
Authors

Steven Fischer

Senior Applications Chemist

Agilent Technologies

Santa Clara, California U.S.A

Theodore Sana

Senior Research Scientist

Agilent Laboratories

Santa Clara, California U.S.A

Application Note

Abstract

Rice (Oryza sativa and Oryza glaberrima) is one of the world’s most important

staple crops, providing food for more than 3 billion people. Bacterial leaf blight

(BLB) of rice, caused by the Xanthomonas oryzae pv. oryzae (Xoo) bacteria,

leads to crop losses of up to 50%. Currently, the use of resistant rice cultivars

is the most economical and effective way to combat BLB. The interaction

between Xoo and rice is governed by resistance genes in rice and correspond-

ing pathogenic avirulence genes in Xoo.

In order to better understand the mechanism of infection and immunity of rice

to BLB, a study was undertaken to identify metabolites that are related to

infection and resistance. Two rice lines were studied: TP309 which is suscep-

tible to infection by the Xoo bacterial strain PXO99, and TP309-Xa21, a resistant

transgenic line. In addition, the effect of a raxST gene knock-out in PXO99 was

evaluated for its effect on resistance in TP309-Xa21. Appropriate controls were

included.

A two-step LC/MS approach was employed. Rapid differential expression

analysis of samples using time-of-flight (TOF) mass spectrometry (MS) was

followed by targeted identification of differentially expressed metabolites using

quadrupole time-of-flight (Q-TOF) MS/MS. Clear differences in the metabolite

profiles of the different rice/bacteria conditions were detected. Based on rela-

tively few metabolites, the rice lines and state of infection were clearly

distinguishable.

Metabolomic Profiling of Bacterial
Leaf Blight in Rice
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Introduction

Rice (Oryza sativa and Oryza glaberrima) is the primary food for

more than 3 billion people worldwide. Over 600 million people

derive more than half of their calories from rice. It is the third

largest commercial crop behind wheat and corn. In 2005, 

700 million metric tons were produced world wide with a

market value of US$ 120 billion. It is estimated that 50% of the

potential yield of the world rice crop is lost to diseases caused

by bacteria, fungi and viruses. In 2005, 300 million metric tons

were lost due to disease.

One of the most serious bacterial diseases of rice in Africa and

Asia is bacterial leaf blight (BLB) caused by Xanthomonas

oryzae pv. oryzae (Xoo) (Figure 1). BLB is one of the oldest

recorded rice diseases and has been problematic for over a

century. Xoo spreads rapidly from rice plant to rice plant and

from field to field in water droplets. Infected leaves develop

lesions, yellow, and wilt in a matter of days. In severely

affected fields, bacterial blight can wipe out half a farmer’s

rice crop.

Breeding and deployment of resistant cultivars carrying major

resistance genes has been the most effective approach to

combating BLB. One such gene, Xa21, was successfully cloned

into a rice variety Taipei 309 (TP309).1 Once cloned, Xa21 can

be passed on to the next generation through self-fertilization.

The protein product of the gene Xa21 carries both a leucine-

rich repeat motif and a serine-threonine kinase-like domain,

suggesting a role in cell-surface recognition of a pathogen

ligand and subsequent activation of an intracellular defense

response. This receptor directly or indirectly ‘recognizes’ a

signal generated via a corresponding avirulence (avr) gene

product encoded by the pathogen, in this case the AvrXa21

peptide of Xoo. The formation of this putative receptor–ligand

complex is postulated to initiate a signaling cascade culminat-

ing in defense responses that halt the pathogen’s progress.2

AvrXa21 must be present for the resistant rice line TP309-Xa21

to elicit an immune response and not be infected by Xoo. The

raxST gene in Xoo encodes for a sulfotransferase-like protein

that is necessary for the production of the AvrXa21 peptide.

Two bacterial strains were used in this experiment. The

pathogenic bacterial Xoo strain PXO99 includes the raxST

gene and produces the AvrXa21 peptide (Figure 2). The 

raxST knock-out strain, PXO99-raxST–, does not produce the

AvrXa21 peptide.

To gain greater insight into the mechanisms of infection and

immunity of rice to BLB, a study employing LC/MS metabolite

profiling was undertaken to find and identify metabolites

related to infection and resistance. An LC/MS system

composed of an Agilent 1200 Series LC and Agilent 6210 Time-

of-Flight LC/MS was selected for the profiling work based on

its sub-2-ppm mass accuracy, outstanding reproducibility, and

robustness. Agilent GeneSpring MS bioinformatics software

was used to analyze the complex, multi-class data generated

by the study.
Figure 1. Rice leaves infected by bacterial leaf blight (left) and uninfected
rice leaves (right).

avrXa21 peptide

PX099 PX099-raxST-

Figure 2. The gene raxST in Xoo encodes for a sulfotransferase-like protein
that is necessary for production of the AvrXa21 peptide, which is what
elicits an immune response in the resistant rice line TP309-Xa21. Two
bacterial strains were used in this experiment. The wild-type PXO99
includes the raxST gene and produces AvrXa21. The raxST knock-out,
PXO99-raxST–, lacks the raxST gene and does not produce AvrXa21.

 



Experimental

Inoculation of rice
The Xoo bacterial strains (PXO99 and PXO99-raxST–) were

grown for 72 hours at 30°C on peptone sucrose agar (Tsuchiya

et al., 1982). Six-week-old rice plants (TP309 and TP309-Xa21)

were cut approximately 4 cm from the tip of fully expanded

leaves with scissors dipped in a bacterial suspension at either

109 cells per ml (Kauffman et al.,1973) or just peptone sucrose

agar (mock condition). After inoculation, plants were

maintained in a growth chamber and allowed to grow.

Rice sample preparation
The samples were processed according to Weckwerth et. al.3

with the following changes. Approximately 20 mg segments 

of rice leaf were cut and weighed. They were placed in liquid-

nitrogen-cooled 2 mL Eppendorf tubes, each containing a 

5 mm stainless steel ball bearing (Figure 3). The tubes were

transferred to MM301 Retsch Mill adapter racks that had been

pre-cooled with liquid nitrogen. Samples were homogenized

for 30 seconds at 25 Hz. 1 mL of solvent—a 2:3:3 v/v/v

mixture of water/acetonitrile/isopropanol—at –20°C was

used to extract the metabolites from membrane and cell wall

components in the homogenized samples. This solvent system

was chosen to minimize extraction of waxes and to enable

analysis by both LC/MS and GC/MS.

LC/MS analysis
An Agilent 1200 LC equipped with a ZORBAX SB-Aq column

2.1 x 150 mm was used to separate the rice extracts. 2 µL

injections were made from 1 mL sample volumes. At a flow

rate of 0.3 mL/min., a 2% to 98% linear gradient of water /

acetonitrile was employed over 46 minutes followed by a

solvent hold until 54.9 minutes, at which time data collection

was stopped. 0.1% formic acid was used as a mobile phase

modifier.
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An Agilent LC/MS system incorporating an Agilent 1200

Series LC and Agilent 6510 Quadrupole Time-of-Flight LC/MS

was chosen to identify metabolites that were found to have

statistically significant variations in abundance between the

control and experiment samples. This system was selected

because of its combination of accurate-mass measurements

and MS/MS spectra. The METLIN Personal metabolite

database was used to narrow the list of possible identities

during the identification process.

Two rice lines (TP309 and transgenic TP309-Xa21) and two

bacterial strains (PXO99 and PXO99-raxST–) were included in

the study along with controls. As shown in Table 1, a total of

seven different classes were studied. Due to natural variations

in both the rice and bacteria, multiple biological replicates

were necessary. Based on previously demonstrated repro-

ducibility of the LC/MS system, technical replicates were not

necessary in this study.

Several possible biomarkers involved in the elicitation of

defense to bacterial infection of TP309 and the resistance of

TP309-Xa21 were identified. Based on relatively few metabo-

lites, the two rice lines, the state of infection, and state of

infection within each rice line were all clearly distinguishable.

Table 1. Conditions tested and number of biological
replicates used for each condition.

TP309 TP309-Xa21
Condition (Class) (Wild-type) (Transgenic)

PXO99 (wild-type) 6 6

Mock treatment control 6 6

No treatment (NT) control 6 6

PXO99-raxST– NA 6
(raxST knock-out)



Instrument Conditions – LC/TOF MS

LC Conditions

Column: ZORBAX SB-Aq column 2.1 x 150 mm, 3.5 µm

Mobile phase:

A = 0.1% formic acid in water

B = 0.1% formic acid in acetonitrile

Gradient:

2% B at 0 min

98% B at 46 min

98% B at 54.9 min

2% B at 55 min

MS stop time: 54.9 min

LC stop time: 55 min

Column temperature: 20°C

Flow rate: 0.3 mL/min

Injection volume: 2 µL + 3 sec flush

MS Conditions

Ionization mode: Electrospray

Ionization polarity: Positive ionization*

Drying gas flow: 10 L/min

Drying gas temperature: 250°C

Nebulizer pressure: 35 psi

Scan range: m/z 50–950

Fragmentor voltage: 170 V

Capillary voltage: 4000 V

Reference masses: m/z 121, 922

Reference mass flow: 10 µL/min

*Both positive- and negative-ionization data were successfully

acquired, but this note deals only with processing of the

positive ion data.
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An Agilent 6210 Time-of-Flight LC/MS equipped with an

electrospray (ESI) ion source was used to acquire profiling

data. The ESI source featured a separate nebulizer for the

continuous, low-level introduction of reference mass com-

pound. The reference mass compound facilitates compensa-

tion for instrument drift. Data was collected at a rate of 1 MS

spectrum per second in both positive and negative ion modes

from m/z 50 to 950.

An Agilent 6510 Quadrupole Time-of-Flight LC/MS equipped

with an electrospray ion source was used to acquire accurate-

mass MS/MS data for metabolite identification. The ESI

source featured a separate nebulizer for the continuous, low-

level introduction of reference mass compound to maximize

mass accuracy.

Data analysis
Initial processing of the accurate-mass MS profiling data 

was done using Agilent MassHunter Software. The feature

extraction and correlation algorithms in the MassHunter

software located the groups of co-variant ions in each

chromatogram. Each of these groups represented a unique

compound. Thus, the algorithm located all the components 

in a chromatogram, instead of just locating chromatographic

peaks, which could have concealed multiple components. 

After locating components, background was subtracted.

Charge state was set to 1. The algorithm identified salt

Rice sample in
Eppendorf tube

Homogenization in
liquid-nitrogen-cooled
adapters in Retsch mill

Addition of –20oC
extraction solvent

Extraction of
metabolites

Centrifuge to
separate DNA
and proteins

Transfer of
supernatant
to sample vial

Figure 3. Sample preparation workflow for rice leaf samples.
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Instrument Conditions – LC/Q-TOF MS/MS

LC Conditions

Column: ZORBAX SB-Aq column 2.1 x 150 mm, 3.5 µm

Mobile phase:

A = 0.1% formic acid in water

B = 0.1% formic acid in acetonitrile

Gradient:

2% B at 0 min

98% B at 46 min

98% B at 54.9 min

2% B at 55 min

MS stop time: 54.9 min

LC stop time: 55 min

LC post time: 7 min

Column temperature: 20°C

Flow rate: 0.3 mL/min

Injection volume: 2 µL

MS Conditions

Ionization mode: Electrospray

Ionization polarity: Positive ionization

Drying gas flow: 10 L/min

Drying gas temperature: 250°C

Nebulizer pressure: 40 psig

Scan range

MS: m/z 100–1000 at 250 ms/spectrum

MS/MS: m/z 100–1000 at 250 ms/spectrum

Collision energy: 5 x +10eV

Isolation: medium

Fragmentor voltage: 170 V

Skimmer voltage: 65 V

Octopole RF voltage: 750 V

Capillary voltage: 4000 V

Reference masses: m/z 121, 922

Reference mass flow: 10 µL/min

Reference nebulizer pressure: 15 psig

adducts (Na+ and K+) and the protonated molecules [M+H+]

and associated adduct ions were treated as a single

compound. Finally, the algorithm identified isotopes. The

monoisotopic mass and retention time was reported for each

feature. An empirical formula was calculated for each feature

using the monoisotopic mass and isotope ratios.

The retention time/mass pairs generated by the MassHunter

Workstation software were then exported for subsequent

analysis in Agilent GeneSpring MS software. The workflow

used was as follows (see Figure 4):

1. Alignment and normalization of features

2. Hierarchical clustering to check data quality

3. Identify features with differential abundances across

classes using 1-way and 2-way analysis of variance

(ANOVA)

4. Perform principle component analysis (PCA) to show

discriminating classes

5. Visualize fold changes

The result of the analysis to this point was a mass list of

metabolites that showed statistically significant variations in

abundance between experimental classes. 

6. Search of the mass list against the METLIN Personal

metabolite database.

Samples were then rerun using targeted MS/MS on the Q-TOF

LC/MS system, and further data analysis was performed:

7. Comparison of metabolite database search results against

the acquired Q-TOF spectra
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Results and Discussion

Morphology of the rice/bacterial interactions
TP309 is not resistant to either PXO99 or the knock-out

PXO99-raxST– (Figure 5). TP309 lacks a mechanism that would

recognize either strain of Xoo and trigger an immune

response.

TP309-Xa21 is resistant to PXO99. The Xa21 gene confers

resistance by producing a receptor protein that recognizes 

and binds the AvrXa21 peptide produced by PXO99. This

triggers an immune response.

TP309-Xa21 is not resistant to PXO99-raxST–. Since PXO99-

raxST– does not produce AvrXa21, TP309-Xa21 has no way to

recognize the pathogenic bacteria and does not mount an

immune response.

Figure 4. Workflow for GeneSpring MS analysis of the MS profiling data.

TP309 TP 309 Xa21+

Group

Sample Number

File Name

Rice Lines

42 22
25

42

7

39

170

Immunity features Infected features

Rice line features

Bacterial features

Z

Y

0

0
0

1

1

1

X

Infected
wild and transgenic

Uninfected
transgenic

Uninfected
wild

Align and normalize
features

Hierarchical clustering 
to check for reproducibility 
of biological replicates

Analysis of variance to find 
features with statistically significant
differences between classes

Principle component analysis 
of significantly different features 
representing class differences

Fold-change filtering to select 
the most statistically significant 
features

Create inclusion lists for
database searching and
MS/MS analysis

TP309 TP309-Xa21

PX
O

99

PX
O

99
-r

ax
ST

-

PX
O

99

PX
O

99
-r

ax
ST

-

Figure 5. Rice leaves showing both
diseased and healthy states.
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1-way analysis of variance to identify class differences
Analysis of variance (ANOVA) is a powerful tool for analyzing

the variation present in an experiment. Unlike a t-test, which

can only make pair-wise comparisons, ANOVA can analyze any

number of data sets. Multiple t-tests are independent, so their

errors are cumulative. In the case of this rice experiment with

seven classes, a total of 21 t-tests would have had to be

performed. If the probability of a type-I error (false positive) 

for a single t-test was 0.05, the cumulative probability of error

would have been greater than 1.00. A major advantage of 

1-way ANOVA is that its probability of error remains the same,

no matter how many conditions are included. The chance of a

type-I error using 1-way ANOVA for this experiment is much

less than with cumulative t-tests.

Figure 6 shows the results of ANOVA (P < 0.05) after applying

a Tukey post-hoc test for all pair-wise comparisons. In the 

blue boxes are the number of features with statistically

insignificant differences. In the red boxes are the number of

features with statistically significant differences. The features

with statistically significant differences are potential

biomarkers and are potentially of greater biological interest.

These were analyzed further.

In order to find metabolites that might account for differences

between rice lines, the effect of PXO99 on infectivity was

analyzed. The results of three pair-wise comparisons from the

ANOVA analysis:

• TP309-Xa21—PXO99  vs. TP309-Xa21—Mock

• TP309—PXO99  vs. TP309—Mock

• TP309—Mock  vs. TP309-Xa21—Mock

were combined for further study (Figure 7). The three

comparisons had a total of 347 unique, statistically significant

features. Analysis found:

• Immunity features (42)—metabolites possibly related to

resistance

• Infected features (22)—metabolites possibly related to

infection response

• Bacterial features (25)—metabolites possibly produced by,

or in response to, the bacteria

• Rice line features (170)—metabolites related to differences

in the rice lines

Figure 6. ANOVA (P < 0.05)
of MS profiling data
identified features that
showed statistically
insignificant differences
(blue) and statistically
significant differences (red)
in pair-wise comparisons.
For example, comparing the
results of a mock challenge
of TP309-Xa21 with a PXO99
challenge of TP309-Xa21
found 113 features with
statistically significant
differences in expression
levels.
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Principle component analysis (PCA)
PCA is a mathematical method of compressing complex 

data into a few variables. The objective is to discover new

variables—principle components—which account for the

majority of the differences in the data. When PCA was

performed in GeneSpring MS with no prefiltering of data,

separation of the TP309 and TP309-Xa21 rice lines was

observed (Figure 8a).

However, in this experiment, information regarding the

immunity and defense features was the goal, not just

differentiation between the two rice lines. Combining 1-way

ANOVA with PCA made the rice line differences much clearer,

and also made it easier to distinguish infection status,

regardless of rice line (Figure 8b).

42 22
25

42

7

39

170

Immunity features Infected features

Rice line features

Bacterial features

TP309-Xa21—PX099  vs.
TP309-Xa21—Mock

TP309—PX099  vs.
TP309—Mock

TP309—Mock  vs.  TP309-Xa21—Mock

Figure 7. Combination of the ANOVA results from 3 pair-wise comparisons
yielded a total of 347 unique, statistically significant features. Of these, 42
were related to immunity, 22 to infection, 25 to the bacteria, and 170 to the
rice lines.

Y

Z

X

0

0
0

1

1

1
Y

Z

0

0
0

1

1

1

X

TP309-Xa21 line

TP309 line

Infected
TP309 and TP309-Xa21

Uninfected
TP309-Xa21

Uninfected
TP309

     TP309—no treatment    TP309-Xa21—no treatment
     TP309—mock challenge    TP309-Xa21—mock challenge
     TP309—PXO99 challenge  TP309-Xa21—PXO99 challenge
      TP309-Xa21—PXO99-raxST- challenge 

a.  PCA only b.  1-way ANOVA and PCA
Figure 8. Principal component
analysis without prefiltering
of data (a) allowed differen-
tiation between rice lines.
When PCA was combined
with 1-way ANOVA (b) it was
much easier to differentiate
not only rice line, but infection
status regardless of rice line.
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2-way ANOVA measures rice line and class differences
simultaneously
2-way ANOVA is a powerful tool to study combinations of

treatments. Parameters are compared in every combination. 

A prior knowledge regarding these features is not necessary.

After performing 2-way ANOVA, a Venn diagram was plotted

(Figure 9). Results included:

• 360 features explained the variance between the two rice

lines

• 41 features alone were sufficient to separate all classes

• 30 features separated all rice lines and classes

These 30 significant features were then processed by PCA to

demonstrate the separation of rice lines and classes. The

TP309-Xa21 classes group together except for the TP309-Xa21

that was challenged by PXO99-raxST–. It grouped with the

infected class TP309—PXO99 challenge (Figure 10).

These results are consistent with the published results for the

genotype and phenotype for these rice lines and bacteria.

Fold-change filtering and visualization
Fold-change filtering (Figure 11) was another statistical tool

used to determine which features (metabolites) were most

likely to be relevant. The greater the fold change, relative to

mock infection, the more likely it is that a particular metabolite

is relevant. In the GeneSpring MS software, fold-change

filtering is interactive, so the fold-change threshold was easily

altered to determine what effect a change would have on the

number of features passing the filter.

Another analysis and visualization option available in the

GeneSpring MS software, but not used in this analysis, is the

volcano plot. The volcano plot combines the results of fold-

change filtering and t-tests in a single visualization. Criteria for

both tests can be varied interactively to find the most relevant

features.

360 41
36

3

30

1

6

Rice line features Class features

First parameter (Rice Lines) test Second parameter (Class) test

Interaction between parameters Rice Lines and Class

Figure 9. Analysis by 2-way ANOVA identified 30 features that together
separated all classes and rice lines.

Z

Y

0

0
0

1

1

1

X

Infected
TP309 and TP309-Xa21

Uninfected
TP309-Xa21

Uninfected
TP309

2-way ANOVA and PCA

     TP309—no treatment
     TP309—mock challenge
     TP309—PXO99 challenge
     TP309-Xa21—no treatment
     TP309-Xa21—mock challenge
     TP309-Xa21—PXO99 challenge
     TP309-Xa21—PXO99-raxST- challenge

Figure 10. PCA analysis of 30 significant features found by 2-way ANOVA
clearly differentiates rice lines, while also grouping infected classes
together.
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Feature inspection
Further analysis of individual features was performed using

two additional functions of the GeneSpring MS software. The

first, was a “mass inspector” view that permitted the data on

individual features to be examined. The second was the ability

to export data related to the features on a mass list in a tab-

delimited format that is compatible with Microsoft® Excel.

Figure 11. Interactive fold-
change filtering of the results
of 1-way ANOVA helped
determine which features
(metabolites) were most likely
to be relevant.

Figure 12. The mass inspector view in
the GeneSpring MS software allowed
individual feature (metabolite)
abundance to be compared across
classes. It also displays other useful
feature information such as retention
time, molecular weight, standard
deviation, and t-test significance.

Mass inspector view

The mass inspector view in the GeneSpring MS software

allowed comparison of the relative abundance of a particular

feature across all desired classes (see Figure 12). This made 

it easy to see if a particular feature exhibited, for example, an

on/off behavior where it was present in some experimental

classes but not present in others. On/off behavior is a valuable

indicator of possible relevance. The mass inspector view also

provided additional information, such as retention time,

molecular weight, standard deviation, and t-test significance,

about the feature being examined.

Microsoft is a U.S. registered trademark of
Microsoft Corporation.
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Export to Excel

Using another GeneSpring MS software feature, all data

related to the immunity features that passed the fold-change

filter was exported in tab-delimited format. Manipulation of the

data in a spreadsheet allowed us to separate the data into lists

of both up-regulated and down-regulated features (Tables 2

and 3). Of particular interest were the features (highlighted in

the tables) which were absent in one or more classes. These

features may be on/off metabolites and were flagged for

further investigation. 

Targeted metabolite identification
Metabolite profiling provided a list of up-regulated immunity

features that were selected for the next step in metabolomic

investigation: targeted metabolite identification. Tentative

identification of the metabolites was a two-step process. 

First, each of the target masses identified in the profiling

process was searched in the METLIN Personal metabolite

database. The database was searched over a narrow ±10 ppm

mass window. This was significantly wider than the ~2 ppm

mass accuracy of the 6210 TOF, but it was felt that it was

better to review a few extra hits than to possibly exclude the

correct match by using a too-narrow window. The empirical

formula calculations were set with a mass error of 5 ppm and

100 as the maximum number of empircal formulas. Table 4

shows the settings for elements.

The results of the searches of the METLIN Personal metabolite

database were incorporated into the spreadsheets with the

original mass lists (Tables 5 and 6). That the searches did not

produce matches for all of the metabolites was not surprising.

Table 2. Up-regulated metabolites from the TP309-Xa21—
PXO99 class (immunity) that passed the fold-change filter.

Retention Fold
time (min) Mass (u) change

32.64 771.4705 2.4

1.11 296.9389 2.8

32.76 710.4604 4.2

41.36 167.0575 6.1

43.74 401.3279 9.7

40.60 849.5386 10.7

31.24 295.2517 11.5

25.80 329.2925 11.9

27.20 453.2855 12.4

32.66 739.4514 12.9

47.38 934.5473 18.6

46.41 660.5333 20.3

50.91 565.8811 20.7

49.41 948.5989 23.2

2.38 221.0538 24.8

45.17 817.5082 25.0

37.68 608.2646 27.8

38.53 861.5044 28.0

2.07 129.0414 35.5

2.10 122.0383 36.2

37.25 624.2587 41.8

53.60 945.6066 64.5

53.31 93.0454 97.1

2.06 385.1011 98.6

52.22 157.9583 112.7

51.76 580.4290 151.1

51.35 225.9444 203.8

Table 3. Down-regulated metabolites from the TP309-Xa21—
PXO99 class (immunity) that passed the fold-change filter.

Retention Fold
time (min) Mass (u) change

1.09 213.9057 3.2

45.66 452.3297 3.3

32.52 600.4134 3.4

1.09 73.0268 4.4

36.95 281.6063 4.9

1.09 109.1268 10.0

47.21 524.3837 21.3

1.28 103.0648 21.6

46.57 652.4474 29.2

1.43 95.9816 48.3

47.20 540.3579 101.8
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Table 4. Minimum and maximum element settings for
METLIN database search.

Element Minimum Number Maximum Number

Carbon 1 100

Hydrogen 1 400

Nitrogen 0 20

Oxygen 0 20

Phosphorous 0 1

Sulfur 0 1

Fluorine 0 6

Table 5. Up-regulated metabolites from the TP309-Xa21—PXO99 class (immunity) with their METLIN search results.

Retention Number of METLIN search 
time (min) Mass (u) Fold change Empirical formula formulas (number of hits)

32.64 771.4705 2.4 C27H68N10O13P 93 0

1.11 296.9389 2.8 C7HNO8F2S 13 0

32.76 710.4604 4.2 C38H60N7O6 71 0

41.36 167.0575 6.1 C6H7N4O2 3 3

43.74 401.3279 9.7 C24H41N4O 9 0

40.60 849.5386 10.7 C29H72N17O10P 100 0

31.24 295.2517 11.5 C18H33NO2 2 0

25.80 329.2925 11.9 C19H39NO3 2 0

27.20 453.2855 12.4 C9H31N19O3 20 0

32.66 739.4514 12.9 C32H65N7O10S 85 0

47.38 934.5473 18.6 C53H79N2O10P 100 0

46.41 660.5333 20.3 C25H62N19O2 32 0

50.91 565.8811 20.7 C4HN6O16F6PS 32 0

49.41 948.5989 23.2 C58H76N8O4 100 0

2.38 221.0538 24.8 C6H7N5O3 4 0

45.17 817.5082 25.0 C34H63N19O3S 100 0

37.68 608.2646 27.8 C25H45N4O9PS 75 Harderoporphyrin

38.53 861.5044 28.0 C47H70N6O7P 100 erythromycin
ethylsuccinate

2.07 129.0414 35.5 C5H7NO3 1 6

2.10 122.0383 36.2 C7H6O2 2 benzoic acid

37.25 624.2587 41.8 C30H33N12O2P 85 0

53.60 945.6066 64.5 C60H79N7OS 100 0

53.31 93.0454 97.1 C5H5N2 2 0

2.06 385.1011 98.6 C17H18N6OPS 36 0

52.22 157.9583 112.7 C3HN3OPS 1 0

51.76 580.4290 151.1 C24H57N10O4P 30 Vitamin K2

51.35 225.9444 203.8 C4HF6PS 4 0

A wider mass window would have increased the number of

possible metabolite identities, but it would also have increased

the number of incorrect identities. And while the METLIN

database, with over 15,000 entries, is probably the most

comprehensive commercially available database in the world,

that number is still just a small fraction of all possible

metabolites. As will be shown, when a database search

results in matches, it can be an invaluable aid to identification.

In the second part of the identification process, one of the

upregulated immunity features, m/z 129.0414 from Table 5,
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was selected for further investigation. The sample was rerun

on the Q-TOF LC/MS system. Separation and ion source

conditions used were the same as those for the original TOF

analyses. MS/MS spectra were acquired from each of the

metabolites on the list of target masses.

Examination of the MS/MS spectrum from the selected

metabolite (Figure 13) showed a base peak representing the

loss of a carboxyl group (formic acid – CH2O2) from the

precursor ion. A second significant peak represented the

subsequent loss of CO. 

By evaluating the MS/MS spectrum against the molecular

structures included in the METLIN database search results

(Figure 14), it was determined that only two of the six possible

metabolites—pyroglutamic acid and pyrrolidonecarboxylic

acid—could logically have produced the losses seen. These

two compounds are enantiomers, and as such indistinguish-

able by mass spectrometry. If obtaining the precise identity 

of the metabolite had been critical, it could have been

determined through reanalysis using standards and a chiral 

LC column.

Table 6. Down-regulated metabolites from the TP309-Xa21—PXO99 class (immunity) with their METLIN search results.

Retention Number of METLIN search 
time (min) Mass (u) Fold change Empirical formula formulas (number of hits)

1.09 213.9057 3.2 none 0 0

45.66 452.3297 3.3 C23H44N6OS 17 0

32.52 600.4134 3.4 C22H57N12O3PS 40 Violaxanthin, 
Neoxanthin

1.09 73.0268 4.4 CHNF2P 1 0

36.95 281.6063 4.9 none 0 0

1.09 109.1268 10.0 none 0 0

47.21 524.3837 21.3 C30H48N6O2 24 0

1.28 103.0648 21.6 none 0 0

46.57 652.4474 29.2 C29H59N13PS 48 0

1.43 95.9816 48.3 none 0 0

47.20 540.3579 101.8 C29H47N7OP 32 0
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Figure 14. A search of the METLIN
Personal metabolite database generated
a list of six possible identities for a
metabolite with a molecular weight of
approximately 129.0414 u.
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Figure 13. MS/MS spectrum of the precursor ion at m/z 130.0532 shows a base peak representing the loss of formic acid
(CH2O2) and a peak representing a subsequent loss of CO. Evaluation of this information against the structures of the six
possible identities generated by a search of the METLIN metabolite database reduced the list of possible identities to two.
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Conclusions

In order to better understand the mechanisms of infection and

immunity between rice and bacterial leaf blight (BLB), a study

was undertaken to identify metabolites related to infection and

resistance. A two-step LC/MS approach was employed. Rapid

differential expression analysis of samples using time-of-flight

(TOF) mass spectrometry (MS) was followed by targeted

identification of differentially expressed metabolites using

quadrupole time-of-flight (Q-TOF) MS/MS.

In total, seven different classes were compared. Clear differ-

ences in the metabolites of the different rice/bacteria classes

were detected. Based on relatively few metabolites, the rice

lines and state of infection were clearly distinguishable.

A significant amount was also learned about instrumentation

and software requirements for this type of study. For example,

the number of replicates required is determined by natural

(sample) variability and technical (instrumentation) variability.

In this experiment, the natural variations in both the rice and

bacteria dictated multiple biological replicates. However,

because of the outstanding reproducibility of the Agilent 6210

Time-of-Flight LC/MS system used for profiling, additional

technical replicates were not required.

Data analysis plays an essential role in large-scale metabolomics

studies. This study convincingly demonstrated that having a

range of statistical-analysis tools is essential to obtaining 

the best results. Analysis of the profiling data by principal

component analysis (PCA) alone could barely distinguish

between the two rice lines. The combination of PCA with one-

or two-way analysis of variance (ANOVA) clearly distinguished

not only the rice lines, but infection state regardless of rice

line. Further, the ability to apply fold-change filtering and

visualize the results made it easier to compare differences in

abundance and select targets for the second phase of the

study: metabolite identification. Without the wide range of

statistical-analysis tools in the Agilent GeneSpring MS

software used for data analysis, it would have been impossible

to obtain as much information as was obtained from this study.

Proceeding from the profiling phase of the study to the

metabolite identification phase, was facilitated by two factors.

The extremely good mass accuracy of the TOF profiling data

and the powerful METLIN Personal metabolite database

together made it possible to narrow the list of possible

metabolite identities to a managable number. The MS/MS

spectra obtained by reanalysis using an Agilent 6510 Q-TOF

LC/MS identified the metabolite as one of two enantiomers.

This also highlighted the challenges of metabolomics. Even with

the largest metabolite database commercially available and

accurate-mass MS/MS spectra, conclusive identification of

some compounds will require further analysis. In this case, it

would have required reanalysis using standards and a chiral

LC column.



M E T A B O L O M I C SO N C H N S C O H P C N S H C O Application Note

About Agilent Technologies

Agilent Technologies is a leading supplier of life science

research systems that enable scientists to understand

complex biological processes, determine disease

mechanisms, and speed drug discovery. Engineered for

sensitivity, reproducibility, and workflow productivity,

Agilent's life science solutions include instrumentation,

microfluidics, software, microarrays, consumables, and

services for genomics, proteomics, and metabolomics

applications.

Learn more:
www.agilent.com/chem/metabolomics

Buy online:
www.agilent.com/chem/store

Find an Agilent customer center in your country:
www.agilent.com/chem/contactus

U.S. and Canada 
1-800-227-9770

agilent_inquiries@agilent.com

Europe
info_agilent@agilent.com

Asia Pacific
adinquiry_aplsca@agilent.com

This item is intended for Research Use Only. Not for use in diagnostic
procedures. Information, descriptions, and specifications in this publication 
are subject to change without notice.

Agilent Technologies shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance or use of this material.

© Agilent Technologies, Inc. 2007

Printed in the U.S.A. February 14, 2007

5989-6234EN 

References

1. Song et. al. (1995) Science 270: 1804–1806

2. Sang-Wong Lee et. al. PNAS, 103(49) 18395–18400, 2006

3. Weckworth et. al. Proteomics 2004, 4, 78–83

Acknowledgments

The authors would like to express special thanks to Dr. Pamela

Ronald and Dr. Oliver Fiehn of the Genome Center at the

University of California, Davis.

Dr. Ronald is Chair of the Plant Genomics Program and

Professor in the Department of Plant Pathology at U.C Davis,

and a leading researcher in the fundamental processes of

grasses such as rice and switchgrass.

Dr. Fiehn is an Associate Professor in the Department of

Molecular and Cellular Biology & Genome Center at U.C. Davis.

He is a leader in the emerging field of metabolomics.

Drs. Ronald and Fiehn provided the samples for the research

outlined in the application note as well as invaluable

background information and advice.


