

Benutzerhandbuch

Agilent Technologies

Hinweise

© Agilent Technologies, Inc. 2007, 2008

Die Vervielfältigung, elektronische Speicherung, Anpassung oder Übersetzung dieses Handbuchs ist gemäß den Bestimmungen des Urheberrechtsgesetzes ohne vorherige schriftliche Genehmigung durch Agilent Technologies verboten.

Microsoft ^{® -} Microsoft is a U.S. registered trademark of Microsoft Corporation.

Handbuch-Teilenummer

G1376-92012

Ausgabe

12/08

Gedruckt in Deutschland

Agilent Technologies Hewlett-Packard-Strasse 8 76337 Waldbronn, Germany

Nur für wissenschaftliche Anwendungen.

Nur für wissenschaftliche Anwendungen, nicht für medizinische Diagnostik.

Gewährleistung

Agilent Technologies behält sich vor, die in diesem Handbuch enthaltenen Informationen iederzeit ohne Vorankündigung zu ändern. Agilent Technologies übernimmt keinerlei Gewährleistung für die in diesem Handbuch enthaltenen Informationen, insbesondere nicht für deren Eignung oder Tauglichkeit für einen bestimmten Zweck. Agilent Technologies übernimmt keine Haftung für Fehler, die in diesem Handbuch enthalten sind, und für zufällige Schäden oder Folgeschäden im Zusammenhang mit der Lieferung, Ingebrauchnahme oder Benutzung dieses Handbuchs. Falls zwischen Agilent und dem Benutzer eine schriftliche Vereinbarung mit abweichenden Gewährleistungs bedingungen hinsichtlich der in diesem **Dokument enthaltenen Informationen** existiert, so gelten diese schriftlich vereinbarten Bedingungen.

Technologielizenzen

Die in diesem Dokument beschriebene Hardware und/oder Software wird/werden unter einer Lizenz geliefert und dürfen nur entsprechend den Lizenzbedingungen genutzt oder kopiert werden.

Sicherheitshinweise

VORSICHT

Ein **VORSICHT**-Hinweis macht auf Arbeitsweisen, Anwendungen o.ä.aufmerksam, die bei falscher Ausführung zur Beschädigung des Produkts oder zum Verlust wichtiger Daten führen können. Wenn eine Prozedur mit dem Hinweis **VORSICHT** gekennzeichnet ist, dürfen Sie erst fortfahren, wenn Sie alle angeführten Bedingungen verstanden haben und diese erfüllt sind.

WARNUNG

Ein WARNUNG-Hinweis macht auf Arbeitsweisen, Anwendungen o. ä. aufmerksam, die bei falscher Ausführung zu Personenschäden, u. U. mit Todesfolge, führen können. Wenn eine Prozedur mit dem Hinweis WARNUNG gekennzeichnet ist, dürfen Sie erst fortfahren, wenn Sie alle angeführten Bedingungen verstanden haben und diese erfüllt sind.

1 Einführung zur Kapillarpumpe 7

Einführung zur Kapillarpumpe 8 Geräteaufbau 16 Elektronik 17 Elektrische Anschlüsse 18 Schnittstellen der Agilent Gerätemodule der Serie 1200 20

2 Hinweise zum Aufstellort und Spezifikationen 21

Hinweise zum Aufstellort22Physikalische Spezifikationen25Leistungsspezifikationen26

3 Installation der Pumpe 29

Auspacken der Kapillarpumpe 30 Optimieren der Geräteanordnung 32 Installation der Kapillarpumpe 35 Anschluss der Module und Steuersoftware 38 Flüssigkeitsanschlüsse der Kapillarpumpe 40 Vorbereitung des Systems für die erste Injektion 44

4 Betrieb der Kapillarpumpe 47

Hinweise für einen erfolgreichen Betrieb der Kapillarpumpe48Informationen zu Lösungsmitteln50Verstopfen der Lösungsmittelfilter verhindern51Algenwachstum in HPLC-Systemen52Testprobe zur Funktionsprüfung injizieren54

5 Optimierung der Pumpenleistung 57

Hinweise zum Mikro-Vakuumentgaser 58 Einsatz alternativer Dichtungen 59 Auswählen des Primärflusses 60 Statischer Mischer und Filter 62 Optimierung der Einstellungen für die Kompressibilitätskompensation 63

6 Fehlerbehebung und Diagnose 65

Agilent Lab Advisor Software 67 Übersicht über die Anzeigen und Testfunktionen der Pumpe 68 Statusanzeigen 70 Benutzerschnittstellen 72 Fehlermeldungen 73 Mikromodus-Drucktest 80 Normalmodus-Drucktest 83 Lecktest 86 Kalibrierung des Flusssensors 94 EMPV-Test 97 EMPV-Reinigung 98

7 Wartung 99

Einführung in Wartung und Reparatur 100 Frühwarnsystem für fällige Wartungen (EMF, Early Maintenance Feedback) 103 Überblick über die Wartung und Reparatur 105 Einfache Reparaturarbeiten 107

8 Ersatzteile und -materialien für die Wartung 131

Pumpengehäuse und Hauptbaugruppen132Eluentenraum und Flaschenaufsatz135Hydraulikweg136Pumpenkopfeinheit138Flusssensoreinheit140Zubehörkit zur Kapillarpumpe141

9 Anschlusskabel 143

Kabelübersicht 144 Analogkabel 146 Remote-Kabel 149 BCD-Kabel 154 Zusatzgerätekabel 156 CAN/LAN-Kabel 157 Kabel für externen Kontakt 158 RS-232 Kabelsatz 159

10 Appendix 161

Allgemeine Sicherheitsinformation 162 Die Richtlinie 2002/96/EG (WEEE) über die Verwertung von Elektro- und Elektronik-Altgeräten 166 Lithiumbatterien 167 Störstrahlung 168 Geräuschemission 169 Informationen zu Lösungsmitteln 170 Agilent Technologies im Internet 172

1

Einführung zur Kapillarpumpe

Einführung zur Kapillarpumpe 8 Übersicht zum hydraulischen Pfad 9 Wie arbeitet die Pumpeinheit? 10 Funktionsweise des Kompressibilitätsausgleichs 13 Funktionsweise des variablen Hubvolumens 14 Frühwarnsystem für fällige Wartungen (EMF, Early Maintenance Feedback) 15 Geräteaufbau 16 Elektronik 17 Elektrische Anschlüsse 18

Schnittstellen der Agilent Gerätemodule der Serie 1200 20

Einführung zur Kapillarpumpe

Die Kapillarpumpe besteht aus zwei identischen Pumpeinheiten in einem einzelnen Gehäuse. Gradienten werden durch hochdruckseitiges Mischen erzeugt. Durch ein Ventil für die Lösungsmittelwahl wird Flexibilität bei der Auswahl von Lösungsmitteln erzielt.

Bei der Kapillarpumpe handelt es sich um eine binäre Pumpe. Die Zusammensetzung der mobilen Phase wird durch das Mischen der Eluenten von Pumpe A und Pumpe B erreicht. Das Auswahlventil für Lösungsmittel ermöglicht die Abgabe von Lösungsmittels aus Pumpe A von Kanal A1 oder A2. Der Ausstoß von Pumpe B kann entweder aus Kanal B1 oder aus Kanal B2 stammen.

Die Lösungsmittelentgasung findet nicht direkt in der Pumpe statt. Ein als einzelnes Modul erhältlicher Vakuumentgaser mit 4 Kanälen und einem geringen Volumen stellt entgaste Lösungsmittel für die Pumpenkanaleingabe bereit. Durch Lösungsmittelentgasung werden die Fluss- und die Detektorstabilität optimiert. Dies ist besonders bei niedrigen Flussraten erforderlich, die zum Ausführen von Kapillar-LC-Applikationen benötigt werden.

Abbildung 1 Überblick zur Kapillarpumpe

Übersicht zum hydraulischen Pfad

Die Kapillarpumpe basiert auf der Agilent binären Pumpe der Serie 1200 und führt alle Funktionen aus, die für ein μ -Fluss-Lösungsmittelfördersystem erforderlich sind. Dabei handelt es sich vor allem um folgende Funktionen:

- Niederdruckmessungen und Hochdruckausstoß
- Kompressibilitätskompensation für Lösungsmittel
- Variables Hubvolumen
- Messung und Steuerung des Säulenflusses

Niederdruckmessungen und Hochdruckausstoß von Lösungsmitteln werden über zwei Pumpenkanäle erreicht, die einen maximalen Fluss von 2,5 ml/min bei einem Druck von bis zu 400 bar erzielen können.

Jeder Kanal besteht aus einer identischen, unabhängig voneinander gesteuerten Pumpeneinheit. Jede Pumpeneinheit enthält eine Pumpenmessantriebseinheit und eine Pumpenkopfeinheit. Beide Einheiten bestehen aus zwei identischen Kammern, Kolben und Dichtungen sowie aus einem Aktiveinlassventil (AIV) und einem Auslasskugelventil.

Die Kanalflussausgänge sind zunächst an einen Vormischer mit niedrigem Volumen und danach über eine Kapillarwindung an einen Druckstoßdämpfer angeschlossen. Der Druckstoßdämpfer dient auch als Drucküberträger, durch den Informationen zum Systemdruck an die Benutzerschnittstelle gesendet werden.

Der Flussauslass des Druckstoßdämpfers ist an einen Mischer angeschlossen. Beim Standardmischer handelt es sich um ein korrosionsbeständiges Stahlröhrchen mit korrosionsbeständigen Stahlkugeln. Im Mischer findet der größte Teil der mobilen Phasenmischung statt.

Der Ausgabefluss des Mischers, der so genannte Hauptfluss, ist an das EFC-System (Electronic Flow Control) angeschlossen. Das EFC-System besteht aus einem an einen Flusssensor angeschlossenen EMPV (Electro-Magnetic Proportioning Valve). Das EMPV ist durch eine Filterfritte vor Partikeln in der mobilen Phase geschützt. Als Reaktion auf einen vom Benutzer eingegebenen Sollwert für den Säulenfluss bestimmt das EFC-System, welcher Anteil des Hauptflussvolumens schließlich an die Säule ausgegeben werden soll. Das übrige Hauptflussvolumen, das für die Säule nicht benötigt wird, wird vom EMPV zum Abfall umgeleitet.

Der Benutzer kann das EMPV zum Beispiel bei einem Lösungsmittelwechsel auch als Spülventil verwenden. In diesem Fall ist das EMPV vollständig geöffnet, und der Hauptfluss wird in den Abfall geleitet. 1 Einführung zur Kapillarpumpe

Einführung zur Kapillarpumpe

Abbildung 2 Hydraulikweg

Wie arbeitet die Pumpeinheit?

Die Pumpeinheiten (Kanal A und Kanal B) sind im Hinblick auf Teile und Funktion identisch. Jede Pumpeinheit besteht aus einem Pumpenkopf, der direkt an einen Dosierantrieb angeschlossen ist.

In jeder Dosiereinheit werden ein servogesteuerter variabler Reluktanzmotor und ein Zahnradgetriebe zum Antrieb von zwei Kugelspindelantrieben verwendet. Durch das Zahnradgetriebe werden die zwei Kugelspindelantriebe in entgegengesetzte Richtung getrieben (180 Grad aus Phase). Die Getriebeeinstellungen wurden so vorgenommen, dass sich der erste Kugelspindelantrieb gleichmäßig doppelt so schnell bewegt wie der zweite Kugelspindelantrieb.

Der Servomotor enthält einen Wellenpositionskodierer (Shaft-Position Encoder) mit hoher Auflösung, der die Geschwindigkeit und die Richtung des Motors fortwährend in Echtzeit angibt. Diese Angaben zu Geschwindigkeit und Richtung werden von der Pumpensteuerungselektronik zum genauen Steuern der Bewegung des Servomotors verwendet.

Jeder Pumpenkopf besteht aus zwei identischen Kammern, Kolben und Dichtungen sowie aus einem Aktiveinlassventil (AIV) und einem Auslasskugelventil. Das Lösungsmittelvolumen in den einzelnen Kammern wird jeweils durch den Kolben verschoben. Die Kolben werden direkt durch die entsprechenden Kugelspindelantriebe der Dosiereinheit angetrieben. Bedingt durch die Getriebeauslegung des Dosierantriebes bewegt sich der Kolben in die entgegengesetzte Richtung, wobei der Kolben 1 sich stets mit der doppelten Geschwindigkeit des Kolbens 2 bewegt. Der Außendurchmesser des Kolbens ist kleiner als der Innendurchmesser des Zylinders; daher kann Lösungsmittel in den Zwischenraum zwischen Kolben und Zylinderwand fließen. Die beiden Kammern sind durch das druckabhängige Auslasskugelventil miteinander verbunden.

Die Stellung des Lösungsmittelventils bestimmt, welches der beiden Lösungsmittel auf der Niederdruckseite durch das Aktiveinlassventil während der Ansaugbewegung des Kolbens 1 in die Kammer 1 angesaugt wird. Das Aktiveinlassventil wird elektrisch geöffnet und geschlossen, was bei niedrigen Drücken eine genaue Dosierung erlaubt. Je nach Flussrate liegt das Hubvolumen von Kolben 1 zwischen 2 μ l und 100 μ l.

Beim ersten Einschalten der Kapillarpumpe wird der Benutzer aufgefordert, die Pumpe zu initialisieren. Während des Initialisierungsvorgangs (für beide Pumpenköpfe) findet eine erste Festlegung der genauen Bewegungsgrenzen für beide Kolben statt. Diese Grenzen werden dann im Speicher der Pumpensteuerung gespeichert. Anschließend werden beide Kolben auf ihre Standard-Anfangspositionen gesetzt.

Beim Beginn des Pumpens wird das Aktiveinlassventil geöffnet, und die Ansaugphase von Kolben 1 beginnt, wobei Lösungsmittel in die Kammer 1 gesaugt wird. Zugleich beginnt Kolben 2 mit der Ausstoßphase, bei der das vorhandene Lösungsmittel aus der Kammer 2 unter Hochdruck aus dem Pumpenkopf gedrückt wird. Durch den von Kolben 2 erzeugten Druck wird außerdem das Auslasskugelventil geschlossen, wodurch verhindert wird, dass Lösungsmittel aus Kammer 2 in Kammer 1 zurückfließen kann. Nach einer vordefinierten Hubstrecke des Kolbens 1 wird der Servomotor gestoppt und das Aktiveinlassventil geschlossen. Nun werden die Kolbenrichtungen umgekehrt. Der Förderhub von Kolben 1 (mit hohem Druck) und der Aufnahmehub von Kolben 2 setzen ein. Dabei bewegt sich Kolben 2 halb so schnell wie Kolben 1. Durch den von Kolben 1 erzeugten Druck wird das Auslasskugelventil geöffnet. Kolben 1 beginnt, das vorher in Kammer 1 gesaugte Volumen auszugeben. Durch das Geschwindigkeitsverhältnis von 2:1 der Kolben wird die Hälfte des Lösungsmittelflusses der Kammer 1 aus dem Pumpenkopf in den hydraulischen Flussweg gefördert. Gleichzeitig wird Kammer 2 durch die andere Hälfte des Flusses aus Kammer 1 wieder aufgefüllt.

Nach Abschluss des Förderhubs von Kolben 1 werden die Richtungen umgekehrt, und der Kreislauf wird wiederholt.

Abbildung 3 Prinzip des Pumpenkopfes

Materialien in Kontakt mit mobiler Phase			
Pumpenkopf	Edelstahl, Gold, Saphir, Keramik		
Aktiveinlassventil	Edelstahl, Gold, Saphir, Rubin, Keramik, PTFE		
Auslassventil	Edelstahl, Gold, Saphir, Rubin, Tantal		
Adapter	Edelstahl, Gold		
EMPV	Edelstahl, Rubin, Saphir, PEEK		
Flusssensor	Edelstahl		
Dämpfereinheit	Gold, Edelstahl		
Kapillaren	Quartzgut (Fused Silica)		

 Tabelle 1
 Details der Kapillarpumpe (Fortsetzung)

Die Spezifikationen der Pumpe finden Sie unter "Hinweise zum Aufstellort" auf Seite 22.

Funktionsweise des Kompressibilitätsausgleichs

Die Kompressibilität der benutzten Lösungsmittel beeinflusst bei einer Änderung des Rückdrucks im System (zum Beispiel durch Alterung der Säulen) die Stabilität der Retentionszeiten. Zur Minimierung dieses Effekts bietet die Pumpe eine Funktion zum Kompressibilitätsausgleich, welche die Flussstabilität entsprechend der Lösungsmittelart optimiert. Die Kompressibilitätskompensation ist für jeden Pumpenkopf auf einen unabhängigen Standardwert voreingestellt. Über die Benutzerschnittstelle kann der Kompensationswert für die einzelnen Pumpenköpfe geändert werden.

Ohne eine Kompressibilitätskompensation passiert beim Hub des ersten Kolbens Folgendes: Der Druck in der Kolbenkammer erhöht sich und das Volumen in der Kammer wird abhängig vom Rückdruck und von der Art des verwendeten Lösungsmittels komprimiert. Das in das System geförderte Volumen reduziert sich um das komprimierte Volumen.

Bei einem eingestellten Kompressibilitätswert für einen Pumpenkopf berechnet der Pumpenprozessor ein Kompensationsvolumen, das vom Systemdruck und vom ausgewählten Kompressibilitätswert abhängt. Dieses Kompensationsvolumen wird zum Förderhub von Kolben 1 hinzugefügt.

Funktionsweise des variablen Hubvolumens

Aufgrund der Kompression der Flüssigkeit in der Pumpenkammer erzeugt jeder Kolbenhub der Pumpe eine kleine Druckschwankung, die die Flusskonstanz der Pumpe beeinflusst. Die Amplitude der Druckschwankung hängt im Wesentlichen vom Hubvolumen und vom Kompressibilitätsausgleich für das benutzte Lösungsmittel ab. Kleine Hubvolumina erzeugen bei gleichem Fluss Druckschwankungen kleinerer Amplitude als große Hubvolumina. Außerdem ist die Frequenz der Druckschwankungen höher. Dies reduziert den Einfluss von Flussschwankungen auf quantitative Ergebnisse.

Im Gradientenmodus verbessern kleinere Hubvolumina, die zu geringeren Flussschwankungen führen, die Schwankungen in der Zusammensetzung.

Die Kapillarpumpe verwendet einen prozessorgesteuerten Spindelantrieb für die Kolben. Das normale Hubvolumen ist für die gewählte Flussrate optimiert. Bei geringen Flussraten wird ein kleines Hubvolumen verwendet, während bei höheren Flussraten ein größeres Hubvolumen benutzt wird.

Das Hubvolumen für die Pumpe ist auf den Modus AUTO eingestellt. Das bedeutet, dass der Hub für die benutzte Flussrate optimiert ist. Eine Änderung zu größeren Hubvolumina ist möglich, wird aber nicht empfohlen.

Wenn sich die Pumpe im Standardmodus befindet, ist das EMPV vollständig geschlossen. Der gesamte Hauptfluss, bis zu 2500 μ l/min, wird zum LC-System geleitet. Die Messung/Steuerung des Säulenflusses wird inaktiviert. Dieser Modus ist für Applikationen vorgesehen, die nicht in den Bereich der Kapillar-LC gehören.

Im Kapillarmodus misst und steuert der Standardflusssensor den Säulenfluss im Bereich von 0,01 μ l/min bis 20 μ l/min. Ein Flusssensor für den erweiterten Bereich (optional) misst und steuert im Bereich von 0,01 μ l/min bis 100 μ l/min. Die Flussmessung basiert auf dem Prinzip der Temperaturabhängigkeit von Massenflüssen. Der Flusssensor besteht aus einem erhitzten Röhrchen mit zwei Temperatursensoren. Während die mobile Phase durch das erhitzte Röhrchen läuft, wird die auf die zwei Sensoren verteilte charakteristische Temperatur ermittelt. Mit Hilfe der charakteristischen Temperatur wird die Genauigkeit der Flussrate bestimmt. Die Flusssensormessung wird für bestimmte mobile Phasen kalibriert, die vom Benutzer ausgewählt werden können.

Frühwarnsystem für fällige Wartungen (EMF, Early Maintenance Feedback)

Das Frühwarnsystem für fällige Wartungen (EMF) registriert die Nutzung bestimmter Bauteile im Gerät und gibt eine Rückmeldung, wenn bestimmte, vom Benutzer einstellbare Grenzwerte überschritten wurden. Eine Anzeige in der Benutzeroberfläche weist darauf hin, dass Wartungsarbeiten eingeplant werden sollten.

Weitere Informationen zur EMF-Funktion und deren Verwendung finden Sie unter "Agilent Lab Advisor". 1 Einführung zur Kapillarpumpe Geräteaufbau

Geräteaufbau

Das Design des Moduls kombiniert viele innovative Eigenschaften. Es verwendet Agilents E-PAC-Konzept für die Verpackung der elektronischen und mechanischen Bauteile. Das Konzept basiert auf Schaumstoffteilen aus expandiertem Polypropylen (EPP), mittels derer die mechanischen Komponenten und elektronischen Platinen optimal eingebaut werden. Der Schaumstoff ist in einem metallischen Innengehäuse untergebracht, das von einem äußeren Kunststoffgehäuse umgeben ist. Diese Verpackungstechnologie bietet folgende Vorteile:

- Befestigungsschrauben, Bolzen oder Verbindungen werden weitgehend überflüssig; die Anzahl der Teile wird verringert, was ein schnelleres Zusammen- bzw. Auseinanderbauen ermöglicht.
- In die Kunststoffschichten sind Luftkanäle eingelassen, durch welche die Kühlluft exakt zu den richtigen Plätzen geführt wird.
- Die Kunststoffschichten schützen die elektronischen und mechanischen Teile vor Erschütterungen.
- Das innere Metallgehäuse schirmt die Geräteelektronik von elektromagnetischen Störfeldern ab und verhindert, dass von dem Gerät Kurzwellen abgestrahlt werden.

Elektronik

Die Geräteelektronik besteht aus vier Hauptkomponenten:

- CSM-Platine (Capillary Separation Main)
- Netzteil

Optional:

- Schnittstellenplatine (BCD/externe Kontakte)
- LAN-Karte zur Datenkommunikation

CSM-Platine (Capillary Separation Main)

Die Hauptplatine steuert alle Informationen und die Aktivitäten sämtlicher Baugruppen innerhalb der Kapillarpumpe. Über Schnittstellen (CAN, GPIB oder RS-232C) zur Benutzeroberfläche kann der Benutzer Parameter eingeben, Betriebsweisen ändern und die Kapillarpumpe steuern.

Hauptnetzteil

Das Hauptnetzteil ist eine gekapselte Einheit, an der keine Komponenten einzeln repariert werden können.

Das Netzteil liefert alle Gleichspannungen, die in der Kapillarpumpe benötigt werden. Die Netzspannung kann im Bereich zwischen 100 – 120 oder 220 – 240 V AC \pm 10 % variieren. Eine manuelle Einstellung ist nicht notwendig.

Optionale Schnittstellenplatinen

Die Agilent Module der Serie 1200 haben einen zusätzlichen Steckplatz, in den eine Schnittstellenplatine für die Verbindung zu den Modulen eingesetzt werden kann. Optionale Schnittstellenplatinen für Agilent Systeme der Serie 1200 sind:

- BCD-Platine
- LAN-Schnittstellenplatine

1 Einführung zur Kapillarpumpe Elektrische Anschlüsse

Elektrische Anschlüsse

- Der GPIB-Anschluss dient zum Anschluss der Kapillarpumpe an einen Computer. Der Adress- und Konfigurationsschalter neben der GPIB-Buchse bestimmt die GPIB-Adresse der Kapillarpumpe. Die Schalter sind auf die Standardadresse voreingestellt, welche nach dem Einschalten erkannt wird.
- Der CAN-Bus ist ein serieller Bus mit Hochgeschwindigkeitsdatenübertragung. Die zwei Anschlüsse für den CAN-Bus werden für die interne Datenübertragung und die Synchronisation zwischen Agilent Gerätemodulen der Serie 1200 verwendet.
- Der Analogausgang liefert ein Signal für Integratoren oder andere Datensysteme.
- Der REMOTE-Anschluss kann in Verbindung mit anderen analytischen Geräten von Agilent Technologies für Funktionen wie z. B. gemeinsame Abschaltung, Betriebsbereitschaft usw. genutzt werden.
- Die RS-232-Schnittstelle kann verwendet werden, um die Kapillarpumpe von einem Rechner aus mit Hilfe geeigneter Software zu steuern. Dieser Anschluss muss über den 8-Bit-Konfigurationsschalter neben der GPIB-Buchse aktiviert werden. Die Software benötigt geeignete Treiber zur Unterstützung des Datenübertragungsprotokolls. In Ihrer Softwaredokumentation finden Sie weitere Informationen.
- Die Netzanschlussbuchse erlaubt eine Eingangsspannung von 100 – 240 Volt 100 Wechselspannung ± 10 % bei einer Frequenz von 50 oder 60 Hz. Die maximale Leistungsaufnahme beträgt 220 VA. Die Kapillarpumpe verfügt über ein Universalnetzteil; es gibt keinen Spannungswähler. Es gibt keine von außen zugänglichen Sicherungen, da elektronische Automatiksicherungen im Netzteil eingebaut sind. Die Sicherheitszunge am Netzanschluss verhindert das Entfernen der Pumpenabdeckung bei angeschlossenem Stromkabel.
- Der Steckplatz für Schnittstellenkarten kann für BCD-Ausgabe, LAN und für zukünftige Optionen genutzt werden.

Schnittstellen der Agilent Gerätemodule der Serie 1200

Die Agilent Gerätemodule der Serie 1200 weisen folgende Schnittstellen auf:

Schnittstellentyp	Pumpen	Autom. Probengeber	DA-Detektor MW-Detektor LC-Detektor	DA-Detektor MW-Detektor G1315C/ G1365C	VW-Detektor RI-Detektor	Thermostati- sierbarer Säulenraum	Vakuum- entgaser
CAN-Kabel	Ja	Ja	Ja	Ja	Ja	Ja	Nein
LAN (integriert)	Nein	Nein	Nein	Ja	Nein	Nein	Nein
GPIB	Ja	Ja	Ja	Nein	Ja	Nein	Nein
RS-232C	Ja	Ja	Ja	Ja	Ja	Ja	Nein
Remote	Ja	Ja	Ja	Ja	Ja	Ja	Ja
Analog	Ja	Nein	2x	2 ×	1 ×	Nein	Ja ¹
(LAN/BCD/Ext) ²	Ja	Ja	Ja	Ja	Ja	Nein	Nein

 Tabelle 2
 Schnittstellen der Agilent Gerätemodule der Serie 1200

¹ Der Vakuumentgaser besitzt einen Spezialstecker für besondere Anwendungen. Einzelheiten hierzu finden Sie in der Beschreibung der Hauptplatine.

² Schnittstellensteckplatz für spezielle Verbindungen (externe Kontakte, BCD, LAN usw.)

Weitere Angaben zu den verfügbaren Schnittstellen sind dem Servicehandbuch zu entnehmen.

1

Hinweise zum Aufstellort und Spezifikationen

Hinweise zum Aufstellort22Physikalische Spezifikationen25Leistungsspezifikationen26

Agilent Technologies

2 Hinweise zum Aufstellort und Spezifikationen Hinweise zum Aufstellort

Hinweise zum Aufstellort

Hinweise zum Aufstellort

Eine passende Umgebung ist wichtig für die optimale Leistungsfähigkeit der Pumpe.

Netzkabel

Verschiedene Netzkabel werden optional für das Modul angeboten. Der weibliche Stecker ist bei jedem Netzkabel identisch. Er wird in die Netzanschlussbuchse an der Rückseite des Moduls gesteckt. Die Stecker am anderen Ende der Netzkabel sind unterschiedlich und erfüllen die Normen unterschiedlicher Länder oder Regionen.

WARNUNG

Nicht vorhandene Erdung oder Verwendung eines nicht spezifizierten Netzkabels

Bei der Verwendung des Geräts ohne Erdung oder mit einem nicht spezifizierten Netzkabel können Stromschläge und Kurzschlüsse verursacht werden.

- → Betreiben Sie Ihr Gerät niemals an einer Spannungsquelle ohne Erdung.
- → Verwenden Sie niemals ein anderes als das von Agilent zum Einsatz im jeweiligen Land bereitgestellte Kabel.

Hinweise zur Stromversorgung

Die Stromversorgung der Pumpe passt sich automatisch den Netzspannungen gemäß den Angaben in Tabelle 3 auf Seite 25 an. Daher ist auf der Rückseite des Geräts kein Spannungswahlschalter vorhanden. Es gibt auch keine von außen zugänglichen Sicherungen, da elektronische Automatiksicherungen im Netzteil eingebaut sind.

WARNUNG Auch im ausgeschalteten Zustand fließt im Modul Strom, solange das Netzkabel eingesteckt ist.

Die Durchführung von Reparaturen am Modul kann zu Personenschäden wie z. B. Stromschlag führen, wenn das Gehäuse geöffnet wird, während das Modul an die Netzspannung angeschlossen ist.

- → Stellen Sie zu diesem Zwecke einen freien Zugang zu den Netzkabeln sicher.
- → Trennen Sie das Netzkabel vom Gerät, bevor Sie das Gehäuse öffnen.
- → Schließen Sie das Netzkabel keinesfalls an das Gerät an, solange die Abdeckungen nicht wieder aufgesetzt worden sind.

WARNUNG

Falsche Netzspannung am Gerät

Wenn Sie die Geräte an einer höheren Netzspannung als zugelassen anschließen, besteht die Gefahr eines Stromschlags oder der Beschädigung der Geräte.

→ Schließen Sie das Gerät an der angegebenen Netzspannung an.

VORSICHT

Unzugänglicher Netzstecker.

In einem Notfall muss es jederzeit möglich sein, das Gerät vom Stromnetz zu trennen.

- → Stellen Sie sicher, dass der Netzstecker des Geräts leicht zugänglich ist.
- Lassen Sie hinter dem Netzstecker des Geräts genügend Platz zum Herausziehen des Kabels.

2 Hinweise zum Aufstellort und Spezifikationen

Hinweise zum Aufstellort

Platzbedarf

Die Abmessungen und das Gewicht des Moduls (siehe Tabelle 3 auf Seite 25) ermöglichen die Aufstellung des Moduls auf praktisch jedem Laborarbeitstisch. Es sind an jeder Seite ein zusätzlicher Platz von 2,5 cm sowie ungefähr 8 cm an der Rückseite für die elektrischen Anschlüsse und für ausreichende Luftzirkulation nötig.

Soll auf den Labortisch ein komplettes Agilent 1200 System gestellt werden, so ist sicherzustellen, dass der Labortisch für das Gewicht aller Module ausgelegt ist.

Das Modul ist in waagrechter Lage zu betreiben!

Arbeitsumgebung

Ihr Probengeber arbeitet bei normaler Umgebungstemperatur und Luftfeuchtigkeit gemäß den Spezifikationen unter Tabelle 3 auf Seite 25.

VORSICHT

HINWEIS

Kondensation im Inneren des Moduls

Kondensation führt zur Beschädigung der Systemelektronik.

- Vermeiden Sie die Lagerung, den Versand oder den Betrieb der Pumpe unter Bedingungen, die zu einer Kondensation in der Pumpe führen können.
- → Nach einem Transport bei kalten Temperaturen muss das Gerät zur Vermeidung von Kondensation in der Verpackung verbleiben, bis es sich auf Raumtemperatur erwärmt hat.

Physikalische Spezifikationen

Bestellnummer	Spezifikationen	Kommentar	
Gewicht	17 kg (38 lbs)		
Abmessungen (Breite × Tiefe × Höhe)	180 x 345 x 435 mm (7 x 13.5 x 17 inches)		
Netzspannung	100–240 V, ± 10%	weiter Bereich	
Frequenz	50 oder 60 Hz, ±5%		
Stromverbrauch	180 VA / 75 W / 256 BTU	maximal	
Umgebungstemperatur bei Betrieb	4−55 °C (41−131 °F)		
Umgebungstemperatur bei Nichtbetrieb	-40 bis 70 °C		
Luftfeuchtigkeit	< 95 %, bei 25 bis 40 °C	nicht kondensierend	
max. Höhe bei Betrieb	bis zu 2000 m		
max. Höhe bei Lagerung	bis zu 4600 m	Zur Aufbewahrung des Moduls	
Sicherheitsstandards: IEC, CSA, UL	Installationskategorie II, Verschmutzungsgrad 2	Nur für den Einsatz im Innenbereich geeignet Nur für Forschungszwecke geeignet. Nicht für diagnostische Verfahren geeignet.	

Tabelle 3 Physikalische Spezifikationen

Leistungsspezifikationen

Bestellnummer	Spezifikationen		
Hydrauliksystem	Zwei miteinander verbundene Kolben mit servogesteuertem variablen Hubantrieb, schwimmend gelagertem Kolben, Aktiveinlassventil (AIV), Ventil für die Lösungsmittelwahl und elektronischer Flusssteuerung für Flussraten bis 100 µl/min		
Einstellbarer Säulenflussbereich	0,01 — 20 μl/min 0,01μl/min — 100 μl/min (mit Kit für erweiterten Flussbereich) 0,001 — 2,5 μl/min (bei Umgehung der elektronischen Flusssteuerung)		
Empfohlener Säulenflussbereich	1 – 20 μl/min 10 – 100 μl/min (mit Kit für erweiterten Flussbereich) 0,1 – 2,5 ml/min (bei Umgehung des elektronischen Flusssensors)		
Säulenflussgenauigke it	< 0,7 % RSD oder 0,03 % SD (in der Regel 0,4 % RSD oder 0,02 % SD), bei Säulenfluss von 10 µl/min und 50 µl/min (bei RT und Standardeinstellung)		
Optimaler Bereich für Mischungsverhältnis	1 bis 99 % oder 5 μl/min pro Kanal (Primärfluss), je nachdem, welcher Bereich größer ist		
Zusammensetzungsg enauigkeit	< 0,2 % SD, bei 10 µl/min (20-µl-Flusssensor), 50 µl/min (100-µl-Flusssensor) und bei Standardeinstellung von 1 ml/min (Normalmodus)		
Verzögerungsvolumen	In der Regel 3 μl von der elektronischen Flusssteuerung zum Pumpenauslass bei Flussraten bis 20 μl/min. In der Regel 12 μl von der elektronischen Flusssteuerung zum Pumpenauslass bei Flussraten bis 100 μl. Bei Flussraten von bis zu 100 μl/min und aktiver elektronischer Flusssteuerung: primärer Flusspfad 180 bis 480 μl ohne Mischer, 600 bis 900 μl mit Mischer (je nach Systemdruck) In der Regel 180 bis 480 μl (je nach Systemdruck) ohne Mischer bei Flussraten bis 2,5 ml/min. (Mischerverzögerungsvolumen 420 μl)		
Druckbereich	20 bis 400 bar (5880 psi) Systemdruck		
Kompressibilitätsausg leich	Einstellbar, je nach Kompressibilität der mobilen Phase		
Empfohlener pH-Bereich	1,0 - 8,5, Lösungsmittel mit pH < 2,3 dürfen keine Säuren enthalten, die Edelstahl angreifen Begrenzung des oberen pH-Bereichs durch FSC-Kapillaren.		

Tabelle 4 Leistungsspezifikation der Agilent Kapillarpumpe der Serie 1200

Bestellnummer	Spezifikationen		
Steuerung und Datenauswertung	Agilent Steuersoftware (z. B. ChemStation, EZ-Chrom, OL) g		
Analogausgang	Zur Drucküberwachung, 2 mV/bar, ein Ausgang		
Datenkommunikation	CAN (Controller-Area Network), GPIB, RS-232C, APG Remote: Signale Bereit, Start, Stopp und Shut-down, LAN optional		
Sicherheit und Wartung	Umfangreiche Diagnosefunktionen, Fehlererkennung und -anzeige (über Instant Pilot und), Leckagedetektion, sichere Handhabung von Leckagen, bei Leckagen Signal zum Abschalten des Pumpensystems. Geringe Spannungen in den wichtigsten Wartungsbereichen		
GLP-Eigenschaften	Frühwarnsystem für fällige Wartungen (EMF, Early Maintenance Feedback) zur kontinuierlichen Verfolgung der Gerätenutzung hinsichtlich des Dichtungsverschleißes und der geförderten Menge mobiler Phase mit frei einstellbaren Höchstwerten und Rückmeldung an den Benutzer. Elektronische Aufzeichnung der Wartung und Fehler.		
Gehäuse	Alle Materialien sind wieder verwendbar.		

 Tabelle 4
 Leistungsspezifikation der Agilent Kapillarpumpe der Serie 1200

2 Hinweise zum Aufstellort und Spezifikationen

Leistungsspezifikationen

Installation der Pumpe

Auspacken der Kapillarpumpe 30 Beschädigte Verpackung 30 Auslieferungs-Checkliste 30 Inhalt des Zubehörkits - Kapillarpumpe 31 Optimieren der Geräteanordnung 32 Installation der Kapillarpumpe 35 Anschluss der Module und Steuersoftware 38 Anschluss der Module und Steuersoftware 38 Anschluss von Agilent Modulen der Serie 1200 38 Anschluss eines Agilent Vakuumentgasers der Serie 1200 38 Anschluss der Steuersoftware und/oder Steuermodule 39 Flüssigkeitsanschlüsse der Kapillarpumpe 40 Vorbereitung des Systems für die erste Injektion 44 Erstbefüllung des Kapillar-LC-Systems mit der Pumpe 45

Auspacken der Kapillarpumpe

Beschädigte Verpackung

Prüfen Sie bei Erhalt Ihres Moduls die Transportverpackung auf sichtbare Beschädigungen. Sollten die Transportkiste oder das Polstermaterial beschädigt sein, bewahren Sie diese auf, bis der Inhalt auf Vollständigkeit und das Gerät mechanisch und elektrisch überprüft wurden. Weisen die Transportkiste oder das Füllmaterial Beschädigungen auf, so ist dies dem Spediteur zu melden. Heben Sie die Verpackung für eine Begutachtung durch den Spediteur auf.

Auslieferungs-Checkliste

Überprüfen Sie, ob alle Teile und Verbrauchsmaterialien der Kapillarpumpe geliefert wurden. Die Auslieferungs-Checkliste finden Sie in Tabelle 5 auf Seite 30. Eine Teileliste finden Sie in "Ersatzteile und -materialien für die Wartung" auf Seite 131. Im Fall fehlender oder defekter Teile wenden Sie sich bitte an die zuständige Niederlassung von Agilent Technologies.

Beschreibung	Anzahl
Kapillarpumpe	1
Eluentenraum	1 (5062-8591)
Lösungsmittelflasche	1X 9301-1450 Braunglasflasche, 3X 9301-1420 Klarglasflasche
Flaschenaufsatz	4 (G1367-60003) erforderlich.
Kapillare	G1375-87310
Netzkabel	1
CAN-Kabel, 1 m	1
Remote-Kabel	Wie bestellt
Signalkabel	Wie bestellt
Wartungshandbuch	1
Zubehörkit (siehe Tabelle 6 auf Seite 31)	1

Inhalt des Zubehörkits - Kapillarpumpe

Beschreibung	Bestellnummer	Anzahl
Einsetzwerkzeug für Dichtungen	01018-23702	1
Gabelschlüssel, 1/4-5/16"	8710-0510	1
Gabelschlüssel, 14 mm	8710-1924	1
Gabelschlüssel, 7/16 Zoll.	8710-0806	2
Antistatisches ESD-Armband ¹	9300-1408	1
Inbusschlüssel, 3 mm	8710-2411	1
Inbusschlüssel, 2,5 mm	8710-2412	1
Abfallleitung	0890-1760	2 m

 Tabelle 6
 Inhalt des Zubehörkits G1376-68705

¹ ESD: Elektrostatische Entladung

Optimieren der Geräteanordnung

Falls die Kapillarpumpe Teil eines kompletten Agilent Systems der Serie 1200 ist, erzielen Sie eine optimale Leistungsfähigkeit mit der im Folgenden beschriebenen Gerätekonfiguration. Diese Anordnung stellt einen optimalen Flüssigkeitsweg mit minimalem Totvolumen sicher.

HINWEIS

Detaillierte Ansichten der einzelnen Flüssigkeitsverbindungen finden Sie in den Kapiteln 1 "Flüssigkeitsanschlüsse" der Referenzhandbücher der einzelnen Module.

HINWEIS

Falls Ihnen die Anordnung in einem Geräteturm zu hoch erscheint, z. B. nach Hinzufügen einer Thermostatisiereinheit für den Probengeber G1327A, oder falls Ihr Labortisch zu hoch ist, so können Sie die Module auch in zwei Gerätetürmen anordnen. Trennen Sie den Geräteturm zwischen Pumpe und automatischem Probengeber und platzieren Sie den Geräteturm mit der Pumpe auf der rechten Seite neben dem Probengeber.

Optimieren der Geräteanordnung

3 Installation der Pumpe

Optimieren der Geräteanordnung

Abbildung 6 Empfohlene Geräteanordnung (Rückansicht)

Installation der Kapillarpumpe

Erforderliche Teile	Anzahl	Bestellnummer	Beschreibung
	1		Pumpe
	1		Netzkabel, zu anderen Kabeln siehe nachfolgenden Text und "Kabelübersicht" auf Seite 144.
	1	G4208A	Agilent Steuersoftware (z. B. ChemStation, EZChrom, OL)
	1	G1323B	und/oder eine mobile Steuereinheit (Instant Pilot oder Steuermodul)

Vorbereitungen

- Aufstellplatz freiräumen.
- Stromversorgung sicherstellen.
- Pumpe auspacken.

WARNUNG Auch im ausgeschalteten Zustand fließt im Modul Strom, solange das Netzkabel eingesteckt ist.

Die Durchführung von Reparaturen am Modul kann zu Personenschäden wie z.B. Stromschlag führen, wenn das Gehäuse geöffnet wird, während das Modul an die Netzspannung angeschlossen ist.

- → Stellen Sie zu diesem Zwecke einen freien Zugang zu den Netzkabeln sicher.
- → Trennen Sie das Netzkabel vom Gerät, bevor Sie das Gehäuse öffnen.
- → Schließen Sie das Netzkabel keinesfalls an das Gerät an, solange die Abdeckungen nicht wieder aufgesetzt worden sind.

VORSICHT

Bei Ankunft beschädigt

Installieren Sie das Modul nicht, wenn Sie Anzeichen einer Beschädigung entdecken. Es ist eine Begutachtung durch Agilent erforderlich, um zu beurteilen, ob sich das Gerät in einem guten Zustand befindet oder beschädigt ist.

- Setzen Sie den Kundendienst von Agilent Technologies über den Schaden in Kenntnis.
- Ein Agilent Kundenberater begutachtet das Gerät an Ihrem Standort und leitet die erforderlichen Maßnahmen ein.

3 Installation der Pumpe

Installation der Kapillarpumpe

- 1 Stellen Sie die Pumpe auf den Arbeitstisch
- **2** Vergewissern Sie sich, dass der Netzschalter an der Vorderseite der Pumpe auf OFF steht (Schalter ragt heraus).

Seriennummer

- **3** Schieben Sie die Sicherheitszunge an der Rückseite des Moduls so weit wie möglich nach rechts.
- **4** Schließen Sie das Netzkabel an den Netzanschluss auf der Rückseite des Moduls an. Die Sicherheitszunge an der Netzbuchse verhindert das Abnehmen des Gehäuseoberteils des Moduls bei angeschlossenem Netzkabel.
5 Schließen Sie die erforderlichen Schnittstellenkabel an der Rückseite der Kapillarpumpe an, siehe "Anschluss von Agilent Modulen der Serie 1200" auf Seite 38

Abbildung 8 Rückseite der Kapillarpumpe

- **6** Schließen Sie Kapillare, Lösungsmittel- und Abfallschläuche an (siehe "Flüssigkeitsanschlüsse der Kapillarpumpe" auf Seite 40).
- 7 Drücken Sie den Netzschalter, um die Pumpe einzuschalten.

HINWEIS

Der Netzschalter bleibt eingedrückt und die Statusanzeige im Netzschalter leuchtet grün, wenn die Pumpe eingeschaltet ist. Ragt der Netzschalter heraus und die grüne Anzeige leuchtet nicht, ist die Pumpe ausgeschaltet.

8 Spülen Sie die Kapillarpumpe (siehe "Erstbefüllung des Kapillar-LC-Systems mit der Pumpe" auf Seite 45).

HINWEIS

Bei Auslieferung ist die Pumpe auf die Standardkonfiguration eingestellt. Zur Änderung der Einstellungen sehen Sie bitte im Servicehandbuch zum Thema Konfiguration der Kapillarpumpe nach.

Anschluss der Module und Steuersoftware

Anschluss der Module und Steuersoftware

WARNUNG

Verwendung nicht im Lieferumfang enthaltener Kabel

Die Verwendung von Kabeln, die nicht von Agilent Technologies geliefert wurden, kann zu einer Beschädigung der elektronischen Komponenten oder zu Personenschäden führen.

→ Verwenden Sie niemals andere Kabel als die die von Agilent Technologies mitgeliefert wurden um eine gute Funktionalität und EMC-gemäße Sicherheitsbestimmungen zu gewährleisten.

Anschluss von Agilent Modulen der Serie 1200

- 1 Stellen Sie die einzelnen Module in die Gerätetürme wie in Abbildung 5 auf Seite 33 dargestellt.
- **2** Vergewissern Sie sich, dass der Netzschalter an der Vorderseite der Module auf OFF steht (Schalter ragt heraus).
- **3** Stecken Sie ein CAN-Kabel in den CAN-Anschluss auf der Rückseite des entsprechenden Moduls (Vakuumentgaser ausgenommen).
- **4** Verbinden Sie das CAN-Kabel mit dem CAN-Anschluss des nächsten Moduls, siehe Abbildung 6 auf Seite 34.
- 5 Drücken Sie zum Einschalten der Module die Netzschalter.

Anschluss eines Agilent Vakuumentgasers der Serie 1200

- **1** Stellen Sie die Module in den Geräteturm wie in Abbildung 5 auf Seite 33 dargestellt.
- **2** Vergewissern Sie sich, dass der Netzschalter an der Vorderseite des Vakuumentgasers auf OFF steht (Schalter ragt heraus).

- **3** Stecken Sie ein APG-Kabel in den APG-Remote-Anschluss auf der Rückseite des Moduls.
- **4** Verbinden Sie das APG-Kabel mit dem APG-Remote-Anschluss der Pumpe, siehe Abbildung 6 auf Seite 34.
- 5 Drücken Sie zum Einschalten des Vakuumentgasers die Netzschalter.

HINWEIS

Der AUX-Anschluss ermöglicht dem Anwender die Überwachung des Vakuums in der Entgaserkammer.

Anschluss der Steuersoftware und/oder Steuermodule

- **1** Vergewissern Sie sich, dass der Netzschalter an der Vorderseite der Module im Geräteturm auf OFF steht (Schalter ragt heraus).
- **2** Stecken Sie ein GPIB-Kabel in den GPIB-Anschluss eines der Module, vorzugsweise beim Detektor (bei DAD obligatorisch).
- **3** Verbinden Sie das GPIB-Kabel mit der zu verwendenden Agilent Steuersoftware.
- **4** Stecken Sie ein CAN-Kabel in den CAN-Anschluss des Steuermoduls.

HINWEIS

Verbinden Sie die Agilent Steuersoftware oder das Steuermodul nicht mit dem Vakuumentgaser.

- 5 Verbinden Sie das CAN-Kabel mit dem CAN-Anschluss eines der Module.
- 6 Drücken Sie zum Einschalten der Module die Netzschalter.

HINWEIS

Die Agilent Steuersoftware (z. B. ChemStation, EZChrom, OL) kann auch mittels LAN-Kabel mit dem System verbunden werden, was den Einbau einer LAN-Platine erfordert. Weitere Informationen zum Anschluss des Steuermoduls oder der Agilent Steuersoftware finden Sie im jeweiligen Benutzerhandbuch. Informationen zum Anschluss von Agilent Modulen der Serie 1200 an andere Geräte als die der Agilent Serie 1200 finden Sie in "Einführung zur Kapillarpumpe" auf Seite 8.

Flüssigkeitsanschlüsse der Kapillarpumpe

Flüssigkeitsanschlüsse der Kapillarpumpe

Erforderliche Teile	Anzahl	Bestellnummer	Beschreibung Andere Module		
		G1376-68705	Teile aus dem Zubehör-Kit (siehe "Inhalt des Zubehörkits - Kapillarpumpe" auf Seite 31)		
	2		?Gabelschlüssel 1/4 - 5/16" für Kapillaranschlüsse		
Vorbereitungen	Pumpe ist in	ist im LC System eingebaut			
WARNUNG	Beim Öffnen von Kapillar- oder Schlauchleitungsverschraubungen können Lösungsmittel austreten.				
	Der Umgang mit giftigen und gefährlichen Lösungsmitteln und Reagenzien kann Gesundheitsrisiken bergen.				
	→ Bitte be Handsc mitgelie Dies gil	achten Sie die e huhe und Schut ferten Gebrauc t insbesondere f	entsprechenden Sicherheitsanweisungen (z.B. Schutzbrille, zkleidung), wie sie in der vom Lösungsmittellieferanten hsanweisung oder im Sicherheitsdatenblatt beschrieben ist. für giftige oder gefährliche Lösungsmittel.		

1 Nehmen Sie die Frontplatte ab, indem Sie die Schnappverschlüsse an beiden Seiten drücken.

Abbildung 9 Abnehmen der Frontabdeckung

- 2 Stellen Sie den Eluentenraum auf die Kapillarpumpe.
- **3** Stellen Sie die Vorratsflaschen in den Eluentenraum und montieren Sie an jeder Flasche einen Flaschenaufsatz.
- **4** Schließen Sie die Lösungsmittelschläuche von den Flaschenaufsätzen an den Einlassadaptern A1, A2, B1 und B2 des Lösungsmittel-Auswahlventils an, und beschriften Sie die Schläuche entsprechend. Befestigen Sie die Schläuche an den Klammern im Eluentenraum und der Kapillarpumpe.
- **5** Schließen Sie die Abfallleitung mit Hilfe eines Stückes Schmirgelpapier am EMPV und führen Sie sie in das Abfallsystem.
- **6** Wenn die Mikropumpe nicht Teil eines Agilent Systems der Serie 1200 ist oder in der Geräteanordnung nach ganz unten gestellt werden soll, schließen Sie die gerippte Abfallleitung an den Abfallauslass für eventuelle Leckagen des Pumpensystems an.
- 7 Spülen Sie Ihr System vor der ersten Anwendung (siehe "Erstbefüllung des Kapillar-LC-Systems mit der Pumpe" auf Seite 45).

Flüssigkeitsanschlüsse der Kapillarpumpe

Abbildung 10 Flüssigkeitsanschlüsse der Kapillarpumpe

Flüssigkeitsanschlüsse der Kapillarpumpe

1	G1375-87301
2	01090-87308
3	01090-87308
4	G1375-87400
5	G1375-87310
6	G1312-67304
7	G1312-67302
8	G1311-67304
9	G1311-60003

Vorbereitung des Systems für die erste Injektion

Vorbereitung des Systems für die erste Injektion

Bei der ersten Verwendung des Systems wird eine Vorfüllung empfohlen, damit die gesamte Luft und die möglicherweise während der Installation in den Flusspfad eingeführte Kontaminierung entfernt werden.

HINWEIS

Die Pumpe sollte niemals bei leeren Schläuchen in den Spülbetrieb geschaltet werden (nicht trocken laufen lassen. Saugen Sie mit einer Spritze so viel Lösungsmittel in die Schläuche, dass sie bis zum Pumpeneingang befüllt sind, bevor Sie den Spülbetrieb mit der Pumpe fortsetzen.

Erstbefüllung des Kapillar-LC-Systems mit der Pumpe

WARNUNG

Beim Öffnen von Kapillar- oder Schlauchleitungsverschraubungen können Lösungsmittel austreten.

Der Umgang mit giftigen und gefährlichen Lösungsmitteln und Reagenzien kann Gesundheitsrisiken bergen.

- → Bitte beachten Sie die entsprechenden Sicherheitsanweisungen (z. B. Schutzbrille, Handschuhe und Schutzkleidung), wie sie in der vom Lösungsmittellieferanten mitgelieferten Gebrauchsanweisung oder im Sicherheitsdatenblatt beschrieben ist. Dies gilt insbesondere für giftige oder gefährliche Lösungsmittel.
- 1 Aktivieren Sie an der Pumpe den Reinigungsmodus (*Purge Mode*) und setzen Sie die Flussrate auf 2,5 ml/min.
- **2** Spülen Sie den Vakuumentgaser und alle Schläuche mit mindestens 5 ml Lösungsmittel.
- **3** Stellen Sie für den Fluss den für die Anwendung erforderlichen Wert ein und aktivieren Sie den *Mikromodus* für die Pumpe.
- **4** Pumpen Sie vor dem Starten der Applikation für ca. 5 Minuten Lösungsmittel durch das System.
- **5** Wiederholen Sie die Schritte Schritt 1 auf Seite 45 bis Schritt 2 auf Seite 45 für die anderen Kanäle der Kapillarpumpe.

HINWEIS

Bei einem längeren Stillstand des Pumpensystems (z. B. über Nacht) gelangt Sauerstoff in den Lösungsmittelkanal zwischen Vakuumentgaser und Pumpe. Flüchtige Bestandteile von Lösungsmitteln gehen leicht verloren, wenn der Entgaser längere Zeit nicht von Lösungsmittel durchströmt wird. Daher ist vor Beginn einer Applikation eine Spülung aller Kanäle mit 2,5 ml/min für eine Minute erforderlich.

Vorbereitung des Systems für die erste Injektion

Betrieb der Kapillarpumpe

Hinweise für einen erfolgreichen Betrieb der Kapillarpumpe 48 Informationen zu Lösungsmitteln 50 Verstopfen der Lösungsmittelfilter verhindern 51 Algenwachstum in HPLC-Systemen 52 Vermeidung bzw. Reduktion von Problemen durch Algen 53 Testprobe zur Funktionsprüfung injizieren 54 Bedingungen 54 Durchführung 55 Typisches Chromatogramm 55

4 Betrieb der Kapillarpumpe

Hinweise für einen erfolgreichen Betrieb der Kapillarpumpe

Hinweise für einen erfolgreichen Betrieb der Kapillarpumpe

Hinweise zur Pumpe

- Spülen Sie die Pumpe gründlich. Tun Sie dies zunächst im *Reinigungsmodus* und anschließend mit Druck, um alle Gasblasen zu entfernen. Hierzu wird empfohlen, zunächst 100 % Lösungsmittel A und anschließend 100 % Lösungsmittel B zu verwenden.
- Der Systemdruck muss am Pumpenauslass höher als 20 bar sein.
- Im *Mikromodus* sind ungewöhnlich hohe Abweichungen des Säulenflusses ein Anzeichen für eine Verschmutzung im System, für blockierte Fritten oder undichte Pumpenventile.
- Platzieren Sie den Eluentenraum mit den Lösungsmittelflaschen immer oberhalb der Kapillarpumpe.
- Vermeiden Sie Verstopfungen der Lösungsmitteleinlassfilter. Verwenden Sie die Pumpe nie ohne Lösungsmitteleinlassfilter. Algenwuchs sollte vermieden werden.
- Spülen Sie beim Einsatz von Pufferlösungen das System vor dem Ausschalten mit Wasser.
- Überprüfen Sie beim Austauschen der Kolbendichtungen die Pumpenkolben auf Kratzer. Verkratzte Kolben führen zu Mikro-Leckagen und verringern die Haltbarkeit der Dichtung.
- Führen Sie nach dem Austauschen der Kolbendichtungen eine Konditionierung der Dichtungen durch.
- Schließen Sie das wässrige Lösungsmittel an Kanal A und das organische Lösungsmittel an Kanal B an. Dies entspricht den Standardeinstellungen für die Kompressibilitätsfaktoren und die Kalibrierung der Flusssensoren. Verwenden Sie immer die richtigen Kalibrierungswerte.
- Zum Erzeugen von steil ansteigenden Gradienten für kurze Säulen entfernen Sie den Mischer, geben die neue Pumpenkonfiguration ein und wählen den Bereich mit steil ansteigendem Gradient für die primäre Flussrate aus. (Dies wirkt sich nicht auf die chromatographische Leistung aus.)
- Überprüfen Sie im *Mikromodus* die Gerätekonfiguration (Flusssensortyp, verwendeter Mischer und Filter).

Hinweise zur FSC-Kapillare

• Drücken Sie beim Anschließen einer Kapillare (besonders an der Säule) diese zur Vermeidung einer Luftspalte vorsichtig gegen den Fitting. Eine falsche Einstellung führt zu einer Dispersion, die Tailing- oder Footing-Peaks hervorruft.

HINWEIS

Ziehen Sie die FSC-Kapillaren nicht zu fest an. Das Kapitel zu Kapillaren und Fittings in diesem Handbuch enthält Informationen zur ordnungsgemäßen Installation.

• Seien Sie vorsichtig beim Biegen einer FSC-Kapillare. Der Durchmesser muss mindestens 40 mm betragen.

- Beim Austauschen eines Teils (besonders einer Kapillare) ist dieser mit Azeton zu reinigen.
- Ziehen Sie eine undichte FSC-Kapillare unter Fluss nicht erneut an. Setzen Sie den Säulenfluss auf null, setzen Sie die Kapillare erneut ein, ziehen Sie sie an und stellen Sie einen neuen Säulenfluss ein.
- Vermeiden Sie die Verwendung alkalischer Lösungen (pH > 8,5), durch die die Quarzverbindung (Fused Silica) der Kapillaren angegriffen werden kann.
- Zerbrechen Sie beim Anbringen von Modulklappen keine Kapillaren.
- Durch eine zerbrochene Kapillare können Quarz-Partikel in das System gelangen (z. B. in die Zelle), wodurch nach der gebrochenen Stelle Fehler im System auftreten können.
- Eine blockierte Kapillare kann oft durch Rückspülung gereinigt werden. Hierfür wird Azeton empfohlen.

4

Informationen zu Lösungsmitteln

Filtrieren Sie alle Lösungsmittel durch Filter mit einer Porengröße von 0,4 μ m. Vermeiden Sie den Gebrauch der folgenden Stahl korrodierenden Lösungsmittel:

- Lösungen von Alkalihalogeniden und deren entsprechenden Säuren (z. B. Lithiumjodid, Kaliumchlorid).
- Hohe Konzentrationen anorganischer Säuren wie Schwefelsäure und Salpetersäure speziell bei höheren Temperaturen sollten vermieden werden (falls die chromatographische Methode dies zulässt, sollten stattdessen Phosphorsäure- oder Phosphatpufferlösungen eingesetzt werden, die weniger korrosiv auf Edelstahl wirken).
- Halogenierte Lösungsmittel oder Gemische, die Radikale und/oder Säuren bilden, wie beispielsweise:

2CHCl₃ + O₂ \rightarrow 2COCl₂ + 2HCl

Diese Reaktion, die wahrscheinlich durch Edelstahl katalysiert wird, läuft in getrocknetem Chloroform schnell ab, wenn der Trocknungsprozess den als Stabilisator fungierenden Alkohol entfernt.

- Ether für die Chromatographie, welche Peroxide enthalten können (z. B. THF, Dioxan, Di-Isopropylether). Filtrieren Sie solche Ether über trockenem Aluminiumoxid, an dem die Peroxide adsorbiert werden.
- Lösungsmittel, die komplexbildende Mittel enthalten (z. B. EDTA).
- Mischungen von Tetrachlorkohlenstoff mit Isopropanol oder THF.
- Vermeiden Sie die Verwendung alkalischer Lösungen (pH > 8,5), da diese die Fused-Silica-Kapillaren angreifen können.

Verstopfen der Lösungsmittelfilter verhindern

Kontaminierte Lösungsmittel oder Algenwachstum in der Lösungsmittelvorratsflasche reduzieren die Betriebsdauer der Lösungsmittelfilter und beeinflussen die Leistung des angeschlossenen Moduls. Dies trifft besonders auf wässrige Lösungsmittel oder Phosphatpufferlösungen (pH 4 bis 7) zu. Die folgenden Empfehlungen verlängern die Betriebsdauer der Lösungsmittelfilter und erhalten die Leistungsfähigkeit des Moduls.

- Setzen Sie zur Eindämmung des Algenwachstums eine sterile, braune Lösungsmittelflasche ein.
- Filtrieren Sie die Lösungsmittel durch ein Membranfilter, das Algen zurückhält.
- Tauschen Sie die Lösungsmittel alle zwei Tage aus oder filtrieren Sie diese erneut.
- Setzen Sie dem Lösungsmittel 0,0001 0,001 Mol/L Natriumazid zu, falls es Ihre Applikation zulässt.
- Blasen Sie ein Schutzgas (z. B. Argon) in die Lösungsmittelflaschen.
- Vermeiden Sie es, die Lösungsmittelflaschen direkter Sonneneinstrahlung auszusetzen.

HINWEIS Benutzen Sie das System niemals ohne eingebauten Lösungsmittelfilter.

Algenwachstum in HPLC-Systemen

Das Vorhandensein von Algen in HPLC-Systemen kann eine Reihe von Problemen verursachen, die fälschlicherweise als Geräte- oder Applikationsprobleme diagnostiziert werden. Algen wachsen in wässrigen Medien, vorzugsweise im pH-Bereich von 4-8. Ihr Wachstum wird von Puffern, zum Beispiel Phosphat- oder Acetatpuffer, beschleunigt. Da Algen durch Photosynthese wachsen, stimuliert Licht ihr Wachstum ebenfalls. Sogar in destilliertem Wasser wachsen nach einiger Zeit kleine Algen.

Geräteprobleme im Zusammenhang mit Algen

Algen setzen sich ab, wachsen überall im HPLC-System und verursachen dadurch:

- Ablagerungen auf Kugelventilen am Ein- oder Auslass, wodurch ungleichmäßiger Durchfluss oder völliges Versagen der Pumpe hervorgerufen wird
- Verstopfungen kleinporiger Lösungsmittel-Einlassfilter, wodurch ungleichmäßiger Durchfluss oder ein völliges Versagen der Pumpe verursacht wird
- Verstopfungen kleinporiger Hochdruck-Lösungsmittelfilter, die üblicherweise vor dem Injektor liegen, wodurch ein überhöhter Systemdruck hervorgerufen wird
- Verstopfungen der Säulenfilter, wodurch überhöhter Systemdruck hervorgerufen wird
- Verschmutzungen der Durchflusszellenfenster von Detektoren, wodurch der Rauschpegel ansteigt (da der Detektor das letzte Modul in der Durchflussrichtung ist, tritt dieses Problem seltener auf)

Beobachtete Symptome bei Agilent HPLC-Systemen der Serie 1200

Im Gegensatz zu den HPLC-Systemen der Serien HP 1090 und HP 1050, die zur Entgasung Helium verwenden, können Algen in Agilent Systemen wie die der Serie 1200, bei denen nicht mit Helium entgast wird, besser wachsen (die meisten Algen brauchen zum Wachsen Sauerstoff und Licht).

Das Vorhandensein von Algen in Agilent Geräten der Serie 1200 kann Folgendes verursachen:

- Verstopfen der PTFE-Fritten, Bestellnummer 01018-22707 (Spülventileinheit), und des Säulenfilters, wodurch erhöhter Systemdruck hervorgerufen wird. Die Algen sind als weiße oder gelblich-weiße Ablagerungen auf dem Filter zu sehen. Üblicherweise verursachen schwarze Partikel, die von der normalen Abnutzung der Kolbendichtungen herrühren, kein kurzfristiges Verstopfen der PTFE-Fritten. Siehe Abschnitt "Austausch des Lösungsmittelauswahlventils" auf Seite 117 dieses Handbuchs.
- Kurze Lebensdauer der Lösungsmittelfilter (Flaschenaufsatz). Ein verstopfter Lösungsmittelfilter in der Flasche ist besonders bei nur teilweiser Verstopfung schwieriger zu identifizieren und kann sich durch Probleme mit Gradienten oder vorübergehende Druckschwankungen bemerkbar machen.
- Algenwachstum kann auch ein möglicher Grund für das Versagen von Kugelventilen und anderen Komponenten auf dem Durchflussweg sein.

Vermeidung bzw. Reduktion von Problemen durch Algen

- Immer frisch zubereitete Lösungsmittel verwenden, insbesondere demineralisiertes Wasser verwenden, das durch Filter mit ca. 0,2 μ m Porengröße filtriert wurde.
- Nie die mobile Phase mehrere Tage ohne Durchfluss im Instrument belassen.
- Nie "alte" mobile Phasen verwenden.
- Für wässrige mobile Phase die mit dem Instrument gelieferte braune Lösungsmittelflasche (Bestellnummer 9301-1450) verwenden.
- Wenn möglich, einige mg/l Natriumazid oder einige Prozent organisches Lösungsmittel zu der wässrigen mobilen Phase geben.

Testprobe zur Funktionsprüfung injizieren

Mit Hilfe der Geräteüberprüfung soll festgestellt werden, ob alle Module der Instrumente ordnungsgemäß installiert und angeschlossen wurden. Dieser Test dient nicht zur Überprüfung der Geräteleistung.

Für eine einzelne Injektion des isokratischen Teststandards von Agilent Technologies gelten die folgenden Bedingungen.

Bedingungen

Fluss:	15,0 µl/min		
Stoppzeit:	~7,00 Minuten		
Lösungsmittel A:	30% (Wasser höchster Reinheit)		
Lösungsmittel B:	70% (Acetonitril höchster Reinheit)		
Wellenlänge DAD/MWD:	Probe: 254/4 nm, Referenz: 360 / 80 nm		
Injektorvolumen:	200 nl		
Säulentemperatur:	25,0 °C oder Umgebungstemperatur		
Agilent Kapillar-LC-System der Serie 1200	Entgaser Kapillarpumpe - 20 µl/min Sensor installiert Mikro-Probengeber Säulenraum - optional Detektor - DAD mit installierter 500 nl Flusszelle Agilent Steuersoftware (z. B. ChemStation, EZChrom, OL)		
Säule: ZORBAX SB C18, 5 μm, 150 x 0,5 mm Bestellnummer 5064-8256			
Standard:	Bestellnummer 01080-68704 0,15 % Dimethylphthalat, 0,15 % Diethylphthalat 0,01 % Biphenyl, 0,03 % O-Terphenyl in Methanol Verdünnt 1:10 in Acetonitril		

Tabelle 7 Bedingungen

Bei abweichenden Instrumentkonfigurationen werden die Bedingungen geändert, damit sie den Spezifikationen des Instruments entsprechen.

Durchführung

- 1 Führen Sie eine einzelne Injektion des isokratischen Teststandards unter den unten aufgeführten Bedingungen durch.
- 2 Vergleichen Sie das resultierende Chromatogramm mit dem in Abbildung 11 auf Seite 55 dargestellten typischen Chromatogramm.

Typisches Chromatogramm

Ein für diese Analyse typisches Chromatogramm ist in Abbildung 11 auf Seite 55 abgebildet. Das genaue Profil des Chromatogramms hängt von den chromatographischen Bedingungen ab. Abweichungen in der Qualität des Lösungsmittels, in der Säulenpackung, in der Standardkonzentration und in der Säulentemperatur können sich auf die Peakretention und die Response auswirken.

Abbildung 11 Chromatogramm

4 Betrieb der Kapillarpumpe

Testprobe zur Funktionsprüfung injizieren

Optimierung der Pumpenleistung

Hinweise zum Mikro-Vakuumentgaser58Einsatz alternativer Dichtungen59Auswählen des Primärflusses60Statischer Mischer und Filter62Optimierung der Einstellungen für die
Kompressibilitätskompensation63

Hinweise zum Mikro-Vakuumentgaser

Wenn Sie den Vakuumentgaser erstmalig benutzen, der Vakuumentgaser längere Zeit (zum Beispiel über Nacht) ausgeschaltet war oder wenn die Leitungen des Vakuumentgasers leer sind, dann muss der Vakuumentgaser vor dem Start eines Analysenlaufs gespült und mit Lösungsmittel befüllt werden.

Sie können den Vakuumentgaser vorfüllen, indem Sie Lösungsmittel mit der Kapillarpumpe in einer hohen Flussrate (2,5 ml/min) pumpen. Das Vorfüllen des Entgasers wird in folgenden Situationen empfohlen:

- Der Vakuumentgaser wird zum ersten Mal verwendet, oder die Vakuumkammern sind leer.
- Das in den Vakuumkammern befindende Lösungsmittel wird durch ein Lösungsmittel ersetzt, das darin nur schwer löslich ist.
- Die Kapillarpumpe war für einen längeren Zeitraum (z. B. über Nacht) ausgeschaltet (Position OFF), und es werden flüchtige Lösungsmittelmischungen verwendet.

Weitere Informationen sind im Referenzhanduch zum Agilent Mikro-Vakuumentgaser der Serie 1200 enthalten.

Einsatz alternativer Dichtungen

Die Standarddichtungen für die Pumpe können für die meisten Applikationen verwendet werden. Die Standarddichtungen der Pumpe sind jedoch nicht für Normalphasenlösungsmittel (z. B. Hexan) geeignet und müssen bei längerer Verwendung gegen andere ausgetauscht werden.

Für Analysenapplikationen mit Normalphasenlösungsmitteln (z. B. Hexan) sind Dichtungen aus Polyethylen, Bestellnummer 0905-1420 (Packung mit 2 Stück), besonders empfehlenswert. Diese Dichtungen weisen im Vergleich zu den Standarddichtungen einen geringeren Abrieb auf.

HINWEIS

Dichtungen aus Polyethylen haben einen begrenzten Druckbereich von 0 bis 200 bar. Ein Druck von mehr als 200 bar führt zu einer erheblichen Verringerung der Haltbarkeit. Wenden Sie *KEINESFALLS* das Konditionierverfahren für Standarddichtungen bei 400 bar an. 5 Optimierung der Pumpenleistung Auswählen des Primärflusses

Auswählen des Primärflusses

Für die Einstellung des Primärflusses gibt es drei mögliche Bereiche:

• Standardbereich

Beim Standardbereich handelt es sich um den besten Kompromiss im Hinblick auf Leistung und Lösungsmittelverbrauch.

Bereich mit niedrigem Lösungsmittelverbrauch

Der Bereich mit niedrigem Lösungsmittelverbrauch wird für lange Läufe mit flach ansteigendem Gradient (z. B. Peptidanalyse) empfohlen. Wenn für die Applikation ein steil ansteigender Gradient benötigt wird, wird dieser Bereich nicht empfohlen. Das Auswählen dieses Bereichs kann zu einer geringeren Leistung führen.

• Bereich mit steil ansteigendem Gradienten

Dieser Bereich wird für einen Lauf mit einem steil ansteigenden Gradient empfohlen (z. B. < 3 min). Die Equilibrierzeit wird optimiert.

HINWEIS

Der Primärfluss hängt in hohem Maße vom Systemdruck und von der Pumpenkonfiguration, d. h. vom installierten Filter, Flusssensor und Mischer ab. Tabelle 8 auf Seite 61 enthält ungefähre Werte für den Primärfluss bei bestimmtem Systemdruck und den eingestellten Bereich für den Primärfluss.

 Tabelle 8
 Übersicht über Primärfluss für die Standard-Pumpenkonfiguration

	0 bar Systemdruck	100 bar Systemdruck	200 bar Systemdruck	300 bar Systemdruck	400 bar Systemdruck
Bereich mit niedrigem Verbrauch	200	225	250	275	300
Standardbereich	500	570	640	710	780
Bereich mit steil ansteigendem Gradient	800	995	1190	1385	1580

HINWEIS

Bei jeder Änderung der Standardkonfiguration kann der Primärwert höher als die Werte in der Tabelle sein.

5 Optimierung der Pumpenleistung Statischer Mischer und Filter

Statischer Mischer und Filter

Die Kapillarpumpe ist mit einem statischen Mischer und einem Inline-Filter vor dem EMPV ausgerüstet.

Statischer Standard-Mischer

Der statische Standard-Mischer hat in der Regel ein Volumen von 420 µl. Zum Verringern des Totvolumens der Pumpe kann der Mischer entfernt werden.

Bedingungen für das Entfernen des statischen Mischers:

- Das Verzögerungsvolumen der Pumpe sollte zum Erreichen der schnellstmöglichen Gradientenreaktion auf den Minimalwert verringert werden.
- Der Detektor wird bei mittlerer oder niedriger Sensibilität verwendet.

HINWEIS

Das Entfernen des Mischers führt zu einem erhöhten Verschieben des Mischungsverhältnisses und zu stärkerem Detektorrauschen.

Standardfilter

Der Standardfilter hat in der Regel ein Volumen von 100 μ l. Wenn für die Applikation ein verringertes Volumen erforderlich ist (z. B. für steil ansteigenden Gradient), wird der 20 μ l Filter (Bestellnummer 01090-68703) empfohlen. Beachten Sie, dass die Effizienz und die Kapazität im Vergleich zum Standardfilter beträchtlich geringer sind.

HINWEIS Betreiben Sie die Kapillarpumpe nie ohne Inline-Filter.

Optimierung der Einstellungen für die Kompressibilitätskompensation

Die Standardeinstellungen für die Kompressibilitätskompensation sind 50×10^{-6} /bar (für die meisten wässrigen Lösungen am besten geeignet) für den Pumpenkopf A und 115 × 10⁻⁶ /bar (passend für organische Lösungsmittel) für Pumpenkopf B. Diese Einstellungen stellen einen Mittelwert für wässrige Lösungen (A-Seite) und organische Lösungen (B-Seite) dar. Es empfiehlt sich deshalb, das wässrige Lösungsmittel immer am Pumpenkanal A und das organische Lösungsmittel am Pumpenkanal B anzuschließen. Unter normalen Betriebsbedingungen reduziert die Standardeinstellung die Druckschwankung auf Werte unter 1 % des Systemdrucks, was für die meisten Applikationen ausreicht. Falls die Kompressibilitätswerte der verwendeten Lösungsmittel von den Standardeinstellungen abweichen, sind die Kompressibilitätswerte entsprechend zu ändern. Die Kompressibilitätseinstellungen können durch Verwendung der Werte für verschiedene, unter Tabelle 9 auf Seite 64 beschriebene Lösungsmittel optimiert werden. Falls das genutzte Lösungsmittel nicht in der Tabelle mit den Kompressibilitätswerten aufgeführt ist, wenn vorgemischte Lösungsmittel eingesetzt werden oder die Standardeinstellungen nicht ausreichend sind, können Sie die Kompressibilität mit folgendem Verfahren optimal einstellen:

HINWEIS

Verwenden Sie die Kapillarpumpe im Normalmodus bei mindestens 100 µl/min.

- 1 Starten Sie Kanal A der Kapillarpumpe mit der angemessenen Flussrate. Der Systemdruck muss zwischen 50 und 250 bar liegen.
- **2** Vor dem Start des Optimierungsverfahrens muss sich ein stabiler Fluss einstellen. Setzen Sie nur entgaste Eluenten ein. Stellen Sie mit Hilfe des Drucktestes die Dichtigkeit des Systems sicher.
- **3** Ihre Pumpe muss an eine Steuersoftware (z. B. ChemStation, EZChrom, OL) oder an eine mobile Steuereinheit angeschlossen sein, um die Druck- und die prozentualen Schwankungen mit einem dieser Geräte zu überwachen. Verbinden Sie andernfalls den Druckausgang der Pumpe über ein Signalkabel mit einem Aufzeichnungsgerät (z. B. 339X Integrator) und stellen Sie die folgenden Parameter ein:

Zero 50 %

Att 2^3 Vorschub-

Geschwindigkeit 10 cm/min

4 Starten Sie das Aufzeichnungsgerät im Plot-Modus.

5

5 Optimierung der Pumpenleistung

Optimierung der Einstellungen für die Kompressibilitätskompensation

- 5 Starten Sie mit einem Kompressibilitätswert von 10 × 10⁻⁶ /bar und erhöhen Sie den Wert in Einheiten von 10. Führen Sie am Integrator, sofern erforderlich, einen Nullabgleich durch. Die Einstellung des Kompressibilitätsausgleichs, welche die geringsten Druckschwankungen erzeugt, ist der optimale Wert für Ihre Lösungsmittelzusammensetzung.
- **6** Wiederholen Sie Schritt 1 auf Seite 63 bis Schritt 5 auf Seite 64 für den Kanal B der Kapillarpumpe.

Lösungsmittel, rein	Kompressibilität (10-6/bar)
Aceton	126
Acetonitril	115
Benzol	95
Tetrachlorkohlenstoff	110
Chloroform	100
Cyclohexan	118
Ethanol	114
Ethylacetat	104
Heptan	120
Hexan	150
Isobutanol	100
Isopropanol	100
Methanol	120
i-Propanol	100
Toluol	87
THF	95
Wasser	46

Tabelle 9 Kompressibilität von Lösungsmitteln

6

Fehlerbehebung und Diagnose

Agilent Lab Advisor Software 67 Übersicht über die Anzeigen und Testfunktionen der Pumpe 68 Statusanzeigen 68 Fehlermeldungen 68 Drucktest 68 Lecktest 68 Kalibrierung des Flusssensors 69 EMPV-Test 69 **EMPV-Reinigung** 69 Statusanzeigen 70 Stromversorgungsanzeige 70 Gerätestatusanzeige 71 Benutzerschnittstellen 72 Fehlermeldungen 73 Mikromodus-Drucktest 80 Beschreibung 80 Durchführung des Tests über die Agilent Lab Advisor Software 81 Ergebnisse des Mikromodus-Drucktests 81 Normalmodus-Drucktest 83 Normalmodus-Drucktest der Kapillarpumpe 83 Durchführung des Drucktests 84 Auswertung der Ergebnisse 85 Lecktest 86 Beschreibung des Lecktests mit der Kapillarpumpe 86 Durchführung des Lecktests 88 Auswertung der Ergebnisse 89

6 Fehlerbehebung und Diagnose

Optimierung der Einstellungen für die Kompressibilitätskompensation

Kalibrierung des Flusssensors 94 Beschreibung 94 Ausführen der Kalibrierung 95 EMPV-Test 97 Durchführung des EMPV-Tests 97 EMPV-Reinigung 98 EMPV-Reinigung an der Kapillarpumpe 98 Durchführung des Tests 98

Agilent Lab Advisor Software

Die Agilent Lab Advisor Software ist ein eigenständiges Produkt, das mit oder ohne Datensystem verwendet werden kann. Die Agilent Lab Advisor Software hilft Laboren bei der Verwaltung hochqualitativer chromatographischer Ergebnisse und kann ein einzelnes Agilent LC- oder alle konfigurierten Agilent GC- und LC-Systeme im Labor-Intranet in Echtzeit überwachen.

Die Agilent Lab Advisor Software bietet Diagnosefunktionen für alle Agilent HPLC-Module der Serie 1200. Dazu gehören Diagnosefunktionen, Kalibriervorgänge und Wartungsvorgänge für alle Wartungsvorgänge.

Der Benutzer kann mit der Agilent Lab Advisor Software auch den Status der LC-Geräte überwachen. Die Wartungsvorwarnfunktion Early Maintenance Feedback (EMF) erinnert an fällige Wartungen. Zusätzlich kann der Anwender einen Statusbericht für jedes einzelne LC-Gerät erstellen. Die Test- und Diagnosefunktionen der Agilent Lab Advisor Software können von den Beschreibungen in diesem Handbuch abweichen. Detaillierte Informationen finden Sie in den Hilfedateien der Agilent Lab Advisor Software.

Dies Handbuch enthält Listen mit den Namen der Fehlermeldungen, der Nicht-Bereit-Meldungen und anderer allgemeiner Meldungen.

Übersicht über die Anzeigen und Testfunktionen der Pumpe

Statusanzeigen

6

Die Kapillarpumpe verfügt über zwei Statusanzeiger, welche die Betriebszustände Vorlauf, Analyse und Fehlerbedingungen der Pumpe anzeigen. Die Statusanzeige bietet einen schnellen Überblick über den Betriebszustand der Kapillarpumpe (siehe "Statusanzeigen" auf Seite 70).

Fehlermeldungen

Tritt ein elektronischer, mechanischer oder die Hydraulik betreffender Fehler auf, so generiert das Gerät eine Fehlermeldung auf dem Steuerrechner. Einzelheiten zu den Fehlermeldungen und der Fehlerbehebung entnehmen Sie bitte der Agilent Lab Advisor Software.

Drucktest

Der Dichtigkeitstest ist ein schnell durchzuführender Test zur Überprüfung der Druckdichtigkeit des Systems. Nach dem Austausch von Komponenten im Flüssigkeitsweg (z.B. Pumpen- oder Injektordichtungen) können Sie mit diesem Test die Druckdichtigkeit des Systems bei bis zu 400 bar prüfen, siehe "Beschreibung" auf Seite 80 und "Normalmodus-Drucktest der Kapillarpumpe" auf Seite 83).

Lecktest

Der Lecktest ist ein Diagnoseverfahren zur Bestimmung der Druckdichtigkeit der Kapillarpumpe. Sobald Sie ein Problem in der Funktion der Kapillarpumpe vermuten, können Sie mit diesem Test die Fehlersuche unterstützen und die Pumpleistung prüfen (siehe "Beschreibung des Lecktests mit der Kapillarpumpe" auf Seite 86).

Kalibrierung des Flusssensors

Das Verfahren zum Kalibrieren des Flusssensors wird zum Erzeugen von angepassten Kalibrierungsdaten verwendet. Dieses Verfahren sollte jedes Mal durchgeführt werden, wenn vermutet wird, dass die Flussrate ungenau ist, oder wenn die gewünschte Lösungsmittelkombination nicht in der vordefinierten Kalibrierungstabelle aufgeführt ist.

EMPV-Test

Der EMPV-Test wird zum Überprüfen der EMPV-Leistung verwendet. Dieser Test muss bei jedem Austausch des EMPV durchgeführt werden. Der Test sollte außerdem auch durchgeführt werden, wenn Fehler in Bezug auf die Stabilität des Säulenflusses auftreten (nur im Mikromodus).

EMPV-Reinigung

Je nach Applikation können sich Partikel im EMPV sammeln. Dieses Reinigungsverfahren wird zum Entfernen der Partikelabsetzungen verwendet. Dieses Verfahren sollte jedes Mal durchgeführt werden, wenn vermutet wird, dass das EMPV undicht oder durch Partikel verunreinigt ist.

6

6 Fehlerbehebung und Diagnose Statusanzeigen

Statusanzeigen

An der Vorderseite der Kapillarpumpe befinden sich zwei Statusanzeigen. Die Anzeige links unten gibt Auskunft über die Stromversorgung, die Anzeige rechts oben über den Status des Geräts.

Abbildung 12 Stromversorgungsanzeige

Stromversorgungsanzeige

Die Stromversorgungsanzeige ist in den Netzschalter integriert. Bei *grün* leuchtender Anzeige ist der Netzstrom eingeschaltet.

Wenn die Anzeige nicht leuchtet, ist das Modul ausgeschaltet. Ist das Gerät trotz nicht leuchtender Anzeige weiter eingeschaltet, sollten Sie die Stromanschlüsse, die Stromversorgung und das Netzteil überprüfen.

Gerätestatusanzeige

Die Gerätestatusanzeige zeigt einen von vier möglichen Betriebszuständen an:

- Wenn die Statusanzeige *AUS* ist und der Netzschalter leuchtet, befindet sich die Kapillarpumpe in der *Vorlaufphase* und ist bereit, eine Analyse zu beginnen.
- Eine *grüne* Statusanzeige bedeutet, dass die Kapillarpumpe einen Analysenlauf durchführt (*Analysenmodus*).
- Eine *gelbe* Anzeige zeigt, dass das Gerät *nicht betriebsbereit* ist. Die Kapillarpumpe befindet sich in diesem Zustand, wenn sie darauf wartet, dass eine bestimmte Betriebsbedingung erreicht bzw. beendet wird, z. B. direkt nach Änderung eines Parameterwertes oder während eines Selbsttests.
- Ein *Fehler*zustand wird durch eine *rote* Anzeigenleuchte dargestellt. Eine Fehlerbedingung zeigt an, dass die Kapillarpumpe ein internes Problem detektiert hat, das Auswirkungen auf den korrekten Betrieb der Pumpe hat. Normalerweise erfordert dieser Zustand ein Eingreifen seitens des Anwenders (z. B. Leckage, interne Komponenten defekt). Bei Auftreten einer Fehlerbedingung wird die Analyse immer unterbrochen.
- Eine *gelb blinkende* Statusanzeige bedeutet, dass das Modul sich im *residenten Modus* befindet. Wenden Sie sich bei Auftreten dieses Fehlers an den zuständigen Kundendienst.
- Eine *rot blinkende* Statusanzeige bedeutet, dass während des *Start*vorgangs des Moduls ein schwerwiegender Fehler aufgetreten ist. Wenden Sie sich bei Auftreten dieses Fehlers an den zuständigen Kundendienst.

Benutzerschnittstellen

Die Verfügbarkeit von Tests ist abhängig von der Benutzerschnittstelle. Einige Beschreibungen finden Sie nur im Wartungshandbuch.

Gerätetest	ChemStation	Instant Pilot G4208A	Steuermodul G1323B	Agilent Lab Advisor Software
Mikromodus-Drucktest	Ja	Ja	Ja	Ja
Normalmodus-Drucktest	Ja	Ja	Ja	Ja
Lecktest	Ja	Ja	Ja	Ja
Kalibrierung des Flusssensors	Ja	Nein	Ja	Ja
EMPV-Test	Ja	Nein	Ja	Ja
EMPV-Reinigung	Ja	Ja	Ja	Ja

 Tabelle 10
 In der entsprechenden Benutzeroberfläche verfügbare Testfunktionen
Fehlermeldungen

Fehlfunktionen von Elektronik, Mechanik oder Hydraulik (Flussweg) werden dann in der Benutzerschnittstelle mit einer Meldung angezeigt, wenn eine Fehlerbehebung (z. B. eine Reparatur oder Austausch von Verbrauchsmaterial) zur Fortsetzung der Analysen erforderlich ist. Im Falle eines solchen Fehlers leuchtet die Statusanzeige an der Vorderseite der binären Pumpe rot, und es erfolgt ein Eintrag in das Gerätelogbuch.

Timeout

Zeitüberschreitung

Der Schwellenwert für die Zeitüberschreitung wurde überschritten.

Mögliche Ursache

- Die Analyse wurde erfolgreich beendet, und die Timeout-Funktion hat das Modul wie gefordert ausgeschaltet.
- 2 Während einer Sequenz ist der Zustand "Nicht bereit" aufgetreten, oder es erfolgte eine Mehrfachinjektion über einen Zeitraum, der den Timeout-Schwellenwert überschritt.

Empfohlene Maßnahme

Suchen Sie im Logbuch nach dem Ereignis und nach der Ursache für den Status "nicht bereit". Starten Sie die Analyse bei Bedarf nochmals.

Suchen Sie im Logbuch nach dem Ereignis und nach der Ursache für den Status "nicht bereit". Starten Sie die Analyse bei Bedarf nochmals.

6 Fehlerbehebung und Diagnose

Fehlermeldungen

Shut-Down

Herunterfahren

Ein externes Gerät hat ein Abschaltsignal auf der Remote-Leitung erzeugt.

Das Modul überwacht fortlaufend die am Remote-Eingang anliegenden Statussignale. Die Fehlermeldung wird erzeugt, wenn am Kontaktstift 4 des Remote-Steckers ein tiefpegeliges Eingangssignal (LOW) anliegt.

Mögliche Ursache		Empfohlene Maßnahme
1	In einem anderen, über den CAN-Bus angeschlossenen Modul, wurde ein Leck detektiert.	Beseitigen Sie das Leck im externen Gerät, bevor Sie das Modul neu starten.
2	In einem externen Gerät, das über den Remote-Anschluss mit dem System verbunden ist, wurde ein Leck detektiert.	Beseitigen Sie das Leck im externen Gerät, bevor Sie das Modul neu starten.
3	Ein externes, über den Remote-Anschluss mit dem System verbundenes Gerät wurde abgeschaltet.	Überprüfen Sie, ob externe Geräte abgeschaltet sind.
4	Der Entgaser hat kein ausreichendes Vakuum für die Eluentenentgasung erzeugt.	Kontrollieren Sie den Vakuumentgaser auf Fehlerbedingungen. Informationen dazu sind dem <i>Servicehandbuch</i> zum Agilent Entgaser der Serie 1200 zu entnehmen.

Remote Timeout

Zeitüberschreitung am Remote-Eingang

Am Remote-Eingang wird weiterhin eine fehlende Betriebsbereitschaft gemeldet.

Wenn eine Analyse gestartet wird, erwartet das System, dass alle "Nicht bereit"-Bedingungen (z. B. aufgrund eines Detektorabgleichs) innerhalb einer Minute nach Analysenstart auf "Bereit" umschalten. Andernfalls wird nach einer Minute eine entsprechende Fehlermeldung ausgegeben.

Mögliche Ursache		Empfohlene Maßnahme	
1	Ein "Nicht bereit"-Zustand bei einem der Geräte, die über die Remote-Leitung angeschlossen sind.	Stellen Sie sicher, dass das nicht betriebsbereite Gerät korrekt installiert und ordnungsgemäß für die Analyse vorbereitet ist.	
2	Defektes Remote-Kabel	Tauschen Sie das Remote-Kabel aus.	
3	Defekte Baugruppen in dem Gerät, das die "Nicht bereit"-Bedingung anzeigt.	Überprüfen Sie das Gerät auf Defekte (siehe dazu das Referenzhandbuch des entsprechenden Gerätes).	

6 Fehlerbehebung und Diagnose

Fehlermeldungen

Synchronization Lost

Synchronisationsverlust

Während einer Analyse ist die interne Synchronisation oder Kommunikation zwischen einem oder mehreren Systemmodulen verloren gegangen.

Der Systemprozessor überwacht permanent die Systemkonfiguration. Diese Fehlermeldung wird erzeugt, wenn ein oder mehrere Module laut Überprüfung nicht mehr korrekt an das System angeschlossen sind.

Mögliche Ursache		Empfohlene Maßnahme	
1	Das CAN-Kabel ist nicht angeschlossen.	 Vergewissern Sie sich, dass alle CAN-Kabel ordnungsgemäß angeschlossen sind. 	
		 Alle CAN-Kabel müssen ordnungsgemäß installiert sein. 	
2	Das CAN-Kabel ist defekt.	Tauschen Sie das CAN-Kabel aus.	
3	Defekte Hauptplatine in einem anderen Modul.	Schalten Sie das System aus. Starten Sie es erneut, und stellen Sie fest, welche Module nicht vom System erkannt werden.	

Leak Leckage

Ein Leck wurde im Modul entdeckt.

Die Signale von zwei Temperaturfühlern (Lecksensor und der auf der Platine befindliche Sensor zur Temperaturkompensation) werden von der Leckerkennungsschaltung verwendet, um festzustellen, ob ein Leck vorhanden ist. Wenn ein Leck auftritt, so kühlt sich der Lecksensor durch das Lösungsmittel ab. Dadurch ändert sich der Widerstand des Lecksensors. Diese Änderung wird durch die Sensorschaltung auf der Hauptplatine registriert.

Mögliche Ursache		Empfohlene Maßnahme
1	Nicht festgezogene Verschraubungen.	Stellen Sie sicher, dass alle Verschraubungen fest angezogen sind.
2	Gebrochene Kapillarleitung.	Tauschen Sie defekte Kapillarleitungen aus.
3	Aktiveinlassventil (AIV), Auslasskugelventil oder EMPV sind gelöst oder undicht.	Vergewissern Sie sich, dass die Pumpenteile richtig sitzen. Tauschen Sie bei weiterhin bestehenden Anzeichen eines Lecks die entsprechende Dichtung am aktiven Einlassventil, am Auslassventil oder am EMPV aus.
4	Pumpendichtungen sind defekt.	Tauschen Sie die Pumpendichtungen aus.

6 Fehlerbehebung und Diagnose

Fehlermeldungen

Zero Solvent Counter

Lösungsmittelvorrat zu gering

Die Firmwareversion A.02.32 und höher der binären Pumpe unterstützt die Eingabe von Flaschenfüllständen in der Agilent ChemStation Version 5.xx und höher. Falls der Flüssigkeitsstand in der Flasche unter den angegebenen Wert fällt, wird bei entsprechender Konfiguration diese Fehlermeldung ausgegeben.

Mögliche Ursache		Empfohlene Maßnahme
1	Flüssigkeitsmenge in der Flasche unter dem angegebenen Mindestvolumen.	Befüllen Sie die Flaschen und setzen Sie die Lösungsmittelzähler zurück.
2	Falsche Wahl des Grenzwertes.	Überwachen Sie die Wahl des Grenzwertes.

Pressure Above Upper Limit

Oberes Drucklimit überschritten

Der Druck im System hat den zulässigen oberen Grenzwert überschritten.

Mögliche Ursache		Empfohlene Maßnahme
1	Der obere Druckgrenzwert ist auf einen zu niedrigen Wert eingestellt.	Überprüfen Sie, ob der obere Druckgrenzwert auf einen für die Analyse geeigneten Wert eingestellt ist.
2	Verstopfung bzw. Blockade im Flussweg (hinter dem Dämpfer).	Überprüfen Sie das System auf Blockaden im Flussweg. Die folgenden Komponenten sind besonders anfällig für Verstopfungen: Fritte des Spülventils, Nadel (Probengeber), Kapillare zum Nadelsitz (Probengeber), Probenschleife (Probengeber), Säulenfritten und Kapillaren mit geringem Innendurchmesser (z. B. 0,12 mm).
3	Defekter Dämpfer.	Tauschen Sie den Dämpfer aus.
4	Defekte Hauptplatine.	Tauschen Sie die Hauptplatine aus.

Pressure Below Lower Limit

Unteres Drucklimit unterschritten

Der Systemdruck ist unter den eingestellten unteren Grenzwert gefallen.

Mögliche Ursache		Empfohlene Maßnahme
1	Der untere Druckgrenzwert ist zu hoch eingestellt.	Kontrollieren Sie, ob der untere Druckgrenzwert auf einen für die Analyse geeigneten Wert eingestellt ist.
2	Luftblasen in mobiler Phase.	 Stellen Sie sicher, dass die Lösungsmittel entgast sind. Spülen Sie das Modul.
		 Vergewissern Sie sich, dass die Lösungsmittelansaugfilter nicht verstopft sind.
3	Leck.	 Überprüfen Sie den Pumpenkopf, die Kapillarleitungen und die Verschraubungen auf Anzeichen für Leckagen.
		 Spülen Sie das Modul. Führen Sie zur Feststellung möglicher Schäden an den Dichtungen oder an anderen Modulteilen einen Drucktest durch.
4	Defekter Dämpfer.	Tauschen Sie den Dämpfer aus.
5	Defekte Hauptplatine.	Tauschen Sie die Hauptplatine aus.

6 Fehlerbehebung und Diagnose Mikromodus-Drucktest

Mikromodus-Drucktest

Beschreibung

Dies ist ein schneller Test zur Überprüfung der Dichtigkeit des Mikrosystems, wenn die Pumpe im Mikromodus arbeitet und kein manuelles Spülventil installiert ist. Der Flussweg des zu prüfenden Systems wird mit einem Blindstopfen verschlossen. Der Druck wird auf 380 bar erhöht, und der erzielte Fluss wird mit dem Flusssensor bei blockiertem System gemessen.

Schritt 1

Der Test beginnt mit der Initialisierung der beiden Pumpenköpfe. Dann fördert die Pumpe A Lösungsmittel, bis ein Systemdruck von 380 bar erreicht ist.

Schritt 2

Die Pumpe arbeitet einige Minuten druckgesteuert bei 380 bar. Es wird der verbleibende Fluss im Säulenflussweg zwischen EMPV und dem Blindstopfen gemessen.

Durchführung des Tests über die Agilent Lab Advisor Software

- 1 Wählen Sie den Mikromodus-Drucktest aus dem Auswahlmenü zu den Testverfahren.
- 2 Starten Sie den Test und folgen Sie den Anweisungen.

HINWEIS Detaillierte Anweisungen finden Sie in der Agilent Lab Advisor Software.

HINWEIS

Verwenden Sie bitte bei Schritt 10 des Verfahrens zum Verschließen des Flusssensorausgangs den PEEK-Blindstopfen aus dem Zubehörkit. Verwenden Sie keinen Edelstahl-Blindstopfen für den Ausgang des Flusssensors, da dies zu einer Beschädigung des Flusssensor führen kann.

Ergebnisse des Mikromodus-Drucktests

Die Testergebnisse werden automatisch ausgewertet. Die Summe aller Undichtigkeiten im Flussweg vom EMPV bis zum Blindstopfen muss kleiner als 1000 nl/min sein.

HINWEIS

Kleine Undichtigkeiten ohne sichtbare Leckagen im Flussweg können den Test fehlschlagen lassen.

Nicht bestandener Drucktest

Stellen Sie sicher, dass alle Verschraubungen zwischen Pumpe und Blindstopfen festgezogen sind. Wenn der Test erneut nicht bestanden wird, können Sie den Blindstopfen am Auslass des vorhergehenden Moduls im Geräteturm anbringen und den Drucktest wiederholen. Schließen Sie zur genaueren Lokalisierung nacheinander alle Module aus.

Mögliche Ursachen für einen nicht bestandenen Dichtigkeitstest

Nach der Identifizierung und Behebung des Lecks ist der Drucktest zu wiederholen, um sicherzustellen, dass das System nun druckfest und dicht ist.

6 Fehlerbehebung und Diagnose

Mikromodus-Drucktest

Tabelle 11 Mögliche Ursache (Pumpe)

Mögliche Ursache (Pumpe)	Abhilfe	
Lockere oder undichte Verschraubung.	Ziehen Sie die Verschraubung fest oder tauschen Sie die Kapillare aus.	
Lockere oder undichte EMPV	Lassen Sie den EMPV-Test durchlaufen.	
Beschädigte Pumpendichtung oder Kolben.	Führen Sie den Lecktest der Pumpe zur Bestätigung durch.	
Große Abweichung des Flusssensors	Führen Sie eine Kalibrierung des Flusssensors durch und korrigieren Sie die Abweichung.	

 Tabelle 12
 Mögliche Ursache (automatischer Probengeber)

Mögliche Ursache (automatischer Probengeber)	Abhilfe	
Lockere oder undichte Verschraubung.	Ziehen Sie die Verschraubung fest oder tauschen Sie die Kapillare aus.	
Nadelsitz	Tauschen Sie den Nadelsitz aus.	
Rotordichtung (Injektionsventil)	Tauschen Sie die Rotordichtung aus.	
Messdichtung oder Kolben beschädigt	Tauschen Sie die Messdichtung aus. Überprüfen Sie den Kolben auf Kratzer. Tauschen Sie den Kolben ggf. aus.	

Normalmodus-Drucktest

Normalmodus-Drucktest der Kapillarpumpe

Der Drucktest ist ein geräteinterner Schnelltest zum Nachweis der Druckdichtigkeit des Systems. Der Test besteht in der Aufzeichnung eines Druckprofils, während die Pumpe einen definierten Pumpzyklus durchläuft. Das resultierende Druckprofil liefert Informationen über die Druckdichtigkeit des Systems.

Schritt 1

Der Test beginnt mit der Initialisierung der beiden Pumpenköpfe. Nach der Initialisierung stehen Kolben A1 und B1 an ihrem oberen Anschlag. Dann beginnt der Pumpenkanal A, Lösungsmittel mit einer Flussrate von 510 μ l/min und einem Hub von 100 μ l zu pumpen. Die Pumpe setzt den Pumpvorgang fort, bis ein Systemdruck von 390 bar erreicht ist.

HINWEIS

Bei diesem Test ist nur Kanal A2 aktiv. Zur Überprüfung der Druckfestigkeit der Pumpe können Sie den Lecktest verwenden, siehe "Beschreibung des Lecktests mit der Kapillarpumpe" auf Seite 86.

Schritt 2

Wenn der Systemdruck 390 bar erreicht, schaltet sich die Pumpe ab. Der Druckabfall darf nach diesem Zeitpunkt nicht mehr als 2 bar/min betragen.

Einbau des Blindstopfens

Falls ein Leck in einer bestimmten Komponente vermutet wird, ist der Blindstopfen unmittelbar vor dieser zu installieren und der Test erneut durchzuführen. Wenn der Test bestanden wird, befindet sich die undichte Stelle nach dem Blindstopfen. Bestätigen Sie die Diagnose, indem Sie den Test mit dem Blindstopfen nach dieser Komponente durchführen. Die Diagnose ist abgesichert, wenn der Test nicht bestanden wird.

Durchführung des Drucktests

Wann erforderlich	Dieser Test wird angewandt, wenn Lecks vermutet werden, nach der Instandsetzung von Komponenten im Flüssigkeitsweg, wie. z. B. Pumpen- und Injektordichtung, und um die Druckfestigkeit bis 400 bar sicherzustellen. Gabelschlüssel, 1/4 Zoll				
Erforderliche Werkzeuge					
Erforderliche Teile	Anzahl	Bestellnummer	Beschreibung		
	1	01080-83202	Blindstopfen		
			500 ml Isopropanol		
Vorbereitungen	Stellen Sie eine Flasche mit Isopropanol der Reinheit LC-Grade in den Lösungsmittelraum und schließen Sie deren Lösungsmittelschlauch an Kanal A2 an.				
HINWEIS	Stellen Sie sicher, dass alle zu testenden Teile des Flüssigkeitsweges sorgfältig mit Isopropanol gespült werden, bevor das System unter Druck gesetzt wird! Spuren anderer Lösungsmittel oder kleinste Luftblasen im Flüssigkeitsweg führen dazu, dass der Test nicht bestanden werden kann!				
	Durchfüł	nrung des Tests ül	oer die Agilent Lab Advisor Software		
	1 Wählen Sie im Auswahlmenü "Pressure Test" (Drucktest) aus.				
	2 Starten Sie den Test und folgen Sie den Anweisungen.				
TIPP	"Auswertung der Ergebnisse" auf Seite 85 beschreibt, wie die Ergebnisse des Drucktests ausgewertet und interpretiert werden.				
TIPP	Detaillierte	e Anweisungen finde	en Sie im Agilent Lab Advisor Software-Tool.		

Auswertung der Ergebnisse

Sämtliche Lecks zwischen Pumpe und Blindstopfen führen zu einem Druckabfall von > 2 bar/min auf dem Plateau. Beachten Sie, dass kleinste Lecks mit diesem Test erfasst werden, ohne dass austretende Flüssigkeit direkt gesehen werden kann.

HINWEIS

Beachten Sie den Unterschied zwischen einem *Error* (Fehler) und einem *Failure* (Nicht bestehen) des Tests. Ein *Error* (Fehler) bedeutet, dass der laufende Test durch ein unerwartetes Ereignis abgebrochen wurde. Die Angabe *failed* (nicht bestanden) bedeutet, dass die Testergebnisse nicht innerhalb der spezifizierten Werte liegen.

HINWEIS

In vielen Fällen ist ein durch überfestes Anbringen beschädigter Blindstopfen selbst die Fehlerquelle im Test. Überprüfen Sie daher den Zustand und korrekten Sitz des Blindstopfens, bevor Sie nach anderen möglichen Fehlerquellen suchen.

6 Fehlerbehebung und Diagnose Lecktest

Lecktest

Beschreibung des Lecktests mit der Kapillarpumpe

Der Lecktest ist ein geräteinterner Test und dient zum Nachweis von Lecks in der Pumpe. Der Test besteht in der Aufzeichnung eines Druckprofils, während die Pumpe einen definierten Pumpzyklus durchläuft. Das sich ergebende Druckprofil liefert Informationen zur Druckdichtigkeit und zum Betrieb der Kapillarpumpenkomponenten.

Rampe 1

Der Test beginnt mit der Initialisierung der beiden Pumpenkanäle. Nach der Initialisierung stehen Kolben A1 und B1 an ihrem oberen Anschlag. Dann beginnt die Kapillarpumpe Lösungsmittel mit einer Flussrate von 150 μ l/min, einem Kolbenhub von 100 μ l und einem Lösungsmittelverhältnis von 51 %A zu 49 %B zu pumpen. Beide Pumpen liefern einen vollständigen Pumpenzyklus. Am Ende dieses Schrittes sind Kolben A1 und B1 an ihrem oberen Anschlag.

Rampe 2

Die Kapillarpumpe pumpt weiterhin Lösungsmittel mit einer Flussrate von 150 µl/min. Kanal A fördert für einen Pumpenzyklus (zuerst fördert Kolben A2, dann Kolben A1) gefolgt durch Kanal B (Kolben B2, dann Kolben B1). Beide Kanäle fördern mit einem Kolbenhub von 20 µl.

Rampe 3

Kurz vor Beginn des ersten Plateaus fördert Kolben A2 etwa 8 Sekunden lang mit einer Flussrate von 50 $\mu l/min.$

Plateau 1

Auf dem Plateau 1 fördert Kolben A2 30 Sekunden lang bei einer Flussrate von 3 $\mu l/min.$

Rampe 4

Kolben B2 fördert etwa 8 Sekunden lang 50 $\mu l/min.$

Plateau 2

Kolben B2 fördert 30 Sekunden lang bei einer Flussrate von 3 µl/min.

Rampe 5

Kolben A1 fördert etwa 8 Sekunden lang 50 μ l/min.

Plateau 3

Kolben A1 fördert 30 Sekunden lang bei einer Flussrate von 3 μ l/min.

Rampe 6

Kolben B1 fördert etwa 7 Sekunden lang 50 μ l/min.

Plateau 4

Kolben B1 fördert etwa 30 Sekunden lang bei einer Flussrate von 3 μ l/min. Am Ende des vierten Plateaus ist der Test beendet und die Kapillarpumpe schaltet sich aus.

6 Fehlerbehebung und Diagnose Lecktest

Durchführung des Lecktests

Wann erforderlich	Bei Verdacht auf Probleme mit der Kapillarpumpe			
Erforderliche Werkzeuge	Gabelschlüssel, 1/4 Zoll			
Erforderliche Teile	Anzahl	Bestellnummer	Beschreibung	
	1	G1313-87305	Restriktionskapillare	
	1	01080-83202	Blindstopfen	
			500 ml Isopropanol	
Vorbereitungen	Stellen Sie zwei Flaschen mit Isopropanol der Reinheit LC-Grade in die Kanäle A2 und B2.			
HINWEIS Stellen Sie sicher, dass alle zu testenden Teile des Flüssigkeitsweges sorgfältig Isopropanol gespült werden, bevor das System unter Druck gesetzt wird! Spure Lösungsmittel oder kleinste Luftblasen im Flüssigkeitsweg führen dazu, dass de bestanden werden kann!		e zu testenden Teile des Flüssigkeitsweges sorgfältig mit en, bevor das System unter Druck gesetzt wird! Spuren anderer e Luftblasen im Flüssigkeitsweg führen dazu, dass der Test nicht		
	Durchführung des Tests über die Agilent Lab Advisor Software			
	1 Wählen Sie im Auswahlmenü "Leak Test" (Lecktest) aus.			
	2 Starten Sie den Test und folgen Sie den Anweisungen.			
HINWEIS Lassen Sie nach Ende des Tests den Druck ab, indem Sie das Spülventil langsam ö		Tests den Druck ab, indem Sie das Spülventil langsam öffnen.		
TIPP	"Auswertung der Ergebnisse" auf Seite 89 beschreibt, wie die Ergebnisse des DrLecktests ausgewertet und interpretiert werden.			
TIPP	Detaillierte Anweisungen finden Sie im Agilent Lab Advisor Software-Tool.			

Auswertung der Ergebnisse

Defekte oder leckende Teile im Pumpenkopf verursachen beim Lecktest Änderungen im Aussehen des Druckverlaufs. Typische Fehlerursachen werden nachfolgend beschrieben.

HINWEIS

Beachten Sie den Unterschied zwischen einem *Fehler* und einem *Nichtbestehen* des Tests. Ein *Fehler* bedeutet, dass der laufende Test durch ein unerwartetes Ereignis abgebrochen wurde. Die Angabe *fehlgeschlagen* bedeutet, dass die Testergebnisse nicht innerhalb der spezifizierten Werte liegen.

HINWEIS

In vielen Fällen ist ein durch überfestes Anbringen beschädigter Blindstopfen selbst die Fehlerquelle im Test. Überprüfen Sie daher den Zustand und korrekten Sitz des Blindstopfens, bevor Sie nach anderen möglichen Fehlerquellen suchen.

No pressure increase or minimum pressure of plateau 1 not reached Kein Druckanstieg oder der Mindestdruck von Plateau 1 wurde nicht erreicht

Mögliche Ursache		Empfohlene Maßnahme
1	Pumpe arbeitet nicht.	Überprüfen Sie das Logbuch auf Fehlermeldungen.
2	Lösungsmittelleitung zum Auswahlventil falsch angeschlossen.	Stellen Sie sicher, dass die Lösungsmittelleitungen vom Entgaser zum Auswahlventil richtig angeschlossen sind.
3	Lockere oder undichte Verschraubungen.	Stellen Sie sicher, dass alle Verschraubungen dicht sind oder tauschen Sie die Kapillare aus.
4	Große, sichtbare Lecks an den Pumpendichtungen	Tauschen Sie die Pumpendichtungen aus.
5	Große, sichtbare Lecks am Aktiveneinlassventil, Auslassventil oder EMPV.	 Stellen Sie sicher, dass die undichten Komponenten richtig installiert sind. Tauschen Sie, falls erforderlich, Komponenten aus.
		• Führen Sie die EMPV-Reinigungsprozedur

durch.

Pressure limit not reached but plateaus horizontal or positive

Druckgrenze nicht erreicht, aber Plateaus horizontal oder mit Steigung

Mögliche Ursache		Empfohlene Maßnahme	
1	Entgaser und Pumpenkanäle A und/oder B nicht ausreichend gespült (Luftblasen in den Kanälen).	Spülen Sie Entgaser und Pumpenkanäle mit einer Widerstandskapillare sorgfältig mit Isopropanol unter Druck.	
2	Falsches Lösungsmittel.	Isopropanol verwenden. Spülen Sie Entgaser und Pumpenkanäle sorgfältig mit Isopropanol.	

All plateaus negative

Alle Plateaus fallen ab

Mögliche Ursache		Empfohlene Maßnahme	
1	Lockere oder undichte Verschraubungen.	Stellen Sie sicher, dass alle Verschraubungen dicht sind oder tauschen Sie die Kapillare aus.	
2	Leck im Mischer (falls installiert)	Ziehen Sie alle Verschraubungen des Mischers fest.	
3	Verunreinigtes Spülventil (EMPV)	Führen Sie die EMPV-Reinigungsprozedur durch.	
4	Lockere Pumpenkopfschrauben in Kanal A oder B	Stellen Sie sicher, dass die Pumpenkopfschrauben der Kanäle A und B fest sitzen.	
5	Leckende Dichtung oder zerkratzter Kolben in Kanal A2 oder B2	Tauschen Sie die Pumpendichtungen beider Kanäle aus. Überprüfen Sie die Kolben auf Kratzer. Tauschen Sie verkratzte Kolben aus.	
6	Leckendes Auslassventil in Kanal A oder B	Tauschen Sie das Auslassventil aus.	
7	Undichter Dämpfer.	Tauschen Sie den Dämpfer aus.	

First plateau negative or unstable, and at least one other plateau positive

Erstes Plateau abfallend oder instabil, mindestens ein anderes Plateau ansteigend

Mögliche Ursache		Empfohlene Maßnahme	
1	Leckendes Auslassventil in Kanal A.	Reinigen Sie das Auslassventil in Kanal A. Stellen Sie sicher, dass die Siebe in den Auslassventilen korrekt installiert sind. Ziehen Sie das Auslassventil fest.	
2	Lösen Sie die Pumpenkopfschrauben in Kanal A.	Stellen Sie sicher, dass die Pumpenkopfschrauben der Kanäle A fest sitzen.	
3	Leckende Dichtung oder zerkratzter Kolben in Kanal A2.	Wechseln Sie die Pumpendichtungen beim Kanal A. Prüfen Sie den Kolben auf Kratzer. Tauschen Sie verkratzte Kolben aus.	

Second plateau negative or unstable, and at least one other plateau positive

Zweites Plateau abfallend oder instabil, mindestens ein anderes Plateau ansteigend

Mögliche Ursache		Empfohlene Maßnahme	
1	Leckendes Auslassventil in Kanal B.	Reinigen Sie das Auslassventil in Kanal B. Stellen Sie sicher, dass die Siebe in den Auslassventilen korrekt installiert sind. Ziehen Sie das Auslassventil fest.	
2	Lösen Sie die Pumpenkopfschrauben in Kanal B.	Stellen Sie sicher, dass die Pumpenkopfschrauben der Kanäle B fest sitzen.	
3	Leckende Dichtung oder zerkratzter Kolben in Kanal B2.	Wechseln Sie die Pumpendichtungen beim Kanal B. Prüfen Sie den Kolben auf Kratzer. Tauschen Sie verkratzte Kolben aus.	

Third plateau negative or unstable and at least one other plateau positive

Drittes Plateau abfallend oder instabil, mindestens ein anderes Plateau ansteigend

Μ	ögliche Ursache	Empfohlene Maßnahme	
1	Luft in Kanal A oder neuen Dichtungen noch nicht richtig gesetzt	Spülen Sie Kanal A mit einer Widerstandskapillare sorgfältig mit Isopropanol unter Druck.	
2	Lösen Sie das Aktiveinlassventil in Kanal A.	Ziehen Sie das Aktiveinlassventil in Kanal A fest (14mm-Gabelschlüssel). Ziehen Sie nicht zu fest an.	
3	Lösen Sie die Pumpenkopfschrauben in Kanal A.	Stellen Sie sicher, dass die Pumpenkopfschrauben der Kanäle A fest sitzen.	
4	Lösen Sie das Auslassventil in Kanal A.	Stellen Sie sicher, dass das Sieb im Auslassventil richtig installiert ist. Ziehen Sie das Auslassventil fest.	
5	Leckende Dichtung oder zerkratzter Kolben in Kanal A1.	Wechseln Sie die Pumpendichtungen beim Kanal A. Prüfen Sie die Kolben auf Kratzer. Tauschen Sie verkratzte Kolben aus.	
6	Defektes Aktiveinlassventil in Kanal A.	Tauschen Sie das Aktiveinlassventil in Kanal A aus.	

Fourth plateau negative or unstable and at least one other plateau positive

Viertes Plateau abfallend oder instabil, mindestens ein anderes Plateau ansteigend

Mögliche Ursache		Empfohlene Maßnahme	
1	Luft in der Pumpkammer des Kanals B oder den Dichtungen noch nicht richtig gesetzt.	Spülen Sie Kanal B mit einer Widerstandskapillare sorgfältig mit Isopropanol unter Druck.	
2	Lösen Sie das Aktiveinlassventil in Kanal B.	Ziehen Sie das Aktiveinlassventil in Kanal B fest (14mm Gabelschlüssel). Ziehen Sie nicht zu fest an.	
3	Lösen Sie die Pumpenkopfschrauben in Kanal B.	Stellen Sie sicher, dass die Pumpenkopfschrauben der Kanäle B fest sitzen.	
4	Loses Auslassventil in Kanal B.	Stellen Sie sicher, dass das Sieb im Auslassventil richtig installiert ist. Ziehen Sie das Auslassventil fest.	
5	Leckende Dichtung oder zerkratzter Kolben in Kanal B1.	Wechseln Sie die Pumpendichtungen beim Kanal B. Prüfen Sie die Kolben auf Kratzer. Tauschen Sie verkratzte Kolben aus.	
6	Defektes Aktiveinlassventil in Kanal B.	Tauschen Sie das Aktiveinlassventil in Kanal B aus.	

Kalibrierung des Flusssensors

Beschreibung

	Dieses Verfahren eignet sich zum Erstellen benutzerdefinierter Kalibrierdaten. Es sollte jedes Mal durchgeführt werden, wenn vermutet wird, dass die Fluss- rate ungenau ist, oder wenn die gewünschte Lösungsmittelkombination nicht in der vordefinierten Kalibrierungstabelle aufgeführt ist.
HINWEIS	Salze und geringe Mengen organischer Modifikatoren wirken sich nicht wesentlich auf die Kalibrierungsdaten aus. In solchen Fällen können die vordefinierten Wasserkurven verwendet werden.
HINWEIS	Überprüfen Sie die Genauigkeit des Flusssensors bei der oberen Flussrate mit Wasser.
HINWEIS	Selbst ein System mit ungenauen Kalibrierungsdaten führt zu reproduzierbaren Ergebnissen.
HINWEIS	Bevor das Verfahren zur Kalibrierung gestartet wird, muss der Lecktest für die Pumpe erfolgreich durchgeführt worden sein.
	Mit Hilfe des Verfahrens sollen "unbekannte" Lösungsmittel in Kanal A1 und B1 des Ventils für die Lösungsmittelwahl kalibriert werden.
	Zunächst wird das System mit reinem Wasser aus Kanal A2 equilibriert. Bei 15 μ l/min wechselt das System in die Drucksteuerung über. Dabei wird der Druck während des Verfahrens konstant gehalten. Ein Schritt hin zu 100 % A1 wird ausgeführt (führt zu einem Response der wässrigen Phase in Hinblick auf Wasser) und anschließend ein schrittweiser Gradient von 0% A1 zu 100% B1 (führt zu einem Response unbekannter Mischungen).
	Lösungsmittel
	A1: Wässriges Lösungsmittel (soll kalibriert werden)
	B1: Organisches Lösungsmittel (soll kalibriert werden)
	• A2: Reines Wasser (Referenzlösungsmittel)

Ausführen der Kalibrierung

- **1** Füllen Sie den Vakuumentgaser mit geeigneten Lösungsmitteln und spülen Sie die einzelnen Kanäle für 3 Minuten bei 2500 μl/min aus.
- 2 Entfernen Sie die Kapillare am Auslass des Flusssensors.
- **3** Überprüfen Sie, ob der Standard-Flusssensor installiert ist (20µl-Flusssensor).
- **4** Entfernen Sie die Kapillare zwischen Dämpfer und Mischer am oberen Anschluss des Dämpfers.
- 5 Entfernen Sie die Kapillare zwischen Mischer und Filter am Mischer.
- **6** Schließen Sie die Kapillare des Filters am oberen Anschluss des Dämpfers an.
- 7 Verbinden Sie den Mischer mit der Kapillare am Auslass des Flusssensors. Stellen Sie den Mischer vertikal auf. Der Flusseinlass muss sich auf der oberen Seite befinden.
- 8 Pumpen Sie 10 min mit reinem Wasser (Kanal A2) mit 1000 μl/min (Normalmodus). Die gesamte Pumpe und der Mischer müssen ausreichend gespült werden. Achten Sie auf den Abfall.
- **9** Schließen Sie eine Säule an den Auslass des Mischers an, die einen Druck von 30 bis 200 bar bei 15 μ l/min Wasser (z. B. 150 x 0,3 x 5um) bietet, oder eine Restriktionskapillare (z. B. Quarz, 50 μ m ID, 2,5 m).
- **10** Pumpen Sie bei 15 μl/min (Mikromodus) reines Wasser (Kanal A2), bis der Druck vollkommen stabil ist (mind. 5 min.).
- 11 Legen Sie die Kompressibilität für A1 und B1 fest.
- 12 Führen Sie die Kalibrierung durch.

HINWEIS

Die Flusssensor-Responses für die Schritte des Mischungsverhältnisses werden in einer Datei gespeichert und auf dem Bildschirm dargestellt.

- **13** Geben Sie für jeden Schritt eine durchschnittliche Ablesung in die Kalibrierungstabelle ein.
- 14 Sichern Sie die Kalibrierungstabelle.
- **15** Entfernen Sie die Säule oder die Restriktionskapillare und den Mischer am Auslass des Flusssensors.
- 16 Installieren Sie den Mischer zwischen Dämpfer und Filter erneut.

6 Fehlerbehebung und Diagnose

Kalibrierung des Flusssensors

HINWEIS Für in Wasser schwerlösliche Lösungsmittel wie Hexan oder Isopropanol können die entsprechenden Werte für die Mischungen linear von bekannten Werten der einzelnen Lösungsmittel interpoliert und in einer neuen Tabelle bearbeitet werden.

HINWEIS

Unbekannte isokratische Lösungsmittelmischungen können kalibriert werden, indem die Kalibrierungstabelle auf wässrig-wässrig (nicht kalibriert) gesetzt wird, und indem die Flussrate mit Hilfe von volumetrischen Messungen (z. B. durch Füllen einer kalibrierten Glassspritze für 5 bis 10 Minuten) bestimmt wird.

HINWEIS Anschließend wird der Response-Faktor gemäß der folgenden Gleichung berechnet:

Kalibrierungsfaktor = eingegebener Fluss / gemessener Fluss

Beispiel für Chloroform-Methanol

Eingegebener Fluss: 15 µl/min

Gemessener Fluss: 35 µl/min

Kalibrierungsfaktor: 15 µl/min / 35 µl/min = 0,428

Geben Sie diesen Kalibrierungsfaktor in eine Kalibrierungstabelle ein und sichern Sie ihn.

EMPV-Test

EMPV-Test

Dieser Test wird zum Überprüfen der EMPV-Leistung verwendet. Dieser Test muss jedes Mal durchgeführt werden, wenn das EMPV-Ventil ersetzt wird. Der Test sollte außerdem auch durchgeführt werden, wenn Fehler in Bezug auf die Stabilität des Säulenflusses auftreten (nur im Mikromodus).

Der EMPV-Test ist kein Ersatz für den Leck- oder den Drucktest. Der Leck- und der Drucktest sollten zusätzlich durchgeführt werden, wenn der Fehler möglicherweise durch Leckagen in den Pumpenköpfen hervorgerufen wurde.

Der Test beginnt mit einer kurzen Spülsequenz und einer Reinigungsprozedur für das EMPV. Danach werden niedriger und hoher Druck durch das EMPV gesteuert, und der geeignete Fluss wird überwacht. Zuletzt wird eine lineare Druckstufe durchgeführt.

Durchführung des EMPV-Tests

- 1 Füllen Sie den Vakuumentgaser mit
 - A1: wässrigem Lösungsmittel
 - B1: organischem Lösungsmittel (Acetonitril /Methanol / Isopropanol, etc.)
- **2** Wenn der Vakuumentgaser vollkommen leer ist, müssen Sie Lösungsmittel mit einer Spritze in die Vakuumkammer eingeben oder den Vakuumentgaser vor dem Ausführen des Tests spülen (für den Test sind gefüllte Vakuumkammern erforderlich).
- **3** Verbinden Sie den Pumpenauslass mit Hilfe eines Blindstopfens mit dem EMPV-Auslass.
- **4** Trennen Sie das EMPV von der Flusssensorkapillare (Bestellnummer (G1375-87301) am EMPV-Auslass und verbinden Sie den EMPV-Auslassanschluss mit dem Blindstopfen (Bestellnummer 01080-83202).
- 5 Führen Sie den Test durch.
- 6 Entfernen Sie den Blindstopfen.
- 7 Schließen Sie das EMPV wieder an die Flusssensorkapillare an. Ziehen Sie nicht zu fest an.

EMPV-Reinigung

EMPV-Reinigung an der Kapillarpumpe

Je nach Anwendung können sich Partikel im EMPV sammeln. Dieses Reinigungsverfahren wird zum Entfernen der Partikelabsetzungen verwendet. Dieses Verfahren sollte jedes Mal durchgeführt werden, wenn vermutet wird, dass das EMPV undicht oder durch Partikel verunreinigt ist.

Der Auslass des EMPV ist mit einem Blindstopfen aus Edelstahl verbunden. Nach einem kurzen Spülvorgang wird das EMPV geschlossen, und der Druck wird auf ca. 380 bar erhöht. Anschließend wird das EMPV geöffnet, und der Druck wird sehr schnell freigegeben. Dieses Verfahren wird mehrmals nacheinander wiederholt.

Durchführung des Tests

- 1 Füllen Sie die Kanäle A1 und B1 des Vakuumentgasers mit Lösungsmitteln (der Test setzt gefüllte Vakuumkammern voraus). Es wird empfohlen, Kanal A mit wässrigem Lösungsmittel zu verwenden. Wenn Sie einen anderen Kanal verwenden, müssen Sie Folgendes sicherstellen:
 - die Mischbarkeit des Lösungsmittels
 - in den Puffern dürfen keine Ablagerungen vorhanden sein
- **2** Schließen Sie den Pumpenauslass mit Hilfe eines Blindstopfens am EMPV-Auslass an.
- **3** Trennen Sie das EMPV am EMPV-Auslass vom Flusssensor. Verbinden Sie den Auslassanschluss des EMPV mit einem Blindstopfen (Bestellnummer 01080-83202).
- 4 Führen Sie den Test durch.
- 5 Überprüfen Sie das Testergebnis ggf. mit Hilfe des Drucktests.
- 6 Entfernen Sie den Blindstopfen.
- 7 Schließen Sie das EMPV wieder an die Flusssensorkapillare an. Ziehen Sie nicht zu fest an.

Wartung

7

Einführung in Wartung und Reparatur 100 Einfache Reparaturen - Wartung 100 Austausch eingebauter Teile 100 Sicherheitshinweise: Warnung und Vorsicht 101 Verwendung des antistatischen ESD-Armbandes 102 Reinigung des Moduls 102 Frühwarnsystem für fällige Wartungen (EMF, Early Maintenance Feedback) 103 EMF-Zähler 103 Verwendung der EMF-Zähler 104 Überblick über die Wartung und Reparatur 105 Einfache Reparaturarbeiten 107 Überprüfung und Reinigung der Lösungsmittelfilter 108 Austausch der Kartusche des Aktiveinlassventils bzw. des Aktiveinlassventils 110 Austauschen des Auslasskugelventilsiebs oder des kompletten Ventils 114 Austausch des Lösungsmittelauswahlventils 117 Ausbau und Zerlegen der Pumpenkopfeinheit 119 Austausch und Konditionierverfahren der Pumpendichtungen 121 Austauschen der Kolben 124 Austausch des Flusssensors 126 Zusammenbau der Pumpenkopfeinheit 127 Austausch der optionalen Schnittstellenkarte 129

7

Einführung in Wartung und Reparatur

Einfache Reparaturen - Wartung

Die Kapillarpumpe ist besonders wartungsfreundlich. Die häufigsten Arbeiten wie der Austausch einer Kolbendichtung oder Fritte im Filter können vorgenommen werden, ohne dass die Kapillarpumpe aus dem Geräteturm herausgezogen werden muss. Diese Arbeiten sind im Abschnitt Tabelle 13 auf Seite 107 beschrieben.

Austausch eingebauter Teile

Bei einigen Reparaturarbeiten ist ein Austausch defekter interner Geräteteile notwendig. Der Austausch dieser Teile erfordert den Ausbau des Moduls aus dem Geräteturm, das Entfernen der Abdeckung und die Demontage des Moduls. Die Sicherheitszunge an der Netzsteckerbuchse verhindert, dass die Modulabdeckung bei angeschlossenem Netzkabel abgenommen werden kann.

7

Sicherheitshinweise: Warnung und Vorsicht

WARNUNG

Auch im ausgeschalteten Zustand fließt im Modul Strom, solange das Netzkabel eingesteckt ist.

Es besteht die Gefahr eines Stromschlags oder anderer Verletzungen. Die Durchführung von Reparaturen am Modul kann zu Personenschäden wie z.B. Stromschlag führen, wenn das Modulgehäuse geöffnet wird, während das Gerät an die Netzspannung angeschlossen ist.

- → Führen Sie daher keine Justierungen, Wartungen oder Reparaturen am Modul aus, wenn die Gehäuseabdeckung entfernt ist und das Netzkabel angeschlossen ist.
- → Die Sicherheitszunge an der Netzsteckerbuchse verhindert, dass die Modulabdeckung bei angeschlossenem Netzkabel abgenommen werden kann. Stecken Sie das Netzkabel bei entfernter Abdeckung keinesfalls ein.

WARNUNG Beim Öffnen von Kapillar- oder Schlauchleitungsverschraubungen können Lösungsmittel austreten.

Der Umgang mit giftigen und gefährlichen Lösungsmitteln und Reagenzien kann Gesundheitsrisiken bergen.

→ Bitte beachten Sie die entsprechenden Sicherheitsanweisungen (z. B. Schutzbrille, Handschuhe und Schutzkleidung), wie sie in der vom Lösungsmittellieferanten mitgelieferten Gebrauchsanweisung oder im Sicherheitsdatenblatt beschrieben ist. Dies gilt insbesondere für giftige oder gefährliche Lösungsmittel.

VORSICHT

Elektronische Platinen sind empfindlich gegenüber statischer Ladung und sollten vorsichtig behandelt werden, damit sie nicht beschädigt werden. Die Berührung von elektronischen Platinen und Komponenten kann zu elektrostatischen Entladungen führen.

Elektrostatische Entladungen können die elektronischen Platinen und andere Bauteile beschädigen.

→ Halten Sie die Platine immer am Rand und berühren Sie keine elektrischen Komponenten. Verwenden Sie stets einen ESD-Schutz (z. B. ein antistatisches ESD-Armband), wenn Sie mit elektronischen Platinen und Komponenten hantieren. Einführung in Wartung und Reparatur

Verwendung des antistatischen ESD-Armbandes

- **1** Rollen Sie die ersten beiden Wicklungen des Bandes ab und wickeln Sie die selbstklebende Seite fest um Ihr Handgelenk.
- **2** Wickeln Sie den Rest des Bandes ab und entfernen Sie die Schutzfolie vom Kupferteil am anderen Ende.
- **3** Befestigen Sie die Kupferfolie an einer geeigneten elektrisch leitenden Masse.

Abbildung 13 Verwendung des antistatischen ESD-Armbandes

Reinigung des Moduls

WARNUNG

Flüssigkeit, die in den Elektronikraum des Moduls tropft.

Flüssigkeit in der Elektronik des Moduls kann zu einem Stromschlag führen und das Modul beschädigen.

- → Verwenden Sie für die Reinigung kein übermäßig nasses Tuch.
- Vor dem Öffnen von Verschraubungen müssen daher alle Lösungsmittelleitungen entleert werden.

Das Gehäuse des Probengebers ist stets sauber zu halten. Die Reinigung sollte mit einem weichen, mit Wasser oder einer milden Spülmittellösung angefeuchteten Lappen erfolgen. Benutzen Sie kein nasses Tuch, da sonst Flüssigkeit in das Modul gelangen kann.

Frühwarnsystem für fällige Wartungen (EMF, Early Maintenance Feedback)

Die Wartung erfordert den regelmäßigen Austausch von Teilen im Flussweg, die mechanischem Verschleiß oder Belastungen ausgesetzt sind. Im Idealfall sollte die Häufigkeit, mit der die Teile ausgetauscht werden, von der Benutzungsdauer des Gerätes und den Analysenbedingungen abhängen und nicht auf einem vorbestimmten Zeitintervall basieren. Das Frühwarnsystem für fällige Wartungen (EMF, Early Maintenance Feedback) überwacht die Benutzung bestimmter Geräteteile und liefert eine Rückmeldung, sobald die vom Benutzer einstellbaren Höchstwerte überschritten werden. Eine Anzeige in der Benutzeroberfläche weist darauf hin, dass Wartungsarbeiten eingeplant werden sollten.

EMF-Zähler

In der Pumpe ist eine Reihe von EMF-Zählern für den Pumpenkopf enthalten. Jeder Zähler erhöht sich bei Benutzung der Pumpe, und es kann jeweils ein Maximalwert zugeordnet werden, bei dessen Überschreitung ein visueller Hinweis in der Benutzerschnittstelle erscheint. Jeder Zähler kann nach Durchführung der Wartung auf Null zurückgesetzt werden. Die Pumpe verfügt über die folgenden EMF-Zähler:

- Liquimeter Pumpe A,
- Abnutzung der Dichtung in Pumpe A,
- Liquimeter Pumpe B,
- Abnutzung der Dichtung in Pumpe B.

Liquimeter

Das Liquimeter (Flüssigkeitszähler) zeigt das Gesamtvolumen an Lösungsmittel an, das vom rechten und linken Pumpenkopf seit dem letzten Zurücksetzen der Zähler gefördert wurde. Beiden Liquimetern kann ein EMF-Maximalwert zugeordnet werden. Sobald dieser Grenzwert überschritten wird, erscheint auf der Benutzeroberfläche die Wartungsanzeige.

7

7 Wartung

Frühwarnsystem für fällige Wartungen (EMF, Early Maintenance Feedback)

Zähler für Dichtungsverschleiß

Die Zähler für den Dichtungsverschleiß zeigen einen Wert an, der sich aus dem Druck und dem Fluss ableitet - beide tragen zum Verschleiß der Dichtung bei. Die Werte erhöhen sich mit der Pumpenbenutzung, bis die Zähler nach der Wartung der Dichtungen wieder zurückgesetzt wurden. Beiden Zählern für den Dichtungsverschleiß kann ein Maximalwert zugeordnet werden. Sobald dieser Grenzwert überschritten wird, erscheint auf der Benutzeroberfläche die Wartungsanzeige.

Verwendung der EMF-Zähler

Die vom Anwender einstellbaren Maximalwerte für die EMF-Zähler erlauben die Anpassung der Wartungsvorwarnfunktion an die Anforderungen des Anwenders. Der Verschleiß der Pumpenteile hängt von den Analysenbedingungen ab; d. h., die Festlegung des Maximalwertes muss auf der Basis der spezifischen Betriebsbedingungen des Gerätes erfolgen.

Einstellung des EMF-Maximalwerts

Die Einstellung der EMF-Werte muss über ein oder zwei Wartungszyklen optimiert werden. Anfänglich sollte kein EMF-Grenzwert eingestellt werden. Wenn die Leistung eine Wartung nötig erscheinen lässt, notieren Sie bitte die Werte, die von den Flüssigkeits- und Dichtungsabnutzungszählern der Pumpe angezeigt werden. Geben Sie diese Werte (oder etwas geringere) als EMF-Höchstwerte ein und stellen Sie die Zähler auf Null zurück. Sobald die Zähler das nächste Mal die eingestellten Höchstwerte überschreiten, wird der EMF-Hinweis angezeigt und erinnert daran, dass eine Wartung durchzuführen ist.

7

Überblick über die Wartung und Reparatur

Abbildung 14 auf Seite 106 zeigt die Hauptbaugruppen der Kapillarpumpe an. Die Pumpenköpfe und ihre Komponenten erfordern einige einfache Wartungsarbeiten, wie z. B. den Austausch der Dichtungen. Hierfür sind sie von vorn zugänglich. Bei einem Austausch interner Geräteteile muss das Modul aus dem Geräteturm herausgenommen und die obere Geräteabdeckung abgenommen werden.

7 Wartung

Überblick über die Wartung und Reparatur

12 Lösungsmittelauswahlventil, siehe "Austausch des Lösungsmittelauswahlventils" auf Seite 117

7

Einfache Reparaturarbeiten

Die in diesem Abschnitt beschriebenen Reparaturarbeiten können ausgeführt werden, ohne die Kapillarpumpe aus dem Geräteturm herausziehen zu müssen.

Tabelle 13 Einfache Reparaturarbeiten

Durchführung	Typisches Symptom	Hinweis
"Ausbau des Aktiveinlassventils" auf Seite 110	Bei interner Leckage	Instabiler Druckverlauf: Führen Sie zur Überprüfung den Lecktest durch.
"Austauschen des Auslasskugelventilsiebs oder des kompletten Ventils" auf Seite 114	Bei interner Leckage	Instabiler Druckverlauf: Führen Sie zur Überprüfung den Lecktest durch.
"Austausch des Lösungsmittelauswahlventils" auf Seite 117	Instabiler Säulenfluss oder Systemdruck	
"Austausch des Lösungsmittelauswahlventils" auf Seite 117	Säulenfluss und Systemdruck fallen gelegentlich ab	Ein Druckabfall von > 10 bar über die Fritte (Flussrate 2,5 ml/min H20 bei offenem Spülventil) weist auf eine Verstopfung hin.
"Austausch und Konditionierverfahren der Pumpendichtungen" auf Seite 121	Bei Anzeichen einer Beeinträchtigung der Pumpenleistung durch Abnutzung der Dichtungen	Leckagen an der Pumpenkopfunterseite, instabile Retentionszeiten, instabiler Druckverlauf: Führen Sie zur Überprüfung den Lecktest durch.
"Austauschen der Kolben" auf Seite 124	Bei verkratzten Kolben	Lebensdauer der Dichtung geringer als erwartet: Überprüfen Sie beim Dichtungstausch auch die Kolben.
"Austausch des Flusssensors" auf Seite 126	Erweiterter Flussbereich (100 µl) erforderlich Leckage am Flusssensor Instabiler Säulenfluss Flusssensor blockiert	

7 Wartung

Einfache Reparaturarbeiten

Überprüfung und Reinigung der Lösungsmittelfilter

Wann erforderlich	Bei verstopftem Lösungsmittelfilter	
Erforderliche Teile	Anzahl	Beschreibung Konzentrierte Salpetersäure (65 %) Bidestilliertes Wasser
	1	Becherglas
Vorbereitungen	Lösen Sie die Eluentenzuleitungen vom Lösungsmittelauswahlventil oder vom Adapter am Einlassschaltventil.	
WARNUNG Beim Öffnen von Kapillar- oder Schlauchleitungsverschraubungen kön Lösungsmittel austreten.		en von Kapillar- oder Schlauchleitungsverschraubungen können iittel austreten.
	Der Umgang mit giftigen und gefährlichen Lösungsmitteln und Reagenzien kann Gesundheitsrisiken bergen.	
	→ Bitte b Handso mitgeli Dies gi	eachten Sie die entsprechenden Sicherheitsanweisungen (z.B. Schutzbrille, chuhe und Schutzkleidung), wie sie in der vom Lösungsmittellieferanten eferten Gebrauchsanweisung oder im Sicherheitsdatenblatt beschrieben ist. It insbesondere für giftige oder gefährliche Lösungsmittel.
VORSICHT	Kleine Par verstopfer	tikel können die Kapillarleitungen und Ventile des Moduls dauerhaft n.
	Beschädi	jung des Moduls.
	→ Filtern	Sie stets die Lösungsmittel.

→ Betreiben Sie das Modul nie ohne Lösungsmittelfilter.
HINWEIS

Die Lösungsmitteleinlassfilter befinden sich auf der Niederdruckseite der Kapillarpumpe. Daher wirkt sich ein verstopfter Filter nicht auf die erreichbaren Drücke der Pumpe aus. Druckangaben können nicht zur Beurteilung der Verstopfung eines Filters genutzt werden.

HINWEIS

Der Filter ist in gutem Zustand, wenn das Lösungsmittel alleine (aufgrund des hydrostatischen Drucks) aus der Lösungsmittelleitung tropft. Eine teilweise Verstopfung des Filters erkennt man daran, dass nur sehr wenig Lösungsmittel heraustropft.

Reinigen der Lösungsmittel-Ansaugfilter

- 1 Nehmen Sie den verstopften Filter vom Flaschenaufsatz und legen Sie ihn für eine Stunde in ein Becherglas mit konzentrierter Salpetersäure (35 %).
- **2** Spülen Sie den Filter sorgfältig mit bidestilliertem Wasser und entfernen Sie Salpetersäurereste, da diese die Kapillarsäulen beschädigen.
- **3** Bauen Sie den Filter wieder ein.

Austausch der Kartusche des Aktiveinlassventils bzw. des Aktiveinlassventils

	Ausba	u des Aktivei	nlassventils
Wann erforderlich	Bei inter	rner Leckage (Rücl	xfluss von Lösungsmittel)
Erforderliche Werkzeuge	Gabelsc	hlüssel, 14 mm	
Erforderliche Teile	Anzahl	Bestellnummer	Beschreibung
	1	G1312-60025	Ventilkörper des Aktiveinlassventils
	1	5062-8562	Ventilkartusche (400 bar)
	1 Zieł	nen Sie das Ka	bel für das Einlassventil aus der Anschlussbuchse.
	9 7:11		ann comittele chlouch man Finle consutil ch. (Dec cht

- **2** Ziehen Sie den Lösungsmittelschlauch vom Einlassventil ab. (Beachten Sie, dass Lösungsmittel austreten kann.)
- **3** Lösen Sie das Einlassventil mit einem 14mm-Gabelschlüssel und nehmen Sie das Ventil vom Pumpenkopf ab.

Abbildung 15 Teile des Aktiveinlassventils

Wartung Einfache Reparaturarbeiten

7

Austausch der Ventilkartusche

Wann erforderlich	Bei interne	Bei interner Leckage (Rückfluss von Lösungsmittel)		
Erforderliche Werkzeuge	Gabelschli	üssel, 14 mm		
Erforderliche Teile	Anzahl	Bestellnummer	Beschreibung	
	1	G1312-60025	Ventilkörper des Aktiveinlassventils	
	1	5062-8562	Ventilkartusche (400 bar)	
	1 Nehmen Sie die Ventilkartusche mit einer Pinzette aus der Aktuatoreinheit			
	2 Reinigen Sie vor dem Einsetzen der neuen Ventilkartusche den Bereich in der Aktuatoreinheit. Befüllen Sie eine Spritze mit Alkohol und spülen Sie damit sorgfältig den Kartuschenbereich.			

3 Setzen Sie eine neue Ventilkartusche in die Aktuatoreinheit ein. (Stellen Sie sicher, dass die Kartusche vollständig in die Aktuatoreinheit eingesetzt ist.)

Einfache Reparaturarbeiten

Austausch des Aktiveinlassventils

Wann erforderlich	Bei interner Leckage (Rückfluss von Lösungsmittel)			
Erforderliche Werkzeuge	Gabelschlü	ssel, 14 mm		
Erforderliche Teile	Anzahl	Bestellnummer	Beschreibung	
	1	G1312-60025	Ventilkörper des Aktiveinlassventils	
	1	5062-8562	Ventilkartusche (400 bar)	
	 Setzen Sie das neue Ventil in den Pumpenkopf ein. Drehen Sie die Schraube mit einem 14mm-Schlüssel handfest an. 			
	ches r	ach vorne we	ist.	
	3 Ziehen Ventil Überd elschla	n Sie mit einer in seine Endr rehen Sie auf auches weist i	m 14mm-Gabelschlüssel die Mutter an, indem Sie das position drehen (nicht mehr als eine Vierteldrehung). keinen Fall das Ventil. Der Anschluss des Lösungsmitt- n Richtung der rechten Ecke des Pumpenkopfes.	
	4 Schlie das Ei	ßen Sie die Ei inlassventil in	nlassleitung wieder an und stecken Sie das Kabel für die entsprechende Buchse am Z-Panel.	
HINWEIS	Achten Si	e darauf, dass de	er <i>Normalmodus</i> aktiv sein muss.	

5 Nach Austausch einer Ventilkartusche müssen eventuell mehrere Milliliter Lösungsmittel der gewünschten Applikation durchgepumpt werden, bevor sich die Flussrate stabilisiert haben und die geringen prozentualen Schwankungen eines ordnungsgemäß arbeitenden Systems beobachtet werden.

Lösungsmitteleinlassleitung

Austauschen des Auslasskugelventilsiebs oder des kompletten Ventils

Wann erforderlich	Sieb — bei jedem Austausch der Pumpendichtungen			
	Ventil — bei	interner Leckage		
Erforderliche Werkzeuge	Gabelschlüss	sel, 1/4"		
	Gabelschlüss	sel, 14 mm		
Erforderliche Teile	Anzahl	Bestellnummer	Beschreibung	
	1	G1312-60008	Auslasskugelventil	
	1	5063-6505	Sieb (Packung mit 10 Stück)	
HINWEIS	Vor dem Austausch des Auslasskugelventils können Sie versuchen, das Ventil in einem Ultraschallbad zu reinigen. Entfernen Sie die Golddichtung und das Sieb. Platzieren Sie das Ventil in aufrechter Position (auf der Plastikkappe) in einen kleinen Becher mit Alkohol. Stellen Sie den Becher für fünf bis zehn Minuten in ein Ultraschallbad. Setzen Sie ein neues Sieb ein und tauschen Sie die Golddichtung aus.			
	1 Lösen Sie die Ventilkapillare mit einem 1/4"-Schlüssel vom Auslasskugel- ventil.			
	2 Lösen Sie das Ventil mit einem 14mm-Gabelschlüssel und entfernen Sie es aus dem Pumpengehäuse.			
	3 Entfernen Sie die Plastikkappe mit der Golddichtung vom Auslassventil.			
	4 Nehmen Sie mit einer Pinzette das Sieb heraus.			
HINWEIS	Überprüfen das Ventil a Golddichtur nicht auf die	Sie die Golddichtur ufrecht hin, platzie ng mit der Kappe au e Dichtungsfläche o	ng. Eine deformierte Golddichtung ist zu ersetzen. Stellen Sie ren Sie das Sieb in die Vertiefung und tauschen Sie die ıs. Stellen Sie sicher, dass das Sieb nicht verrutschen und der Golddichtung geraten kann.	

5 Legen Sie ein neues Sieb in die Vertiefung des Auslasskugelventils und tauschen Sie die Kappe mit der Golddichtung aus.

6 Stellen Sie sicher, dass das neue Ventil korrekt zusammengebaut ist und dass die Golddichtung vorhanden ist.

Abbildung 17 Teile des Auslasskugelventils

7 Installieren Sie das Auslasskugelventil wieder und ziehen Sie es fest.

Einfache Reparaturarbeiten

8 Schließen Sie die Ventilkapillare wieder an.

Austausch des Lösungsmittelauswahlventils

Wann erforderlich	Bei interne	r Leckage (Fluss z	wischen den Eingängen) oder wenn ein Kanal verstopft ist
Erforderliche Werkzeuge	Kreuzschlitz	schraubenzieher l	Pozidriv #1
Erforderliche Teile	Anzahl	Bestellnummer	Beschreibung
	1	G1312-60000	Lösungsmittelwahlventil (SSV, Bestellnummer Hälfte eines kompletten Lösungsmittelauswahlblocks)

1 Trennen Sie die Lösungsmittelleitungen und die Verbindungsleitungen für das Aktiveinlassventil von den Ventilen für die Lösungsmittelwahl. Legen Sie die Lösungsmittelleitungen in den Behälter für die Lösungsmittel, um Leckagen durch hydrostatischen Fluss zu vermeiden.

Verbindungsschläuche

Einfache Reparaturarbeiten

- **2** Lösen Sie die Halterungsschrauben der Ventile mit einem Schraubendreher vom Typ Pozidriv #1.
- 3 Ziehen Sie das Ventilmodul aus seiner Halterung.
- **4** Halten Sie die beiden Plastikkörper der Ventile und ziehen Sie die Lösungsmittelauswahlventile heraus.
- **5** Tauschen Sie das beschädigte Lösungsmittelauswahlventil aus. Drücken Sie die neue Hälfte des ausgetauschten Ventils zusammen mit der richtig funktionierenden alten Hälfte.
- **6** Schließen Sie die elektrischen Anschlüsse an das Ventilmodul an und befestigen Sie die Einheit mit den beiden Halterungsschrauben.
- **7** Befestigen Sie wieder die Lösungsmittelleitungen und die Verbindungsleitungen des Aktiveinlassventils.

Ausbau und Zerlegen der Pumpenkopfeinheit

Wann erforderlich	Austausch der Pumpendichtungen
	Austausch der Kolben
	Austausch der Dichtungen bei Pumpen mit Hinterkolbenspülung
Erforderliche Werkzeuge	Gabelschlüssel, 1/4"
	Inbusschlüssel, 3 mm
	Inbusschlüssel, 4 mm
Vorbereitungen	 Schalten Sie die Kapillarpumpe am Netzschalter aus. Nehmen Sie die Frontplatte ab, um an die Pumpenmechanik zu gelangen ().
VORSICHT	Beschädigung des Pumpenantriebs
	 Das Einschalten der Pumpe bei abgenommenem Pumpenkopf kann den Pumpenantrieb beschädigen.

→ Starten Sie die Pumpe keinesfalls, wenn der Pumpenkopf abgebaut ist.

Einfache Reparaturarbeiten

Austausch und Konditionierverfahren der Pumpendichtungen

Wann erforderlich	Undichtig einzeln)	gkeiten, die durch den P	Pumpentest entdeckt wurden (prüfen Sie beide Pumpenköpfe
Erforderliche Werkzeuge	Inbussch	ılüssel, 3 mm	
	Inbussch	ılüssel, 4 mm	
	1/4" Gab	pelschlüssel	
Erforderliche Teile	Anzahl	Bestellnummer	Beschreibung
	2	5063-6589 (Standard) oder 0905-1420 (für Normalphasen-Appli kationen)	Kolbendichtung (Packung mit 2 Stück)
	1	5022-2159	Für das Konditionierverfahren der Dichtungen: Restriktionskapillare
1 Zerlegen Sie die Pu Pumpenkopfes (sie Pumpenkopfeinheit	impenkopf he "Ausba t" auf Seite	einheit des undichten nu und Zerlegen der e 119).	2 Entfernen Sie die Dichtungen mit Hilfe eines Kolbens vorsichtig aus dem Pumpkopf. Achten Sie darauf, dass der Kolben dabei nicht abbricht. Entfernen Sie die Abstreifringe, falls sie noch vorhanden sind. Kolben Dichtung

Einfache Reparaturarbeiten

Konditionierverfahren für Dichtungen

HINWEIS

Dieses Verfahren ist nur bei Standarddichtungen (5063-6589) anzuwenden. Dichtungen für Normalphasenapplikationen (0905-1420) werden dadurch zerstört.

- 1 Stellen Sie eine Flasche mit 100 ml Isopropanol in den Eluentenraum, legen Sie den Eluentenschlauch ein und den Flaschenaufsatz für den Pumpenkopf mit der anstehenden Konditionierung auf.
- **2** Schrauben Sie den Adapter (0100-1847) am Einlassventil an und schließen Sie den Einlassschlauch vom Flaschenaufsatz direkt daran an.
- **3** Schließen Sie die Widerstandskapillare (5022-2159) am Auslass des EMPV an. Legen Sie das andere Ende in einen Abfallbehälter.
- **4** Wechseln Sie in den *Spülmodus* und spülen Sie das System für 2 Minuten mit Isopropanol bei einer Durchflussrate von 2 ml/min.
- 5 Wechseln Sie in den *Standardmodus* und wählen Sie eine entsprechende Flussrate zum Aufbau eines Drucks von 350 bar. Pumpen Sie zur Konditionierung der Dichtungen für 15 Minuten bei diesem Druck. Der Druck kann als analoges Ausgangssignal mit dem Steuermodul, der Agilent ChemStation oder jeder anderen an der Pumpe angeschlossenen Steuereinheit überwacht werden.
- **6** Schalten Sie die Pumpe aus (Position OFF) und trennen Sie zum Ablassen des Systemdrucks die Restriktionskapillare vorsichtig vom EMPV. Schließen Sie die Kapillare zum Flusssensor und die Verbindungsleitung vom Ventil für die Lösungsmittelwahl zum Aktiveinlassventil wieder an.
- 7 Spülen Sie das System mit dem Lösungsmittel der gewünschten Applikation.

Austauschen der Kolben

Wann erforderlich	Bei Kratzern am Pumpenkolben	
Erforderliche Werkzeuge	Inbusschlüssel, 3 mmInbusschlüssel, 4 mm	
Erforderliche Teile	An Bestellnummer Beschreibung za hl	
	1 5063-6586 Kolben	
1 Zerlegen Sie den Pr Zerlegen der Pump	Pumpenkopf (siehe "Ausbau und penkopfeinheit" auf Seite 119)	2 Überprüfen Sie die Oberfläche der Kolben und entfernen Sie Ablagerungen und Verunreinigungen. Benutzen Sie zum Reinigen Alkohol oder Zahnpasta. Verkratzte Kolben sind auszutauschen.
0		Kolbenoberfläche

Einfache Reparaturarbeiten

Einfache Reparaturarbeiten

Austausch des Flusssensors

Wann erforderlich	Erweiter Leckage Instabile Flussser	ter Flussbereich (10 am Flusssensor er Säulenfluss nsor blockiert	0 μl) erforderlich	
Erforderliche Werkzeuge	Kreuzsch	hlitzschraubenziehe	r Pozidriv #1	
Erforderliche Teile	Anzahl	Bestellnummer	Beschreibung	
	1		Flusssensor	
		G1376-60001	20 µl	
		G1376-60002	100 µl	
	1 Schalten Sie die aus.			
	2 Trennen Sie mit Hilfe eines 1/4"-Gabelschlüssels die Verbindung zu folgenden Kapillaren:			
	• K	Kapillare vom El	MPV	
	• K	• Kapillare zum Injektionsgerät (Anschluss 1)		
	3 Sch	Schrauben Sie den Flusssensor ab.		
	4 Inst	4 Installieren Sie den neuen Flusssensor.		
	5 Sch wie	5 Schließen Sie mit Hilfe eines 1/4"-Gabelschlüssels die folgenden Kapilla wieder an:		

- Kapillare vom EMPV
- Kapillare zum Injektionsgerät (Anschluss 1)

Zusammenbau der Pumpenkopfeinheit

- Erforderliche Werkzeuge
- Inbusschlüssel, 3 mm
- Inbusschlüssel, 4 mm PTFE-Schmiermittel (79841-65501) •

Einfache Reparaturarbeiten

Austausch der optionalen Schnittstellenkarte

Wann erforderlich	Platine defekt			
Erforderliche Teile	Anzahl 1	Beschreibung BCD-Schnittstellenplatine, siehe Servicehandbuch		
VORSICHT	Elektronis vorsichtig elektronis führen.	sche Platinen sind empfindlich gegenüber statischer Ladung und sollten 3 behandelt werden, damit sie nicht beschädigt werden. Die Berührung von 3chen Platinen und Komponenten kann zu elektrostatischen Entladungen		
	Elektrostatische Entladungen können die elektronischen Platinen und andere Bauteile beschädigen.			
	→ Halten Kompo ESD-A	Sie die Platine immer am Rand und berühren Sie keine elektrischen onenten. Verwenden Sie stets einen ESD-Schutz (z. B. ein antistatisches rmband), wenn Sie mit elektronischen Platinen und Komponenten hantieren.		
	 Schalt vom S Zieher Lösen Instal fest. Verbin 	ten Sie das Modul über den Netzschalter aus. Trennen Sie das Modul Stromnetz. n Sie die Kabel von den Anschlüssen auf der Schnittstellenplatine ab. Sie die Schrauben. Ziehen Sie die Schnittstellenkarte aus dem Modul. lieren Sie die neue Schnittstellenplatine. Ziehen Sie die Schrauben nden Sie die Kabel wieder an den Anschlüssen der Schnittstellenkarte.		
BCD-Schnittstellenplat	ine			

Abbildung 20 Austausch der Schnittstellenkarte

Einfache Reparaturarbeiten

Ersatzteile und -materialien für die Wartung

Pumpengehäuse und Hauptbaugruppen132Eluentenraum und Flaschenaufsatz135Hydraulikweg136Pumpenkopfeinheit138Flusssensoreinheit140Zubehörkit zur Kapillarpumpe141

Agilent Technologies

Pumpengehäuse und Hauptbaugruppen

Pumpengehäuse und Hauptbaugruppen

Nr.	Beschreibung	Bestellnummer
1	Pumpenkopf, siehe "Pumpenkopfeinheit" auf Seite 138	G1311-60004
2	Pumpenantrieb Austauscheinheit – Pumpenantrieb	G1311-60001 G1311-69001
3	Kabelsatz – AIV-Ventil zur Hauptplatine	G1311-61601
4	CSM-Platine Austauscheinheit - CSM-Platine	G1376-66530 G1376-69530
5	Kabelsatz - Ventil für die Lösungsmittelwahl	G1312-61602
6	Lüftereinheit	3160-1017
7	Dämpfeinheit	79835-60005
8	Ventil für die Lösungsmittelwahl (Hälfte eines gesamten Ventils) Schraube, Ventil für die Lösungsmittelwahl	G1312-60000 5022-2112
9	Lecküberlauf - Pumpe	5042-8590
10	EMPV	G1361-60000
11	Flusssensor 20 µl Flusssensor 100 µl	G1376-60001 G1376-60002

Tabelle 14 Ersatzteile	- Pumpengehäuse	und Hauptbaugruppen	(Vorderansicht)
------------------------	-----------------	---------------------	-----------------

Abbildung 21 Überblick über die Hauptkomponenten (Frontansicht)

8 Ersatzteile und -materialien für die Wartung

Pumpengehäuse und Hauptbaugruppen

Tabelle 15 Ersatzteile - Pumpengehäuse und Hauptbaugruppen (Rückansicht)

Nr.	Beschreibung	Bestellnummer
1	Sechskantmutter für RS 232C Anschluss	1251-7788
2	Mutter M14 — Analogausgang	2940-0256
3	Schraube, M14, 7 mm — Netzteil	0515-0910
4	Abstandshalter — GPIB-Anschluss	0380-0643

Abbildung 22 Übersicht über die Hauptkomponenten (Rückansicht)

Eluentenraum und Flaschenaufsatz

Nr.	Beschreibung	Bestellnummer
1	Eluentenraum mit allen Plastikteilen	5065-9981
2	Typenschild, Agilent 1200	5042-8901
3	Frontplatte, Eluentenraum	5065-9954
4	Lecküberlauf, Eluentenraum	5042-8567
	Flaschenaufsatz für die Kapillarpumpe beinhaltet Positionen 8, 9, 10 und 11	G1311-60003
5/6	Lösungsmitteleinlassfilter	01018-60025
7	Lösungsmittelschläuche, 5 m	5062-2483
	Ferrules mit Sicherungsring (10 Stück)	5063-6598
	Leitungsschrauben (10 Stück)	5063-6599
	Durchsichtige Flasche	9301-1420
	Braune Flasche	9301-1450

Tabelle 16 Eluentenraum und Teile des Flaschenaufsatzes

Abbildung 23 Teile des Eluentenraumes

8 Ersatzteile und -materialien für die Wartung Hydraulikweg

Hydraulikweg

Nr.	Beschreibung	Bestellnummer
1	Flaschenaufsatz	G1311-60003
2	Verbindungsleitung	G1311-67304
3	Kapillare, Auslasskugelventil zu Kolben 2	G1312-67300
4	Restriktionskapillare	G1312-67304
5	Mischkapillare	G1312-67302
6	Kapillare, Dämpfer zu Mischer	01090-87308
7	Mischer	G1312-87330
8	Kapillare, Mischer zu Filter	01090-87308
9	Filtereinheit (enthält Fritte) Fritte	5064-8273 5022-2185
10	Kapillare, Filter zu EMPV	G1375-87400
11	Kapillare, EMPV zu Flusssensor (20 μl) Kapillare, EMPV zu Flusssensor (100 μl)	G1375-87301 G1375-87305
12	Kapillare, Flusssensor zu Injektionseinheit (20 μl) Kapillare, Flusssensor zu Injektionseinheit (100 μl)	G1375-87310 G1375-87306
	Geriffelte Abfallleitung, 120 cm (Nachbestellung zu je 5 m)	5062-2463

Tabelle 17 Hydraulikweg

Ersatzteile und -materialien für die Wartung Hydraulikweg

Abbildung 24 Hydraulischer Pfad

8 Ersatzteile und -materialien für die Wartung Pumpenkopfeinheit

Pumpenkopfeinheit

Nr.	Beschreibung	Bestellnummer
	Komplette Einheit, enthält alle mit einem (*) gekennzeichneten Teile	G1311-60004
1*	Saphirkolben	5063-6586
2*	Kolbengehäuse (mit Federn)	G1311-60002
3*	Stützring	5001-3739
4*	Dichtungen (2 St.) oder Dichtungen (2 St.) für normale Phasen	5063-6589 0905-1420
5	Kapillare, Auslassventil zu Kolben 2	G1312-67300
6*	Pumpenkammergehäuse	G1311-25200
7	Aktiveinlassventil (ohne Kartusche) Ersatzkartusche für Aktiveinlassventil	G1312-60025 5062-8562
8	Auslasskugelventil	G1312-60012
9*	Feststellschraube	5042-1303
10	Adapter	G1312-23201
11*	Schraube M5, 60 mm	0515-2118

Tabelle 18 Pumpenkopfeinheit

Ersatzteile und -materialien für die Wartung Pumpenkopfeinheit

Abbildung 25 Pumpenkopfeinheit

8 Ersatzteile und -materialien für die Wartung Flusssensoreinheit

Flusssensoreinheit

Nr.	Beschreibung	Bestellnummer
1	Flusssensoreinheit (20 µl)	G1376-60001
	Flusssensoreinheit (100 µl)	G1376-60002
	Kapillare, EMPV zu Flusssensor (20 μl Flusssensor) Kapillare, EMPV zu Flusssensor (100 μl Flusssensor)	G1375-87301 G1375-87305
	Kapillare, Flusssensor zu Injektionsgerät (20 µl Flusssensor) Kapillare, Flusssensor zu Injektionsgerät (100 µl Flusssensor)	G1375-87310 G1375-87306

Tabelle 19 Flusssensoreinheit

Abbildung 26 Flusssensoreinheit

Zubehörkit zur Kapillarpumpe

Beschreibung	Bestellnummer
Elastischer Schlauch, 2 m	0890-1760
Edelstahlfritte 2 μm, 1 Stück	5022-2185
?Offener Gabelschlüssel, 7/16"- bis 1/2", 2 Stück	8710-0806
?Offener Gabelschlüssel, 1/4" 5/16", 1 St.	8710-0510
Gabelschlüssel, 14 mm, 1 St.	8710-1924
Gabelschlüssel, 4 mm, 1 St.	8710-1534
Inbusschlüssel, 2,5 mm, 1 St.	8710-2412
Inbusschlüssel, 3.0 mm, 1 St.	8710-2411
Drehmomentadapter	G1315-45003
Einsetzwerkzeug, 1 St.	01018-23702
ESD-Gelenkbefestigung, 1 St.	9300-1408
CAN-Kabel, 1 m	5181-1519
Inbusschlüssel 4 mm, 15 cm lang, T-Griff	8710-2392
Lösungsmitteleinlassfilter (4 St.)	01018-60025
Spülventileinheit	G1311-60009
Spülventilhalterung	G1312-23200
Kapillare, 550 mm, 50 µm	G1375-87310

Tabelle 20 Zubehörkit G1376-68705

8 Ersatzteile und -materialien für die Wartung

Zubehörkit zur Kapillarpumpe

Anschlusskabel

Kabelübersicht 144 Analogkabel 146 Remote-Kabel 149 BCD-Kabel 154 Zusatzgerätekabel 156 CAN/LAN-Kabel 157 Kabel für externen Kontakt 158 RS-232 Kabelsatz 159

Agilent Technologies

Kabelübersicht

HINWEIS

Verwenden Sie ausschließlich Originalkabel von Agilent Technologies, um eine einwandfreie Funktion und die Einhaltung der Sicherheits- und EMC-Bestimmungen zu gewährleisten.

Bestellnummer	Beschreibung	Bestellnummer
Analogkabel	3390/2/3 Integratoren	01040-60101
	3394/6 Integratoren	35900-60750
	Agilent 35900A A/D-Wandler	35900-60750
	Universalkabel (Kabelschuhe)	01046-60105
Remote-Kabel	3390 Integrator	01046-60203
	3392/3 Integratoren	01046-60206
	3394 Integrator	01046-60210
	3396A-Integrator (Serie I)	03394-60600
	3396 Serie II / 3395A-Integrator, siehe Details in Abschnitt "Remote-Kabel" auf Seite 149	
	3396 Serie III / 3395B-Integrator	03396-61010
	HP 1050 Module / HP 1046A FLD	5061-3378
	HP 1046A FLD	5061-3378
	Agilent 35900A A/D-Wandler	5061-3378
	1040 Dioden-Array-Detektor	01046-60202
	HP 1090 Flüssigchromatographen	01046-60202
	Signalverteilermodul	01046-60202
BCD-Kabel	3396 Integrator	03396-60560
	Universalkabel (Kabelschuhe)	G1351-81600
Zusatz	Agilent Vakuumentgaser der Serie 1100	G1322-61600
Bestellnummer	Beschreibung	Bestellnummer
------------------	--	------------------------
CAN-Kabel	Agilent 1100/1200 Modul an Modul, Länge 0,5 m Agilent 1100/1200 Modul an Modul, Länge 1 m	5181-1516 5181-1519
Externe Kontakte	Agilent 1100/1200 Schnittstellenplatine an Universalanschluss	G1103-61611
GPIB-Kabel	Agilent 1100/1200 Modul zu ChemStation, 1 m Agilent 1100/1200 Modul zu ChemStation, 2 m	10833A 10833B
RS-232 Kabel	Agilent 1100/1200 Modul an einen Computer Dieses Kit beinhaltet ein Nullmodem-/(Drucker)-Kabel (9-polige Buchse an 9-polige Buchse) und einen Adapter.	34398A
LAN-Kabel	Twisted-Pair-Crossover-LAN-Kabel, (geschirmt, 3 m lang) (für Punkt-zu-Punkt-Verbindung)	5023-0203
	Twisted-Pair-Crossover-LAN-Kabel, (geschirmt, 7m lang) (für Punkt-zu-Punkt-Verbindung)	5023-0202

Analogkabel

An einem Ende dieser Kabel befindet sich ein BNC-Stecker für den Anschluss an die Agilent Gerätemodule der Serien 1100/1200. Der Anschluss am anderen Ende ist abhängig vom anzuschließenden Gerät.

Agilent 1100/1200 an 3390/2/3 Integratoren

Anschluss 01040-60101		Kontakt 3390/2/3	Kontakt Agilent 1100/1200	Signal
		1	Abschirmung	Masse
		2		Nicht belegt
7	<u></u>	3	Zentrum	Signal +
	BRN7 RD	4		verbunden mit Kontakt 6
32	BRN	5	Abschirmung	Analog -
	RD RD	6		verbunden mit Kontakt 4
		7		Code
		8		Nicht belegt

Anschluss 35900-60750	Kontakt 3394/6	Kontakt Agilent 1100/1200	Signal
	1		Nicht belegt
	2	Abschirmung	Analog -
	3	Zentrum	Analog +

Agilent 1100/1200 an 3394/6 Integratoren

Agilent 1100/1200 an BNC-Anschluss

Anschluss 8120-1840	Kontakt BNC	Kontakt Agilent 1100/1200	Signal
	Abschirmung	Abschirmung	Analog -
	Zentrum	Zentrum	Analog +

Anschluss 01046-60105	Kontakt 3394/6	Kontakt Agilent 1100/1200	Signal
	1		Nicht belegt
E.	2	Schwarz	Analog -
7	3	Rot	Analog +
- TE			

Agilent 1100/1200 an Universalanschluss

Remote-Kabel

An einem Ende dieser Kabel befindet sich ein Agilent Technologies APG-Remote-Stecker zum Anschluss an die Gerätemodule der Agilent Serien 1100/1200. Die Art des Steckers am anderen Kabelende ist von dem anzuschließenden Gerät abhängig.

Anschluss Kontakt Kontakt Signal Aktiv 01046-60203 3390 Agilent (TTL-Pegel) 1100/1200 2 1 - Weiß **Digitale Masse** Nicht belegt 2 - Braun Vorbereitung Niedrig 7 3 - Grau Start Niedrig (7) 4 - Blau Abschalten Niedrig Nicht belegt 0 6 (\mathbb{D}) Nicht belegt 5 - Rosa Nicht belegt 1 Nicht belegt 6 - Gelb Einschalten Hoch 7 - Rot Hoch Nicht belegt Bereit Nicht belegt 8 - Grün Stopp Niedrig 9 - Schwarz Startanfrage Nicht belegt Niedrig

Agilent 1100/1200 an 3390 Integratoren

Anschluss 01046-60206	Kontakt 3392/3	Kontakt Agilent 1100/1200	Signal	Aktiv (TTL-Pegel)
	3	1 - Weiß	Digitale Masse	
	Nicht belegt	2 - Braun	Vorbereitung	Niedrig
	11	3 - Grau	Start	Niedrig
	Nicht belegt	4 - Blau	Abschalten	Niedrig
	Nicht belegt	5 - Rosa	Nicht belegt	
	Nicht belegt	6 - Gelb	Einschalten	Hoch
	9	7 - Rot	Bereit	Hoch
	1	8 - Grün	Stopp	Niedrig
	Nicht belegt	9 - Schwarz	Startanfrage	Niedrig

Agilent 1100/1200 an 3392/3 Integratoren

Agilent 1100/1200 an 3394 Integratoren

_

Anschluss 01046-60210	Kontakt 3394	Kontakt Agilent 1100/1200	Signal	Aktiv (TTL-Pegel)
	9	1 - Weiß	Digitale Masse	
80.15	Nicht belegt	2 - Braun	Vorbereitung	Niedrig
	3	3 - Grau	Start	Niedrig
	Nicht belegt	4 - Blau	Abschalten	Niedrig
	Nicht belegt	5 - Rosa	Nicht belegt	
	Nicht belegt	6 - Gelb	Einschalten	Hoch
	5,14	7 - Rot	Bereit	Hoch
	6	8 - Grün	Stopp	Niedrig
	1	9 - Schwarz	Startanfrage	Niedrig
	13, 15		Nicht belegt	

HINWEIS

START und STOP werden über Dioden an Kontaktstift 3 des 3394-Steckers angeschlossen.

Anschluss 03394-60600	Kontakt 3394	Kontakt Agilent 1100/1200	Signal	Aktiv (TTL-Pegel)
	9	1 - Weiß	Digitale Masse	
80.15	Nicht belegt	2 - Braun	Vorbereitung	Niedrig
	3	3 - Grau	Start	Niedrig
	Nicht belegt	4 - Blau	Abschalten	Niedrig
	Nicht belegt	5 - Rosa	Nicht belegt	
	Nicht belegt	6 - Gelb	Einschalten	Hoch
	5,14	7 - Rot	Bereit	Hoch
	1	8 - Grün	Stopp	Niedrig
	Nicht belegt	9 - Schwarz	Startanfrage	Niedrig
	13, 15		Nicht belegt	

Agilent 1100/1200 an 3396A Integratoren

Agilent 1100/1200 an 3396 Serie II / 3395A Integratoren

Verwenden Sie das Kabel **Bestellnummer: 03394-60600** und trennen Sie den Kontaktstift Nr. 5 auf der Integratorseite. Andernfalls gibt der Integrator START und nicht BEREIT aus.

Anschluss 03396-61010	Kontakt 33XX	Kontakt Agilent 1100/1200	Signal	Aktiv (TTL-Pegel)
	9	1 - Weiß	Digitale Masse	
80.15	Nicht belegt	2 - Braun	Vorbereitung	Niedrig
	3	3 - Grau	Start	Niedrig
	Nicht belegt	4 - Blau	Abschalten	Niedrig
	Nicht belegt	5 - Rosa	Nicht belegt	
	Nicht belegt	6 - Gelb	Einschalten	Hoch
	14	7 - Rot	Bereit	Hoch
	4	8 - Grün	Stopp	Niedrig
	Nicht belegt	9 - Schwarz	Startanfrage	Niedrig
	13, 15		Nicht belegt	

Agilent 1100/1200 an Agilent 3396 Serie III / 3395B Integratoren

Agilent 1100/1200 an HP 1050, HP 1046A oder Agilent 35900 A/D-Wandler

Anschluss 5061-3378	Kontakt HP 1050/	Kontakt Agilent 1100/1200	Signal	Aktiv (TTL-Pegel)
	1 - Weiß	1 - Weiß	Digitale Masse	
	2 - Braun	2 - Braun	Vorbereitung	Niedrig
50	3 - Grau	3 - Grau	Start	Niedrig
	4 - Blau	4 - Blau	Abschalten	Niedrig
	5 - Rosa	5 - Rosa	Nicht belegt	
0	6 - Gelb	6 - Gelb	Einschalten	Hoch
	7 - Rot	7 - Rot	Bereit	Hoch
	8 - Grün	8 - Grün	Stopp	Niedrig
	9 - Schwarz	9 - Schwarz	Startanfrage	Niedrig

Anschluss 01046-60202	Kontakt HP 1090	Kontakt Agilent 1100/1200	Signal	Aktiv (TTL-Pegel)
	1	1 - Weiß	Digitale Masse	
	Nicht belegt	2 - Braun	Vorbereitung	Niedrig
8 7 6	4	3 - Grau	Start	Niedrig
	7	4 - Blau	Abschalten	Niedrig
32	8	5 - Rosa	Nicht belegt	
	Nicht belegt	6 - Gelb	Einschalten	Hoch
	3	7 - Rot	Bereit	Hoch
	6	8 - Grün	Stopp	Niedrig
	Nicht belegt	9 - Schwarz	Startanfrage	Niedrig

Agilent 1100/1200 an HP 1090 LC oder Signalverteilermodul

Agilent 1100/1200 an Universalanschluss

Anschluss 01046-60201	Kontakt Universal	Kontakt Agilent 1100/1200	Signal	Aktiv (TTL-Pegel)
		1 - Weiß	Digitale Masse	
		2 - Braun	Vorbereitung	Niedrig
		3 - Grau	Start	Niedrig
		4 - Blau	Abschalten	Niedrig
		5 - Rosa	Nicht belegt	
		6 - Gelb	Einschalten	Hoch
		7 - Rot	Bereit	Hoch
		8 - Grün	Stopp	Niedrig
		9 - Schwarz	Startanfrage	Niedrig

BCD-Kabel

Ein Ende dieser Kabel weist einen 15-poligen BCD-Stecker auf, der an die Agilent Gerätemodule der Serie 1200 angeschlossen wird. Die Art des Steckers am anderen Kabelende ist von dem anzuschließenden Gerät abhängig.

Agilent 1200 an Universalanschluss

Anschluss G1351-81600	Farbe	Pin Agilent 1200	Signal	BCD-Ziffer
	Grün	1	BCD 5	20
R	lila	2	BCD 7	80
	Blau	3	BCD 6	40
	Gelb	4	BCD 4	10
	Schwarz	5	BCD 0	1
	Orange	6	BCD 3	8
	Rot	7	BCD 2	4
	Braun	8	BCD 1	2
	Grau	9	Digitale Masse	Grau
	Grau/rosa	10	BCD 11	800
	Rot/blau	11	BCD 10	400
	Weiß/grün	12	BCD 9	200
	Braun/grün	13	BCD 8	100
	Nicht belegt	14		
	Nicht belegt	15	+ 5 V	Niedrig

Anschluss 03396-60560	Kontakt 3392/3	Pin Agilent 1200	Signal	BCD-Ziffer
	1	1	BCD 5	20
	2	2	BCD 7	80
	3	3	BCD 6	40
	4	4	BCD 4	10
	5	5	BCD0	1
	6	6	BCD 3	8
	7	7	BCD 2	4
	8	8	BCD 1	2
	9	9	Digitale Masse	
	Nicht belegt	15	+ 5 V	Niedrig

Agilent 1200 an 3396 Integratoren

Zusatzgerätekabel

An einem Ende dieses Kabels befindet sich ein Modulstecker für den Anschluss an den Agilent Vakuumentgaser der Serie 1100. Das andere Ende ist ein Universalanschluss.

Anschluss G1322-81600	Farbe	Pin Agilent 1100	Signal
	Weiß	1	Masse
	Braun	2	Drucksignal
	Grün	3	
	Gelb	4	
	Grau	5	DC + 5 V IN
	Rosa	6	Entlüftung

Agilent Vakuumentgaser der Serie 1100 an Universalsteckverbindung

CAN/LAN-Kabel

An beiden Kabelenden befindet sich ein Modulstecker, der an den CAN- oder LAN-Anschluss der Agilent Geräte der Serie 1200 angeschlossen wird.

CAN-Kabel

Agilent 1200 Modul zu Modul, 0,5 m	5181-1516
Agilent 1200 Modul zu Modul, 1 m	5181-1519
Agilent 1200 Modul zu Steuermodul	G1323-81600

LAN-Kabel

Beschreibung	Bestellnummer
Cross-Over-Netzwerkkabel (geschirmt, 3 m lang) (für Punkt-zu-Punkt-Verbindung)	5023-0203
Twisted Pair-Netzwerkkabel (geschirmt, 7 m lang) (für Hub-Verbindungen)	5023-0202

Kabel für externen Kontakt

Kabel für externen Kontakt

An einem Kabelende befindet sich ein 15-poliger Stecker, der an die Schnittstellenkarte von Agilent Gerätemodulen der Serie 1200 angeschlossen wird. Das andere Ende ist ein Universalanschluss.

Agilent 1200 Schnittstellenkarte an Universalanschluss

Anschluss G1103-61611	Farbe	Pin Agilent 1200	Signal
	Weiß	1	EXT 1
	Braun	2	EXT 1
	Grün	3	EXT 2
	Gelb	4	EXT 2
	Grau	5	EXT 3
	Rosa	6	EXT 3
	Blau	7	EXT 4
	Rot	8	EXT 4
	Schwarz	9	Nicht belegt
	lila	10	Nicht belegt
	Grau/rosa	11	Nicht belegt
	Rot/blau	12	Nicht belegt
	Weiß/grün	13	Nicht belegt
	Braun/grün	14	Nicht belegt
	Weiß/gelb	15	Nicht belegt

RS-232 Kabelsatz

Dieses Kit beinhaltet ein Nullmodem-/(Drucker)-Kabel (9-polige Buchse an 9-polige Buchse) und einen Adapter. Mit diesem Kabel und Adapter können Sie Geräte von Agilent Technologies mit 9-poligen RS-232-Steckern an die meisten PCs oder Drucker anschließen.

Beschreibung	Bestellnummer
RS-232-Kabel, Gerät an PC, 9-auf-9 Pole (Buchse). Das Kabel hat einen besonderen Ausgangspol, es ist nicht kompatibel zu Drucker und Plotter.	24542U G1530-60600
RS-232 Kabelkit, 9-auf-9 Pole (Buchse) und ein Adapter 9-polig (Stecker) 25-polig Buchse. Geignet für den Anschluss des Gerätes an einen PC.	34398A
Druckerkabel, seriell und parallel, besitzt eine SUB-D 9-polige Buchse mit Centronics-Anschluss am anderen Ende (NICHT FÜR FW-UPDATE).	5181-1529
Dieser Kit enthält ein Nullmodem-(Drucker-) Kabel mit einem 9-poligen weiblichen und einem 9-poligen männlichen Anschluss sowie einen Adapter. Verwenden Sie dieses Kabel und den Adapter zum Anschluss von Agilent Technologies Geräten mit 9-Kontakt männlichem RS-232 Stecker an die meisten PCs oder Drucker.	34398A

9 Anschlusskabel

RS-232 Kabelsatz

10 Appendix

Allgemeine Sicherheitsinformation 162 Die Richtlinie 2002/96/EG (WEEE) über die Verwertung von Elektro- und Elektronik-Altgeräten 166 Lithiumbatterien 167 Störstrahlung 168 Geräuschemission 169 Informationen zu Lösungsmitteln 170 Agilent Technologies im Internet 172

10 Appendix Allgemeine Sicherheitsinformation

Allgemeine Sicherheitsinformation

Allgemeine Sicherheitsinformation

Die folgenden allgemeinen Sicherheitshinweise sind in allen Betriebsphasen sowie bei der Wartung und Reparatur des Gerätes zu beachten. Die Nichtbeachtung dieser Vorsichtsmassnahmen bzw. der speziellen Warnungen innerhalb dieses Handbuchs verletzt die Sicherheitsstandards der Entwicklung, Herstellung und vorgesehenen Nutzung des Gerätes. Agilent Technologies übernimmt bei Nichteinhaltung dieser Vorschrift durch den Kunden keine Haftung.

WARNUNG Stellen Sie die ordnungsgemäße Verwendung der Geräte sicher.

Der vom Gerät bereitgestellte Schutz kann beeinträchtigt sein.

→ Der Bediener sollte dieses Gerät in Übereinstimmung mit der Beschreibung laut Handbuch verwenden.

Sicherheitsstandards

Dies ist ein Gerät der Sicherheitsklasse I (mit Erdungsanschluss). Es wurde entsprechend internationaler Sicherheitsstandards gefertigt und getestet.

Betrieb

Beachten Sie vor dem Anlegen der Netzspannung die Installationsanweisungen. Darüber hinaus sind folgende Punkte zu beachten:

Während des Betriebs darf das Gehäuse des Geräts nicht geöffnet werden. Vor dem Einschalten des Gerätes müssen sämtliche Massekontakte, Verlängerungskabel, Spartransformatoren und angeschlossenen Geräte über eine geerdete Netzsteckdose angeschlossen werden. Bei einer Unterbrechung des Erdungsanschlusses besteht die Gefahr eines Stromschlags, der zu ernsthaften Personenschäden führen kann. Das Gerät muss außer Betrieb genommen und gegen jede Nutzung gesichert werden, sofern der Verdacht besteht, dass die Erdung beschädigt ist.

Vergewissern Sie sich, dass nur Sicherungen mit dem korrekten Nennstrom and dem richtigen Typ (normale Schmelzsicherung, träge Sicherungen usw.) verwendet werden. Die Benutzung reparierter Sicherungen sowie das Kurzschließen von Sicherungshaltern sind nicht zulässig.

Einige in diesem Handbuch beschriebenen Einstellarbeiten werden bei an das Stromnetz angeschlossenem Gerät und abgenommener Gehäuseabdeckung durchgeführt. Dabei liegen im Gerät an vielen Punkten hohe Spannungen an, die im Falle eines Kontaktschlusses zu Personenschäden führen können.

Sämtliche Einstellungs-, Wartungs- und Reparaturarbeiten am geöffneten Gerät sollte nach Möglichkeit nur durchgeführt werden, wenn das Gerät von der Netzspannung getrennt ist. Solche Arbeiten dürfen nur von erfahrenem Personal durchgeführt werden, das über die Gefahren ausreichend informiert ist. Wartungs- und Einstellarbeiten an internen Gerätekomponenten sollten nur im Beisein einer zweiten Person durchgeführt werden, die im Notfall Erste Hilfe leisten kann. Tauschen Sie keine Komponenten aus, solange das Netzkabel am Gerät angeschlossen ist.

Das Gerät darf nicht in Gegenwart brennbarer Gase oder Dämpfe betrieben werden. Ein Betrieb von elektrischen Geräten unter diesen Bedingungen stellt immer eine eindeutige Gefährdung der Sicherheit dar.

Bauen Sie keine Austauschteile ein und nehmen Sie keine nicht autorisierten Veränderungen am Gerät vor.

10 Appendix

Allgemeine Sicherheitsinformation

Kondensatoren in diesem Gerät können noch geladen sein, obwohl das Gerät von der Netzversorgung getrennt worden ist. In diesem Gerät treten gefährliche Spannungen auf, die zu ernsthaften Personenschäden führen können. Die Handhabung, Überprüfung und Einstellung des Gerätes ist mit äußerster Vorsicht auszuführen.

Beachten Sie bitte beim Arbeiten mit Lösungsmitteln die geltenden Sicherheitsvorschriften (z. B. Tragen von Schutzbrille, Arbeitshandschuhen und Sicherheitskleidung), wie sie in den Sicherheitsdatenblättern des Herstellers beschrieben sind; dies gilt speziell für der Handhabung giftiger oder gesundheitsgefährdender Lösungsmittel.

Sicherheitssymbole

Tabelle 21 Sicherheitssymbole

Symbol	Beschreibung
\land	Das Gerät ist mit diesem Symbol markiert, wenn der Benutzer im Handbuch nachlesen sollte, um sich vor Verletzungen und das Gerät vor Beschädigungen zu schützen.
\$	Weist auf gefährliche Spannungen hin.
	Weist auf einen Schutzkontakt (Erdung) hin.
	Das Licht der Xenon-Lampe in diesem Produkt kann bei direktem Blickkontakt zu Augenverletzungen führen.
	Das Gerät ist mit diesem Symbol versehen, wenn heiße Oberflächen vorhanden sind, mit denen der Benutzer nicht in Berührung kommen sollte.

Der Sicherheitshinweis WARNUNG

weist Sie auf Situationen hin, die zu Personenschäden (u. U. mit Todesfolge) führen können.

→ Fahren Sie bei einer Kennzeichnung durch einen Sicherheitshinweis erst fort, wenn Sie den Hinweis vollständig verstanden und entsprechende Maßnahmen getroffen haben.

VORSICHT

WARNUNG

Der Sicherheitshinweis ACHTUNG

weist Sie auf Situationen hin, die zu einem möglichen Datenverlust oder zu einer Beschädigung des Geräts führen können.

→ Fahren Sie bei einer Kennzeichnung durch diesen Sicherheitshinweis erst fort, wenn Sie diesen vollständig verstanden und entsprechende Maßnahmen getroffen haben.

10 Appendix

Die Richtlinie 2002/96/EG (WEEE) über die Verwertung von Elektro- und Elektronik-Altgeräten

Die Richtlinie 2002/96/EG (WEEE) über die Verwertung von Elektro- und Elektronik-Altgeräten

Zusammenfassung

Mit der am 13. Februar 2003 von der EU-Kommission verabschiedeten Richtlinie über Elektro- und Elektronikaltgeräte (2002/96/EC) wird ab dem 13. August 2005 die Herstellerverantwortung für alle Elektro- und Elektronikgeräte eingeführt.

HINWEIS

Dieses Produkt entspricht den Kennzeichnungsanforderungen der WEEE-Richtlinie (2002/96/EG). Der auf dem Produkt angebrachte Aufkleber zeigt an, dass dieses Elektro-/Elektronikprodukt nicht mit dem Hausmüll entsorgt werden darf.

Produktkategorie:

Gemäß den in der WEEE-Richtlinie, Anhang I, aufgeführten Gerätetypen ist dieses Produkt als "Überwachungs- und Kontrollgerät" klassifiziert.

HINWEIS

Entsorgen Sie es nicht im normalen Hausmüll.

Wenn Sie unerwünschte Produkte zurückgeben möchten, setzen Sie sich bitte mit der nächstgelegenen Agilent Niederlassung in Verbindung oder informieren Sie sich im Internet unter www.agilent.com.

Lithiumbatterien

WARNUNG

Gebrauchte Lithiumbatterien sind Sondermüll und dürfen nicht mit Restmüll entsorgt werden. Der Transport entladener Lithiumbatterien durch Transportunternehmen, die den Vorschriften der IATA/ICAO, ADR, RID oder IMDG unterliegen, ist nicht zulässig.

Bei Verwendung falscher Batterien besteht Explosionsgefahr.

- → Beachten Sie bei der Entsorgung gebrauchter Lithiumbatterien die gesetzlichen Richtlinien des jeweiligen Landes.
- → Verwenden Sie als Ersatz den vom Gerätehersteller empfohlenen Batterietyp bzw. einen äquivalenten Typ.

10 Appendix Störstrahlung

Störstrahlung

Die von Agilent Technologies gelieferten Kabel bieten optimalen Schutz gegen Störstrahlung. Alle Kabel entsprechen den Sicherheits- und EMC-Anforderungen.

Prüf- und Messgeräte

Wenn Prüf- und Messgeräte mit nicht abgeschirmten Kabeln betrieben werden und/oder bei Messungen an geöffneten Geräten muss sichergestellt werden, dass unter den Betriebsbedingungen die zulässigen Grenzwerte für Störstrahlung weiterhin eingehalten werden.

Geräuschemission

Herstellerbescheinigung

Diese Erklärung dient der Erfüllung der Bedingungen der deutschen Richtlinie für Geräuschemissionen vom 18. Januar 1991.

Dieses Gerät hat einen Schallpegel von weniger als 70 dB (Bedienerposition).

- Schallpegel Lp < 70 dB (A)
- Am Arbeitsplatz
- Im Normalbetrieb
- Gemäß ISO 7779:1988/EN 27779/1991 (Typprüfung)

10 Appendix

Informationen zu Lösungsmitteln

Informationen zu Lösungsmitteln

Durchflusszelle

Zum Schutz der optimalen Funktionalität der Durchflusszelle:

- Vermeiden Sie den Gebrauch alkalischer Lösungen (pH > 9,5), welche Quarz und damit die optischen Eigenschaften der Durchflusszelle verändern können.
- Beim Transport der Durchflusszelle bei Temperaturen unter 5 °C muss sichergestellt sein, dass die Zelle mit Alkohol gefüllt ist.
- Wässrige Lösungen in der Durchflusszelle können zu Algenwachstum führen. Lassen Sie deshalb keine wässrigen Lösungsmittel in der Durchflusszelle stehen. Fügen Sie einen geringen Prozentsatz organischer Lösungsmittel zu (z. B. Acetonitril oder Methanol ~5 %).

Umgang mit Lösungsmitteln

Beachten Sie die folgenden Empfehlungen bei der Wahl der Lösungsmittel.

- Braune Glasgeräte können Algenwachstum vermeiden.
- Kleine Partikel können die Kapillarleitungen und Ventile dauerhaft verstopfen. Filtern Sie Lösungsmittel immer mit 0,4µm-Filtern.
- Vermeiden Sie den Gebrauch der folgenden Stahl korrodierenden Lösungsmittel:
 - Lösungen von Alkalihalogeniden und ihren entsprechenden Säuren (z. B. Lithiumjodid, Kaliumchlorid).
 - Hohe Konzentrationen anorganischer Säuren wie Schwefelsäure und Salpetersäure speziell bei höheren Temperaturen sollten vermieden werden (falls es Ihre chromatographische Methode zulässt). Stattdessen sollten Phosphorsäure- oder Phosphatpufferlösungen eingesetzt werden, die weniger korrosiv auf Edelstahl wirken.

• Halogenierte Lösungsmittel oder Gemische, die Radikale und/oder Säuren bilden, wie beispielsweise:

 $2 \text{CHCl}_3 + \text{O}_2 \rightarrow 2 \text{COCl}_2 + 2 \text{HCl}$

Diese Reaktion, die wahrscheinlich durch Edelstahl katalysiert wird, läuft in getrocknetem Chloroform schnell ab, wenn der Trocknungsprozess den als Stabilisator fungierenden Alkohol entfernt.

- Chromatographiereine Ether, die Peroxide enthalten können (z. B. THF, Dioxan, Di-Isopropylether). Filtrieren Sie solche Ether über trockenem Aluminiumoxid, an dem die Peroxide adsorbiert werden.
- Lösungsmittel, die komplexbildende Mittel enthalten (z.B. EDTA).
- Mischungen von Tetrachlorkohlenstoff mit 2-Propanol oder THF.

10 Appendix

Agilent Technologies im Internet

Agilent Technologies im Internet

Die neuesten Informationen zu Produkten und Dienstleistungen finden Sie auf unserer Website unter

http://www.agilent.com

Wählen Sie Products/Chemical Analysis.

Auf gleichem Wege können Sie die aktuellste Firmware der Agilent Module der Serie 1200 herunterladen.

A

Abfallleitung 31 Abmessungen 25 Agilent Diagnose-Software 67 Agilent Lab Advisor Software 67 Agilent Lab Advisor 67 Aailent im Internet 172 Aktiveinlassventil 107, 110, 110 Algen 48, 170, 170 Algenwachstum 51 Alternative Dichtungsmaterialien 59 Altgeräte Elektro- und Elektronikgeräte 166 Analogausgang 18, 27 Analog Kabel 144, 146 Anschlüsse, Flüssigkeit 40 Antistatisches ESD-Armband 31. 102 Anzeige, Status 70, 70 Arbeitsumgebung 24 Ausbau des Pumpenkopfes 119 Auslasskugelventil 107, 114 Austauschen Aktiveinlassventil 107, 110, 110 Auslasskugelventil 107, 114 Auslasskugelventilsieb 107, 114 Eingebaute Teile 100 Kolben 107, 124 Lösungsmittelauswahlventil 117 Pumpendichtungen 107, 121 Schnittstellenkarte 129 107, 126, 126 Spüldichtungen Spülventilfritte 107, 117

Spülventil 107, 117 AUTO-Modus 14 AUX-Ausgang 39

B

Batterien Sicherheitsinformationen 167 BCD-Ausgabe 18 BCD Kabel 144, 154 BCD-Karte 129 Beschädigte Teile 30 Beschädigte Verpackung 30 Betriebsdruckbereich 26 Betriebshöhe 25 Betriebstemperatur 25 Blindstopfen 84

C

CAN-Bus 18 CAN Kabel 157 Checkliste Lieferumfang 30 CSM-Platine (Capillary Separation Main) 17

D

Diagnose-Software 67 Dichtigkeitstest 68 Dichtung, alternatives Material 59 Dichtungen 107, 124 Druck über oberem Grenzwert 78 Druck unter unterem Grenzwert 79 Druckbereich 59 Druckschwankung (Pulsation) 14, 63 Durchflusszelle 170 Informationen zu Lösungsmitteln 170 Durchführung des Dichtigkeitstests 84 Durchführung des Lecktests 88

Ε

Eigenschaften GLP 27 Sicherheit und Wartung 27 Einfache Reparaturen 107 Einführung in die Pumpe 8 Einsetzwerkzeua für Dichtuna 31 Elektrische Anschlüsse 18 Elektronik, CSM-Platine 17 Elektronik, HPM-Platine 17 Elektronik-Altgeräte 166 Elektronische Sicherungen 18 Elektrostatische Entladungen (ESD) 101. 129 Eluentenraum 30, 41, 48 EMF-Grenzwerte 104 **EMF-Markierung** (Wartungsanzeige) 103 EMF-Zähler 103 Empfohlener pH-Bereich 26 EMPV-Reinigung 98 EMPV-Test 97 Ergebnisse, Drucktest 85 Frsatzteile Eluentenraum 135 Flusssensor 140

Hydraulischer Pfad 136 Pumpengehäuse 132 Erstbefüllung mit Pumpe 45 Externer Kontakt Kabel 145, 158

F

fehlende Teile 30 Fehlermeldungen 68, 73 Leckage 77 Pressure above upper limit (Oberes Drucklimit überschritten) 78 Pressure below lower limit (Unteres Drucklimit unterschritten) 79 Remote Timeout 75 Shut-down 74 Timeout 73 Fehler zero solvent counter (Lösungsmittelvorrat zu gering) 78 Feuchtigkeit 25 Flaschenaufsatz 30 Flussbereich 26 Flussgenauigkeit 26 Flussleitungen 40 Flusssensorteile 140 Frequenzbereich 18, 25 Fritte 117 Frühwarnsystem für fällige Wartungen (EMF) 16 Funktionen Geräteaufbau 16

G

Gabelschlüssel, 1/4 - 5/16" 31 Gabelschlüssel, 1/4 Zoll 84, 88 Gabelschlüssel, 1/4" 114, 119, 121

Gabelschlüssel, 14 mm 31, 110, 111, 112.114 Genauigkeit des Mischungsverhältnisses 26 Geräteanordnung, Rückansicht 34 Geräteanordnung, Vorderansicht - 33 Geräteanordnung 32 Gerätestatusanzeige 71 Geräuschemission 169 Gewicht 25 GPIB-Anschluss 18 GPIB Kabel 145

Н

Hauptbaugruppen 132 Hauptkomponenten, Überblick 105 High Pressure Pump Main Board (HPM) 17 Hinweise für erfolgreiche Verwendung 48 Hinweise zum Aufstellort Stromversorgung 23 Hubvolumen 14 Hydraulischer Pfad 136 Hydraulisches System 26

Inbusschlüssel, 3 mm 119, 121, 124, 127 Inbusschlüssel, 4 mm 119, 121, 124, 127 Inbusschlüsselsatz 31 Informationen zu Lösungsmitteln 48, 50, 170 Installation, Pumpenmodul 35 Installation Netzkabel 22 Stromversorgung 23 Instrumentenüberprüfung 54 Internet 172

Κ

Kabel Analog 144, 146 BCD 144, 154 CAN 30. 157 Externe Kontakte 145 Externer Kontakt 158 GPIB 145 IAN 145, 157 Netz 30 Remote 30, 144, 149 RS-232 145 Schnittstelle 37 Signal 30 Übersicht 144 Zusatzgeräte 144, 156 Kalibrierung des Flusssensors 94 Kolben 107, 124 Kompressibilitätsausgleich 26, 63 Kondensation 24 Kreuzschlitzschraubendreher Pozidriv #1 117 Kreuzschlitzschraubenzieher Pozidriv #1 126

L

Laborarbeitsfläche 24 Lampe, Status der Pumpe 71 70 Lampe, Stromversorgung IAN Kabel 145, 157 Leck 77 Lecktest, Auswertung 89 Lecktest 68, 86 Leistungsmerkmale 26 Lieferliste für die Kapillarpumpe 30

Lieferliste für die Pumpe 30 Liquimeter 122 Lithiumbatterien 167 Lösungsmittelauswahlventil 117 Lösungsmitteleinlassfilter 48 Lösungsmittelfilter Reinigung 109 Verstopfungen verhindern 51 Lösungsmittelflasche 30 Lösungsmittel 170 Lösungsmittelvorrat zu gering 78

Μ

max. Höhe bei Lagerung 25 Messwerte des Drucksensor 39

Ν

Netzfrequenz 18, 25 Netzkabel 22 Netzschalter 36 Netzstrom 18, 25 Netzwahlschalter 18

0

optimale Leistungsfähigkeit 32

Ρ

pH-Bereich 26 Physikalische Spezifikationen 25 Platzbedarf 24 PTFE-Fritte 107.117 PTFE-Schmiermittel 127 Pufferlösuna 48 Pumpendichtungen 107, 121 Pumpengehäuse 132 Pumpenkopfeinheit 138

R

Reinigung der Pumpe 102 Remote Timeout 75 Remote-Anschluss 18 Remote Kabel 144, 149 Reparaturen Verwendung des antistatischen ESD-Armbands 102 Reparaturmaßnahmen 107 Richtlinie 2002/96/EG 166 BS-232C PC-Kabelsatz 159 RS-232C-Schnittstelle 18 RS-232 Kabel 145

S

Säulenflussbereich 26 Schnappverschluss 40 Schnittstellenkabel 37 Schnittstellenplatine 129 Schraubendreher Pozidriv Gr. 1 121 Shut-down (Herunterfahren) 74 Sicherheit Allgemeine Informationen 162, 162 Sicherheitshinweise Lithiumbatterien 167 Sicherheitsklasse I 162 Sicherheit Standards 25 Symbole 165 Sicherheitszunge 36, 100 Sicherung 18 Sieb 107, 114 Spannungsbereich 18, 25 Spezifikationen Technische Daten 25

Spezifikation 26 Leistuna Spüldichtungen 107, 126 Spülventil 107. 117 Statusanzeige 68.70 Steuersoftware 39, 39 Störstrahlung 168 Störung 71 Stromverbrauch 25 Strom 23 Versorgung Stromversorgungsanzeige 70.70

Т

Teile für Eluentenraum 135 Teile für Flaschenaufsatz 135 Teile, Hauptbaugruppen 132 Teile beschädiate 30 fehlende 30 Flaschenaufsatz 135 Pumpenkopf 138 Zubehörkit 141 Temperatur für Lagerung 25 Temperaturfühler 77 Testprobe 54 Transportverpackung 30

Ü

Übersicht Pumpe 9

U

Ultraschallbad 114 Umgebungstemperatur bei Betrieb 25 Umgebungstemperatur bei Lagerung 25

V

variables Hubvolumen 14 Verzögerungsvolumen 32

W

Wartungsarbeiten 15, 103 Werkzeuge Gabelschlüssel 1/4" 121 Kreuzschlitzschraubendreher Pozidriv #1 117 Schraubendreher Pozidriv Gr. 1 121

Z

Zähler für den Dichtungsverschleiss 122 Zähler für Dichtungsverschleiß 104 Zähler, Dichtungsverschleiß 104 Zähler, EMF 103 Zeitlimitüberschreitung 73 Zerlegen des Pumpenkopfes 119 Zubehörkit 31, 141 Zusammenbau der Pumpenkopfeinheit 127 Zusatz Kabel 144, 156

www.agilent.com

Inhaltsangabe

Das vorliegende Handbuch enthält technische Informationen zur Agilent Kapillarpumpe der Serie 1200. Das Handbuch umfasst:

- Einführung zur Pumpe
- Hinweise zum Aufstellort und Spezifikationen
- Installation
- Verwenden der Pumpe
- Optimierung der Pumpenleistung
- Fehlerbehebung und Diagnoseverfahren
- Wartung
- Zubehörteile und Verbrauchsmaterialien
- Überblick über Anschlusskabel
- Gesetzliche Hinweise, Sicherheitshinweise und Informationen zur Garantie

© Agilent Technologies 2007, 2008

Printed in Germany 12/08

G1376-92012

