremento del rumore all'interno del rivelatore.

Filtro standard

In genere ha un volume di $100~\mu$ l. Se l'applicazione richiede un volume ridotto (ad esempio per gradienti veloci), è consigliabile utilizzare il filtro a volume ridotto da $20~\mu$ l (01090-68703). È importante ricordare che l'efficienza e la capacità del filtro risultano significativamente ridotte rispetto a quelle del filtro standard.

NOTA Non usare mai la pompa capillare senza un filtro in linea.

Come ottimizzare le impostazioni di compressibilità

Le impostazioni di compensazione della compressibilità sono $50 \times 10^{-6}/bar$ (per la maggior parte delle soluzioni acquose) per la testa della pompa A e 115×10^{-6} /bar (per i solventi organici) per la testa della pompa B. Le impostazioni rappresentano valori medi fra quelli per i solventi acquosi (lato A) ed i solventi organici (lato B). Quindi, è consigliabile usare sempre la parte A con i solventi acquosi e la parte B con i solventi organici. In condizioni normali le impostazioni di fabbrica riducono la pulsazione della pressione a valori (meno dell'1% della pressione del sistema) sufficienti per la maggior parte delle applicazioni. Se i valori di compressibilità dei solventi usati differiscono dai valori preimpostati, è consigliabile modificare la compressibilità in base ai solventi. Le impostazioni di compressibilità possono essere ottimizzate utilizzando i valori dei solventi riportati nella Tabella 6 a pagina 42. Se, usando miscele di solventi, il solvente utilizzato non è riportato nelle tabelle di compressibilità, e se le impostazioni di fabbrica non sono sufficienti per l'applicazione da avviare, è possibile utilizzare la procedura descritta di seguito per ottimizzare le impostazioni di compressibilità.

NOTA Utilizzare la pompa capillare in modalità normale (**Normal Mode**) ad almeno 100 μl/min.

- 1 Avviare il canale A della pompa capillare al flusso richiesto. La pressione di sistema deve essere compresa fra 50 e 250 bar.
- **2** Prima di iniziare la procedura di ottimizzazione, verificare che il flusso sia stabile. Utilizzare solo solventi degassati. Controllare la tenuta del sistema effettuando una verifica della pressione.
- 3 La pompa capillare deve essere collegata a una ChemStation Agilent oppure ad un modulo di controllo Agilent Serie 1100. La pressione e la % di fluttuazione possono essere monitorate con uno di questi strumenti. In caso contrario collegare un cavo segnale fra l'uscita della pressione della pompa capillare ed un dispositivo di registrazione (ad esempio un integratore 339X) ed impostare i parametri.

Zero 50% Att 2^3

Velocità del grafico 10 cm/min

4 Avviare il dispositivo di registrazione in modalità grafica (Plot Mode).

2 Ottimizzazione delle prestazioni

- **5** Iniziare con un'impostazione di compressibilità pari a 10×10^{-6} /bar, quindi aumentare il valore di 10 unità per volta. Azzerare di nuovo l'integratore come richiesto. L'impostazione che genera la minore oscillazione della pressione è il valore ottimale per la composizione del solvente in uso.
- **6** Ripetere le operazioni da punto 1 a punto 5 per il canale B della pompa capillare.

Ottimizzare le impostazioni di compressibilità utilizzando i valori dei vari solventi elencati nella tabella che segue.

Tabella 6 Compressibilità del solvente

Solvente (puro)	Compressibilità (10 ⁻⁶ /bar)	
Acetone	126	
Acetonitrile	115	
Benzene	95	
Tetracloruro di carbonio	110	
Cloroformio	100	
Cicloesano	118	
Etanolo	114	
Etilacetato	104	
Etano	120	
Esano	150	
Isobutanolo	100	
Isopropanolo	100	
Metanolo	120	
1-propanolo	100	
Toluene	87	
THF	95	
Acqua	46	

La funzione di modifica rapida della composizione/ricondizionamento

Scopo

Per le applicazioni di LC capillare è consigliabile usare una pompa capillare e un campionatore a micropiastre. I metodi per LC capillare hanno flussi molto ridotti, in genere compresi in un intervallo di 1-20 μ l/min. A flussi così limitati, la riequilibrazione del sistema alla composizione iniziale della fase mobile fra analisi in gradiente automatizzate può richiedere molto tempo. Per riequilibrare comodamente il sistema fra le varie analisi in gradiente automatizzate, è stata implementata la funzione **Fast Composition Change/Reconditioning** (modifica rapida della composizione/ricondizionamento).

La funzione **Fast Composition Change/Reconditioning** è disponibile solo su sistemi muniti di pompa capillare e di un campionatore a micropiastre. La funzione può essere impostata per funzionare automaticamente fra un'analisi e l'altra e/o per intervenire in automatico dopo qualsiasi modifica manuale della composizione.

NOTA

La funzione **Fast Composition Change/Reconditioning** è disponibile solo quando la pompa capillare funziona in **micro mode**.

Come funziona

Indipendentemente da quando entra in azione, la funzione **Fast Composition Change/Reconditioning** è sempre un procedimento a due fasi.

1 L'ago del campionatore a micropiastre è collocato nella posizione di scarico della relativa porta. La pompa eroga un flusso elevato alla composizione iniziale definita nel metodo corrente. Il flusso viene mantenuto per il tempo definito in Fast System Flush nell'interfaccia per l'utente. In questo periodo di tempo il sistema viene di nuovo equilibrato, fino all'uscita dell'ago del campionatore.

2 Ottimizzazione delle prestazioni

NOTA

Il flusso elevato inserito in **Fast System Flush** non è definito dall'utente. La pompa immette automaticamente un limite di pressione massimo predeterminato nel campo **Fast System Flush**. Il limite di pressione è determinato dalla configurazione hardware della pompa.

Il flusso utilizzato per **Fast System Flush** è il massimo consentito senza superare il limite di pressione stabilito.

2 Alla scadenza del tempo di Fast System Flush, l'ago del campionatore a micropiastre ritorna nella posizione di partenza nella propria sede. La pompa ritorna nella propria modalità di funzionamento normale, ricondizionando la colonna al flusso ed alla composizione iniziali definiti nel metodo corrente. La colonna viene ricondizionata per il valore di tempo inserito nel campo Column Reconditioning nell'interfaccia per l'utente.

Se sono in corso più iniezioni, l'iniezione successiva inizia quando le operazioni di Fast Composition Change/Reconditioning sono terminate.

Agilent Serie 1100 Sistema per LC capillare Manuale di sistema
• 3 Capillari e raccordi
Diagramma di flusso capillare 46 Capillari di collegamento del sistema per LC capillare 47 Raccordi e ferrule 52
Istruzioni per il collegamento di un capillare 53 Consigli per l'utilizzo efficiente di capillari e raccordi 54

Diagramma di flusso capillare

Il diagramma di flusso della Figura 2 fornisce una panoramica dei capillari e dei raccordi utilizzati per i sistemi per LC capillare.

I capillari sono riportati nella Tabella 7 a destra.

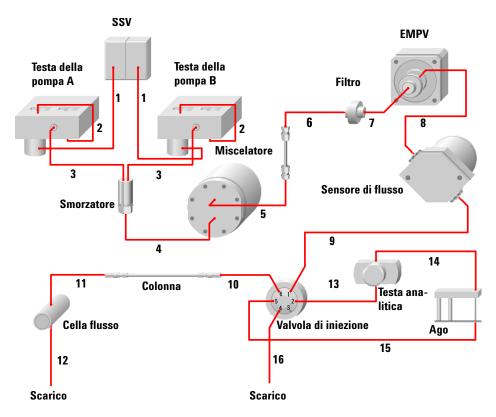


Figura 2 Diagramma di flusso capillare per un sistema per LC capillare Agilent Serie 1100

Capillari di collegamento del sistema per LC capillare

Tabella 7 Capillari generici da utilizzare con il sistema per LC capillare

Voce	Tipo di raccordo [*]	Diametro (µm)	Lunghezza (mm)	Materiale	Volume (µl)	Caduta di, pressione (Bar)	Codice Agilent
1	A/A			Inox [†]			G1311-67304
2	A/A			Inox			G1312-67300
3	A/A			Inox			G1312-67302
4	A/A			Inox			G1312-67304
5	A/A	250	130	Inox	6,4	0	01090-87308
6	A/A	250	130	Inox	6,4	0	01090-87308
7	A/A	170	280	Inox	6,4	0	G1375-87400
12	E/-	75	700	PFS**	3	2	G1315-68708
14 (micro ALS)	B/B	100	1100	PFS	8,8	<1	G1375-87303
14 (micro ALS)	B/B	250	1800	Inox	88	<1	G1329-87302
14 (micro WPS)	B/D	100	1100	PFS	8,8	<1	G1375-87315
14 (micro WPS)	В/В	250	1800	Inox	88	<1	G1377-87300
15 (micro ALS)	-/C	100	150	PFS	1,2	<1	G1329-87101
15 (micro WPS)	B/C	100	150	PFS	1,2	<1	G1375-87317
15 (micro WPS)	B/C	50	150	PFS	0,3	<1	G1375-87300
16	C/-	250	120	Inox	<1	0	G1377-87301

^{*} Vedere la Tabella 14 a pagina 52

Consultare la Tabella 8 e la Tabella 9 a pagina 48, la Tabella 10 e la Tabella 11 a pagina 50 oppure la Tabella 12 a pagina 50 per capillari specifici.

[†] Inox: acciaio inossidabile

^{* *} PFS: silice fusa rivestita in Peek

3 Capillari e raccordi

Tabella 8 Capillari specifici da utilizzare con un sensore di flusso da 20 µl

Voce	Tipo di raccordo	Diametro (μm)	Lunghezza (mm)	Materiale	Volume (µl)	Caduta di pressione (Bar)	Codice Agilent
8	B/B	50	220	PFS*	1	2	G1375-87301
9	B/C	50	550	PFS	1	6	G1375-87310
10	C/D	50	500	PFS	1	5	G1375-87304
11	D/E	50	400	PFS	1	4	G1315-68703
13 (micro ALS)	C/B	50	200	PFS	1	2	G1375-87302
13 (micro WPS)	C/B	100	200	PFS	<1		G1375-87312

^{*} PFS: silice fusa rivestita in Peek

NOTA

Le cadute di pressioni nella Tabella 7 e Tabella 8 sono state calcolate sull'acqua (viscosità 1) e in base ad un flusso di 10 µl/min.

Tabella 9 Capillari specifici da utilizzare con un sensore di flusso da 100 µl

Voce	Tipo di raccordo	Diametro (µm)	Lunghezza (mm)	Materiale	Volume (µI)	Caduta di pressione (Bar)	Codice Agilent
8	B/B	100	220	PFS*	2	<1	G1375-87305
9	C/B	100	550	PFS	4	2	G1375-87306
10	C/D	75	500	PFS	2	5	G1375-87311
11	D/E	75	400	PFS	2	4	G1375-87308
13	B/C	100	200	PFS	2	<1	G1375-87312

^{*} PFS: silice fusa rivestita in Peek

NOTA

Le cadute di pressioni nella Tabella 9 sono state calcolate sull'acqua (viscosità 1) e in base ad un flusso di 50 μ l/min.

Tabella 10 Capillari specifici da utilizzare con un sensore di flusso da 200 µl

Descrizione delle voci, vedere elenco sotto riportato	Tipo di raccordo [*]	Diametro (μm)	Lunghezza (mm)	Materiale	Volume (µI)	Caduta di pressione (Bar)	Codice Agi- lent
Vedere la descrizione 1 riportata di seguito	A/A	170	280	lnox [†]	6,4	2	G1375-87400
Vedere la descrizione 2	B/C	125	550	PFS**	6,8	15	G1375-87318
13	B/C	100	200	PFS	1,6	13	G1375-87312
14 (micro ALS)	B/B	250	1800	Inox	88	3	G1329-87302
14 (micro WPS)	B/B	250	1800	lnox	88	3	G1377-87300
Vedere la descrizione 3	B/C	100	200	PFS	1,6	13	G1375-87312
Vedere la descri- zione 4	C/B	100	550	PFS	4,4	37	G1375-87306
Vedere la descri- zione 5	A/A	170	70	Inox	1,6	<1	G1316-87300
11	A/A	170	380	Inox	8,6	3	G1315-87311

^{*} Vedere la Tabella 14 a pagina 52

Descrizioni della Tabella 10

- 1 Il capillare G1375-87400 collega il miscelatore e la valvola di spurgo manuale.
- 2 Il capillare G1375-87318 collega la valvola di spurgo manuale e la valvola di iniezione (via 1).
- 3 Il capillare G1375-87312 collega la valvola di iniezione (via 6) e lo scambiatore di calore (IN).
- 4 Il capillare G1375-87306 collega la valvola di iniezione (via 6) e lo scambiatore di calore (IN) se è installato il termostato G1330A/B.
- 5 Il capillare G1316-87300 collega lo scambiatore di calore (OUT) e la colonna.

NOTA

Le cadute di pressioni nella Tabella 10 sono calcolate sull'acqua (viscosità 1) e in base ad un flusso di 1000 µl/min.

[†] Inox: acciaio inossidabile

^{* *} PFS: silice fusa rivestita in Peek

3 Capillari e raccordi

Tabella 11 Capillari specifici da utilizzare con un micro CSV e sensore di flusso da 20 µl

Da	Α	Tipo di raccordo*	Diametro (μm)	Lunghezza (mm)	Volume (µl)	Caduta di pressione (Bar)	Codice Agilent
Valvola iniez. (via 6)	Micro CSV (via 4)	C/D	50	280	1	3	G1375-87309
Valvola iniez. (via 6)	Micro CSV (via 4)	C/D	50	500	1	5	G1375-87304
Micro CSV (via 5)	Ingresso colonna 1	C/D	50	280	1	3	G1375-87309
Uscita colonna 1	Micro CSV (via 6)	D/C	50	280	1	3	G1375-87309
Micro CSV (via 1)	Rivelatore	C/D	50	280	1	3	G1375-87309
Micro CSV (via 3)	Ingresso colonna 2	C/D	50	280	1	3	G1375-87309
Uscita colonna 2	Micro CSV (via 2)	D/C	50	280	1	3	G1375-87309

Tabella 12 Capillari specifici da utilizzare con un micro CSV e sensore di flusso da 100 µl

Da	A	Tipo di raccordo [*]	Diametro (μm)	Lunghezza (mm)	Volume (µl)	Caduta di pressione (Bar)	Codice Agilent
Valvola iniez. (via 6)	Micro CSV (via 4)	C/D	50	280	1	3	G1375-87309
Valvola iniez. (via 6)	Micro CSV (via 4)	C/D	75	500	2	1	G1375-87311
Micro CSV (via 5)	Ingresso colonna 1	C/D	50	280	1	3	G1375-87309
Uscita colonna 1	Micro CSV (via 6)	D/C	50	280	1	3	G1375-87309
Micro CSV (via 1)	Rivelatore	C/D	50	280	1	3	G1375-87309
Micro CSV (via 3)	Ingresso colonna 2	C/D	50	280	1	3	G1375-87309
Uscita colonna 2	Micro CSV (via 2)	D/C	50	280	1	3	G1375-87309

^{*} Vedere la Tabella 14 a pagina 52

NOTA Le cadute di pressioni nella Tabella 11 e Tabella 12 sono calcolate sull'acqua (viscosità 1) e in base ad un flusso di 10 µl/min.

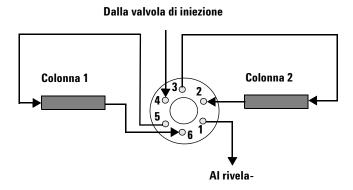


Figura 3 Collegamenti della valvola di commutazione micro colonna

Tabella 13 Altri capillari

Descrizione	Tipo di raccordo	Diametro (µm)	Lunghezza (mm)	Materiale	Volume (µl)	Caduta di pressione (Bar	Codice Agilent)
Capillare OQ/PV	C/D	50	400	PFS [*]	0,8	4,4	G1375-87314
Capillare MS	C/2xD	50	1100	PFS *	2,2	12	5065-9906
Capillare MS	E/2xD	50	700	PFS *	1,4	7,6	G1375-87313

^{*} silice fusa rivestita in Peek

NOTA

Le cadute di pressioni nella tavola 13 sono calcolate sull'acqua (viscosità 1) e in base ad un flusso di $10 \, \mu l/min$.

NOTA

Le cadute di pressione nelle tavole 7 e 13 si riferiscono ad un flusso specifico con acqua (viscosità = 1). Per altri solventi o altri flussi, usare la relazione indicata per calcolare la caduta approssimativa di pressione. A seconda della tolleranza del diametro del capillare, i valori delle cadute di pressione possono variare di +/- 25% rispetto ai risultati calcolati.

Pressione (Bar) =

Flusso(µl/min) x Viscosità (mPa-s) x Lunghezza(mm) x 21333 / 3,14 x Diametro 4 (µm)

3 Capillari e raccordi

Raccordi e ferrule

Tabella 14 Raccordi e ferrule

Tipo di raccordo	Nome	Descrizione	Condizio- namento	Codice Agilent
A	Swagelock	Raccordo 1/16" inox, ferrula anteriore e posteriore	10/conf.	5062-2418
В	Lite Touch	Raccordo M4/16" inox	10/conf.	5063-6593
В	Lite Touch	Ferrula 1/32" inox e anello di fissaggio	10/conf.	5065-4423
С	Rheodyne	Raccordo in PEEK	6 racc/ 2 tappi	5065-4410
D	Stretto manualmente	Dadi doppi e ferrule da 1/32"	10/conf.	5065-4422
E	Lite Touch - rivelatore	Raccordo M4/16" inox	10/conf.	5063-6593
E	Lite Touch - rivelatore	Ferrula inox	10/conf.	5063-6592
E	Lite Touch - rivelatore	Manicotto in PEEK	1/conf.	5042-1396

Tabella 15 Tipi di raccordi

Raccordi e ferrule	Tipo di raccordo
	А
	В
	C
	D

Istruzioni per il collegamento di un capillare

Con un raccordo Swagelock (tipo A)

- Far scivolare il dado, l'anello di compressione e la ferrula nel tubo.
- Inserire nello spazio di ricezione apposito e stringere il raccordo.
- Utilizzando una chiave da 1/4" stringere il raccordo di 3/4 di giro.

Con raccordo Rheodyne(tipo C).

- Spingere il raccordo nel capillare.
- Inserire nello spazio di ricezione apposito e stringere manualmente il raccordo.
- Utilizzando una chiave da 1/4" stringere il raccordo di 1/4 di giro.

Con raccordo Lite Touch (tipo B o E)

NOTA La ferrula Lite Touch può essere utilizzata con qualsiasi dado in acciaio inossidabile o con il dado Lite Touch del tipo corrispondente.

- Spingere il dado, l'anello di compressione e le ferrule in PEEK (esattamente nell'ordine) nel tubo. La parte piatta dell'anello dovrebbe essere rivolta verso il dado, con l'estremità più ristretta della ferrula verso l'anello.
- Inserire nell'apposito spazio. Tenere il tubo in fondo al raccordo mentre si stringe il dado. Stringere manualmente e normalmente.
- Utilizzando una chiave da 4 mm stringere il dado di 1/4 di giro.


Con raccordi manuali (tipo D).

- Inserire il raccordo e la ferrula nel tubo.
- Inserire nell'apposito spazio e stringere manualmente il dado fino a che risulti sufficientemente saldo.

Consigli per l'utilizzo efficiente di capillari e raccordi

- Non stringere mai troppo i raccordi.
- · Non tagliare mai un capillare.
- Prestare attenzione quando si piega un capillare (diametro mai inferiore a 40 mm).
- Evitare l'uso di soluzioni alcaline (pH > 8,5): sono infatti in grado di intaccare la silice fusa dei capillari.
- · Quando si effettuano i collegamenti premere in modo scorrevole il capillare nel raccordo per evitare vuoti d'aria.
- Se un capillare perde non stringerlo mai mentre è presente il flusso.
- Un capillare ostruito può spesso essere sbloccato con un adeguato lavaggio. A tale scopo si consiglia di utilizzare acetone.
- Fare attenzione a non rompere i capillari durante il montaggio degli sportelli dei moduli.
- Un capillare spezzato potrebbe introdurre particelle di silice nel sistema.

4

Verifica e soluzione dei problemi di base del sistema

System Pressure Abnormally Low (Pressione del sistema troppo bassa) 56

System Pressure Abnormally High (Pressione del sistema troppo elevata) 57

EMPV failed to initialize (la EMPV non ha completato l'inizializzazione) (solo modalità micro) 58

Unstable column flow and/or system pressure (Flusso in colonna e/o pressione del sistema instabile) 59

Poor peak shape (forma dei picchi non corretta) 61

Failure to produce peaks, or abnormally small peaks, after injection (Assenza di picchi o picchi troppo piccoli dopo l'iniezione) 62

Wandering Detector Baseline (Deriva della linea di base del rivelatore) 63

L'interfaccia utente visualizza messaggi di errore specifici per modulo 64

Questa guida utilizza un approccio alla verifica e soluzione dei problemi del tipo possibili cause/azioni consigliate, allo scopo di diagnosticare e risolvere alcuni possibili problemi del sistema LC.

I problemi sono suddivisi per categoria di sintomi, come descritto in precedenza.

NOTA

La presente guida descrive inoltre i problemi sistemici del sistema per LC capillare. Per informazioni diagnostiche dettagliate e chiarimenti sull'individuazione dei problemi e sulla riparazione di moduli LC specifici (indicatori di stato, messaggi di errore, test diagnostici, ecc.) consultare il Manuale di riferimento fornito con il modulo stesso.

System Pressure Abnormally Low (Pressione del sistema troppo bassa)

Sintomi

La pressione corrente del sistema è decisamente inferiore alla pressione tipica del sistema prodotta dal metodo con questa colonna.

System Pressure Abnormally Low (Pressione del sistema troppo bassa) Possibili cause ed azioni consigliate

Possibili cause	Azioni consigliate	Note
Perdite all'interno del sistema	Utilizzare una fonte di luce e un panno assor- bente per individuare le perdite all'interno del sistema.	Con flussi molto limitati, una perdita non può provocare l'accumulo di una quantità di liquido sufficiente per attivare i sensori del modulo. Le per- dite che si verificano a flussi limitati sono anche molto difficili da indivi- duare visivamente.
l canali del solvente non sono stati spurgati correttamente. La fluttuazione percentuale potrebbe essere troppo ele- vata.	• Spurgare i canali del solvente per 2 minuti a 2500 µl/min.	Tale condizione si verifica con mag- giore frequenza se il sistema non è stato utilizzato per più di un giorno.
Dirty solvent inlet filters (Fil- tri di ingresso solvente spor- chi) L'aspirazione di solvente è limitata; la fluttuazione per- centuale può essere troppo elevata	Smontare temporaneamente i filtri di ingresso per verificare se sono la causa del problema. In caso affermativo pulire o sostituire i filtri di ingresso solvente.	Per limitare al massimo il problema, pre-filtrare la fase mobile e prendere adeguate precauzioni per evitare la formazioni di alghe nell'acqua.

System Pressure Abnormally High (Pressione del sistema troppo elevata)

Sintomi

La pressione corrente del sistema è decisamente superiore alla pressione tipica del sistema prodotta dal metodo con questa colonna.

System Pressure Abnormally High (Pressione del sistema troppo elevata) Possibili cause ed azioni consigliate

Possibili cause	Azioni consigliate	Note
La colonna analitica è ostruita.	Sostituire la colonna oppure lavare la colonna o sostitu- ire il frit di ingresso della colonna.	
Il filtro a monte della EMPV è ostruito.	• Spurgare la pompa a 1000 µl/min utilizzando acqua pura. Durante lo spurgo, controllare la pressione del sistema. Se la pressione è a >10 bar, sostituire il filtro della EMPV.	Se il filtro nuovo non riduce la pressione, sostituire il miscelatore.
Un componente del micro cam- pionatore è ostruito. Può trat- tarsi del loop del campione, dell'ago, della sede dell'ago o delle porte della valvola di inie- zione.	per far commutare la valvola di iniezione dalla posizione di mainpass a quella di bypass. Se la pressione cala significativamente:	<u> </u>
Un capillare pre-campionatore o post-campionatore è stato ostruito, spezzato o rotto da un coperchio oppure è stato ser- rato eccessivamente.	Consultare il diagramma di flusso del sistema. Scollegare i capillari singolarmente, nell'ordine che segue. Una volta individuato, il capillare difettoso può essere lavato con acetone o sostituito. Capillare da EMPV a sensore di flusso Sensore di flusso a capillare della valvola di iniezione del campionatore Valvola di iniezione del campionatore a capillare di ingresso colonna Cella di flusso (comprende capillari di ingresso e di uscita)	

4

EMPV failed to initialize (la EMPV non ha completato l'inizializzazione) (solo modalità micro)

Sintomi

Un tentativo di pompaggio in modalità micro ha provocato un messaggio di errore di inizializzazione della valvola EMPV oppure un messaggio di non pronto permanente.

EMPV failed to initialize (EMPV non ha completato l'inizializzazione): Possibili cause ed azioni consigliate

Possibili cause	Azioni consigliate	Note
La pressione del sistema (in assenza di flusso) è superiore ai 10 bar.	 Impostare il flusso a zero e scollegare il capillare flessibile blu che va dallo smorzatore al miscelatore. La pressione del sistema deve essere intorno a zero bar. Se il valore della pressione di sistema è superiore a 4 bar, chiamare l'assistenza tecnica Agilent oppure consultare il manuale di riferimento della pompa capillare. 	Il problema provoca generalmente la visualizzazione di un messaggio di non pronto permanente relativo all'inizializzazione della EMPV.
L'ingresso alla EMPV è bloc- cato o parzialmente ristretto. La EMPV non riesce a creare un flusso sufficiente a pro- durre il flusso di uscita cor- retto. La routine di inizializzazione EMPV non può essere effettuata entro il periodo di 2 minuti richiesto.	 Assicurarsi che i canali del solvente siano stati ben spurgati. Controllare il filtro EMPV. Spurgare la pompa a 1000 µl/min utilizzando acqua pura. Durante lo spurgo, controllare la pressione del sistema. Se la pressione è a >10 bar, sostituire il filtro della EMPV. Se il filtro nuovo non riduce la pressione, sostituire il miscelatore. Controllare il percorso di flusso dell'uscita dello smorzatore all'ingresso dell'EMPV per verificare che non siano presenti ostruzioni né restrizioni. Controllare il capillare da EMPV a sensore di flusso e verificare che non sia totalmente bloccato o parzialmente ristretto. Sostituire il capillare o lavarlo con acetone. Sostituire il gruppo della EMPV (G1361-60000). Chiamare il servizio di assistenza tecnica Agilent o consultare il manuale di riferimento della pompa capillare. 	Questo problema provoca generalmente la visualizzazione di un messaggio di errore di inizializzazione della EMPV

Unstable column flow and/or system pressure (Flusso in colonna e/o pressione del sistema instabile)

Sintomi

Nella modalità micro, il sistema di controllo del flusso della pompa è attivo. Il sistema di controllo del flusso misura continuamente il valore effettivo del flusso in colonna e mantiene il flusso richiesto malgrado le variazioni di restrizione del sistema. Se il controllo del flusso non funziona correttamente, il flusso effettivo in colonna e di conseguenza la pressione del sistema, fluttueranno. Se il sistema consente di restringere l'accesso alla pompa in modo variabile, il flusso effettivo in colonna varierà mentre la pompa cerca di mantenere il flusso in base alla nuova restrizione. Quindi in modalità micro, il flusso instabile all'interno della colonna ed una pressione instabile all'interno del sistema sono condizioni che si verificano simultaneamente.

Unstable column flow and/or system pressure (Flusso in colonna e/o pressione del sistema instabile) Possibili cause ed azioni consigliate

Possibili cause	Azioni consigliate	Note
Il valore impostato per il flusso è inferiore al valore minimo consigliato.	Assicurarsi che il valore impostato per il flusso in colonna sia superiore al valore minimo con- sigliato:	•
La pressione del sistema non è sufficiente per un controllo affidabile del flusso (modalità micro).	 Assicurarsi che dopo la pompa si sviluppi una pressione pari ad almeno 20 bar. Se necessario aggiungere un altro capillare dopo la pompa. 	
Perdite all'interno del sistema	 Utilizzare una fonte di luce e un panno assorbente per individuare le perdite all'interno del sistema. Controllare che non ci siano perdite dopo e all'interno della pompa (valvole, raccordi, ecc.) Se il sistema funziona in modalità micro, effettuare il test delle perdite in tale modalità. Se il sistema funziona in modalità normale, effettuare il test delle perdite in tale modalità. 	di liquido sufficiente per attivare i sensori del modulo. Le perdite che si verificano a flussi limitati sono anche molto difficili da individuare visivamente.

4 Verifica e soluzione dei problemi di base del sistema

Unstable column flow and/or system pressure (Flusso in colonna e/o pressione del sistema instabile) Possibili cause ed azioni consigliate (continua)

Possibili cause	Azioni consigliate	Note
Uno o più canali di solvente non sono stati spurgati corret- tamente. La fluttuazione per- centuale potrebbe essere troppo elevata.	• Spurgare i canali del solvente per 2 minuti a 2500 µl/min.	Tale situazione si verifica con maggiore frequenza se il sistema è rimasto inutiliz- zato per più di un giorno.
Filtri di ingresso solvente spor- chi. L'aspirazione di solvente è limitata. La fluttuazione per- centuale potrebbe essere troppo elevata.	Smontare temporaneamente i filtri di ingresso per verificare se sono la causa del problema. In caso affermativo pulire o sostituire i filtri di ingresso solvente.	Per limitare al massimo il problema, pre-filtrare la fase mobile e prendere ade guate precauzioni per evitare la forma- zioni di alghe nell'acqua.
Valvola EMPV sporca (solo in modalità micro)	 Effettuare la procedura di pulizia EMPV, seguita da un test delle prestazioni. Consul- tare il manuale di riferimento della pompa capillare. 	
Un componente del sistema limita l'accesso alla pompa in modo variabile.	 Sostituire la colonna analitica. Sostituire il frit del filtro a monte dell'EMPV. 	
Il sistema di degasaggio sotto vuoto è spento o è difettoso.	 Provare con un altro sistema di degasaggio oppure effettuare varie prove per determinare le prestazioni utilizzando canali diversi del sistema di degasaggio. Se la fase mobile è molto sensibile ai gas, utilizzare il micro sistema di degasaggio in modalità continua. 	
Problemi di base delle presta- zioni della pompa.	Effettuare il test delle perdite.	Per ulteriori informazioni su questi test, consultare il manuale di riferimento della pompa capillare.

Poor peak shape (forma dei picchi non corretta)

Sintomi

La forma del picco presenta caratteristiche di scodamento o deviazione nella parte anteriore.

Poor peak shape (forma dei picchi non corretta) Possibili cause ed azioni consigliate

Possibili cause	Azioni consigliate	Note
Le prestazioni della colonna sono diminuite.	Provare con una colonna nuova.	
Collegamenti capillari effet- tuati in modo improprio cau- sano volumi morti o perdite in zone del sistema significa- tive dal punto di vista croma- tografico.	 Utilizzare una torcia e un panno assorbente per individuare le perdite all'interno del sistema e in particolare nelle zone descritte di seguito. a Le porte delle valvole del micro campionatore (tutte). b Ingresso ed uscita della colonna. c Capillare di ingresso della cella di flusso alla giunzione il capillare ed il corpo della cellula. Per informazioni sul collegamento dei capillari consultare il capitolo 2. Assicurarsi che i collegamenti capillari siano stati effettuati correttamente in tutto il sistema, specialmente nelle seguenti zone. a Le porte delle valvole del micro campionatore (tutte). b Ingresso ed uscita della colonna. c Capillare di ingresso della cella di flusso, alla giunzione tra il capillare ed il corpo della cellula. 	Con flussi molto limitati una perdita non può provocare l'accumulo di una quantità di liquido sufficiente per attivare i sensori del modulo. Le per- dite che si verificano a flussi limitati sono anche molto difficili da indivi- duare visivamente.
I capillari rotti all'interno, specialmente quelli che si trovano in zone significative dal punto di vista cromato- grafico.	 Per consigli su come diagnosticare la presenza di capillari rotti all'interno, consultare il capitolo 3. Verificare che i capillari non siano rotti all'interno, specialmente il capillare della sede dell'ago, il capillare valvola del campiona- tore-colonna ed il capillare di ingresso della cella di flusso. 	I capillari che sono stati schiacciati dai coperchi dei moduli presentano spesso rotture all'interno e possono non presentare segni di rottura este- riori evidenti.

Failure to produce peaks, or abnormally small peaks, after injection (Assenza di picchi o picchi troppo piccoli dopo l'iniezione)

Sintomi

Non sono presenti picchi o le loro dimensioni sono nettamente inferiori a quelle tipiche previste per il metodo e la colonna in uso.

Failure to produce peaks, or abnormally small peaks, after injection (Mancanza di picchi o picchi troppo piccoli dopo l'iniezione) Possibili cause ed azioni consigliate

Possibili cause	Azioni consigliate	Note
Perdita del sistema nella zona di trasporto del campione.	Utilizzare una torcia e un panno assorbente per individuare le perdite all'interno del sistema e in particolare nelle aree descritte di seguito. a. Le porte delle valvole del micro campionatore (tutte). b. La giunzione dell'ago e del capillare del loop del campione. c. L'interfaccia ago/sede. d. Ingresso ed uscita della colonna. e. Capillare di ingresso della cella di flusso, alla giunzione tra il capillare ed il corpo della cellula.	Con flussi molto limitati una perdita non può provocare l'accumulo di una quantità di liquido sufficiente per attivare i sensori del modulo. Le per- dite che si verificano a flussi limitati sono anche molto difficili da indivi- duare visivamente.
La camera da 40 µl della testa di misurazione del micro campionatore contiene bolle.	 Dal sistema diagnostico dell'interfaccia utente accedere alla funzione Change Piston relativa alle posizioni di manutenzione del micro campionatore. La funzione ritrae completamente lo stantuffo, liberando la camera. In condizioni di flusso, attivare tale funzione per almeno 5 minuti. La valvola del campionatore deve essere in posizione di mainpass. Eventuali bolle presenti nella camera verranno ora eliminate dal flusso. 	Nella maggior parte delle applicazioni viene utilizzata solo una piccola parte del volume della testa di misurazione da 40µl. A flussi limitati, le bolle possono formasi nello spazio inutilizzato fra lo stantuffo e la parete della camera. Le bolle ostacolano l'aspirazione del campione all'interno dell'ago. Per ottenere buoni risultati durante l'eliminazione delle bolle, la fase mobile pompata non deve contenere acqua.

Wandering Detector Baseline (Deriva della linea di base del rivelatore)

Decisioni importanti

Determinare se il problema è del DAD oppure se ha origine nel sistema LC.

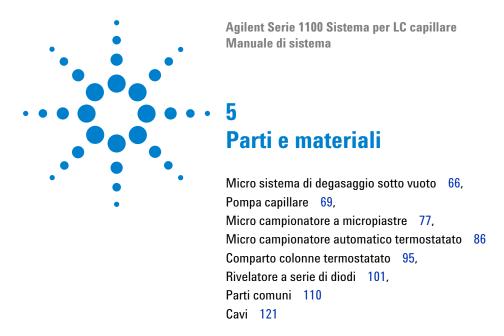
Rimuovere la cella di flusso dal DAD. Chiudere il coperchio della cella e vedere se la linea di base migliora.

- 1 Se la linea di base non migliora, effettuare le operazioni descritte di seguito.
 - a Sostituire le lampade.
 - **b** Verificare se vi sono eventuali disturbi ambientali, come correnti, variazioni di temperatura, ecc.
- **2** Se le prestazioni della linea di base migliorano, concentrare l'attenzione sulle possibili cause ed azioni consigliate descritte di seguito.

Wandering Detector Baseline (Deriva della linea di base del rivelatore) Possibili cause ed azioni consigliate

Possibili cause	Azioni consigliate	Note
Cella di flusso sporca o difet- tosa	Pulire o sostituire la cella di flusso	
Colonna analitica	Bypassare la colonna. Pompare direttamente nella cella di flusso. Se le prestazioni migliorano provare con una colonna nuova.	
Funzionamento senza misce- latore della pompa	 Reinstallare il miscelatore e valutare le presta- zioni della linea di base. Se le prestazioni della linea di base migliorano, è necessario trovare una soluzione di compromesso fra il volume di miscelazione ed altri parametri cromatografici. 	Il miscelatore potrebbe essere stato smontato nel tentativo di ridurre il volume di ritardo del gradiente.

4 Verifica e soluzione dei problemi di base del sistema


Wandering Detector Baseline (Deriva della linea di base del rivelatore) Possibili cause ed azioni consigliate

Possibili cause	Azioni consigliate	Note
Possibili cause "Rumore di miscelazione" quando si pompa una fase mobile binaria da due canali. Flusso in colonna e/o pressione del sistema instabile.	Provare a pre-miscelare la fase mobile in una bottiglia e pompare il 100% da un solo canale di solvente. Se le prestazioni della linea di base migliorano, è necessario trovare una soluzione di compro- messo fra il volume di miscelazione ed altri para- metri cromatografici. Per le analisi isocratiche, la migliore soluzione consiste nel miscelare pre- ventivamente e pompare il 100% da un solo canale.	Il problema si verifica quando uno (o entrambi) i solventi hanno un'assorbenza di fondo elevata alla lunghezza d'onda di rivelazione. In tal caso l'efficienza di miscelazione della pompa può essere insufficiente a produrre una fase mobile sufficientemente omogenea. Il rivelatore reagisce con quantità eccessive delle parti più rivelabili della miscela di solvente con conseguente comparsa di disturbi della linea di base.
•	Consultare la descrizione del problema riportata in precedenza. Se il sistema presenta questo problema, leggere le possibili cause e le azioni consigliate descritte nella presente sezione.	Il mancato mantenimento di un flusso stabile nella colonna o di una pressione costante nel sistema cau- sano attività indesiderate della linea di base.

L'interfaccia utente visualizza messaggi di errore specifici per modulo

L'interfaccia utente visualizza messaggi di errore specifici per modulo: Possibili cause ed azioni consigliate

Possibili cause	Azioni consigliate	Note	
Un modulo ha riportato un guasto hardware specifico durante il funzionamento.	Consultare il manuale di riferimento fornito con il modulo. Seguire attentamente le avvertenze sull'individuazione dei guasti e la riparazione relative al messaggio di errore visualizzato.	Viene visualizzato un messaggio di errore specifico per modulo. L'indicatore di stato del modulo è rosso.	

Il presente capitolo riporta illustrazioni dettagliate ed elenchi per l'identificazione delle parti per l'intero sistema. L'esposizione è divisa in sezioni specifiche per modulo e comprende una parte comune a tutti i moduli.

Micro sistema di degasaggio sotto vuoto

La Tabella 16 fornisce una descrizione generale dei principali dispositivi.

Tabella 16 Parti principali del micro sistema di degasaggio sotto vuoto

Voce	Descrizione	Codice Agilent
1	Dispositivo di controllo del sistema di degasaggio	G1322-66500
2	Gancio	G1322-43100
3	Valvola a solenoide	G1322-60003
4	Set del tubo sottovuoto	G1379-67300
5	Piastra di fissaggio	Nessun codice
6	Pompa sottovuoto	G1322-60000
7	Vassoio di raccolta perdite	G1379-27300
8	Contenitore perdite, degassatore	G1379-47300
9	Camera sottovuoto	G1379-60001
10	Sensore (compreso nel dispositivo di controllo)	Nessun codice
11	Fusibile da 500 mA	2110-0458

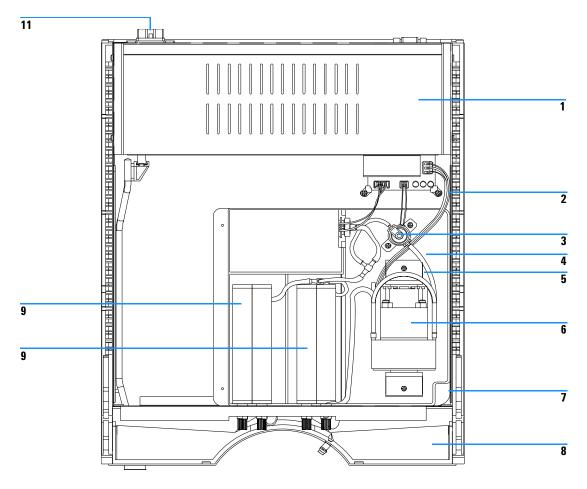


Figura 4 Parti principali del micro sistema di degasaggio sotto vuoto

Parti del coperchio del micro sistema di degasaggio sotto vuoto

Tabella 17 Parti del coperchio del micro sistema di degasaggio sotto vuoto

Voce	Descrizione	Codice Agilent
1	Kit della struttura (comprende base, pannelli laterali e coperchio superiore ed anteriore)	5062-8579
2	Gancio del tubo	5041-8387
3	Piastrina con logo, Agilent 1100	5042-1381
4	Coperchio anteriore	5062-8580

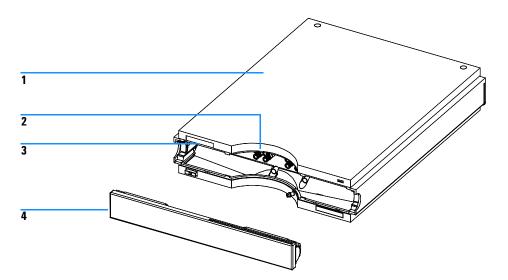


Figura 5 Parti del coperchio del sistema di degasaggio sotto vuoto

Pompa capillare

La Tabella 18 elenca i principali dispositivi della pompa capillare. Il numero di voce si riferisce alla Figura 6.

Tabella 18 Pompa capillare

Voce	Descrizione	Codice Agilent
1	Scheda principale del sistema capillare (CSM)	G1376-66530
	Scheda CSM Exchange	G1376-69530
2	Alimentatore	0950-2528
3	Cavo di collegamento della valvola di selezione del solvente	G1312-61602
4	Sensore di flusso 20 µl	G1376-60001
	Sensore di flusso 100 µl	G1376-60002
5	Contenitore perdite - pompa	5041-8390
6	Valvola di selezione del solvente (metà della valvola completa)	G1312-60000
	Vite della valvola di selezione del solvente	5022-2112
7	Sistema di trasmissione della pompa	G1311-60001
	Sistema di trasmissione della pompa Exchange	G1311-69001
8	Testa della pompa, vedere la pagina 74	G1311-60004
9	Vite di fissaggio della EMPV (confezione da 2)	0515-0850
10	Corpo della valvola EMPV	G1361-60009
11	Gruppo della valvola EMPV completo (valvola e solenoide)	G1361-60000
12	Cavo di collegamento AIV	G1311-61601
13	Smorzatore	79835-60005
14	Ventola	3160-1017

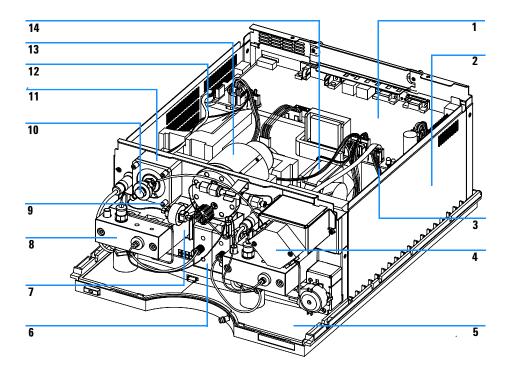


Figura 6 Pompa capillare

Comparto dei solventi e gruppo testata bottiglia

Tabella 19 Comparto dei solventi e gruppo testata bottiglia

Voce	Descrizione	Codice Agilent
	Comparto dei solventi, gruppo completo	5062-8581
1	Tubo per solvente, 5 m	5062-2483
2	Vite tubo (confezione da 10)	5063-6599
3	Ferrula con anello di chiusura (confezione da 10)	5063-6598
4	Bottiglia color ambra Bottiglia trasparente	9301-1450 9301-1420
5	Filtro per il condotto di ingresso del solvente (A. INOX)	01018-60025
6	Contenitore perdite, comparto dei solventi	5042-1307
7	Pannello anteriore, comparto dei solventi	5062-8580
8	Targhetta con nome, Agilent 1100	5042-1381
	Gruppo della testata della bottiglia per pompa capillare comprende voci 1, 2, 3, 5	G1311-60003

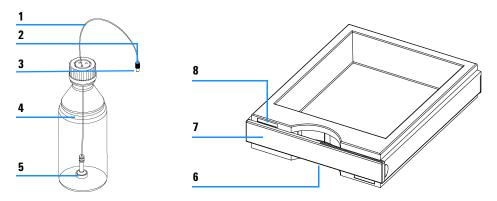


Figura 7 Comparto dei solventi e gruppo testata bottiglia

Collegamenti idraulici della pompa capillare

Tabella 20 Collegamenti idraulici della pompa capillare

Voce	Descrizione	Codice Agilent
1	Miscelatore	G1312-87330
2	Capillare smorzatore-miscelatore	01090-87308
3	Capillare da EMPV a FS (220 mm, 50 μm) <i>per sensore di flusso da</i> 20 μl Capillare da EMPV a FS (220 mm, 100 μm) <i>per sensore di flusso da</i> 100 μl	G1375-87301 G1375-87305
4	Valvola a sfera di uscita a capillare del pistone 2	G1312-67300
5	Capillare da FS a valvola iniezione (550 mm, 50 μm) <i>per sensore di flusso da 20 μl</i> Capillare da FS a valvola iniezione (550 mm, 100 μm) <i>per sensore di flusso da 100 μl</i>	G1375-87310 G1375-87306
6	Capillare di restrizione	G1312-67304
7	Tubo di connessione	G1311-67304
8	Capillare di miscelazione	G1312-67302
9	Gruppo del filtro (comprende il frit) Frit	5064-8273 5022-2185
10	Capillare da filtro a EMPV (280 mm, 170 µm)	G1375-87400
11	Tubo del solvente (confezione da 4)	G1322-67300
	Tubo di scarico corrugato, 120 cm (riordino 5 m)	5062-2463

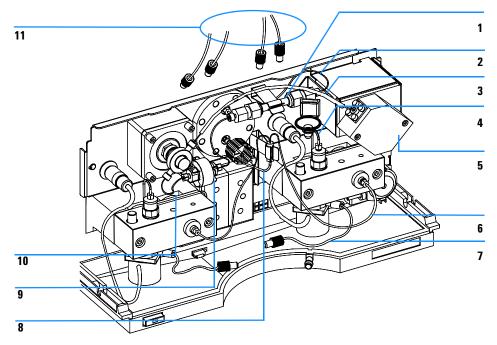


Figura 8 Collegamenti idraulici della pompa capillare

Testa della pompa

Tabella 21 Testa della pompa

Voce	Descrizione	Codice Agilent
Testa d	Testa della pompa, comprende le voci contrassegnate da (*)	
1*	Valvola a sfera di uscita	G1312-60012
2*	Vite di serraggio	5042-1303
3*	Vite da M5, 60 mm	0515-2118
4*	Adattatore	G1312-23201
5	Sede della camera della pompa	G1311-25200
6*	Valvola di immissione attiva (completa di cartuccia) Cartuccia di ricambio per valvola di immissione attiva	G1312-60010 5062-8562
7	Guarnizione (confezione da 2) <u>o</u> Guarnizione (confezione da 2), per applicazioni in fase normale	5063-6589 0905-1420
8	Sede del pistone (comprese le molle)	G1311-60002
9*	Pistone di zaffiro	5063-6586
10	Anello di supporto	5001-3739
11*	Valvola a sfera di uscita a capillare del pistone 2	G1312-67300

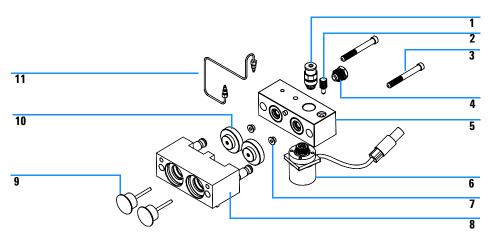


Figura 9 Testa della pompa

Collegamenti idraulici della pompa capillare

La Tabella 22 fornisce una panoramica dei principali dispositivi delle parti del coperchio della pompa capillare. Il numero di voce si riferisce alla Figura 10.

Tabella 22 Parti del coperchio della pompa capillare

Voce	Descrizione	Codice Agilent
1	Kit del coperchio in plastica (comprende la parte superiore, la base e le parti laterali)	G1312-68703
2	Piastra anteriore	G1312-60011
3	Piastrina con logo, Agilent 1100	5042-1381

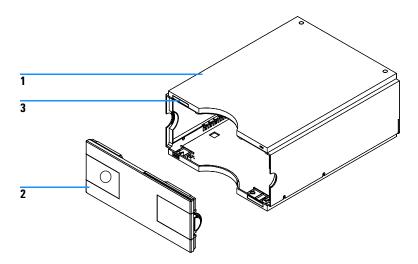


Figura 10 Parti del coperchio della pompa capillare

Micro campionatore a micropiastre

Figura 11 Dispositivi principali del micro campionatore a micropiastre

Tabella 23 Dispositivi principali del micro campionatore a micropiastre

Voce	Descrizione	Codice Agilent
1	Cavo a nastro (da unità di campionamento a MTP)	G1313-81602
2	Dispositivo di trasporto del campione per G1377A	G1377-60009
3	Unità di campionamento <i>per G1377/78A</i> (il dispositivo è privo di valvola di iniezione e testa analitica)	G1377-60008
4	Scheda SLS (non riportata in figura)	G1367-66505
5	Testa analitica (40 μl) <i>per G1377/78A</i>	G1377-60013
6	Micro valvola di iniezione per G1377/78A	0101-1050
7	Sede dell'ago <i>per G1377/78A (senza capillare)</i> Capillare sede (0,10 mm DI 1,2 μl) <i>per sede dell'ago G1377-87101</i> Capillare sede (0,05 mm DI 0,3 μl) <i>per sede dell'ago G1377-87101</i>	G1377-87101 G1375-87317 G1375-87300
8	Vassoio a piastra	G1367-60001
9	Gruppo dell'ago <i>per G1377/78A</i>	G1377-87201
10	Dispositivo di trasporto dell'ago	G1367-60010
11	Alimentatore (non visibile)	0950-2528
12	Scheda principale del campionatore a micropiastre (MTP) Scheda MTP - parte "exchange"	G1367-66500 G1367-69500
13	Cavo a nastro (da trasporto campione a MTP)	G1364-81601
14	Tubo di scarico capillare loop	G1367-60007
	Kit delle perdite WPS	G1367-60006
	Cavo a nastro (da unità di SLS a MTP)	G1367-81600
	Capillare campionatore-cappuccio TCC (500 mm, 0,05 mm d.i.) per G1377/78A	G1375-87304
	Ventola (non riportata in figura)	3160-1017
	Scarico della ventola (non riportato in figura)	3160-4097
	Scheda BCD (non riportata in figura)	G1351-68701

Unità di campionamento per micro campionatore a micropiastre

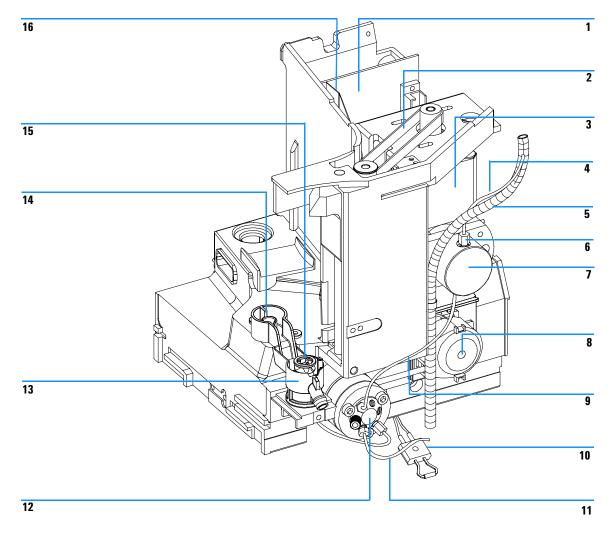


Figura 12 Unità di campionamento per micro campionatore a micropiastre

5 Parti e materiali

Tabella 24 Unità di campionamento per micro campionatore a micropiastre

Voce	Descrizione	Codice Agilent
	li campionamento <i>per G1377/78A</i>	G1377-60008
(II disp	ositivo è privo di valvola di iniezione e testa analitica)	
1	Scheda del connettore dell'unità di campionamento (SUD)	G1313-66503
2	Trasmissione a cinghia (per l'unità di misurazione ed il braccio dell'ago)	1500-0697
3	Motore a passo (per l'unità di misurazione ed il braccio dell'ago)	5062-8590
4	Loop capillare (40 μl) <i>per G1377/78A</i> Loop capillare (8 μl) <i>per G1377/78A</i>	G1377-87300 G1375-87315
5	Tubo di scarico capillare loop	G1367-60007
6	Dado a tenuta per <i>capillare G1377-87300</i>	0100-2086
7	Testa analitica (40 μl) <i>per G1377/78A</i>	G1377-60013
8	Pompa peristaltica, comprende il tubo	5065-4445
9	Capillare valvola iniez testa analitica (200 mm 0,10 mm DI) per G1377/78A	G1375-87312
10	Sensore delle perdite	5061-3356
11	Tubo di scarico <i>per G1377/78A</i>	G1377-87301
12	Micro valvola di iniezione per G1377/78A	0101-1050
13	Adattatore sede	G1367-43200
14	Porta di lavaggio	G1367-47700
15	Sede dell'ago <i>per G1377/78 (senza capillare)</i> Capillare sede (150 mm 0,10 mm DI) <i>per sede dell'ago G1377-87101</i> Capillare sede (150 mm 0,05 mm DI) <i>per sede dell'ago G1377-87101</i>	G1377-87101 G1375-87317 G1375-87300
16	Scheda flessibile	G1313-68715
	Barriera d'aria (non visibile)	G1367-44105
	Motore a passo per la pompa peristaltica (non visibile)	5065-4409
	Sede del motore (non visibile)	G1367-42304
	Pompa peristaltica, piastra (non visibile)	G1367-44100

Gruppo della micro testa analitica

Tabella 25 Micro testa analitica

Voce	Descrizione	Codice Agilent
Micro t	esta analitica da 40 μl, comprende le voci 1 – 6	G1377-60013
1	Viti	0515-0850
2	Micro stantuffo	5064-8293
3	Adattatore	01078-23202
4	Supporto per micro guarnizione	G1377-60002
5	Guarnizione misuratore (confezione da 1)	5022-2175
6	Corpo della testa	G1377-27700
	Vite M5 da 60 mm, per montaggio del dispositivo	0515-2118

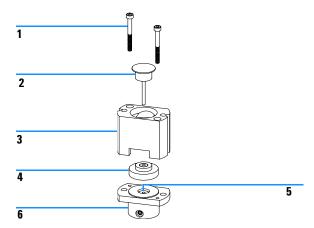


Figura 13 Micro testa analitica

Gruppo della micro valvola di iniezione

Tabella 26 Gruppo della micro valvola di iniezione

Voce	Descrizione	Codice Agilent
Gruppo	o della micro valvola, comprende voci 1 – 2 – 3 – 5 – 6	0101-1050
2	Guarnizione di isolamento	0100-1852
3	Guarnizione micro rotore (Vespel)	0100-2088
5	Testa del micro statore	0100-2089
6	Viti dello statore	1535-4857

NOTA La micro valvola di iniezione non ha facce dello statore in ceramica.

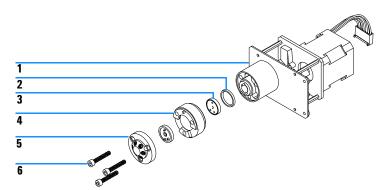


Figura 14 Gruppo della micro valvola di iniezione

Micro campionatore a micropiastre

Tabella 27 Vassoi per vial del micro campionatore a micropiastre e base del vassoio

Voce	Descrizione	Codice Agilent
1	Vassoio per 2 piastre + 10 vial da 2 ml	G1367-60001
2	Vassoio per 100 vial da 2 ml, termostatabile	G1329-60001
3	Vassoio per 100 vial da 2 ml, termostatabile	G1313-44500
4	Viti per molle	0515-0866
5	Molla	G1313-09101
6	Vite della molla	0570-1574
7	Base del vassoio (comprende le parti 4,5, 6).	G1329-60000
8	Adattatore, canale aria	G1329-43200
	Canale presa (non riportato in figura)	G1367-47200

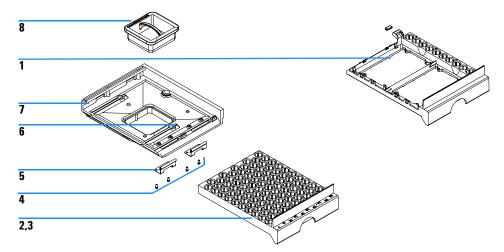


Figura 15 Vassoi portacampioni e basi

5 Parti e materiali

Tabella 28 Piastre consigliate e tappetino di chiusura

Descrizione	Righe	Colonne	Altezza pi	astra Volume (µI)	Codice Agilent	Pacchetto
384 Agilent	16	24	14,4	80	5042-1388	30
384 Corning	16	24	14,4	80	Nessun codice Agilent	
384 Nunc	16	24	14,4	80	Nessun codice Agilent	
96 Agilent	8	12	14,3	400	5042-1386 5042-1385	10 120
96 Agilent chiuso	8	12	47,1	300	5065-4402	1
96 Corning	8	12	14,3	300	Nessun codice Agilent	
96 CorningV	8	12	14,3	300	Nessun codice Agilent	
96 DeepAgilent31mm	8	12	31,5	1000	5042-6454	50
96 DeepNunc31mm	8	12	31,5	1000	Nessun codice Agilent	
96 DeepRitter41mm	8	12	41,2	800	Nessun codice Agilent	
96 Greiner	8	12	14,3	300	Nessun codice Agilent	
96 GreinerV	8	12	14,3	250	Nessun codice Agilent	
96 Nunc	8	12	14,3	400	Nessun codice Agilent	
Tappetino di chiusura per tutte le piastre 96 Agilent	8	12			5042-1389	50

Parti del coperchio del micro campionatore a micropiastre

Tabella 29 Parti del coperchio del micro campionatore a micropiastre

Voce	Descrizione	Codice Agilent
	a struttura (comprende base, pannelli laterali e coperchio supe- lanteriore)	5065-4446
	Targhetta con logo Agilent Serie 1100	5042-1381
	Kit di protezione dalla luce (comprende coperchio anteriore e finestra laterale scuri)	5064-8272

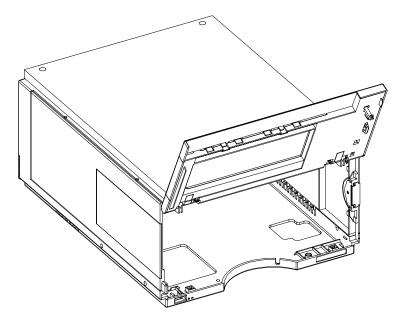


Figura 16 Parti del coperchio del micro campionatore a micropiastre

Micro campionatore automatico termostatato

La Tabella 30 fornisce una panoramica dei principali dispositivi del micro campionatore automatico termostatato. Il numero di voce si riferisce alla Figura 17 a pagina 87.

Tabella 30 Dispositivi principali del micro campionatore automatico termostatato

Voce	Descrizione	Codice Agilent
1	Dispositivo di trasporto	G1329-60009
2	Gruppo del micro-ago	G1329-80001
3	Unità di campionamento <i>per G1389A</i> (il dispositivo viene fornito primo di valvola di iniezione e di testa analitica)	G1329-60018
4	Testa analitica (40 μl)	G1377-60013
5	Valvola di iniezione	0101-1050
6	Sede dell'ago (0,10 mm d.i. 1,2 µl) Standard	G1329-87101
	Sede dell'ago (0,05 mm d.i. 0,3 μl)	G1329-87103
7	Vassoio portacampioni termostatato	G1329-60001
8	Gruppo della pinza	G1313-60010
9	Gruppo dell'alimentatore	0950-2528
10	Scheda principale del campionatore automatico (ASM) Scheda ASM - parte "exchange"	G1329-66500 G1329-69500
11	Cavo a nastro, da trasporto a scheda principale	G1313-81601
12	Cavo a nastro, da unità di campionamento a scheda principale	G1313-81602
	Ventola	3160-1017
	Capillare campionatore - TCC (500 mm, 50 µm) con FS da 20 µl	G1375-87304
	Capillare campionatore - TCC (500 mm, 75 µm) con FS da 100 µl	G1375-87311
	Scheda BCD (non riportata in figura)	G1351-68701
	Cavo, da campionatore automatico a termostato ALS	G1330-81600

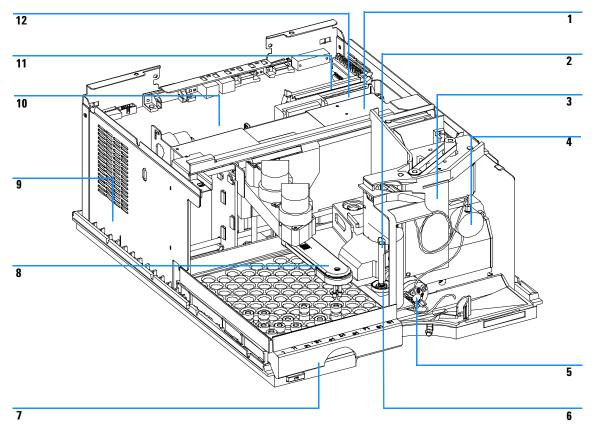


Figura 17 Dispositivi principali del micro campionatore automatico termostatato

Termostato per campionatori 1100

Tabella 31 Termostato per micro campionatore automatico e micro campionatore a micropiastre

Descrizione	Codice Agilent
Termostato per campionatori 1100, parte Exchange	G1330-69020

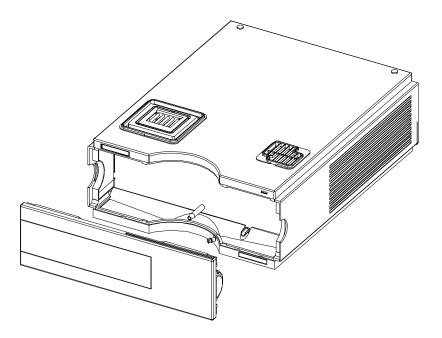


Figura 18 Termostato

Unità di campionamento per micro campionatore automatico

La Figura 19 fornisce una panoramica dei principali dispositivi del micro campionatore automatico termostatato. Per una descrizione delle voci consultare la Tabella 32.

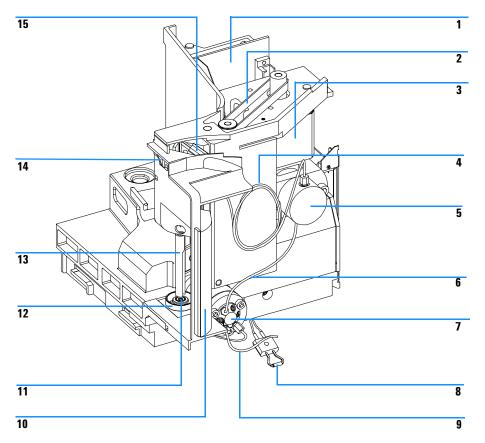


Figura 19 Unità di campionamento per micro campionatore automatico

Tabella 32 Unità di campionamento per micro campionatore automatico

Voce	Descrizione	Codice Agilent
	Micro unità di campionamento (il dispositivo è privo di valvola di iniezione e testa analitica)	G1329-60018
1	Scheda del connettore dell'unità di campionamento (SUD)	G1313-66503
2	Trasmissione a cinghia (per l'unità di misurazione ed il braccio dell'ago)	1500-0697
3	Motore a passo (per l'unità di misurazione ed il braccio dell'ago)	5062-8590
4	Capillare loop (8 μl) Capillare loop (40 μl)	G1375-87303 G1329-87302
5	Testa analitica (40 µl)	G1377-60013
6	Capillare valvola di iniezione - testa analitica (200 mm, 50 μm) con FS da 20 μl Capillare valvola di iniezione - testa analitica (200 mm, 100 μm) con FS da 100 μl	G1375-87302 G1375-87312
7	Valvola di iniezione	0101-1050
8	Sensore delle perdite	5061-3356
9	Valvola di iniezione per tubo di scarico (120 mm 250 μm)	G1313-87300
10	Coperchio di sicurezza	G1329-44105
11	Sede dell'ago (0,10 mm d.i. 1,2 μl) Standard Sede dell'ago (0,05 mm d.i. 0,3 μl)	G1329-87101 G1329-87103
12	Adattatore sede	G1313-43204
13	Aletta di sicurezza	G1313-44106
14	Scheda flessibile	G1313-68715
15	Gruppo del micro-ago	G1329-80001
	Kit di morsetti (comprende un morsetto per ago e 2 viti)	G1313-68713

Gruppo della micro testa analitica

Tabella 33 Micro testa analitica

Voce	Descrizione	Codice Agilent
Micro t	esta analitica da 40 μl, comprende le voci 1 – 6	G1377-60013
1	Viti	0515-0850
2	Micro stantuffo	5064-8293
3	Adattatore	01078-23202
4	Supporto per micro guarnizione	G1377-60002
5	Guarnizione di misurazione (confezione da 1)	5022-2175
6	Corpo della testa	G1377-27700
	Vite M5 da 60 mm, per montaggio del dispositivo	0515-2118

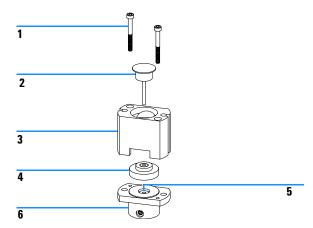


Figura 20 Micro testa analitica

Gruppo della micro valvola di iniezione

Tabella 34 Gruppo della micro valvola di iniezione

Voce	Descrizione	Codice Agilent
Gruppo	o della micro valvola, comprende voci 1 – 2 – 3 – 5 – 6	0101-1050
2	Guarnizione di isolamento	0100-1852
3	Guarnizione micro rotore (Vespel)	0100-2088
5	Testa del micro statore	0100-2089
6	Viti dello statore	1535-4857

NOTA La micro valvola di iniezione non ha facce dello statore in ceramica.

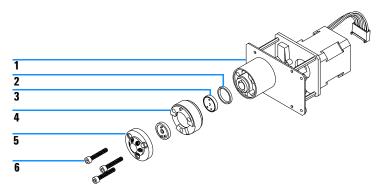


Figura 21 Gruppo della micro valvola di iniezione

Parti del coperchio del micro campionatore automatico termostatato

Tabella 35 Parti del coperchio del micro campionatore automatico termostatato

Voce	Descrizione	Codice Agilent
1	Kit del coperchio del campionatore automatico (comprende base, pannelli laterali e coperchio superiore)	G1329-68703
2	Targhetta con logo Agilent Serie 1100	5042-1381
3	Coperchio anteriore trasparente	G1313-68704
4	Kit di riparazione dello sportello (comprende parte laterale trasparente e sportello anteriore)	G1329-68707
5	Kit di protezione dalla luce (comprende sportello laterale e anteriore e coperchio anteriore scuri)	G1329-68708
	Kit di aggiornamento della struttura (comprende pannelli, coper- chio superiore, parte laterale e coperchio anteriore scuri, coper- chio anteriore e parte laterale di isolamento per campionatore automatico termostatato)	G1329-68706

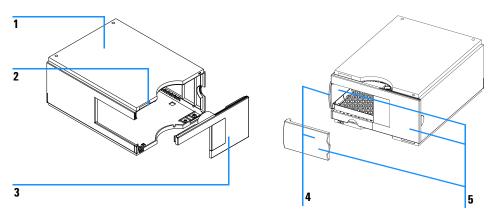


Figura 22 Parti del coperchio del micro campionatore automatico termostatato

Vassoi portacampioni

Tabella 36 Vassoi portacampioni del campionatore automatico termostatato e relative basi

Voce	Descrizione	Codice Agilent
1	Vassoio per 100 vial da 2 ml, termostatabile	G1329-60001
2	Adattatore, canale aria	G1329-43200
3	Base del vassoio (comprende le parti 4, 5, 6).	G1329-60000
4	Presa, base del vassoio	Nessun codice
5	Molla	G1313-09101
6	Viti per molle	nessun codice

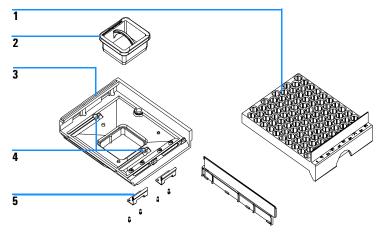


Figura 23 Vassoi portacampioni del campionatore automatico termostatato e relative basi

Comparto colonne termostatato

La Tabella 37 descrive i principali dispositivi della pompa capillare. Il numero di voce si riferisce alla Figura 24.

Tabella 37 Principali dispositivi del comparto colonne termostatato

Voce	Descrizione	Codice Agilent
1	Ventola	3160-1017
2	Scheda di identificazione della colonna (CID)	G1316-66503
3	Scheda principale del comparto colonne (CCM) (parte "exchange")	G1316-69520
4	Gruppo dell'alimentatore	0950-2528
5	Riscaldatore (destro)	G1316-60006
6	Sensore delle perdite	5061-3356
7	Riscaldatore (sinistro)	G1316-60007
8	Parti per la gestione delle perdite	Vedere la pagina 100
9	Valvola di commutazione della colonna, per parti aggiuntive vedere la pagina 97	0101-1051
	Cavo CAN per moduli Agilent Serie 1100	5181-1516
	Scheda di identificazione della colonna (CID)	G1316-66503
	Capillare a bassa dispersione (0,12 mm d.i., 70 mm)	G1316-87303
	Kit di capillari per dispositivo di commutazione colonna, vedere la pagina 97	G1316-68708
	Supporto colonna (versione lunga)	5001-3702

5 Parti e materiali

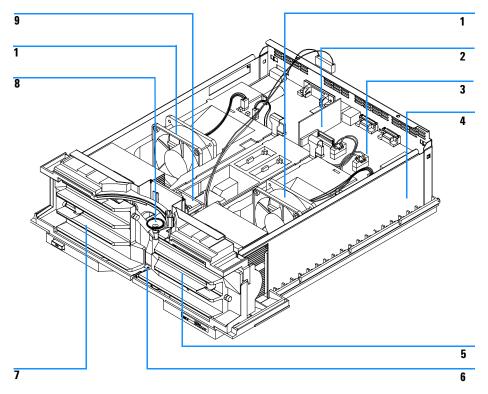


Figura 24 Principali dispositivi del comparto colonne termostatato

Micro valvola di commutazione della colonna

Tabella 38 Valvola di commutazione colonna

Voce	Descrizione	Codice Agilent
Valvola di commutazione della colonna (dispositivo completo)		0101-1051
1	Guarnizione del rotore, tre scanalature (Vespel)	0100-2087
2	Anello dello statore	Nessun codice
3	Testa dello statore	0100-2089
4	Viti dello statore	1535-4857

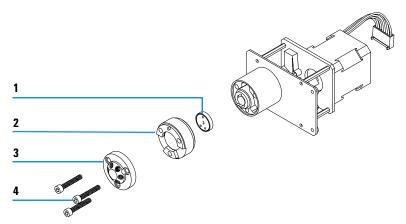


Figura 25 Valvola di commutazione colonna

Kit delle parti metalliche del comparto colonne termostatato

Tabella 39 Kit delle parti metalliche del comparto colonne termostatato

Voce	Descrizione	Codice Agilent
Kit di parti metalliche comprendente le parti 1, 2 e 3		G1316-68701
4	Schermo RFI	G1316-00600
5	Lato molla RFI	G1316-09100
6	Fondo molla RFI	G1316-09102

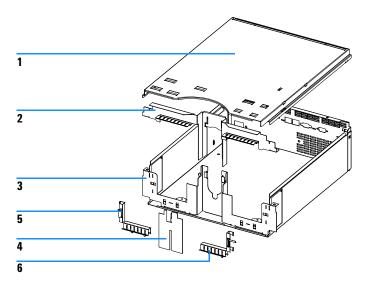


Figura 26 Kit delle parti metalliche del comparto colonne termostatato

Parti del coperchio del comparto colonne termostatato

Tabella 40 Parti del coperchio del comparto colonne termostatato

Voce	Descrizione	Codice Agilent
1	Kit di parti in plastica comprendente base, lati e parte superiore	G1316-68703
2	Coperchio anteriore	G1316-68704
3	Targhetta con logo Agilent Serie 1100	5042-1381

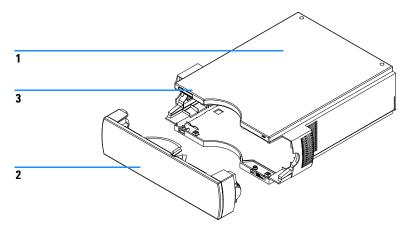


Figura 27 Parti del coperchio del comparto colonne termostatato

Parti del dispositivo di gestione perdite del comparto colonne termostatato

Tabella 41 Parti del dispositivo di gestione perdite del comparto colonne termostatato

Voce	Descrizione	Codice Agilent
1	Imbuto	5041-8388
2	Sede dell'imbuto	G1316-42300
3	Sensore delle perdite	5061-3356
4	Dispositivo di scarico, comprende tubazioni ad Y con imbuto	G1316-60002
5,7	Kit perdite, comprende base e parte superiore	G1316-68700
6	Guarnizione O-ring per sensore della temperatura ambiente	0400-0002
	Tubo di scarico corrugato, 120 cm (riordino 5 m)	5062-2463

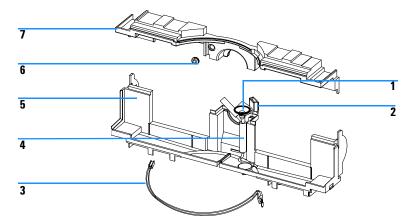


Figura 28 Parti del dispositivo di gestione perdite del comparto colonne termostatato

Rivelatore a serie di diodi

La Tabella 42 descrive i principali dispositivi del rivelatore a serie diodi. Il numero di voce si riferisce alla Figura 29.

Tabella 42 Principali dispositivi del rivelatore a serie di diodi

Voce	Descrizione	Codice Agilent
1	Scheda di interfacciamento BCD (BCD/contatti esterni)	G1351-68701
2	Scheda principale (DAM) per il rivelatore a serie di diodi G1315B (parte "exchange")	G1315-69530
3	Alimentatore	0950-2528
4	Sensore delle perdite	5061-3356
5	Cella di flusso da 500 nl	G1315-68714
6	Lampada al tungsteno	G1103-60001
7	Lampada al deuterio a lunga durata Lampada al deuterio standard	5181-1530 2140-0590
8	Ventola per riscaldatore e sensore pagina 95	3160-1016
9	Unità ottica (parte "exchange"), per parti aggiuntive vedere pagina 103	G1315-69002
	Fusibile per scheda BCD, 250 mA (la scheda ne comprende 4)	2110-0004
	Cavo CAN per moduli Agilent Serie 1100	5181-1516

5 Parti e materiali

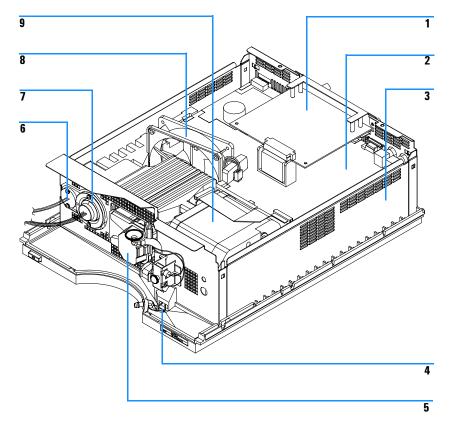


Figura 29 Principali dispositivi del rivelatore a serie di diodi

DAD - Unità ottica

La Tabella 43 descrive le parti principali dell'unità ottica: il numero di voce si riferisce alla Figura 30.

Tabella 43 Gruppo dell'unità ottica

Voce	Descrizione	Codice Agilent
1	Unità ottica (parte "exchange")	G1315-69002
2	Cella di flusso da 500 nl	G1315-68714
3	Lampada al deuterio a lunga durata Lampada al deuterio standard	5181-1530 2140-0590
4	Lampada al tungsteno	G1103-60001
5	Cavo SCI - DAM	G1315-61604
6	Kit di smorzamento, comprende 6 paraurti	G1315-68706
7	Sportello per cella di flusso (compresa guarnizione)	G1315-68707
	Viti M3 per lo sportello della cella di flusso (6 ×)	5022-2112
8	Foro di inserimento per supporto lampada	6960-0002
9, 10, 11	Parti del filtro all'ossido di olmio, vedere la pagina 108	
12	Molla, per altre parti del filtro all'ossido di olmio vedere la pagina 108	1460-1510
13	Gruppo della lente di accoppiamento	G1103-68001
14	Gruppo della lente (acromatica) sorgente	G1315-65201
15	Gruppo di supporto della cella	G1315-65202
16	Chiusura	G1315-47103

5 Parti e materiali

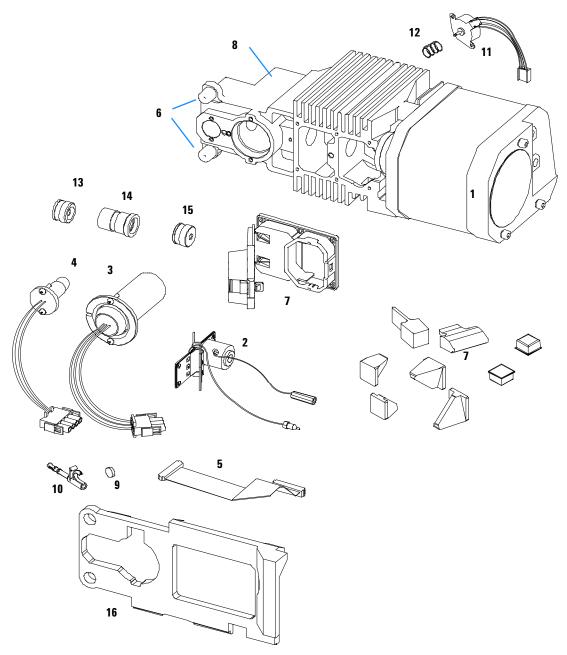


Figura 30 Parti dell'unità ottica

Cella di flusso da 500 nl

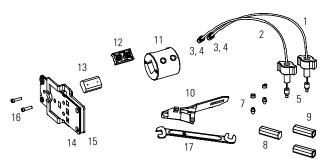


Figura 31 Cella di flusso da 500 nl

Tabella 44 Cella di flusso da 500 nl - parti

Voce	Descrizione	Codice Agilent
Cella	di flusso da 500 nl	G1315-68714
	Cella di flusso (10 mm, 500 nl, 5 MPa) completamente assemblata e comprendente le parti 1, 2, 3, 4, 11, 12, 13, 14, 15 e 16	
1	Da colonna capillare a rivelatore (400 mm, 50 μm)	G1315-68703
2	Da colonna capillare a rivelatore (700 mm, 75 μm)	G1315-68708
3	Vite per raccordo - per chiave da 4 mm, Qtà=2 (riordino 10 pezzi)	5063-6593
4	Le ferrule della cella sono installate in fabbrica	
5	Raccordo in PEEK da 1/32, non collegato a capillari	5063-6592
7	Ferrule Upchurch Litetouch T-100 (anteriore e posteriore), Qtà=4 (riordino confezione da 10)	5063-6592
8	Raccordo, parte superiore, utensile di regolazione per n. 7	5022-2146
9	Raccordo, parte superiore, guarnizione, Qtà=2	5022-2145
10	Adattatore di coppia	G1315-45003 *
11	Alloggiamento della cella da 10 mm	

5 Parti e materiali

Tabella 44 Cella di flusso da 500 nl (continua) - parti

Voce	Descrizione	Codice Agilent
12	Guarnizione della cella da 10 mm	Vedere il kit ripor- tato di seguito
13	Corpo della cella in quarzo da 10 mm	G1315-80001
14	Maniglia per l'unità staffa	G1315-84901
15	Staffa	G1315-84902
16	Vite M da 2,5, 4 mm per corpo cella/staffa	0515-1056

	Altri kit e parti aggiuntive	
1	Da colonna capillare a rivelatore (400 mm, 50 μm)	G1315-68703
2	Da colonna capillare a rivelatore (700 mm, 75 μm)	G1315-68708
	Kit di tenuta, comprende le voci 10, 12 e 7 (Qtà=5)	G1315-68715
17	Chiave ad estremità aperta da 4 mm	8710-1534 [†]

^{*} Parte del kit di tenuta

[†] Fornito con il kit di accessori standard G1315-68705

Parti della ventola

Tabella 45 Parti della ventola

Voce	Descrizione	Codice Agilent
1	Riscaldatore	G1315-60000
2	Ventola	3160-1016
3	Sensore della temperatura	G1315-60003

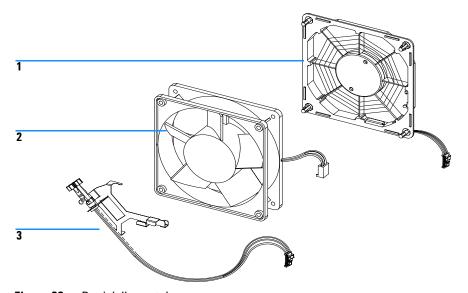


Figura 32 Parti della ventola

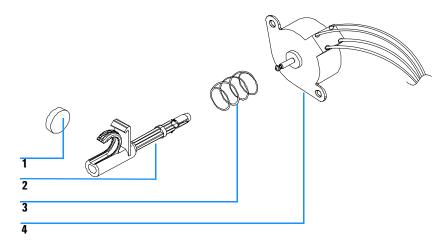

Filtro all'ossido di olmio

Tabella 46 Parti del filtro all'ossido di olmio

Voce	Descrizione	Codice Agilent
1	Filtro all'ossido di olmio	79880-22711
2	Leva del filtro all'ossido di olmio	G1315-45001
3	Molla	1460-1510
4	Gruppo del motore del filtro all'ossido di olmio, comprende parti 2 e 4	G1315-68700

NOTA

Se il motore del filtro è stato smontato, la relativa leva non deve essere riutilizzata. Utilizzare sempre una leva nuova per il filtro, in modo da verificare che l'albero del motore risulti posizionato correttamente.

Filtro all'ossido di olmio Figura 33

Parti del coperchio del rivelatore a serie di diodi

Tabella 47 Parti del coperchio del rivelatore a serie diodi

Voce	Descrizione	Codice Agilent
1	Targhetta per numero di serie (non compare numero)	5042-1314
2	Parti in plastica comprendenti base, lati e parte superiore	5062-8565
3	Targhetta con logo Agilent Serie 1100	5042-1381
4	Coperchio anteriore	5062-8582

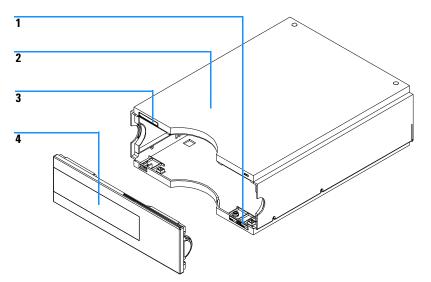


Figura 34 Parti del coperchio del rivelatore a serie diodi

Parti comuni

Questo capitolo consente di identificare le parti comuni, come il pannello posteriore, le guide di luce, l'alimentatore, le parti del sistema di gestione perdite, le parti in schiuma, le parti metalliche e i diversi kit di accessori. Per informazioni sui cavi consultare la pagina 121.

Modulo di controllo (G1323B)

Tabella 48 Parti del modulo di controllo

Descrizione	Codice Agilent
Modulo di controllo, parti di ricambio compreso il cavo	G1323-67001
Kit struttura in plastica, comprende staffa anteriore e posteriore	5062-8583
Cavo CAN, da modulo Agilent 1100 a modulo di controllo	G1323-81600

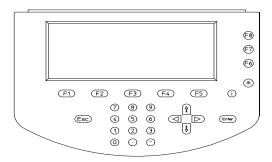


Figura 35 Modulo di controllo

Pannello posteriore

Tabella 49 Pannello posteriore

Voce	Descrizione	Codice Agilent
1	Distanziatore — Connettore a distanza	1251-7788
2	Dado M14 — Uscita analogica	2940-0256
3	Vite M4, lungh. 7 mm — Alimentatore	0515-0910
4	Distanziatore — Connettore GPIB	0380-0643

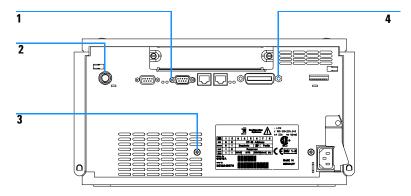


Figura 36 Pannello posteriore

Guida dell'indicatore luminoso di stato e dell'interruttore di alimentazione

Tabella 50 Guida dell'indicatore luminoso di stato e dell'interruttore di alimentazione

Voce	Descrizione	Codice Agilent
1	Guida indicatore luminoso — Interruttore	5041-8382
2	Accoppiatore dell'interruttore di corrente	5041-8383
3	Guida indicatore luminoso — Lampadina indicatore	5041-8384
4	Tasto dell'interruttore	5041-8381

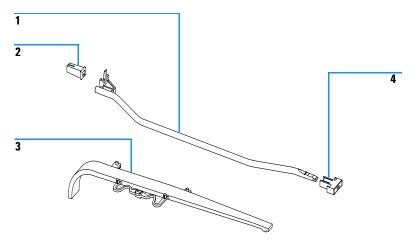


Figura 37 Guide dell'indicatore di stato e dell'interruttore di alimentazione

Parti del dispositivo di gestione perdite

Tabella 51 Parti del dispositivo delle perdite

Voce	Descrizione	Codice Agilen
1	Sede dell'imbuto	5041-8389
2	Imbuto	5041-8388
3	Gancio del tubo	5041-8387
4	Pannello segnalazione perdite - Pompa	5041-8390
	Pannello segnalazione perdite - Sistema di degasaggio	G1379-47300
	Pannello segnalazione perdite – ALS, WPS	G1313-44501
	Pannello segnalazione perdite - TCC, pagina 100	G1316-68700
	Pannello segnalazione perdite - DAD	G1315-45501
5	Sensore delle perdite	5061-3356
6	Tubo di scarico corrugato (confezione riordino) 5 m	5062-2463

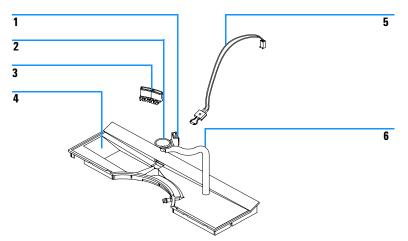


Figura 38 Parti del dispositivo delle perdite

Parti in schiuma di lattice

Tabella 52 Parti in schiuma di lattice

Descrizione	Codice Agilent
Kit delle parti in schiuma per pompa capillare G1376A	G1312-68702
Kit delle parti in schiuma per campionatore automatico G1389A	G1313-68702
Kit delle parti in schiuma per micro campionatore a micropiastre G1377A	5064-8248
Kit delle parti in schiuma per comparto colonne termostatato G1316A	G1316-68702
Kit delle parti in schiuma per rivelatore a serie di diodi G1315B (il kit com- prende base e parte superiore)	G1315-68722
Guide della scheda di interfacciamento	5041-8395
(guide scheda per G1376A/ G1389A/ G1377A/ G1315B)	
Bronzine per la trasmissione della pompa	1520-0404
Kit dello smorzatore (comprende 7 paraurti) per DAD	G1315-68706

Kit di parti metalliche

Tabella 53 Kit di parti metalliche

Descrizione	Codice Agilent
Kit di parti metalliche per micro sistema di degasaggio G1379A	G1379-68701
Kit di parti metalliche per pompa capillare G1376A	G1376-68701
Kit di parti metalliche per micro campionatore automatico G1389A	G1329-68701
Kit parti metalliche per micro campionatore a micropiastre G1377A	G1367-68701
Kit di parti metalliche per comparto colonne termostatato G1316A	G1316-68701
Kit di parti metalliche per rivelatore a serie diodi G1315A (il kit di parti metalliche comprende la parte superiore, la base ed il coperchio anteriore)	G1315-68721
Vite del coperchio	5022-2112
Coperchio fessura (nella parte posteriore del modulo)	5001-3772

Kit di accessori per micro sistema di degasaggio

Tabella 54 G1329A - Contenuto del kit di accessori per micro sistema di degasaggio G1322-68705

Descrizione	Codice Agilent
Utensile di inserimento	0100-1710
Kit di tubi per solvente (4 tubi da degassatore a pompa)	G1322-67300
Siringa	5062-8534
Adattatore siringa	9301-1337
Tubo di scarico [†]	5062-2463

^{*} Codice di riordino (confezione da 10)

Kit per la manutenzione preventiva della pompa capillare G1376-68710

Tabella 55 Kit per la manutenzione preventiva della pompa capillare G1376-68710

Descrizione	Codice Agilent
Uscita guarnizione dorata	5001-3707
Tappo in plastica	5042-1346
Guarnizione	0905-1503
Filtro	3150-0450
Frit in a. inox da 0,5 μm	5022-2185

[†] Codice di riordino (5m)

Kit di accessori per la pompa capillare

Tabella 56 Kit di accessori per la pompa capillare G1376-68705

Descrizione	Codice Agilent
Utensile di inserimento	01018-23702
Filtro di ingresso solvente a. inox (Qtà = 4)	01018-60025
Tubo di scarico	0890-1760
Frit di ricambio in a. inox (0,5 μm)	5022-2185
Chiave ad estremità aperta da 7/16 - 1/2" (Qtà = 2)	8710-0806
Chiave ad estremità aperta da 1/4 - 5/16" (Qtà = 1)	8710-0510
Chiave ad estremità aperta da 14 mm (Qtà = 1)	8710-1924
Chiave ad estremità aperta da 4 mm (Qtà = 1)	8710-1534
Chiave esagonale da 2,5 mm, 15 cm di lungh., impugnatura dritta (Qtà = 1)	8710-2412
Chiave esagonale da 3,0 mm, 12 cm di lungh. (Qtà = 1)	8710-2411
Chiave esagonale da 4,0 mm, 15 cm di lungh., impugnatura a T (Qtà = 1)	8710-2392
Adattatore di coppia	G1315-45003
Cavo CAN (1 m di lungH.)	5181-1519
Valvola di spurgo	G1311-60009
Sede della valvola di spurgo	G1312-23200
Vite per la sede della valvola di spurgo	0515-0175
Capillare da FS a valvola iniezione. (550 mm, 50 μm)	G1375-87310
Bracciale antistatico ESD	Nessun codice

Kit di accessori per micro campionatore a micropiastre G1377-68705

Tabella 57 Kit di accessori per micro campionatore a micropiastre G1377-68705

Descrizione	Quantità	Codice Agilent
Piastra a 96 pozzetti 0.5 ml, PP (confezione da 10)	1	5042-1386
Tubazioni	1	5063-6527
Kit filtro	1	5064-8240
Cavo CAN, 1 m	1	5181-1519
Vial, tappo a vite (confezione da 100)	1	5182-0716
Vial, tappo a vite blu (confezione da 100)	1	5182-0717
Catalogo valvole	1	5988-2999
Chiave esagonale da 9/64" (per viti della valvola di inie- zione)	1	8710-0060
Chiavi da 1/4 <i>–</i> 5/16"	2	8710-0510
Chiave da 4,0 mm (estremità aperta)	1	8710-1534
Chiave per presa Rheotool da ¼"	1	8710-2391
Chiave esagonale da 4,0 mm, 15 cm di lungh., impugnatura a T	1	8710-2392
Chiave esagonale da 9/64", 15 cm di lungh., impugnatura a T	1	8710-2394
Chiave esagonale da 2,5 mm, 15 cm di lungh., impugnatura dritta	1	8710-2412
Chiave esagonale da 2,0 mm	1	8710-2438
Bracciale antistatico ESD	1	9300-1408
Adattatore di coppia	1	G1315-45003
Adattatore per canale aria	1	G1329-43200
Capillare campionatore-colonna (500 mm 0,05 mm DI)	1	G1375-87304
Capillare loop 40 µl	1	G1377-87300
Kit delle perdite WPS	1	G1367-60006

Kit di accessori per micro campionatore automatico termostatato

 Tabella 58
 Kit di accessori per micro campionatore automatico termostatato G1329-68715

Descrizione	Codice Agilent
Tubazioni	Nessun codice
Cavo CAN (1 m di lungh.)	5181-1519
Vial con tappo a vite, chiari (confezione da 100)	5182-0714
Vial, tappo a vite blu (confezione da 100)	5182-0717
Etichetta per rack	Nessun codice
Raccordo	5061-3303
Chiave esagonale	8710-0060
Chiave esagonale 4 mm ad entrambe le estremità	8710-1534
Chiavi da 1/4 - 5/16"	8710-0510
Chiave per presa Rheotool da ¾"	8710-2391
Chiave esagonale da 4 mm, 15 cm di lungh., impugnatura a T	8710-2392
Chiave esagonale da 9 mm, 15 cm di lungh., impugnatura a T	8710-2394
Chiave esagonale da 2,5 mm, 15 cm di lungh., impugnatura a T	8710-2412
Bracciale antistatico ESD	Nessun codice
Chiusure (riordino confezione da 15)	5063-6506
Adattatore di coppia	G1315-45003
Adattatore per canale aria	G1329-43200
Capillare loop esteso 0,25 mm, 180 mm	G1329-87302
Capillare in silice fusa 0,050 mm, 500 mm	G1375-87304

Kit di accessori del comparto colonne con micro valvola di selezione della colonna

Tabella 59 Kit di accessori del comparto colonne con micro valvola di selezione della colonna G1316-68725

Descrizione	Codice Agilent
Supporto per colonna (Otà = 2)	5001-3702
Raccordo manuale (Qtà = 2) (riordino, confezione da 10)	5065-4422
Etichetta di identificazione colonna (Qtà = 1), (riordino confezione da 3)	5062-8588
Tubo di scarico corrugato (riordino confezione da 5 m)	5062-2463
Cavo CAN	5181-1516
Chiavi da 1/4 5/16"	8710-0510
Bracciale antistatico ESD	Nessun codice
Gancio per colonna (Qtà = 4) (riordino, confezione da 6)	5063-6526
Capillare in silice fusa/PEEK 50 µm, 280 mm (Qtà = 4)	G1375-87309
Supporto per colonna (Otà = 2)	5001-3702
Raccordo manuale (Qtà = 2) (riordino, confezione da 10)	5065-4422
Etichetta di identificazione colonna (Qtà = 1), (riordino confezione da 3)	5062-8588
Tubo di scarico corrugato (riordino confezione da 5 m)	5062-2463

DAD, kit di accessori

Tabella 60 DAD, kit di accessori G1315-68705

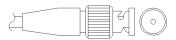
Descrizione	Codice Agilent
Kit di accessori	G1315-68705
Tubo di scarico, 1,2 m di lungh.	Nessun codice
Tubo flessibile (a scarico), 2 m di lungh.	0890-1713
Raccordo maschio in PEEK (Qtà = 1)	0100-1516
Colonna capillare — rivelatore, 380 mm di lungh., 0,17 d.i. comprende parti 4, 5 e 6 (non assemblate)	G1315-87311
Parte anteriore ferrula in acciaio inox (Qtà = 2)	5180-4108
Parte posteriore ferrula in acciaio inox (Qtà = 2)	5180-4114
Raccordo in acciaio inox (Qtà = 10)	5061-3303
Set di chiavi esagonali da 1 – 5 mm.	8710-0641
Chiave ad estremità aperta da 1/4 – 5/16"	8710-0510
Chiave ad estremità aperta da 4 mm	8710-1534
Bracciale antistatico ESD	Nessun codice

Cavi

ATTENZIONE

Non utilizzare mai cavi diversi da quelli forniti da Agilent Technologies per assicurare il funzionamento corretto e l'adeguatezza alla regolamentazione EMC.

La Tabella 61 elenca tutti i tutti i cavi forniti.


Tabella 61 Cavi

Tipo	Descrizione	Codice Agilent
Cavi analogici	Integratori 3390/2/3	01040-60101
	Integratori 3394/6	35900-60750
	Convertitore A/D 35900A	35900-60750
	Uso generale (capocorda a forcella)	01046-60105
	Integratori 3390/2/3	01040-60101
Cavi di controllo remoto	Integratore 3390	01046-60203
	Integratori 3392/3	01046-60206
	Integratore 3394	01046-60210
	Integratore 3396A (Serie I)	03394-60600
	Integratore 3396 Serie II / 3395A, vedere la pagina 127	
	Integratori HP 3396 Serie III/HP 3395 B	03396-61010
	Moduli Agilent 1100 /1050 / 1046A FLD	5061-3378
	1046A FLD	5061-3378
	Convertitore A/D 35900A	5061-3378
	Rivelatore a serie di diodi 1040	01046-60202
	Cromatografi liquidi 1090	01046-60202
	Modulo di distribuzione del segnale	01046-60202

Tabella 61 Cavi (continua)

Tipo	Descrizione	Codice Agilent
Cavi BCD	Integratori 3392/3	18594-60510
	Integratore 3396	03396-60560
	Uso generale (capocorda a forcella)	18594-60520
Ausiliari	Sistema di degasaggio sotto vuoto Agilent Serie 1100	G1322-61600
Cavi CAN	Agilent 1100 da modulo a modulo, 0,5 m	5181-1516
	Agilent 1100 da modulo a modulo, 1 m	5181-1519
	Agilent 1100 da modulo a modulo di controllo	G1323-81600
Contatti esterni	Agilent 1100 da scheda di interfacciamento a cavo per uso generale	G1103-61611
Cavo GPIB	Agilent 1100 da modulo a ChemStation, 1 m	10.833A
	Agilent 1100 da modulo a ChemStation, 2 m	10.833B
Cavo RS-232	Da modulo Agilent 1100 a computer Questo kit contiene un cavo da 9 pin femmina Null Modem (per stampante) ed un adattatore.	34.398A
Cavo LAN	Cavo LAN doppio ritorto, da 10 piedi (per collegamenti da punto a punto)	5183-4649
	Cavo UTP di categoria 5, da 8 m (per collegamenti a nodo)	G1530-61480

Cavi analogici

Un'estremità di questi cavi è dotata di connettore BNC per il collegamento ai moduli Agilent Serie 1100 L'altra estremità dipende dallo strumento al quale si intende collegarsi.

Tabella 62 Agilent 1100 a integratori 3390/2/3

Connettore 01040-60101	Pin 3390/2/3	Pin Agilent 1100	Tipo di segnale
	1	Schermo	Terra
	2		Non collegato
8 7	3	Centro	Segnale +
6 5 BRN/ RD	4		Collegato a pin 6
3 BRN 2	5	Schermo	Analogico -
1 BRN/	6		Collegato a pin 4
	7		Chiave
	8		Non collegato

Tabella 63 Agilent 1100 ad integratori 3394/6

Connettore 35900-60750	Pin 3394/6	Pin Agilent 1100	Tipo di segnale
	1		Non collegato
	2	Schermo	Analogico -
3 111	3	Centro	Analogico +

5 Parti e materiali

Tabella 64 Agilent 1100 a connettore BNC

Connettore 8120-1840	Pin BNC	Pin Agilent 1100	Tipo di segnale
	Schermo	Schermo	Analogico -
	Centro	Centro	Analogico +

Tabella 65 Agilent 1100 a cavo per uso generale

Connettore 01046-60105	Pin 3394/6	Pin Agilent 1100	Tipo di segnale
	1		Non collegato
	2	Nero	Analogico -
	3	Rosso	Analogico +
AE .			

Cavi di controllo remoto

Questi cavi fanno sì che un connettore di controllo a distanza fornito dalla Divisione Analitica Agilent Technologies possa essere collegato ai moduli Agilent Serie 1100. L'altra estremità varia a seconda del tipo di strumento al quale è collegato.

Tabella 66 Agilent 1100 ad integratore 3390

Connettore 01046-60203	Pin 3390	Pin Agilent 1100	Tipo di segnale	Attività (TTL)
	2	1 - Bianco	Digital ground	
	NC	2 - Marrone	Preparazione	Bassa
	7	3 - Grigio	START	Bassa
	NC	4 - Blu	SHUT DOWN	Bassa
	NC	5 - Rosa	Non collegato	
	NC	6 - Giallo	POWER ON	Elevata
	NC	7 - Rosso	READY	Elevata
	NC	8 - Verde	STOP	Bassa
	NC	9 - Nero	START REQUEST	Bassa

Tabella 67 Agilent 1100 ad integratori 3392/3

Connettore 01046-60206	Pin 3392/3	Pin Agilent 1100	Tipo di segnale	Attività (TTL)
	3	1 - Bianco	Digital ground	
	NC	2 - Marrone	Preparazione	Bassa
8 0	11	3 - Grigio	START	Bassa
(9 2 1 6)	NC	4 - Blu	SHUT DOWN	Bassa
	NC	5 - Rosa	Non collegato	
11 12	NC	6 - Giallo	POWER ON	Elevata
	9	7 - Rosso	READY	Elevata
4 - Chiave	1	8 - Verde	STOP	Bassa
	NC	9 - Nero	START REQUEST	Bassa

5 Parti e materiali

Tabella 68 Agilent 1100 ad integratore 3394

Connettore 01046-60210	Pin 3394	Pin Agilent 1100	Tipo di segnale	Attività (TTL)
	9	1 - Bianco	Digital ground	
80 15	NC	2 - Marrone	Preparazione	Bassa
	3	3 - Grigio	START	Bassa
	NC	4 - Blu	SHUT DOWN	Bassa
	NC	5 - Rosa	Non collegato	
1 • 9	NC	6 - Giallo	POWER ON	Elevata
	5,14	7 - Rosso	READY	Elevata
	6	8 - Verde	STOP	Bassa
	1	9 - Nero	START REQUEST	Bassa
	13, 15		Non collegato	

NOTA START e STOP sono collegati tramite diodo al pin 3 del connettore 3394.

Tabella 69 Agilent 1100 ad integratori 3396A

Connettore 03394-60600	Pin 3394	Pin Agilent 1100	Tipo di segnale	Attività (TTL)
	9	1 - Bianco	Digital ground	
	NC	2 - Marrone	Preparazione	Bassa
80 15	3	3 - Grigio	START	Bassa
	NC	4 - Blu	SHUT DOWN	Bassa
	NC	5 - Rosa	Non collegato	
1 • 9	NC	6 - Giallo	POWER ON	Elevata
	5,14	7 - Rosso	READY	Elevata
	1	8 - Verde	STOP	Bassa
	NC	9 - Nero	START REQUEST	Bassa
	13, 15		Non collegato	

Agilent 1100 ad integratori 3396 Serie II / 3395A

Utilizzare il cavo 03394-60600 e tagliare il pin numero 5 dal lato integratore. Altrimenti l'integratore stamperà START; not ready.

Tabella 70 Agilent 1100 ad integratori 3396 Serie III / 3395B

Connettore 03396-61010	Pin 33XX	Pin Agilent 1100	Tipo di segnale	Attività (TTL)
	9	1 - Bianco	Digital ground	
80 15	NC	2 - Marrone	Preparazione	Bassa
	3	3 - Grigio	START	Bassa
	NC	4 - Blu	SHUT DOWN	Bassa
	NC	5 - Rosa	Non collegato	
1 • 9	NC	6 - Giallo	POWER ON	Elevata
	14	7 - Rosso	READY	Elevata
	4	8 - Verde	STOP	Bassa
	NC	9 - Nero	START REQUEST	Bassa
	13, 15		Non collegato	

Tabella 71 Agilent 1100 ad HP 1050, HP 1046A o a convertitori Agilent A/D 35900

Connettore 5061-3378	Pin HP 1050 /	Pin Agilent 1100	Tipo di segnale	Attività (TTL)
	1 - Bianco	1 - Bianco	Digital ground	
	2 - Marrone	2 - Marrone	Preparazione	Bassa
50 09	3 - Grigio	3 - Grigio	START	Bassa
	4 - Blu	4 - Blu	SHUT DOWN	Bassa
	5 - Rosa	5 - Rosa	Non collegato	
	6 - Giallo	6 - Giallo	POWER ON	Elevata
	7 - Rosso	7 - Rosso	READY	Elevata
	8 - Verde	8 - Verde	STOP	Bassa
	9 - Nero	9 - Nero	START REQUEST	Bassa

Tabella 72 Agilent 1100 ad LC HP 1090, DAD HP 1040 o modulo di distribuzione del segnale

Connettore 01046-60202	Pin HP 1090	Pin Agilent 1100	Tipo di segnale	Attività (TTL)
	1	1 - Bianco	Digital ground	
	NC	2 - Marrone	Preparazione	Bassa
8 7 6 5 1	4	3 - Grigio	START	Bassa
	7	4 - Blu	SHUT DOWN	Bassa
	8	5 - Rosa	Non collegato	
2 1	NC	6 - Giallo	POWER ON	Elevata
	3	7 - Rosso	READY	Elevata
5 - Chiave	6	8 - Verde	STOP	Bassa
	NC	9 - Nero	START REQUEST	Bassa

Tabella 73 Agilent 1100 a cavo per uso generale

Connettore 01046-60201	Pin Universale	Pin Agilent 1100	Tipo di segnale	Attività (TTL)
		1 - Bianco	Digital ground	
A O 1		2 - Marrone	Preparazione	Bassa
		3 - Grigio	START	Bassa
S O 15		4 - Blu	SHUT DOWN	Bassa
		5 - Rosa	Non collegato	
		6 - Giallo	POWER ON	Elevata
		7 - Rosso	READY	Elevata
		8 - Verde	STOP	Bassa
		9 - Nero	START REQUEST	Bassa

Cavi BCD

Un'estremità di questi cavi è dotata di connettore BCD a 15 pin per il collegamento ai moduli Agilent Serie 1100 L'altra estremità varia a seconda del tipo di strumento al quale è collegato.

Tabella 74 Agilent 1100 ad integratori 3392/3

Connettore 18584-60510	Pin 3392/3	Pin Agilent 1100	Tipo di segnale	Digit BCD
	10	1	BCD 5	20
	11	2	BCD 7	80
8 7	3	3	BCD 6	40
	9	4	BCD 4	10
	7	5	BCD 0	1
11 12	5	6	BCD 3	8
	12	7	BCD 2	4
6 - Chiave	4	8	BCD 1	2
	1	9	Digital ground	d
	2	15	+ 5 V	Bassa

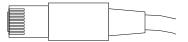
Tabella 75 Agilent 1100 ad integratore 3396

Connettore 03396-60560	Pin 3392/3	Pin Agilent 1100	Tipo di segnale	Digit BCD
	1	1	BCD 5	20
	2	2	BCD 7	80
8 1 5	3	3	BCD 6	40
	4	4	BCD 4	10
♦ ○	5	5	BCD 0	1
1 • 9	6	6	BCD 3	8
	7	7	BCD 2	4
	8	8	BCD 1	2
	9	9	Digital ground	
	NC	15	+ 5 V	Bassa

Tabella 76 Agilent 1100 a cavo per uso generale

Connettore 18594-60520	Colore del conduttore	Pin Agilent 1100	Tipo di segnale	Digit BCD
	Verde	1	BCD 5	20
	Violetto	2	BCD 7	80
	Blu	3	BCD 6	40
	Giallo	4	BCD 4	10
	Nero	5	BCD 0	1
	Arancione	6	BCD 3	8
	Rosso	7	BCD 2	4
	Marrone	8	BCD 1	2
	Grigio	9	Digital groun	d
	Bianco	15	+5 V	Bassa

Cavo ausiliario

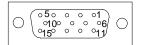


Un'estremità di questo cavo fornisce una presa modulare da collegare al sistema di degasaggio sotto vuoto Agilent Serie 1100. L'altra estremità è per uso generale.

Tabella 77 Sistema di degasaggio Agilent 1100 a cavo per uso generale

Connettore G1322-61600	Colore	Pin Agilent 1100	Tipo di segnale
	Bianco	1	Terra
	Marrone	2	Segnale di pres- sione
	Verde	3	
	Giallo	4	
	Grigio	5	DC + 5 V IN
	Rosa	6	Equilibrazione pressione

Cavo CAN



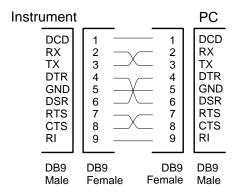
Entrambe le estremità permettono di collegare una presa modulare ai connettori per bus CAN dei moduli Agilent Serie 1100.

Tabella 78 Connettori per bus CAN

Agilent 1100 da modulo a modulo, 0,5 m	5181-1516
Agilent 1100 da modulo a modulo, 1 m	5181-1519
Agilent 1100 da modulo a modulo di controllo	G1323-81600

Cavo di contatto esterno

Un'estremità di questo cavo è dotata di una presa a 15 per il collegamento al modulo della scheda di interfacciamento Agilent Serie 1100. L'altra estremità è per uso generale.


Tabella 79 Agilent 1100 da scheda di interfacciamento a cavo per uso generale

Connettore G1103-61611	Colore	Pin Agilent 1100	Tipo di segnale
	Bianco	1	EXT 1
	Marrone	2	EXT 1
	Verde	3	EXT 2
	Giallo	4	EXT 2
	Grigio	5	EXT 3
	Rosa	6	EXT 3
	Blu	7	EXT 4
	Rosso	8	EXT 4
	Nero	9	Non collegato
	Violetto	10	Non collegato
	Grigio/rosa	11	Non collegato
	Rosso/blu	12	Non collegato
	Bianco/verde	13	Non collegato
	Marrone/verde	14	Non collegato
	Bianco/giallo	156	Non collegato

Kit per cavo RS-232

Questo kit contiene un cavo da 9 pin femmina Null Modem (per stampante) ed un adattatore. Utilizzare il cavo e l'adattatore per collegare strumenti Agilent Technologies con connettori RS-232 maschio a 9 pin con la maggior parte dei PC e delle stampanti.

Modulo Agilent 1100 a PC

Cavi LAN

Cavi consigliati

Per collegamenti da punto a punto (senza l'utilizzo di un nodo di rete) utilizzare un cavo LAN doppio ritorto ad incrocio isolato (Codice Agilent 5183-4649, da 10 piedi).

Per collegamenti di rete standard che utilizzano un nodo, usare cavi 5 UTP di categoria 5 (Codice Agilent G1530-61480, da 8 m).

Questo capitolo descrive le diverse opzioni disponibili per il sistema per LC capillare

Kit per intervalli di flusso estesi (G1376-69707)

Il kit per intervalli di flusso estesi descritto nella Tabella 80 consente di adattare la pompa capillare per consentirne l'utilizzo per flussi fino a 100 μ l/min. Sarà necessario sostituire alcuni capillari in modo da diminuire la pressione nel sistema quando si aumenta il flusso fino a 100 μ l/min. Tali capillari (8, 9, 10, 11, 13) sono sfumati nella Figura 39 a pagina 137.

Tabella 80 Contenuto del kit per intervalli di flusso estesi G1376-68707

Voce	Descrizione	Codice Agilent
	Sensore di flusso (100 μl)	G1376-60002
8	Capillare da EMPV a sensore di flusso (220 mm, 100 µm)	G1375-87305
9	Da sensore di flusso capillare a valvola di iniezione (550 mm100 μm)	G1375-87306
3	Da valvola di iniezione capillare a testa analitica (200 mm, 100 μm)	G1375-87312
0	Da valvola di iniezione capillare a colonna (500 mm, 75 μm)	G1375-87311
11	Da colonna capillare a rivelatore (400 mm, 75 μm)	G1375-87308

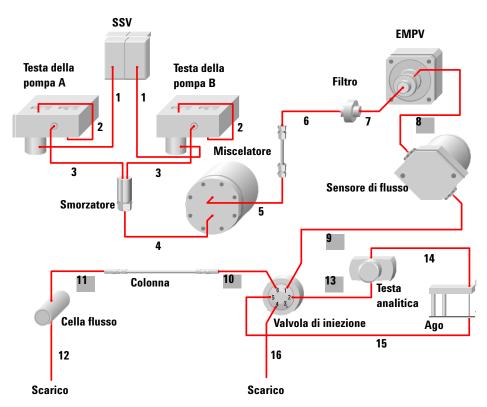


Figura 39 Diagramma di flusso della pompa capillare

Installazione del kit per intervalli di flusso estesi

Frequenza Quando il flusso è superiore ai 20 µl/min

Utensili necessari Chiave ad estremità aperta da 4 mm (8710-1534)

Adattatore di coppia G1315-45003

Chiave ad estremità aperta da 1/4-5/16" (8710-1534)

Chiave esagonale da 2,5 mm (8710-2412)

Parti necessarie Kit per intervalli di flusso estesi (G1376-69707)

- 1 Utilizzare le chiavi da 4mm e 1/4-5/16" ad estremità aperta per scollegare i capillari 8, 9, 10, 11 e 13. Vedere la Figura 39 a pagina 137 per identificarne la posizione.
- 2 Smontare il sensore di flusso da 20 μ l allentando le due viti di tenuta con la chiave esagonale da 2,5 mm.
- 3 Smontare il sensore di flusso da 100 μ l allentando le due viti di tenuta con la chiave esagonale da 2,5 mm.
- **4** Utilizzare le chiavi da 4mm e 1/4-5/16" ad estremità aperta per scollegare i capillari 8, 9, 10, 11 e 13. Vedere la Figura 39 a pagina 137 per identificarne la posizione.
- NOTA

 Se la caduta di pressione nel sistema non è eccessiva è possibile lasciare il capillare
 G1375-68703 fra la colonna ed il rivelatore (voce 8). Altrimenti, sostituirlo come consigliato
 con il capillare G1375-87308.
- NOTA Per installare i capillari in modo corretto ed evitare perdite, consultare il Capitolo 3, "Capillari e raccordi.

Kit capillare per flussi da 0.1 - 2.5 ml/min (5065-4495)

È possibile utilizzare la pompa capillare con un flusso superiore a 100 μ l/min. A tale scopo la pompa deve essere usata in modalità normale ed è necessario apportare alcune modifiche hardware.

Da 100 a $200~\mu$ l/min è necessario bypassare il controllo elettronico del flusso. Non sono necessarie altre modifiche hardware.

Da 200 a $2500~\mu$ l/min è necessario bypassare il sensore elettronico del flusso, installare la valvola di spurgo manuale (fornita con i kit di accessori), cambiare la cella del rivelatore UV e sostituire i capillari sul percorso di flusso.

Il kit per flusso capillare da 0.1 a 2.5 ml/min (5065-4495) comprende tutti i capillari necessari per lavorare con un flusso da 200 a 2500 μ l/min.

Tabella 81 Kit capillare per flussi da 0.1 - 2.5 ml/min (5065-4495)

Codice Agilent	Diametro (µm)	Caduta di pressione (Bar)	Lunghezza (mm)	Materiale	Volume (µl)	Tipo di raccordo
G1375-87400	170	2	280	lnox *	6,4	A/A
G1375-87318	125	15	550	PFS **	6,8	B/C
G1375-87312	100	13	200	PFS	1,6	B/C
G1329-87302	250	3	1800	Inox	88	B/B
G1375-87312	100	13	200	PFS	1,6	B/C
G1375-87306	100	37	550	PFS	4,4	C/B
G1316-87300	170	<1	70	Inox	1,6	A/A

Inox: acciaio inossidabile

^{* *} PFS: silice fusa rivestita in Peek

Installazione del kit per flusso capillare da 0,1 - 2,5 ml/min

Frequenza Quando il flusso è superiore ai 200 μ1/min

Utensili necessari Chiave ad estremità aperta da 4 mm (8710-1534)

Adattatore di coppia G1315-45003

Chiave ad estremità aperta da 1/4-5/16" (8710-1534) Chiave ad estremità aperta da 14 mm (8710-1924)

Parti necessarie Kit per intervalli di flusso estesi (G1376-69707)

Valvola di spurgo G1311-60009 (fornita con il kit di accessori G1376-68705) Sede della valvola di spurgo G1312-23200 (fornita con il kit di accessori

G1376-68705)

Vite della sede della valvola di spurgo 0515-0175 (fornita con il kit di accessori

G1376-68705)

Rondella 2190-0586 (fornita con il kit di accessori G1376-68705)

- 1 Spegnere il modulo della pompa.
- 2 Scollegare il capillare 01090-87308 fra il miscelatore ed il filtro.
- **3** Collegare il capillare G1375-87400 all'uscita del miscelatore.
- **4** Collegare l'altra estremità del capillare G1375-87400 alla sede della valvola di spurgo.
- 5 Installare la sede della valvola di spurgo sulla testa della pompa del canale A e fissarla con la vite.
- **6** Avvitare la valvola nella propria sede e localizzare l'uscita e lo scarico.
- 7 Utilizzare la chiave da 14 mm per stringere la valvola di spurgo.
- **8** Rimuovere il tubo di scarico dalla EMPV ed installarlo all'uscita di scarico della valvola di spurgo.
- **9** Scollegare il capillare sulla valvola di iniezione (porta 1).
- **10** Collegare il capillare G1375-87318 fra la valvola di spurgo e la valvola di iniezione (via 1).
- 11 Sostituire il capillare fra la valvola di iniezione e la testa analitica con il capillare G1375-87312.

12 Sostituire il capillare del loop con il capillare G1329-87302 se si dispone di un micro campionatore automatico (G1389A) o con il capillare G1377-87300 se si dispone di un micro campionatore a micropiastre (G1377/78A).

NOTA Non dimenticare di modificare le dimensioni del loop o della siringa a 40 µl nella finestra di configurazione dell'iniettore dell'interfaccia utente.

Il gruppo della sede dell'ago deve essere G1329-87101 con il capillare da 100 μ m (G1389A). Il gruppo della sede dell'ago deve essere G1375-87317 con il capillare da 100 μ m (G1377/78A).

- **13** Sostituire il capillare fra la valvola di iniezione (porta 6) e la colonna con il capillare G1375-87312. Se è presente un termostato (G1330A/B) utilizzare il capillare G1375-87306.
- NOTA Con flussi superiori a 200 µl/min, è consigliabile convogliare il flusso attraverso un dispositivo Peltier. Il capillare G1316-87300 deve quindi essere collegato fra l'uscita del dispositivo Peltier e l'ingresso della colonna.
 - **14** Sostituire il capillare fra la colonna ed il rivelatore con il capillare G1315-87311.
- NOTA Sostituire la cella di flusso da 500 nl con la cella di flusso standard (G1315-60012), la cella di flusso semi micro (G1315-6001) oppure la cella di flusso ad alta pressione (G1315-60015).

Le pressioni nella Tabella 82 e nella Tabella 83 sono valori indicativi misurati su un solo sistema. Tali valori possono quindi variare a seconda dei sistemi.

Tabella 82 Caduta di pressione a 2,5 ml/min per concentrazioni diverse (colonna non installata)

% di fase organica	Pressione del metanolo (bar)	Pressione dell'acetonitrile (bar)
0	165	162
20	170	169
40	158	154
60	132	128
80	100	95
100	75	72

Tabella 83 Cadute di pressione per colonne e flussi diversi, con un gradiente da 0 al 100% di acetonitrile in 10 minuti.

Colonna (lung. e d.i.)	Flusso (ml/min)	Pressione (bar)
100 x 2,1 mm	0,4	92 (max.) 38 (inferiore)
100 x 2,1 mm	8,0	174 (max.) 68 (inferiore)
125 x 4,0 mm	1,0	131 (max.) 45 (inferiore)
125 x 4,0 mm	1,5	190 (max.) 67 (inferiore)
100 x 4,6 mm	2,0	213 (max.) 86 (inferiore)
100 x 4,6 mm	2,5	272 (max.) 112 (inferiore)

Micro valvola di commutazione della colonna G1388A#055

La micro valvola di commutazione della colonna consente di lavorare con 2 colonne e di selezionarne una. La colonna non in linea viene chiusa collegando la testa al binario. La commutazione deve essere effettuata quando il flusso è disattivato e la pressione è a zero. La Figura 40 riporta il diagramma di flusso quando la colonna 1 è attiva. La Figura 41 mostra il diagramma di flusso quando la colonna 2 è attiva.

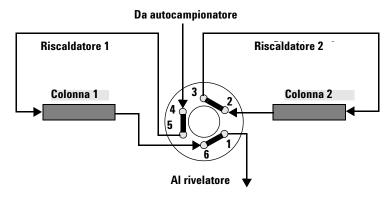


Figura 40 Colonna 1 attiva

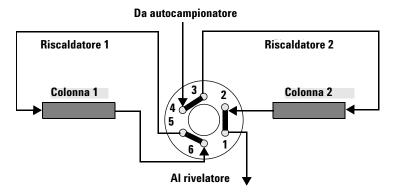


Figura 41 Colonna 2 attiva

La micro valvola di commutazione della colonna consente di lavorare anche effettuando il lavaggio della colonna. Il campione viene iniettato in una precolonna e poi in una colonna analitica collegata in serie. Dopo che la valvola ha mutato posizione, il flusso nella colonna analitica continua in direzione normale. La precolonna viene lavata per far sì che l'eluizione dei picchi ritenuti a lungo avvenga nel rivelatore.

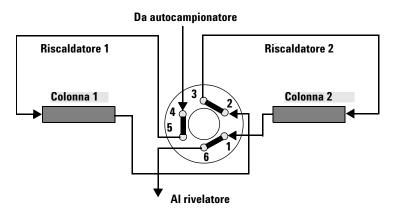


Figura 42 Lavaggio della precolonna

Identificazione delle parti della micro valvola di commutazione della colonna

Tabella 84 Micro valvola di commutazione colonna

Voce	Descrizione	Codice Agilen
	Valvola di commutazione della colonna (dispositivo completo)	0101-1051
	Capillari in silice fusa, 50 μm, 280 mm	G1375-87309
	Kit di raccordi per micro valvola (comprende 6 raccordi e 2 prese)	5065-4410
1	Viti dello statore	1535-4857
2	Testa dello statore	0100-2089
3	Anello dello statore	Nessun codice
4	Guarnizione del rotore, tre scanalature (Vespel)	0100-2087

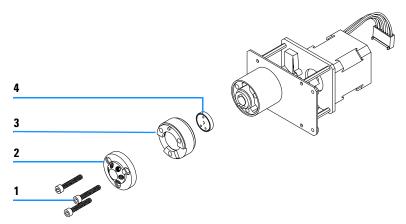
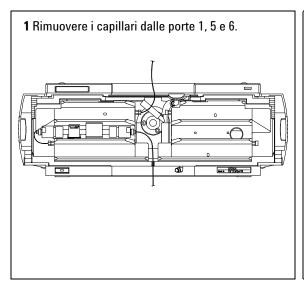
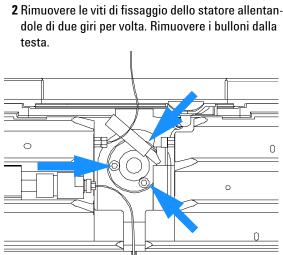


Figura 43 Micro valvola di commutazione colonna


Sostituzione della guarnizione del rotore della micro valvola di commutazione della colonna


Frequenza Quando la valvola perde Utensili necessari Chiave da 5,5 mm

Chiave esagonale da 9/64"

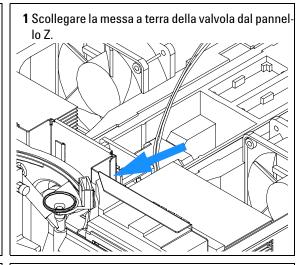
Consultare la sezione "Kit della cella di flusso da 500 nl G1315-68714" a Parti necessarie

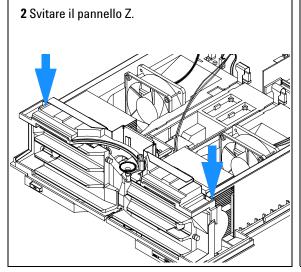
pagina 153.

- **15** Rimuovere la testa e la guarnizione dello statore.
- **16** Installare la nuova guarnizione e reinstallare la testa dello statore.
- 17 Inserire le viti apposite nella testa dello statore. Stringere alternativamente le viti di due giri per volta fino ad aver ben fissato la testa dello statore.
- 18 Ricollegare i capillari della pompa alle vie della valvola. Dirigere il tubo di scarico verso l'apposito contenitore nel vassoio di raccolta perdite.
- 19 Effettuare un test di tenuta della pressione per essere certi che la pressione della valvola sia esattamente di 400 bar.

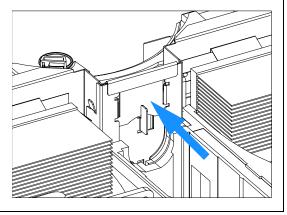
Smontaggio della micro valvola di commutazione della colonna

Se necessario Se la valvola non funziona o se il rivestimento deve essere tolto per sostitu-

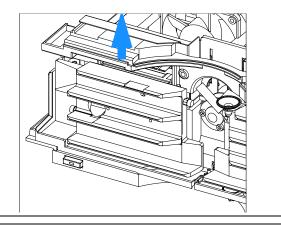

zioni

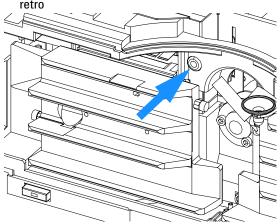

Utensili necessari Cacciavite Pozidriv 1 PT3

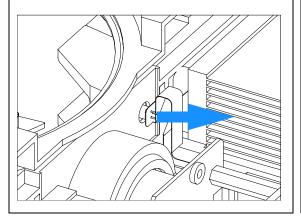
Chiave da 5,5 mm per collegamenti capillari

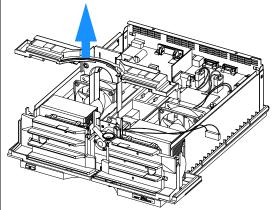

Preparazione per la procedura

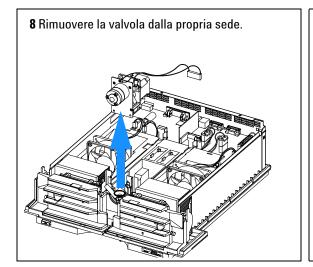
- Spegnere il comparto colonne.
- · Staccare il cavo di alimentazione.
- Scollegare i capillari.
- Rimuovere il comparto colonne dalla pila di moduli e collocarlo sul banco di lavoro.
- Smontare il coperchio anteriore, il coperchio superiore e lo strato in schiuma.




3 Premere sulla parte posteriore del pannello Z per rilasciare la piastra metallica dalla guida, quindi tirarla delicatamente verso l'alto.


4 Sollevare il pannello Z ed il pannello in plastica superiore per metà fuori dalla guida.


5 Individuare il sensore della temperatura ambiente nella parte superiore in plastica e spingerlo verso il retro

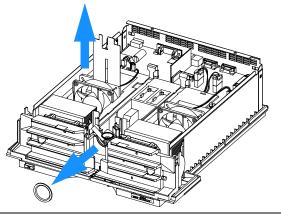


6 Rimuovere delicatamente il sensore della temperatura ambiente situato sul retro del pannello in plastica superiore.

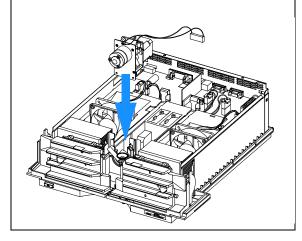
7 Tirare insieme il pannello in plastica superiore ed il pannello Z fino a estrarli completamente dalla guida.

Per l'installazione consultare la sezione "Installazione della micro valvola di commutazione della colonna" a pagina 150.

Installazione della micro valvola di commutazione della colonna

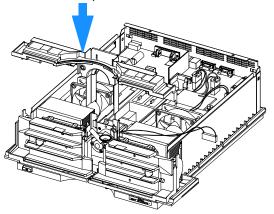

Se necessario Per la prima installazione o dopo un'operazione di smontaggio

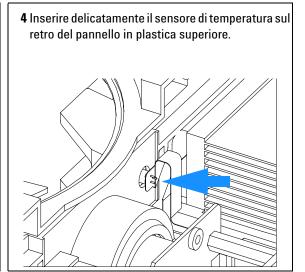
Utensili necessari Cacciavite Pozidriv 1 PT3


Chiave da 5,5 mm per collegamenti capillari

Preparazione per la procedura

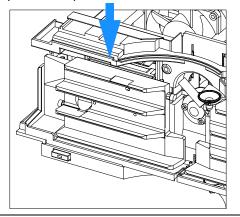
 Il comparto colonne è aperto come descritto nella sezione "Smontaggio della micro valvola di commutazione della colonna" a pagina 147. 1 Se la valvola di commutazione della colonna non è installata, rimuovere lo schermo RFI ed il coperchio in plastica (che non verrà più utilizzato).

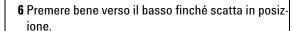


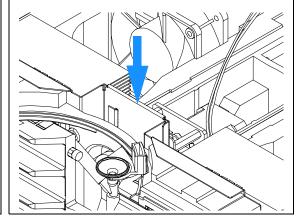

2 Riposizionare la valvola nella sua sede.

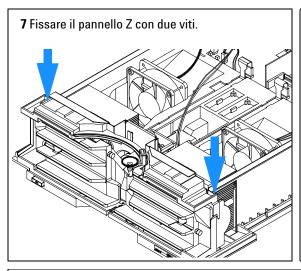
Nota

assicurarsi che durante le fasi che seguono i cavi situati vicino allo scambiatore di calore non vengano danneggiati. 3 Inserire delicatamente il pannello in plastica superiore insieme al pannello Z nella guida e premerlo verso il basso per metà della corsa.




Nota


Assicurarsi che il sensore della temperatura ambiente sia completamente inserito sul retro del pannello in plastica superiore.


Assicurarsi che durante le fasi che seguono i cavi situati vicino allo scambiatore di calore non siano danneggiati.

5 Premere il pannello Z ed il pannello superiore in plastica completamente verso il basso.

- **9** Riposizionare lo strato in schiuma, il coperchio superiore ed il coperchio anteriore.
- 10 Rimontare il comparto colonne nella pila di moduli.
- 11 Ricollegare i capillari.
- 12 Ricollegare il cavo di alimentazione.
- 13 Avviare il comparto colonne.

Kit della cella di flusso da 500 nl G1315-68714

Questa sezione descrive la cella di flusso 500 nl per il rivelatore a serie di diodi ed il rivelatore a lunghezza d'onda multipla Agilent Serie 1100.

Caratteristiche

- Dispersione limitata da:
 - 500 nl, 10 mm di lunghezza della cella di flusso
 - nuovi capillari in PEEK al quarzo facilmente inseribili (ingresso 50 μm d.i., uscita 75 μm d.i.)
 - nuovi raccordi con design "top sealing".
- Bassa sensibilità RI per linee di base piatte a gradienti di flusso bassi utilizzando una lunghezza d'onda ottica di riferimento.
- Buona sensibilità grazie ad una lunghezza del cammino ottico di 10 mm e livelli di rumore accettabili.
- Il sistema di colonna "a cartuccia" consente di effettuare collegamenti capillari specifici per le proprie esigenze fino all'estremità anteriore della cella al quarzo.

Specifiche per le prestazioni

Tabella 85 Specifiche per le prestazioni della cella di flusso da 500 nl

Тіро	Specifica
Lunghezza del cammino ottico	10 mm
Volume	500 nl
Pressione	Intervallo di funzionamento 0–5 MPa (0–50 bar, 0–725 psi)
Diametro interno dei capillari	ingresso: 50 μm, uscita: 75 μm
Lunghezza dei capillari	ingresso 400 mm, uscita 700 mm
Materiale	Quarzo con rivestimento in PEEK
Materiale a contatto con solventi	Quarzo, PEEK
Specifiche per il rumore	2 - 3 volte superiore rispetto alla cella di flusso standard da 10 mm a 0,05 ml/min

Informazioni supplementari per la manutenzione

Le parti fornite con la cella di flusso consentono di utilizzare diversi tipi di raccordi e capillari, vedere la Figura 44. Prima di adattarli alla cella di flusso, considerare attentamente quale tipo si desidera usare. A seconda del tipo scelto potrebbe essere necessario utilizzare le parti speciali descritte.

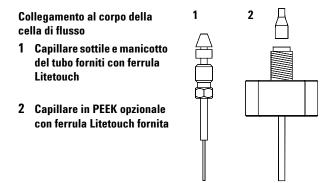


Figura 44 Tipi di raccordi e capillari

AVVERTENZA

I capillari in PEEK forniti con questa cella di flusso sono stati sottoposti ad un trattamento superficiale speciale ad entrambe le estremità. NON accorciare i capillari: tale operazione potrebbe causare danni o perdite.

Un raggio di curvatura inferiore a 10 mm potrebbe rompere il capillare in quarzo all'interno della protezione in PEEK. Una pressione troppo elevata può infatti far esplodere la protezione.

AVVERTENZA

Indossare sempre gli occhiali antinfortunistici quando si lavora vicino a tubi in materiali polimerici sotto pressione.

Non utilizzare i tubi in PEEK con tetraidrofurano (THF) o acido nitrico concentrato (eccetto per procedimenti di lavaggio rapidi) ed acido solforico.

Il cloruro di metilene ed il dimetilsolfossido provocano rigonfiamenti del PEEK.

Durante il montaggio pulire sempre accuratamente.

Il capillare può essere riutilizzato se si smontano le ferrule delicatamente tramite un utensile da taglio adatto oppure l'utensile originale Upchurch. Vedere la Figura 45.

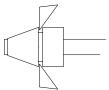


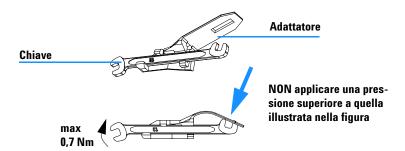
Figura 45 Smontaggio della ferrula

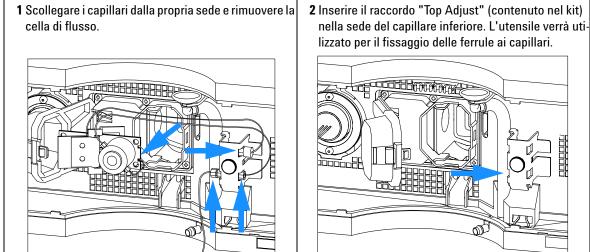
I raccordi della cella sono installati e verificati in fabbrica per garantire che non perdano. I collegamenti non devono essere utilizzati come interfaccia strumentale. Possono essere aperti solo per manutenzione e/o adattamenti speciali.

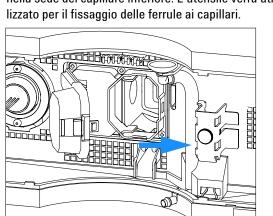
AVVERTENZA

Non stringere troppo i raccordi. La cella al guarzo potrebbe rompersi.

Con il kit di accessori dello strumento viene fornita anche una chiave da 4 mm mentre il kit di tenuta comprende un adattatore speciale. Entrambi fungono da chiave di serraggio con coppia predefinita (la coppia massima consentita per i raccordi della cella è 0,7 Nm). Possono essere usate per stringere i raccordi dei capillari al corpo della cella di flusso. La chiave deve essere inserita nell'adattatore come indicato dalla Figura 46.

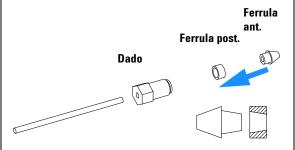


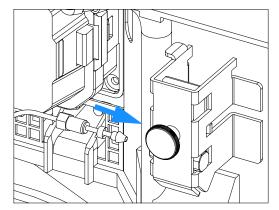

Figura 46 Chiave più adattatore di coppia


Installazione della cella di flusso

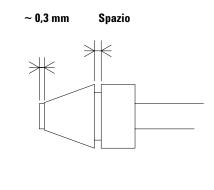
La cella di flusso è fornita con capillari vuoti ai lati dello strumento per consentire l'uso di raccordi di tipi diversi, vedere la Figura 44 a pagina 154

Se si utilizzano colonne capillari a diametro interno ristretto, ad esempio di impaccamenti LC, vedere anche la sezione "Collegamento di capillari a D.I. ristretto" a pagina 160.

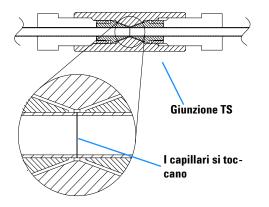

Le fasi che seguono descrivono il collegamento ad un connettore idraulico interno e non devono essere seguite nel caso in cui i capillari vengano diretti subito alla colonna e/o allo scarico.



Le operazioni descritte ai punti 3 e 4 devono essere effettuate per ognuno dei due capillari della cella di flusso quando si desideri questo tipo di collegamento.


Sul raccordo "Top Seal" non esiste alcun fermo per i capillari piatti. Quindi è necessario prefissare almeno una ferrula. 3 Spingere il dado e le ferrule anteriore e posteriore sul capillare in PEEK (vedere le istruzioni per orientarle correttamente). Ciò si applica solo a lato della cella!

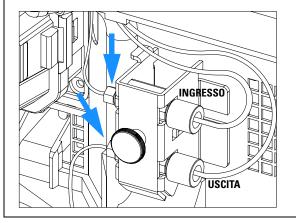
4 Inserire delicatamente il capillare nel raccordo di regolazione. Quindi, stringere moderatamente il dado per fissare la ferrula.


5 Aspetto della ferrula prefissata.

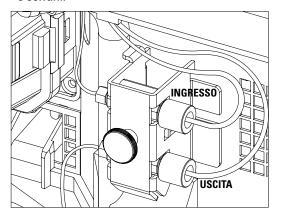
NOTA

La torsione corretta per prefissare le ferrule nel design "top-adjust" e per la tenuta dei raccordi della cella è 0,5 - 0,7 Nm. Per le viti della cella utilizzare l'adattatore di torsione, vedere la Figura 46 a pagina 155.

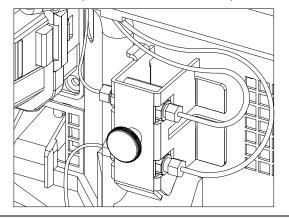
6 La figura riporta il principio di tenuta applicato alla giunzione "top seal", serrato manualmente prima di applicare la torsione.



A seconda del tipo di raccordo scelto, la figura del punto 7 può avere un aspetto diverso.


Le figure al punto 7 e 8 illustrano alternativamente i raccordi in PEEK forniti e i due raccordi (top seal) del kit (i raccordi originali devono essere sostituiti).

La figura al punto 9 illustra il collegamento effettuato con i raccordi in acciaio inossidabile forniti.


7 Inserire la cella di flusso nello strumento e collegare il capillare della colonna e quello di scarico.

8 Inserire nei raccordi forniti i capillari in PEEK provenienti dal corpo della cella insieme al raccordo in PEEK e serrarli.

9 Inserire nel raccordo i capillari in PEEK provenienti dal corpo della cella di flusso, insieme al raccordo in acciaio inox, alla ferrula e al cono bianco, e serrarli.

Rimuovere la cella di flusso ed effettuare un test delle perdite.

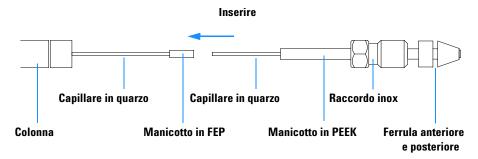
Se non si riscontrano perdite è possibile iniziare a lavorare.

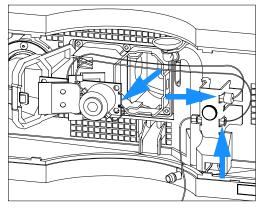
Assicurarsi che il gruppo della cella di flusso sia inserito correttamente e si incastri perfettamente nell'unità ottica (specialmente quando si usano capillari in PEEK).

Collegamento di capillari a D.I. ristretto

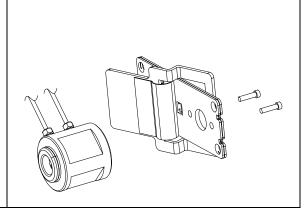
Alcuni tipi di colonne, es. impaccamenti LC, hanno collegamenti capillari con diametro interno estremamente ristretto, con manicotti FEP. Per utilizzarli con la cella di flusso da 500 nl seguire le istruzioni riportate di seguito.

Si richiede un manicotto in PEEK con diametro interno ed esterno adatti per l'adattamento NOTA al raccordo in acciaio inox e le ferrule del capillare in quarzo.

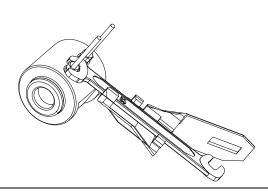



Figura 47 Collegamento di capillari a diametro interno ristretto

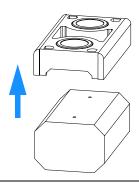
Sostituzione e pulizia delle parti

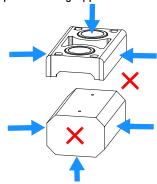

AVVERTENZA

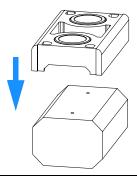
Il blocco in quarzo può essere pulito con alcool. NON toccare le finestre di entrata ed uscita in corrispondenza del blocco in quarzo.

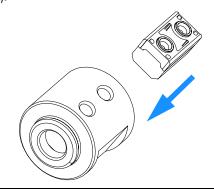

1 Scollegare i capillari dalla propria sede e rimuovere la cella di flusso.

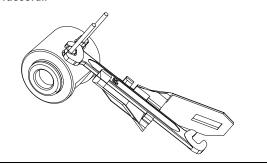
2 Svitare il corpo della cella dal supporto.

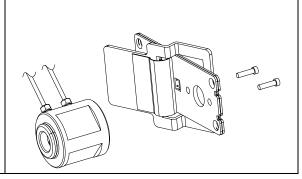

3 Svitare i capillari dalla cella di flusso. NON usare l'adattatore ora!

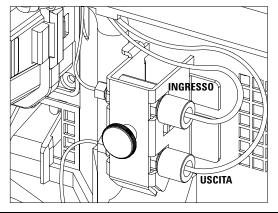

4 Premere sulla parte in plastica servendosi di uno stuzzicadenti e far scivolare il corpo al quarzo fuori dall'alloggiamento della cella.


5 Il corpo in quarzo ed il gruppo di tenuta possono essere separati per la pulizia.


6 Questa figura illustra la posizione corretta del corpo in quarzo e del gruppo di tenuta.


7 Riposizionare il gruppo di tenuta della cella nel corpo in quarzo. È consigliabile utilizzare un gruppo nuovo.


8 Inserire completamente il gruppo nella cella fino al fermo anteriore (usare ad esempio uno stuzzicadenti).


9 Inserire i capillari nella cella di flusso e serrarli manualmente. Utilizzare la chiave e l'adattatore di torsione come descritto a pagina 155 e serrare i raccordi.

10 Rimontare il corpo della cella di flusso sul supporto.

11 Reinstallare la cella di flusso e collegare i capillari al supporto.

Rimuovere la cella di flusso ed effettuare un test delle perdite.

Se non si riscontrano perdite è possibile iniziare a lavorare.

Agilent Serie 1100 Sistema per LC capillare Manuale di sistema

Specifiche per le prestazioni

Specifiche per le prestazioni della pompa capillare Agilent Serie 1100 166

Specifiche per le prestazioni del micro sistema di degasaggio sotto vuoto Agilent Serie 1100 168

Specifiche per le prestazioni del micro campionatore automatico termostatato Agilent Serie 1100 169

Specifiche per le prestazioni del micro campionatore a micropiastre Agilent Serie 1100 170

Specifiche per le prestazioni del comparto colonne termostatato Agilent Serie 1100 171

Specifiche per le prestazioni del rivelatore a serie di diodi Agilent Serie 1100 172

Questo capitolo elenca le specifiche per le prestazioni della pompa capillare.

Specifiche per le prestazioni della pompa capillare Agilent Serie 1100

Tabella 86 Specifiche per le prestazioni dei sistemi Agilent Serie 1100 per LC capillare

Tipo	Specifica
Volume di ritardo del sistema	In genere 5 μl da EFC a testa della colonna, per flussi fino a 20 μl/min (valore preimpostato). In genere 14 μl da EFC a testa della colonna, per flussi fino a 100 μl/min (valore preimpostato).

Tabella 87 Specifiche per le prestazioni della pompa capillare Agilent Serie 1100

Tipo	Specifica
Sistema idraulico	Due pistoni doppi in serie, con trasmissione mandata controllata da servomotore brevettato, pistone flottante, valvola di ingresso attiva, valvola di selezione del solvente e controllo elettronico dei flussi fino a 100 µI/min
Intervalli di flusso impo- stabili per la colonna	0,01 – 20 μl/min 0,01 – 100 μl/min (con kit per intervalli di flusso estesi) 0,001 – 2,5 μl/min (con controllo elettronico del flusso bypassato)
Intervalli di flusso consi- gliati per la colonna	1 – 20 μl/min 10 – 100 μl/min (con kit per intervalli di flusso estesi) 0,1 – 2,5 ml/min (con sensore di flusso elettronico bypassato)
Precisione del flusso in colonna	< 0,7 % RSD o 0,03 % SD (in genere 0,4 % RSD o 0,02 % SD), a 10 μ l/min e flusso in colonna di 50 μ l/min (basato su RT preimpostato)
Intervallo di composi- zione ottimale	da 1 a 99% o 5 μ l/min per canale (flusso primario) a seconda del valore maggiore
Precisione della compo- sizione	< 0,2 % SD, a valori preimpostati 10 μl/min (sensore di flusso 20 μl). μl/min (sensore di flusso da 100 μl) e 1 ml/min (modalità normale)

 Tabella 87 Specifiche per le prestazioni della pompa capillare Agilent Serie 1100 (continua)

Tipo	Specifica
Volume di ritardo	In genere 3 µl dal controllo elettronico del flusso all'uscita della pompa per flussi fino a 20 µl/min. In genere 12 µl dal controllo elettronico del flusso all'uscita della pompa per flussi fino 100 µl. Per flussi fino a 100 µl/min e controllo elettronico attivo: percorso di flusso primario 180 - 480 µl senza miscelatore, 600 - 900 µl con miscelatore (dipendente dalla pressione del sistema) In genere da 180 a 480 µl (dipendente dalla pressione del sistema) senza miscelatore per flussi fino a 2,5 ml/min (volume di ritardo del miscelatore 420 µl).
Intervallo di pressioni	Da 20 a 400 bar (5880 psi) all'interno del sistema
Compensazione della compressibilità	Selezionabile dall'utente e basata sulla compressibilità della fase mobile
Intervallo di pH consigliato	1.0-8.5. I solventi con pH < 2.3 non devono contenere acidi in grado di intaccare l'acciaio inox. Valori di pH superiori sono limitati dai capillari in silice fusa.
Controllo e valutazione dei dati	ChemStation Agilent per LC
Uscita analogica	Per il monitoraggio della pressione, 2 mV/bar, un'uscita
Comunicazioni	Controller-area network (CAN), GPIB, RS-232C, APG Remoto: segnali di ready, start, stop e shut-down, LAN opzionale
Sicurezza e manuten- zione	Sistema diagnostico estensivo, rilevamento e visualizzazione degli errori (dal modulo di controllo o dalla ChemStation), rilevamento e gestione sicura delle perdite, segnale di uscita perdite per l'arresto del sistema di pompaggio. Bassa tensione nelle zone maggiormente sottoposte a manutenzione.
GLP, funzioni	Avviso di manutenzione preventiva (EMF) per il rilevamento continuo dell'uso dello strumento in termini di usura delle guarnizioni e volume di fase mobile pompata, con limiti impostabili dall'utente e messaggi di conferma. Registro elettronico della manutenzione e degli errori.
Struttura	Tutti i materiali impiegati sono riciclabili.

Specifiche per le prestazioni del micro sistema di degasaggio sotto vuoto Agilent Serie 1100

Tabella 88 Specifiche per le prestazioni del sistema micro di degasaggio sotto vuoto Agilent Serie 1100

Tipo	Specifica
Flusso	0 – 5 ml/min per canale (5 – 10 ml/min a prestazioni di degasaggio ridotte)
Numero di canali	4
Volume interno per canale	In genere 1 ml per canale
Materiali a contatto con solventi	PTFE – FEP – PEEK
Intervallo di pH	1 – 14
Uscita analogica (AUX)	Per il rilevamento della pressione, intervallo 0 – 3 V
Evaporazione di solventi nell'atmosfera	$<$ 200 $\mu g/m^3$ di acetonitrile e metanolo certificato da IAS

Specifiche per le prestazioni del micro campionatore automatico termostatato Agilent Serie 1100

Tabella 89 Specifiche per le prestazioni del micro campionatore automatico termostatato Agilent Serie 1100

Tipo	Specifica
Capacità del campione	100 vial da 2 ml in 1 vassoio portacampioni. Microvial (100 o 300 µl) con manicotto (le prestazioni di raffreddamento si riducono con i microvial)
Volume di iniezione impostabile	Da 0,01 a 8 µl con capillari ristretti Da 0,01 a 40 µl con capillari estesi
Precisione	In genere $<0.5~\%$ RSD da $5-40~\mu I$ In genere $<3~\%$ RSD da $1-1~\mu I$ In genere $<3~\%$ RSD da $3-1~\mu I$
Volume minimo di cam- pione	1 μl da un campione di 5 μl in microvial da 100 μl oppure 1 μl da un campione di 10 μl in microvial da 300 μl
Flusso residuo	In genere < 0,1 % senza lavaggio automatico dell'ago In genere < 0,05 % con pulizia esterna dell'ago e volume di iniezione di $1\mu l$
Viscosità del campione	0,2 – 5 cp
Intervallo di pH consigliato	1.0-8.5. I solventi con pH < 2.3 non devono contenere acidi che possano intaccare l'acciaio inox. Valori di pH superiori sono limitati dai capillari in silice fusa.
Materiali in contatto con solventi	Acciaio inox, zaffiro, PTFE, PEEK, silice fusa, Vespel
GLP, funzioni	Avviso di manutenzione preventiva (EMF), registro elettronico per manutenzione ed errori
Comunicazioni	Controller-area network (CAN). GPIB (IEEE-448), RS232C, APG-remoto standard, quattro chiusure di contatto esterno ed uscita numero di vial BCD
Funzioni di sicurezza	Rilevamento e gestione perdite, bassa tensione nelle zone sottoposte a manutenzione, rilevamento e visualizzazione degli errori
Struttura	Tutti i materiali impiegati sono riciclabili

7

Specifiche per le prestazioni del micro campionatore a micropiastre Agilent Serie 1100

Tabella 90 Specifiche per le prestazioni del micro campionatore a micropiastre Agilent Serie 1100

Tipo	Specifica
GLP, funzioni	Avviso di manutenzione preventiva (EMF), registro elettronico per manutenzione ed errori
Comunicazioni	Controller-area network (CAN). RS232C, APG-remoto standard, quattro chiusure di contatto esterno ed uscita numero di vial BCD
Funzioni di sicurezza	Rilevamento e gestione perdite, bassa tensione nelle zone sottopo- ste a manutenzione, rilevamento e visualizzazione degli errori
Intervallo di iniezione	0,01 $-$ 8 μl in incrementi di 0,01 μl con i capillari del loop più piccoli 0,01 $-$ 40 μl in incrementi di 0,01 μl con i capillari del loop estesi
Precisione	In genere < 0,5 % RSD da 5 – 40 μl In genere < 3 % RSD da 1 – 1 μl In genere < 3 % RSD da 3 – 1 μl
Viscosità del campione	0,2 - 5 cp
Capacità del campione	2 × piastre a pozzetti (MTP) + 10 vial da 2 ml 100 vial da 2 ml in un vassoio 40 vial da 2 ml in un rack
Tempo del ciclo di iniezione	In genere < 30 s alle seguenti condizioni standard: Velocità di aspirazione predefinita: 4 µl/minuto Velocità di emissione predefinita: 10 µl/minuto Volume di iniezione: 0,1 µl
Flusso residuo	In genere < 0,05 s alle seguenti condizioni standard: Colonna: 150 x 0,5 mm Hypersil ODS, 3 µm Fase mobile: Acqua Acetonitrile = 85/15 Flusso in colonna: 13 µl/minuto Volume di iniezione: 1 µl caffeina (=25 ng caffeina), 1 µl acqua per la prova del flusso residuo Lavaggio esterno dell'ago prima dell'iniezione: 20 sec con acqua tramite la porta di lavaggio

Specifiche per le prestazioni del comparto colonne termostatato Agilent Serie 1100

Tutte le specifiche riportate nella Tabella 91 sono valide per l'acqua distillata a temperatura ambiente (25 °C), valore impostato 40 °C ed intervallo di flusso a partire da 0.2-5 ml/min.

Per flussi al di sotto di 100 μl/min deve essere installata una precolonna.

Tabella 91 Specifiche per le prestazioni del comparto colonne termostatato Agilent Serie 1100

Tipo	Specifica	
Intervallo di temperatura	Da 10° C al di sotto della temperatura ambiente a 80°C	
Stabilità della temperatura	± 0,15 °C	
Capacità della colonna	Tre, 25 cm NOTA: con i capillari in silice fusa collegati, la lunghezza è limitata dal raggio di curvatura del capillare	
Tempi di riscaldamento / raffreddamento	5 minuti da temperatura ambiente a 40 °C 10 minuti da 40 a 20 °C	
Volume interno	3 µl - scambiatore di calore sinistro 6 µl - scambiatore di calore destro	
Comunicazioni	Controller-area network (CAN), GPIB, RS-232C, APG Remoto: segnali di ready, start, stop e shut-down, LAN opzionale	
Sicurezza e manutenzione	Sistema diagnostico estensivo, rilevamento e visualizz zione degli errori (dal modulo di controllo o dalla ChemStation), rilevamento e gestione sicura delle perdite, segnale di uscita perdite per l'arresto del sister di pompaggio. Bassa tensione nelle zone maggiorment sottoposte a manutenzione.	
GLP, funzioni	Modulo di identificazione della colonna per la documentazione del tipo utilizzato secondo le norme GLP, vedere "Sistema di identificazione della colonna"	
Struttura	Tutti i materiali impiegati sono riciclabili.	

7

Specifiche per le prestazioni del rivelatore a serie di diodi Agilent Serie 1100

Condizioni di riferimento per i dati della Tabella 92:

- lunghezza del percorso della cella 10 mm, tempo di risposta 2 s;
- flusso 1 ml/min di metanolo per HPLC;
- ampiezza della fenditura 4 nm.

Linearità misurata con caffeina a 265 nm.

Tabella 92 Specifiche per le prestazioni del rivelatore a serie di diodi Agilent Serie 1100

Tipo Specifica		Osservazioni	
Tipo di rivelazione	Serie di fotodiodi a 1024 elementi		
Sorgente luminosa	Lampade al deuterio ed al tungsteno		
Intervallo di lunghezza d'onda	190 – 950 nm		
Rumore a breve ter- mine (ASTM)* Lunghezza d'onda sin- gola e multipla	In genere± 3×10^{-5} AU a 254 nm a flussi <100 μ l/min	Per la cella di flusso da 500 nl il rumore è 2-3 volte superiore a quello della cella di flusso standard	
Deriva	2×10^{-3} AU/ora a 254 nm		
Intervallo di assor- banza lineare	> 2 AU (limite superiore)		
Accuratezza della lun- ghezza d'onda	± 1 nm	Calibrazione automatica con linee del deuterio, verifica con filtro all'ossido di olmio	
Raggruppamento delle lunghezze d'onda	1 – 400 nm	Programmabile in fasi da 1 nm	
Ampiezza della fendi- tura	1, 2, 4, 8, 16 nm Fenditura programm		
Ampiezza del diodo	< 1 nm		

 Tabella 92
 Specifiche per le prestazioni del rivelatore a serie di diodi Agilent Serie 1100

Tipo	Specifica	Osservazioni	
Cella di flusso	500 nanolitri: 0,5 μl di volume, 10 mm di lun- ghezza del cammino ottico e 50 bar (725 psi) di pressione massima		
Pressione massima	50 bar		
Controllo e valuta- zione dei dati	ChemStation Agilent per LC		
Uscita analogica	Registratore /integratore: 100 mV o 1 V, intervallo di uscita 0,001 – 2 AU, due uscite		
Comunicazioni	Controller-area network (CAN), GPIB, RS-232C, APG Remoto: segnali di ready, start, stop e shut-down, LAN opzionale		
Sicurezza e manutenzione	Sistema diagnostico estensivo, rilevamento e visu- alizzazione degli errori (dal modulo di controllo o dalla ChemStation), rilevamento e gestione sicura delle perdite, segnale di uscita perdite per l'arresto del sistema di pompaggio. Bassa tensione nelle zone maggiormente sottoposte a manutenzione.		
GLP, funzioni	Avviso di manutenzione preventiva (EMF) per il ril- evamento continuo dell'usura dello strumento in termini di durata della lampada, con limiti imposta- bili dall'utente e messaggi di conferma. Registro elettronico della manutenzione e degli errori. Veri- fica dell'accuratezza della lunghezza d'onda con filtro all'ossido di olmio incorporato.		
Struttura	Tutti i materiali impiegati sono riciclabili.		

ASTM: "Standard Practice for Variable Wavelength Photometric Detectors Used in Liquid Chromatography" (Pratiche standard per i rivelatori fotometrici a lunghezza d'onda variabile usati in cromatografia liquida)

Per le specifiche relative alla cella di flusso da $500~\mathrm{nl}$ consultare la Tabella $85~\mathrm{a}$ pagina 153.

7 Specifiche per le prestazioni

Le seguenti norme di sicurezza generale devono sempre essere osservate durante l'uso, la pulizia e la riparazione dello strumento. La mancata osservanza delle norme o di consigli specifici indicati in altri documenti viola gli standard di sicurezza della progettazione, della produzione e dell'uso previsto dello strumento. Agilent Technologies non si assume nessuna responsabilità per la mancata osservanza di queste regole da parte del cliente.

Informazioni generali

Questo strumento è classificato come unità di Classe di I (unità munita di terminale con messa a terra) e è stato prodotto e collaudato secondo gli standard di sicurezza internazionali.

Informazioni sul funzionamento

Prima di collegare l'unità all'alimentazione, seguire le istruzioni della parte di manuale relativa all'installazione. Inoltre, osservare le seguenti regole.

Non rimuovere i coperchi durante l'uso. Prima di accendere lo strumento, verificare che tutti i dispositivi di sicurezza, messe a terra, cavi di estensione, trasformatori automatici e gli altri dispositivi ad essi collegati siano collegati ad una messa a terra di protezione attraverso l'apposita presa. Qualsiasi interruzione della messa a terra di protezione può essere causa di scosse elettriche potenzialmente pericolose per l'incolumità personale. Se si sospetta che uno strumento possa essere rimasto privo di protezione, scollegarlo immediatamente e vietarne l'uso.

Assicurarsi che per le riparazioni vengano utilizzati solo fusibili del tipo specificato e adatti al tipo di corrente usata. Evitare l'uso di fusibili riparati e non provocare cortocircuiti delle sedi.

ATTENZIONE

Non effettuare alcuna operazione di manutenzione, riparazione o regolazione dello strumento quando questo è in tensione.

ATTENZIONE

Scollegare il cavo di alimentazione dello strumento e staccarlo dalla presa di corrente prima di effettuare qualsiasi operazione sullo stesso.

Non usare lo strumento in presenza di gas infiammabili o fumi. L'uso di qualsiasi apparecchio elettrico in queste condizioni può provocare seri pericoli.

Non installare parti sostitutive e non effettuare modifiche dello strumento non autorizzate.

I condensatori all'interno dello strumento possono ancora essere carichi anche se lo strumento non è collegato alla presa di corrente. Sono inoltre presenti tensioni pericolose, che possono causare gravi infortuni personali. Usare sempre la massima cautela nell'usarli, collaudarli e ripararli.

Simboli di sicurezza

La Tabella 93 riporta i simboli di sicurezza usati sullo strumento e nei manuali.

Tabella 93 Simboli di sicurezza

Descrizione		
Se lo strumento riporta questo simbolo, l'utente deve consultare il manuale di istruzioni per proteggere la strumentazione da eventuali danni.		
Indica la presenza di tensioni pericolose.		
Indica un terminale protetto di messa a terra.		
L'esposizione diretta alla luce prodotta dalle lampade allo xeno utilizzate in alcuni prodotti può pro- vocare lesioni oculari. Spegnere sempre la lampada al deuterio prima di aprire lo sportello laterale dello strumento.		
Un avviso di questo tipo indica situazioni che possono causare infortuni o danni alle apparecchiature. Non procedere oltre senza aver ben compreso e realizzato tutte le condizioni indicate.		
Questo tipo di segnalazione indica situazioni che possono causare una perdita di dati. Procedere solo dopo aver compreso e realizzato tutte le condizioni indicate.		

Informazioni sulle batterie al litio

ATTENZIONE

Un'installazione impropria delle batterie al litio può causare esplosioni. Sostituire le batterie solo con lo stesso tipo o con un tipo equivalente consigliato dal produttore dello strumento. Le batterie al litio non possono essere smaltite con i rifiuti domestici.

Lo smaltimento di batterie al litio da parte di trasportatori regolamentati IATA/ICAO, ADR, RID, IMDG è vietato. Le batterie al litio scariche devono essere smaltite in loco secondo le norme vigenti in materia.

Interferenze radio

Non utilizzare mai cavi diversi da quelli forniti da Agilent Technologies per assicurare il funzionamento corretto e l'adeguatezza alla regolamentazione EMC.

Collaudo e misura

Se le attrezzature di verifica e misura vengono utilizzate con cavi non schermati e/o usati all'aperto, l'utente deve assicurarsi che nelle normali condizioni di esercizio, i limiti delle interferenze radio siano rispettati nel luogo di utilizzo.

Fmissioni sonore

Dichiarazione del produttore

Questa dichiarazione viene fornita in conformità alle leggi sulle emissioni sonore approvate nella Repubblica Federale Tedesca il 18 Gennaio 1991.

Questo prodotto ha un'emissione sonora (dal punto di lavoro dell'operatore) < 70 dB.

- Pressione sonora Lp < 70 dB (A)
- In posizione di lavoro
- · Funzionamento normale
- Secondo ISO 7779:1988/EN 27779/1991 (test di tipizzazione)

Informazioni sui solventi

Per l'uso dei solventi, attenersi alle istruzioni che seguono.

Solventi

L'uso di materiale in vetro di colore scuro consente di evitare la proliferazione di alghe.

Filtrare sempre i solventi. Le particelle possono bloccare i capillari e le valvole in maniera permanente. Evitare l'uso dei seguenti solventi che corrodano l'acciaio.

- Soluzioni di alogenuri alcalini e relativi acidi (ad esempio ioduro di litio, cloruro di potassio ecc.).
- Alte concentrazioni di acidi inorganici, come l'acido nitrico e l'acido solforico, specialmente a temperature elevate (sostituire, se la tecnica cromatografica lo consente, con acido fosforico o con una soluzione tampone di fosfato, meno corrosivi per l'acciaio inossidabile).
- Solventi alogenati o miscele che formano radicali e/o acidi, ad esempio:

$$2\text{CHCl}_3 + \text{O}_2 \rightarrow 2\text{COCl}_2 + 2\text{HCl}$$

Questa reazione, nella quale l'acciaio inossidabile agisce da catalizzatore, avviene rapidamente in presenza di cloroformio anidro, se il processo di disidratazione elimina l'alcool stabilizzatore.

- Gli eteri di grado cromatografico contenenti perossidi (ad esempio, THF, diossano, diisopropiletere) devono essere filtrati con ossido di alluminio anidro, che assorbe i perossidi.
- Soluzioni di acidi organici (acido acetico, acido formico, ecc.) in solventi organici. Ad esempio una soluzione di acido acetico all'1 % in metanolo è in grado di intaccare l'acciaio.
- Solventi contenenti agenti complessanti forti (es. EDTA).
- Miscele di tetracloruro di carbonio e alcool propilico o THF.
- Evitare l'uso di soluzioni alcaline (pH > 8,5) poiché possono intaccare la silice fusa dei capillari.

Agilent Technologies su Internet

Per informazioni più aggiornate sui prodotti e i servizi, visitare il nostro sito Web all'indirizzo:

A Informazioni per la sicurezza

http://www.agilent.com

Selezionare Products > Chemical Analysis

Da qui è possibile scaricare direttamente l'ultima versione di firmware per i moduli Agilent Serie 1100.

Indice analitico

Numerico	cavi di alimentazione, 2	micro sistema di degasaggio, 168
500 nl, cella di flusso, 153	cella di flusso, 500 nl, 105, 153 installazione, 156	flusso capillare, diagramma, 46 flusso impostabile
A	colonna, flusso instabile, 59 comparto solvente	pompa capillare, 166 flusso massimo, 168
accuratezza della lunghezza d'onda, 172 accuratezza della temperatura comparto della colonna, 171 adescamento, manuale, 23 Agilent su Internet, 179 alimentazione, 2	collocazione, 30 installazione, 21 compensazione della compressibilità ottimizzazione, 41 pompa capillare, 167 condensa, 3	forma picchi, non corretta, 61 frequenze di linea, 4 funzionamento, sicurezza, 176 funzionamento, temperatura, 4 fusibili scheda BCD, 101
altitudine di esercizio, 4 altitudine di immagazzinaggio, 4 ambiente, 2, 3	consigli per l'uso, 30 consumo energetico, 4 controllo, campione, 26	G guarnizioni
ampiezza fenditura, programmazione, 172 ASTM condizioni ambientali, 3 riferimento, 173	cromatogramma, tipo, 27 D DAD	guarnizione misuratore, 81 misuratore, guarnizione, 91 guasto hardware, 64
ASTM, test della deriva secondo, 3 B banco da laboratorio, 3 batterie	installazione, 8 degasaggio, sistema di installazione, 20 diagramma di flusso, 46 diodo, ampiezza, 172	identificazione delle parti ALS, parti del coperchio, 93 ALS, termostato, 88
sicurezza, 178	E	ALS, testa analitica, 91 ALS, valvola di iniezione, 82, 92 ALS, vassoi portacampioni, 94
canali si solvente, adescamento, 23 capillari altri, 51 flusso elevato, 49 flusso ridotto, 48 generici, 47 uso con micro CSV, 50 capillari in silice fusa, 31 caratteristiche ambientali, 2 cavi, 2	emissioni sonore, 178 EMPV non funziona, 58 errore, messaggi di, 64 F ferrule, 52 filtri solvente pulizia, 35 filtro ingresso solvente, 34 flusso	cavi - analogici, 123 cavi - APG remoto, 124 cavi - ausiliario, 132 cavi - BCD, 130 cavi - CAN, 132 cavi - contatto esterno, 133 cavi - LAN, 134 CAVI - panoramica, 121 cavi - RS-232C a PC, 134 COM modulo di controllo, 110 COM, spia luminosa, 112

Indice analitico

comparto solvente, 71	K	presa di alimentazione, 2
coperchio, sistema di degasaggio, 68		pressione del sistema
DAD, cella di flusso da 500 nl, 105	kit per intervalli di flusso estesi, 136	bassa, 56
DAD, coperchi, 109		elevata, 57
DAD, dispositivi principali, 101	L	instabile, 59
DAD, filtro all'ossido di olmio, 108	LAN, cavi, 134	pressione, calcolo, 51
DAD, unità ottica, 103	linea di base, deriva, 63	pressione, intervallo di funzionamento
DAD, ventola e riscaldatore, 107	litio, batterie, 178	pompa capillare, 167
degasaggio, parti principali del	lunghezza d'onda	prima iniezione, 22
sistema, 66	accuratezza e raggruppamento, 172	problemi comuni, 55
kit di accessori per campionatore	intervallo, DAD, 172	pulizia di parti, 161
automatico, 117	morvano, arta, 172	pulsazione della pressione, 41
kit di accessori sistema di	M	, , ,
degasaggio, 68	IVI	R
MAS termostatato, dispositivi principali, 86	micro sistema di degasaggio	
MSA, unità di campionamento, 88	ti, 66	raccordi, 52
parti metalliche, sistema di	micro valvola di commutazione colonna	raffreddamento, 171
degasaggio, 68	(opzionale)	raggruppamento di lunghezze d'onda, 172
pompa capillare, coperchi, 76	descrizione, 143	riparazione
pompa, testa, 74	installazione, 150	valvola di commutazione colonna, 150
TCC, coperchi, 99, 100	selezione fra due colonne, 143	valvola di commutazione colonna,
TCC, dispositivi principali, 95	smontaggio, 147	smontaggio, 147
TCC, dispositivo perdite, 100	micropiastre, micro campionatore	riscaldamento, 171
TCC, micro valvola di commutazione	installazione, 10	0
colonna, 97	misuratore, guarnizione, 81, 91	S
TCC, parti metalliche, 98, 99, 100	modulo di controllo, parti, 110	sicurezza, 175
testa analitica, 81		informazioni sulle batterie al litio, 178
unità di campionamento, 79	N	simboli, sicurezza, 177
valvola di commutazione colonna, 145	numero di canali	sistema idraulico
vassoi per vial, 83	micro sistema di degasaggio, 168	pompa capillare, 166
imballo, togliere la pompa dal, 4	3 30 1	sistema, verifica e soluzione dei
immagazzinaggio, temperatura, 4	P	problemi, 55
indicatore di stato, rosso, 64	-	soluzione tampone, impiego, 30
iniezione, prima, 22	pH, intervallo, 167	solventi, informazioni, 33, 179
installazione	micro sistema di degasaggio, 168	Sono, 3
micro valvola di commutazione	pH, intervallo consigliato, 167	sostituzione di parti, 161
colonna, 150	picchi, piccoli o assenti, 62	spazio, 3
installazione del sistema, procedura, 6	Pompa capillare	specifiche
interferernze radio, 178	consigli per l'uso, 30	accuratezza/raggruppamento lunghezza
Internet, 179	pompa, operazioni da effettuare, 30	d'onda, 172
intervallo di flussi	precisione del flusso	ampiezza fenditura,
pompa capillare, 166	pompa capillare, 166	programmazione, 172
intervallo di frequenze, 4	precisione della composizione	cella di flusso, 173
intervallo di tensioni, 4	pompa capillare, 166	diodo, ampiezza, 172

```
intervallo di lunghezze d'onda, 172
   intervallo lineare, 172
   rumore e deriva (ASTM), 172
specifiche per le prestazioni
   DAD, 172
   micro campionatore automatico, 169
   pompa capillare, 166
   sistema di degasaggio sotto vuoto, 168
spurgo, pompa, 24
standard di sicurezza:, 4
strumento, controllo, 26
Т
TCC
   installazione, 9
temperatura
   intervallo, 171
   stabilità, 171
temperatura di esercizio, 4
temperatura di immagazzinaggio, 4
temperatura, ambiente, 3
tensioni di linea, 4
termostatato, sistema per LC capillare
   installazione, 14
U
umidità, 4
uscita analogica
   micro sistema di degasaggio, 168
V
valvola di commutazione colonna
   lavaggio precolonna, 144
```

Indice analitico

184

In questo volume

Il presente manuale contiene riferimenti ed informazioni tecniche sul sistema per LC capillare Agilent Serie 1100

Il manuale descrive come si effettuano le seguenti operazioni:

- · installazione,
- ottimizzazione delle prestazioni,
- · diagnostica,
- identificazione di parti e materiali,
- valutazione delle opzioni disponibili,
- specifiche.

G1388-94001