

Novel Techniques in Determining the Absolute Structure of Light Atom-Containing Molecules

Application Note

X-ray Crystallography

Introduction

Determining the absolute structure of light-atom organic molecules is a developing field with several research groups working on novel statistical methods in data refinement. All of these methods require precise experimental determination of very small differences in the intensities of related reflections, and this is facilitated by Agilent's micro-focus SuperNova X-ray diffractometer.

Figure 1. Inside of the SuperNova cabinet, showing the Goniometer, dual micro-focus Mova (Mo) and Nova (Cu) X-ray sources and Atlas CCD detector

Authors

Prof. Simon Parsons, University of Edinburgh and Oliver Presly, Agilent Technologies UK Ltd

Theory

Using X-rays to assign chirality relies on anomalous scattering effects. These cause the intensities of reflections related by inversion symmetry (Bijvoet pairs) to differ due to the chirality of the sample. If a molecule contains a sulfur (or heavier) atom, the observable difference in anomalous scattering is relatively high (and greatly amplified by using Cu radiation) and so absolute configuration studies can be straightforward. For molecules which only contain elements lighter than sulfur, conclusive data becomes difficult to obtain, even for substances of known chirality. L-Alanine, $C_3H_7NO_2$, is a good example of this and therefore makes a good test case.

The Flack parameter¹ is the universally accepted method of determining the quality of an absolute configuration result. For publication quality assignment of chirality, the Flack parameter must be close to 0 with an error (esd) of <0.1 (10%). In recent years, alternative methods such as the Hooft² parameter (employing Bayesian statistics) have been developed to provide statistically more conclusive results from more challenging samples.

Simon Parsons, Professor of Crystallography at the University of Edinburgh and an Agilent SuperNova user, is working on a novel technique using Quotient Restraints. It has been shown that the highest resolution reflections contain the most anomalous scattering information. By selecting and weighting those 20 reflections which have the most influence on the quality of the absolute configuration refinement, it is possible to improve the quality of the result.

Experimental

For challenging absolute configuration samples, high quality data is always required, with good quality crystals, high signal to noise (I/sig) ratios and high redundancy factors. Redundancy factors of 10-15 give the best results for most light atom absolute configuration data, but using traditional fine-focus, sealed tube instruments, experiments of this type can be extremely long. However, with the micro-focus Cu Nova X-ray source on Agilent's SuperNova instrument, such experiments can be carried out in a matter of hours.

Figure 2. The SuperNova instrument

The data were collected in collaboration with Professor Parsons using an Agilent SuperNova dual wavelength (Mo, Cu) X-ray diffractometer with CrysAlis^{Pro} data collection and refinement software. Measurements were conducted both in Yarnton and on the SuperNova instrument installed at the University of Edinburgh.

Data were collected on L-Alanine (a substance of known chirality, shown in Figure 2). High quality crystals were used, and data were collected at 100K. A strategy for a high redundancy data set can be calculated in seconds using the strategy module in CrysAlis^{Pro}, and for L-Alanine, two data sets were collected; with redundancy factors of 5.3 and 14.9. The same exposure times were used for both data sets.

Results

Exp. Time (hrs)	4	16
Merged I/sig	70.39	176.77
Redundancy	5.3	14.9
Flack	-0.28(25)	0.06(21)
Hooft	-0.16(9)	0.06(5)
Quotient	-0.14(12)	0.08(4)

The effect of high redundancy is extremely important, with significantly improved results for all refinement techniques. The error value associated with the Flack parameter is indicative but not conclusive, whereas both Hooft and Quotient techniques yield excellent quality results.

Conclusions

The Nova micro-focus X-ray source combined with a high redundancy data collection affords absolute configuration results of excellent quality, even for light atom-containing samples such as Alanine. Where the Flack parameter does not confirm a conclusive result, alternative techniques including the use of Quotient restraints can yield statistically more conclusive data.

Quotient restraints may allow the user to obtain conclusive absolute structure data from combining routine data with repeated measurement of a subset of high angle reflections. This would dramatically reduce the time involved in collecting such high redundancy data collections, making experiments of this type a more routine procedure.

Figure 3. Refined molecular structure of L-Alanine

For More Information

For more information on our products and services, visit our Web site at www.agilent.com/chem/xrd

www.agilent.com/chem

Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Information, descriptions, and specifications in this publication are subject to change without notice.

© Agilent Technologies, Inc., 2011 Printed in the USA 2 February, 2011 Publication Part Number - 5990-7448ENGB

