

Agilent G1701EA MSD Productivity ChemStation

入门指南

Agilent Technologies

声明

© Agilent Technologies, Inc. 2011

未经 Agilent Technologies, Inc. 事先许可 和书面同意, 不得以任何形式或任何手 段(包括电子存储或翻译成外国语言) 对本手册的任何部分进行复制, 本手册 内容受美国法律和国际版权法保护。

手册部件号

G1701-97070

版本

2011年7月,第一版

美国印刷

Agilent Technologies, Inc. 5301 Stevens Creek Boulevard Santa Clara, CA 95051 USA

担保

技术许可证

本文档中描述的硬件和 / 或软件根 据许可证规定提供,只能根据此类 许可证的条款进行使用或复制。

有限权利说明

如果软件用于履行美国政府主合同或子 合同,则按照DFAR 252.227-7014(1995年 6月)中的规定,将软件作为"商业计 算机软件"进行交付和发放许可,或者 按照 FAR 2.101(a) 中的规定,将软件作为 "商品"进行交付和发放许可,或者按照 FAR 52.227-19 (1987 年 6 月) 或任何等 效代理机构法规或合同条款中的规定, 将软件作为"受限计算机软件"进行交 付和发放许可。使用、复制或披露软件 均受 Agilent Technologies 标准商业许可 条款约束,美国政府的非 DOD 部门和机 构获得的权利不超过 FAR 52.227-19(c)(1-2) (1987年6月)中规定的"有限权利"。 美国政府用户获得的有关任何技术数据 的适用权利不超过 FAR 52.227-14(1987 年 6月)或DFAR 252.227-7015 (b)(2)(1995年 11月)中规定的"受限权利"。

安全声明

小心

小心声明表示存在危险。它表 示在执行某个操作步骤或操作 方法时必须加以注意;如果操 作不当或没有遵守相应的规 程,则可能会导致产品损坏和 重要数据丢失。只有完全理解 并符合指定的条件时,才可以 忽略**小心**声明的要求继续进行 操作。

警告

"警告"声明表示存在危险。它 表示在执行某个操作步骤或操 作方法时必须加以注意;如果 操作不当或没有遵守相应的规 程,则可能会导致人身伤亡。只 有完全理解并符合指定的条件 时,才可以忽略警告声明的要 求继续进行操作。

本指南内容

本指南包含一个分步式练习,帮助您熟悉 Agilent 7890A GC/5975 MSD 以及 G1701EA MSD Productivity ChemStation 软件

要成功使用本手册,需要准备好以下部件和物品:

- GC 进样口: 具有 EPC 的分流 / 不分流进样口 (默认进样口配置)
- 色谱柱: HP-5ms 30 m x 250 µm x 0.25 µm
- 样品: 5975 MSD 样品 (P/N 05970-60045) 或 (仅限 P/N 5074-3025,日本)
- MSD 调谐校正剂: PFTBA (全氟三丁胺)

在操作此仪器之前,请确保阅读了随此仪器一起提供的所有安全和 法规信息。

1 启动系统

启动用于数据采集的系统硬件和软件。

2 调谐 MS

确定是否正确对仪器进行了调谐。

3 为定性分析创建方法

从系统默认方法创建新的定性分析扫描方法。

4 运行扫描方法

运行在第3章中创建的方法以采集样品数据。

5 定性数据分析

使用"增强型数据分析"程序分析在第4章中生成的数据。

6 创建 SIM 定量方法

从在第3章中创建的扫描方法创建 SIM 方法。

7 运行序列

使用在第6章中创建的方法创建和运行序列。

8 设置定量数据库

使用化合物和校正剂设置数据库,以标识未知样品。

9 生成报告

在运行之后或以后的时间点根据以前采集的数据自动生成报告。

10 重新校正和定量未知样品

修改序列以重新校正,然后使用它对未知样品进行定量。

- 11 创建冷却方法 创建并存储维护方法。
- 12 关闭系统
- 13 常见问题解答

在哪里可以获得信息

硬件

除此文档之外, Agilent 还提供了几个学习产品,这些产品描述如何安装、操作和维护 7890A GC/5975 MSD 及其故障排除。这些信息可以在随 仪器一起提供的 《Agilent Technologies GC 和 GC/MS 硬件用户信息和 实用程序 DVD》中找到。

有关当前 Agilent 气相色谱仪、质量选择检测器、离子阱和 GC 进样器的 联机帮助、视频和手册都可以在随仪器一起提供的《Agilent Technologies GC 和 GC/MS 硬件用户信息和实用程序 DVD》上找到。还包括您所需要 的信息的本地化版本,比如:

- 入门文档
- 安全与规范指南
- 现场准备工作目录
- 安装信息
- 操作指南
- 维护信息
- 故障排除详细信息

软件

有关在何处可以找到 G1701EA MSD Productivity ChemStation 的详细信息的说明,请参见《Agilent G1701EA GC/MSD ChemStation 入门手册》。

目录

1 启动系统

启动硬件 12 运行 ChemStation 软件 14 选择调谐文件 15 调用方法 16

2 调谐 MS

简介	18		
运行自	动调谐	19	
评估自	动调谐结	果	22
调谐历	史记录趋	势	24

3 为定性分析创建方法

简介 26

编辑整个方法 27 检查 GC 配置 29 设置 GC 就绪状态 32 设置 GC 柱箱参数 33 设置 GC 色谱柱参数 35 设置 GC 进样口参数 36 设置 GC 进样器参数 38 设置 GC 辅助加热器参数 40 设置 GC 信号参数 40 编辑要显示的 GC 实时图谱 42 编辑 MS 参数 42 保存方法 46

有关编辑 GC 参数的一般信息 47 打开 GC 编辑参数窗口 47 将色谱柱添加到 ChemStation 本地清单 48 选择和配置色谱柱 51 从 7890A GC 上传参数 53 自定义状态面板视图 53

4 运行扫描方法

- 准备样品 56
- 调用方法 57
- 运行方法 58
- 拍制快照 61
- 查看工作日志 62
- 5 定性数据分析

积分峰 66 编辑积分事件 69

> 将积分事件保存到方法中 71 手动积分峰 72

查看表中的积分结果 73

编辑用于生成报告的方法 74

显示提取离子色谱图 (EIC) 76

启用或禁用右键单击上下文菜单 78

分析数据 79

从质谱图中扣除基线噪音 81 选择目标离子和定性离子 82

检索质谱库 83

生成自动谱库检索报告 84

打印窗口、TIC、质谱图或方法 86 选择打印机 86 选择要打印的项目 87

保存数据分析方法 87

退出数据分析程序 88

6 创建 SIM 定量方法

简介 90

创建 SIM 方法 91 同时采集扫描和 SIM 数据 (SIM / 扫描模式) 96 SIM / 扫描模式循环频率 98

7 运行序列

备制样品	100
创建序列	101
保存序列	103

调用序列 104 运行序列 105 打印序列日志 106

8 设置定量数据库

为数据库添加化合物条目 108 标识化合物 112 添加校正曲线 115 添加校正剂级别 1 115 将校正剂级别 5、10、25 和 50 添加到校正曲线中 117 保存数据库 119

查看或编辑现有数据库 120

9 生成报告

在运行后自动生成报告 124 调用方法 124 编辑用于生成报告的方法 124 运行方法并生成报告 127

为以前采集的数据生成详细报告 129 调用方法 129 调用数据文件 129 生成详细的定量报告 129

10 重新校正和定量未知样品

创建重新校正序列 132 保存序列 134 运行序列 135

11 创建冷却方法

创建冷却方法 138 使用冷却方法 139

12 关闭系统

关闭 MS 142 关闭 GC 143

13 常见问题解答

Agilent G1701EA MSD Productivity ChemStation 入门指南

启动系统

启动硬件 12 运行 ChemStation 软件 14 选择调谐文件 15 调用方法 16

在本章中,提供了启动检查列表,可查看此列表以确定仪器的就绪状态。如果有必要,可对仪器的硬件配置进行更改,以处理在本手册中介绍的样品运行数据采集。如果仪器已关闭并且G1701EA MSD Productivity ChemStation 未运行,则需要启动仪器,并对 MSD 抽真空。最后,在准备过程中调用方法,以将所有的仪器参数导入到进行数据采集所需的设置中。

启动硬件

- 在打开仪器的电源之前,请查看《Agilent 7890A Gas Chromatograph 操作指南》(P/N G3430-90011)和《Agilent 5975 Series MSD 操作手册》(P/N G3170-90036)以获得重要 的安全信息和启动详细信息。
- 2 检查分流 / 不分流 (S/SL) 进样口隔垫、衬管和 "O" 形圈是否干 净、已正确安装并处于良好状态。
- 3 在 GC 中安装老化的色谱柱 (HP-5ms 30 m x 250 μm x 0.25 μm)。将此色谱柱进样口连接到 S/SL 进样口及其出样口, 使之与 MSD 传输线联通。有关详细信息,请参见《Agilent 5975 Series MSD 操作手册》。
- 4 检查 EI 离子源是否已安装。
- 5 检查是否将 99.9995% 纯度的氦气连接到 S/SL 样口的载气源。
- 6 打开 7890A GC 的电源。
- 7 从 GC 面板键盘,关闭柱箱、辅助加热区 2(GC/MSD 传输线) 和进样口加热器。如果装配了任何 GC 检测器,请将其关闭。
- 8 打开或尝试操作 MSD 之前,请检查以下事项。
 - 放空阀必须关闭 (旋钮已顺时针完全拧至一侧)。
 - 所有其他真空密封件和接头均已安装到位并正确紧固。
 - 前侧板镙钉不应拧紧。
 - MSD 已连接到接地电源。
 - GC/MSD 接口延伸入 GC 柱箱。
 - GC 入口和 GC/MSD 接口中安装了可老化的毛细管色谱柱。
 - GC 已打开,但 GC/MSD 接口的加热区、 GC 进样口和柱箱 处于关闭状态。
 - 已使用推荐的净化器将载气 (纯度至少 99.9995%)用管道
 连接至 GC。
 - 前级泵废气必须正确排出。
- 9 打开 MSD 质量分析器顶盖。
- 10 关闭 MSD 放空阀。
- 11 按 MSD 前面的电源按钮打开其电源。前级泵会产生汨汨声。轻 按 MSD 侧板上安装的金属盒,直到不再有漏气声响,以确保密 封正确。

- 12 关闭 MSD 质量分析器顶盖。
- 13 从 MSD 面板上,选择抽真空。
- 抽真空是完全自动的过程,无需操作员介入。
- 在涡轮泵速达到 100%,离子测量计值达到 100 mTorr 之后,要让 MSD 至少运行两个小时,然后才可采集样品数据。

运行 ChemStation 软件

- 1 打开 PC 电源。
- 2 从 PC 桌面,选择 ChemStation 仪器控制快捷方式图标,以显示"增强型 ChemStation" **仪器控制**窗口。

3 如果 MS 实际温度未达到其设定值,将会显示 MS 温度对话框。 如果需要,请输入新的设定值,然后单击确定。

s 🗵				×
区域	实际值	设定值	限制	
离子源		230	250	
191217		150	200	
应用(A)	确定	取消	帮助の	0

4 如果计算机中安装了 PDF 编写程序(如 Adobe Acrobat),请 将默认打印机设置为 PDF 打印机。

选择调谐文件

- 1 从**增强型 ChemStation 主控制**窗口中,选择**视图 > 调谐和真空** 控制...,以显示调谐和真空控制窗口。
- 2 选择**文件 > 调用调谐参数**。此时会打开选择调谐文件对话框。

选择调谐文件		×
路径:C:\MSDCHEM\1\5975\ 上次修改日期: Fri Apr 29 13:49:08 2011 文件:	设置:	
atune. u bfb. u dftpp. u NCICH4. u pcich4. u stune. u target. u	类型: Pos EI EMV: 1200 V 离子源: 230 °C 四极杆: 150 °C 发射电流: 34.6 uA 电子能里: 70.0 eV CI 气体:	
确定	帮助 (H)	

- 3 从**文件**列表中,选择 atune.u。atune.u 文件包含在上次运行自动 调谐期间确定的最优 MSD 参数设置。
- 4 选择确定。此时会调用 atune.u 调谐文件, 然后关闭此对话框。

调用方法

1 选择视图 > 仪器控制以关闭调谐和真空控制 ...,然后会显示 " 增强型 ChemStation"仪器控制窗口。

选择**调用方法**按钮

2

。此时会打开**调用方法**对话框。

3 在 msdchem/1/methods 目录中导航查找并选择 default.m。

调	用方法
ì	调用方法
[🔒 ENV 🔺
	🕀 퉲 EnvDemo
	🕀 🌗 hp
	🖃 🌗 msdchem
	🕀 퉲 5975
	퉬 5975. OLD
	🕀 퉲 data
	🖃 🍶 methods
	🕀 🍌 checkout
	🕀 🎍 default
	🛨 🍌 default.m 🗨
	新建文件夹 创

4 选择**确定**。

Agilent G1701EA MSD Productivity ChemStation 入门指南

调谐 MS

2

简介 18 运行自动调谐 19 评估自动调谐结果 22 调谐历史记录趋势 24

在本章中,首先简要介绍如何调谐,然后介绍如何在仪器上运行自 动调谐。然后生成自动调谐报告,之后运行报告以评估自动调谐结 果。可查看此报告,以确认哪些项目通过评估,哪些项目未通过评 估。最后,了解我们如何以图形方式查看已调谐参数的变化(图形 是根据最近多次自动调谐运行而绘制的)。

2 调谐 MS

简介

调谐是在整个质量数范围内为获得良好性能而调整 MS 的过程。通 过使用已知化合物作为校正剂,设置调谐参书,以获得已知校正离 子的灵敏度、分辨率和质量分布。

可通过使用自动调谐或手动调谐功能执行调谐。

手动调谐可让您调整 MS 调谐参数,同时可方便地在峰状图扫描和 质谱图中查看结果。

使用手动调谐可达到以下目的:

- 获得最高灵敏度,但会在某种程度上降低分辨率
- 专门对非常低的质量数范围进行调谐 (< 150 amu)
- 利用化合物而不是标准校正剂进行调谐

要访问手动调谐参数,请从**调谐和真空控制**窗口中选择**参数 > 手** 动调谐,或从**仪器控制**窗口中选择**仪器 > 编辑调谐参数**。有关使用 手动调谐的详细信息,请参见 ChemStation 联机帮助。

要在整个质量数范围内获得良好性能,可以使用本节中介绍的自动 调谐程序来调整 MS,对于大多数应用,都推荐使用自动调谐程序。

运行自动调谐

1 从仪器控制窗口中,选择仪器 > 调谐 MSD... 以显示选择调谐 类型对话框。

选择调谐类型			
○ 调谐 MSD(T) ● 快速调谐(Q)			
确定	取消	帮助(H)	

2 选择**调谐 MSD**,然后单击**确定**以关闭此对话框,并开始自动 调谐过程。

系统会使用 PFTBA(全氟三丁胺)校正剂调谐仪器。调谐完成后,会显示质量数 69、219 和 502 峰状图扫描以及丰度和峰宽。请参见图 1。还会生成调谐报告,如第 21 页上的图 2 所示。

图1 质量数 69、 219 和 502 的峰状图扫描结果

图2 自动调谐报告

评估自动调谐结果

Г

- 1 选择视图 > 仪器控制。
- 2 选择校验 > 评估调谐。系统会将您的调谐参数结果与预设的可 接受结果进行比较,并显示系统验证报告。请参见图 3。
- 3 查看此报告。标记为正常的标准工作正常。如果所有的标准都标记为正常,则会在报告的最后一行中打印调谐部分的系统验证通过。请参见图 3。

如果有一个或多个标准未通过验证,则会列出不正确的行为和建议 的更正措施。请参见第 23 页上的图 4,其中的报告显示了质量数 18 到 69 的高比率。此报告表明,系统中存在较高的水分,需要采 取更正措施。

仪器名称 : 7890-MS DC 极性 : 正 灯丝 : I 基峰应为 69 或 219 质量数 69 的位置 质量数 502 的位置 同位素质量数 220 的位置 同位素质量数 200 的位置 同位素质量数 200 的位置 原量数 70 与质量数 69 之比 (0.5 - 1.6%) 质量数 70 与质量数 502 比 (7.9 - 12.3%) 219 与 69 之比应大于 40%, 实际为 502 与 69 之比应大于 2.4%, 实际为 质量数 219 前伸 (<= 6%) 质量数 502 前伸 (<= 6%) 质量数 502 前伸 (<= 12%)	$\begin{array}{c} 69.\ 00\\ 218.\ 90\\ 501.\ 98\\ 70.\ 01\\ 219.\ 91\\ 502.\ 97\\ 1.\ 10\\ 4.\ 25\\ 9.\ 87\\ 89.\ 58\\ 5.\ 31\\ 0.\ 31\\ 0.\ 56\\ 1.\ 12\end{array}$	确确确确确确确确确确确确确确确确确确确	
测试系统中是否出现泄漏 18 与 69 之比(<20%) 28 与 69 之比(<10%)	4. 09 0. 76	确定确定	
电子倍增器电压 调谐部分的系统认证通过。	1765	确定	

图 3 通过系统验证的调谐报告

1

系统认证 - 调谐(检测器优化)部分 仪器名称 ; 7820-5975 DC 极性 : IE 灯丝 基峰应为 69 或 219 : 1 基峰应为 69 或 219 质量数 69 的位置 6 质量数 219 的位置 21 质量数 502 的位置 7 同位素质量数 70 的位置 7 同位素质量数 503 的位置 50 质量数 70 与质量数 69 之比 (0.5 - 1.6%) 质量数 220 与质量数 69 之比 (0.5 - 1.6%) 质量数 200 与质量数 69 之比 (7.9 - 12.3%) 1 可能原因为: 离子源不洁净 219 与 69 之比应大于 40%, 实际为 2 502 与 69 之比应大于 2.4%, 实际为 7 可能原因为: 前级管道压力不在 20 和 100 mTorr 之间 使用的灯丝已损坏 确定 确定 69.00确定 219.00502.04确定 70.04 确定 220.01 确定 确定 503.04 $\begin{array}{c}1.34\\4.72\end{array}$ 确定 确定 13.20 夁 25.10低 低 1.38使用的灯丝已损坏 离子源不洁净 质量数 69 前伸(<= 3%) 质量数 219 前伸(<= 6%) 质量数 502 前伸(<= 12%) 确定 0.472.18确定 5.22 确定 测试系统中是否出现泄漏 18 与 69 之比 (<20%) 28 与 69 之比 (<10%) 1462.22廚 32.14夁 系统中水的含量很高。 请等待 24 小时以便烘烤系统, 然后重新运行系统验证。 电子倍增器电压 1518 确定 一个或多个规格超出了范围。 请更正,然后继续。 引发一个或多个测试失败的可能原因是: 所选的 DC 极性不正确。 请验证是否已设置了正确的 DC 极性, 方法是卸下检测器盖并检查 EID 顶部的标签。

图4 未通过系统验证的调谐报告

调谐历史记录趋势

1 选择**视图 > 仪器控制**。

🚧 tuneplot		- 0 -
文件(F) 视图(V) 窗口(W) 帮助(H)		
电子倍增器	源透镜	同位素比
년 편 1800		· · · · · · · · · · · · · · · · · · ·
1600 -		器 10
1400-	盤 70-	19- 107 8-
1200 -	60 -	7
1000-	50-	6-
500-	40 -	4
400-	20-	3-
200-	10-	2-
0-	0-	0
调蹈次数	调谐次数	调谐次数
₩ AMU 增益和补偿	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
◎ AMU 增益和补偿 ■ Z001 AMU 增益和补偿	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
◎ AMU 增益和补偿 ■ 2000 ▲ 2000	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	
■ AMU 増益和补偿 ■ 2000 3 2000 1800 1600 1000		
■ AMU 増益和补偿 ■ 2000 ▲ 2000 1900- 1600- 1000- 1200-		
◎ AMU 增益和补偿 ● 图 200 ● 100 ● 20 ● 20 ● 100		
		日本
図 AMU 增益和补偿 □ □ ∞ 2000 AMU 增益和补偿 3 2000 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1800 1900 1800 1900 1800 1900 1800 1900 1800 1900 1800 1900 1900 1000 1000 1000 1000 1000 1000 1000		□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
	J 明瑞憲于比 ・ ・ ・	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
		びまた 500000 単数 500000 50000 250000 0
○ AMU 地話印計信 ● 2000 AMU 地話印計信 ● 2000 ● AMU 地話印計信 ● 0 2000 ● 0 2	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	■ 100000
	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	日本 (日本)

 选择校验 > 查看近期调谐... 以显示调谐谱图窗口,其中绘制了 近期调谐参数的结果。

Agilent G1701EA MSD Productivity ChemStation 入门指南

为定性分析创建方法

3

简介 26 编辑整个方法 27 有关编辑 GC 参数的一般信息 47

本章介绍如何创建采集方法,后续工作中将使用该方法识别安捷伦标准样品中的所有化合物。编辑默认方法,使之包含 MS 扫描。MS 扫描可以识别化合物中由 EI 源生成的所有离子。

3 为定性分析创建方法

简介

我们创建的方法将用于查找 Agilent 样品 PN 05970-60045 (仅限 PN 5074-3025,日本)中的已知化合物。样品化合物溶解于异辛烷 溶剂中,而该溶剂包含 10 ng/μL、100 ng/μL 和 100 pg/μL 浓度的 1 mL 针剂,如表 1 中所示。

表1 样品化合物列表

化合物	MW	分子式
十二烷	170	$C_{12}H_{26}$
联苯	154	C ₁₂ H ₁₀
4- 氯联苯 (仅限 PN 05970-60045)	188	C ₁₂ H ₉ Cl
棕榈酸甲酯	270	C ₁₇ H ₃₄ O ₂

要扫描包含化合物分子质量的离子范围,需要使用此方法的 MS 部分。如此表中所示,分子离子范围从 0 到 270,因此,我们将在此方法中扫描 0 到 300 范围内的离子。

编辑整个方法

1	调用默认方法后,请参见第 16 页上的 " 调用方法 "	,然后选择
	编辑整个方法 按钮 以编辑当前调用的方	法。此时会
	打开 编挥力法 刈话性。	
2	编辑方法 🛛 🔀	
	选择要编辑的方法部分:	
	☑ 方法信息(M)	
	☑ 仪器/采集(A)	
	□ 数据分析(Y)	
	确定 取消 帮助(H)	

2 仅选中方法信息和仪器/采集复选框。清除数据分析复选框。 选择仪器/采集会显示编辑当前调用方法的 GC 和 MS 部分的 采集参数所必需的所有对话框。此时,我们不修改该方法的数

3 选择确定以关闭编辑方法对话框。如果选择了方法信息,则会 打开方法信息对话框。

方法信息	×
方法注释(C):	
Scan method for 5975 MSD performance sample	
☑ 将方法副本保存在数据文件夹中(S)	
□ 预运行宏/命令(E):	
仪器控制:	
数据分析:	
✓ 数据采集(A)	
□ 数据分析(Y)	
□ 后运行宏/命令(T):	
仪器控制:	
数据分析:	

据分析部分。

- 4 在**方法备注**字段中,输入此方法的说明。
- 5 选中保存方法副本及其数据复选框。在 ChemStation 使用此方 法采集样品数据时,它会自动保存此方法的副本及其数据。
- 6 在**要运行的方法部分**区域中,仅选中**数据采集**复选框。此时将 不会运行数据分析。
- 7 选择确定以关闭方法信息对话框,并显示进样口和进样参数对 话框。

进样口和进样参数	t		×
			г
	「「「」」「」「」」「」」「」」「」」「」」「」」「」」」」」」」」」」」	lec 🔽	1
	进样方式(S)	GC ALS]
进代合型		☑ 使用质谱(M)	
一进杆拉五	●前	C后	ር ፬፬ ወ)
- 质谱连接到:			
	⊙ 前进样口	01) 〇 后进样	口 (B)
确定		取消	帮助(H)

- 8 从**样品进样口**下拉列表中,选择 GC。
- 9 从进样源下拉列表中,选择您的进样源。
 - 如果您使用自动液体进样器 (ALS) 从 GC 进样,请选择 GC ALS。
 - 如果您手动进样,请选择手动。
 - 如果您选择手动进样,请选择手动。
 - 如果您选择阀或外部设备,请选择相应的选项。
- 10 选中使用 MS 复选框可允许 ChemStation 打开 MS 分析仪,并 保存运行期间采集的 MS 样品数据。仅在具有 GC (非 MS)检 测器和仅为 GC 检测器采集数据时,才取消选中此框。
- 11 在进样口位置区域中,选择您的 S/SL 进样口通过色谱柱连接到 MS 所在的位置。
- 12 在 MS 连接至区域中,选择您的 S/SL 进样口通过色谱柱连接到 MS 所在的位置。
- 13 选择确定以关闭进样口和进样参数对话框,并显示 GC 编辑参数 窗口。

检查 GC 配置

- 1 选择配置按钮 。有关详细信息,请参见 ChemStation 联机帮助。
- 2 选择其他选项卡后,请将压力单位设置为 psi。在阀配置下,将 所有的阀类型设置为未安装,然后验证 MSD 传输线是否显示 为辅助加热类型。

自动进样器 阀 进样口	〇 色谱柱	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	逐 辅助加热器	● 上 事件 信号	10000000000000000000000000000000000000	<u>。</u> 1.2 计数器	1 就绪状态	
其他 色谱柱 模块 自动进样器								
压力单位 Ipsi I	阀配置							
		阀类型	名称	参数				
- 柱稍	▶ 1	气体进样阀 🔽	Valve #1	定里环容积(单位	ī为 mL):1			
□ 低速风扇	2	未安装 💽	Valve #2					
	3	未安装 💽	Valve #3					
	4	未安装 💽	Valve #4					
▲	5	未安装 💽	Valve #5					
1 未安準	6	未安装 💽	Valve #6					
▶ 2 MSD 传输线	7	未安装 💽	Valve #7					
3 未安洪	8	未安装 💽	Valve #8					
帮助(H)					(A)	确定		

图5 其他配置选项卡

3 选择**色谱柱**选项卡可显示色谱柱配置参数。MS 附随的 HP-5ms 校验色谱柱应该在**色谱柱**下方列出。

				校正		移除
		色谱柱	校准结果	进样口	出样口	加热源
·	1	Agilent 19091S-433: 325 °C: 30 m x 250 μm x 0.25 μm HP-5MS 5% Phenyl Methyl Silox: 12345	未校准	前进样口	真空 🔽	は 柱箱
• [*]	2	450 °C: 25 m x 320 μm x 0 μm 〈未列出清单〉	未校准	后进样口 👤	后检测器 🖃	柱箱
	3	未安装色谱柱	未校准	未指定 💽	其他 🔽	柱箱
	4	未安装色谱柱	未校准	未指定 💽	其他 🔽	柱箱
	5	未安装色谱柱	未校准	未指定 📃 💌	其他 🔽	柱箱
-	6	未安装色谱柱	未校准	未指定	其他	柱箱

- 图6 色谱柱配置选项卡
- 4 如果所列的**色谱柱**已配置到您正在使用的或连接到 MS 的进样 口位置,请选择它,然后单击**移除**。
- 5 如果 HP-5ms 未在**色谱柱**下方列出,请单击**目录**按钮,并将其 添加到目录中,然后再在此处列出它。请参见第 48 页上的 "将 色谱柱添加到 ChemStation 本地清单"。
- 6 如果需要,请使用向上和向下箭头键将 HP-5ms 色谱柱置于 1 位置。
- 7 对于色谱柱进样口压力,请从下拉列表中选择前进样口或后进 样口。
- 8 对于色谱柱出样口压力,对于 MS,请选择真空。
- 9 对于色谱柱**加热源**,请从下拉列表中选择**柱箱**。

自动进样器		→ <mark> </mark> 进样口	〇 色谱柱	した 柱箱	アを	返 辅助加热器	③ ④ ③ ③ ③ ③ ③ ③ ③ ④ ③ ③ ③ ③ ③ ③ ③ ③ ③ ③ ③ ③ ③ ③ ③ ③ ④ ③ ④ □		》	▲ 1,2, 计数器	1 就绪状态	
其他 色谱柱	糢 块 自	动进样器										
		前 SS 戶	〕进样口 5 进样口 3 进样口	He	.		辅助日	E PC 4、5 辅助 EP 辅助 EP	.6 C4 N2 C5 N2	•		
		ţ,	· 拉叶山 」 「 检测器 FID 屋吹气 「	ле N2				辅助 EP	C 6 N2	•		
	使用	目 GC 面板	建盘设置。	<u>点火补偿值</u>	 I۰							
		后 尾吹	检测器 TCD (气/参比	He								
帮助创								应用(<u>)</u>	确定	取消	

10 单击**应用**按钮,然后选择**模块**选项卡。

- 图7 模块配置选项卡
- 11 对于连接到色谱柱1的进样口,请从下拉列表中选择**氦**气。系 统会利用氦气的属性获取色谱柱的准确流量和压力关系。
- 12 单击应用按钮可将任何编辑内容下载到 GC 中。

设置 GC 就绪状态

	1 选择 就绪	针状态 按钮	Readiness。此	比时会显示 就 约	诸 参数。	
▲ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	社箱 と し の は 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	「図 辅助加热器	新件 信号	▶ ▲ 1,2, 配置 计数器	就绪状态	
排除影响 GC 就绪状态的组 仅选中的组件会影响 GC 的就绪状态	4					
 ✓ 柱箱 ✓ 前进样口 (SS 进样口) □ 后进样口 (COC 进样口) □ 前检测器 (FID) □ 后检测器 (TCD) □ 辅助 EPC 4 □ 辅助 EPC 5 □ 辅助 EPC 5 						
□ 新助加热区 2 0MSD 传输线)						
				<u>A)</u> 确定		

- **图8** 就绪状态组件选择
- 2 选择柱箱、SS进样口(连接到色谱柱1)和辅助加热区2(MSD 传输线)。这些选项要求GC等待,直到柱箱、进样口和传输线 温度达到稳定值后,然后才允许开始运行。
- 3 单击**应用**将这些选项下载到 GC。

设置 GC 柱箱参数

1 选择**柱箱**按钮

_____。此时会显示**柱箱**参数。

对于本示例,我们需要一个色谱柱初始温度为 50 °C 的柱箱程 序。在运行开始时,色谱柱温度以 35 °C /分钟的速率从此温 度升高到 300 °C。然后在 300 °C 保持两分钟。此时,柱箱冷 却到 50 °C,以等待下次数据采集运行。

Image: Note of the sector o									
「 住稿温度为开 ② ° C 》 ② ° C ● ○	自动进样器 阀 进档				信号 配置	▲ 1.2 计数器 就绪状态			
后还行时间: ² 分钟	 □ 4)近(+4) □ 4(箱温度)カ井 50 ° C 平衡时间 0.5 分钟 最高柱箱温度 325 ° C □ 覆盖色谱柱最大值: -冷明: □ 打开 □ 快速冷却 冷却使用温度: □ ° C □ 超时捡测 □ 分钟 □ 故暉检测 	325 °C	(初始值) ● 阶升 1 米	新聞DJULX:55 単叶 · 速案 · C/min 35 5 后送行: 300 ° C		「 保持时间 分钟 0 0 0 0 0 0 0 0 0 0 0 0 0	运行时间 分钟 7.1429		
				后运行时间: 2 分钟 					
	帮助 00							应用(4)	 观消

图 9 GC 柱箱参数

- 2 选中柱箱温度开启复选框,然后在对应的字段中输入 50 °C。
- 3 在平衡时间字段中,输入 0.5 min。
- **4** 在最高柱箱温度字段中, 输入 325 °C。这是 HP-5ms 色谱柱的 最高温度。
- 5 清除**覆盖色谱柱最高温度 325 ℃** 复选框。
- 6 在**柱箱阶升**表中,输入设置,如表 2 中所示。

表2 柱箱阶升设置

柱箱阶升	速率	值	保持时间
	°C/min	°C	min
(初始)		50	0
阶升1	35.00	300	0

- **7** 在后运行字段中,输入 300 °C。
- 8 在后运行时间字段中,输入 2 min,以在运行完成后,将柱箱 温度保持在 300 °C 持续 2 分钟,然后冷却到 50 °C,以便开始 下一个运行。
- 9 选择应用将这些设置下载到 GC。

设置 GC 色谱柱参数

- 1 选择**色谱柱**按钮 _____。此时会显示**色谱柱**参数。
- 2 在说明列表中检查色谱柱信息。
 - 色谱柱: 19091S-433 (HP-5ms 30 m x 250 µm x 0.25 µm)
 - 进样口:前进样口或后进样口(分流/不分流进样口位置)
 - 出样口:真空
- 3 选中**控制模式**复选框。
- 4 在**流速设定值**字段中,输入 1.0 mL/min。将计算**压力、平均速** 度和保持时间设定值,并在对应的字段中显示。
- 5 在下拉列表中,选择**恒定流量**。
- 6 在后运行字段中,输入 1.0 mL/min。
- 7 选择应用将这些设置下载到 GC。

▲ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	シーション シーション シーション シーション シーション 检测器 辅助加热器 新作 「合 歌武 『武士 『社会会会会会会会会会会会会会会会会会会会会会会会会会会会会会
# 说明 Agilent 19091S-433: 325 ° C: 30 m x 250 μm x 1 0.25 μm 出住: 前 SS 进样口 He 出样: 真空 2 450 ° C: 25 m x 320 μm x 0 μm 出任: 后 COC 进样口 He 出样: 后检测器 TCD	控制模式 ▼ 打开

图 10 GC 色谱柱参数

设置 GC 进样口参数

- 2 选择前进样口或后进样口选项卡,具体取决于您的硬件配置。
- 3 选中加热器复选框,然后在对应的设定值字段中输入 250 °C。
- 4 选中压力复选框。在设置色谱柱流速时,会自动设置对应的设 定值字段中的 psi。
- 5 选中**隔垫吹扫流量**复选框,然后在对应的**设定值**字段中输入 3 mL/min。
- 6 从隔垫吹扫流量模式下拉列表中,选择标准。
- 7 在载**气节省**区域中:
 - a 选中打开复选框。
 - **b** 在下面的字段中,输入 20 mL/min。
 - c 在开始等待时间字段中,输入 2 min。
- 8 在**模式**区域中:
 - a 从模式下拉列表中,选择不分流。
- 9 在**分流出口的吹扫流量**区域中:
 - a 在对应字段中,输入 50 mL/min。
 - **b** 在起始时间字段中,输入1。
- 10 选择**应用**。
| ▲
自动进样器 阀 一 一 世代口 色谱柱 | |
|--|--|
| SSL - 前 COC - 后 分流-不分流进样口 设定值 レ 辺定值 レ 1250 ° C レ ア.6522 psi 总流里: 53.904 mL/ レ 隔垫吹扫流里: 3 mL/min 隔垫吹扫流里模式: | 载气节省:
✓ 打开
20 mL/min 开始等待时间: 2 分钟 |
| 模式: | 分流出口吹扫流里: 50 mL/min 在 1 分钟 |
| | |

图 11 GC 进样口参数

设置 GC 进样器参数

如果使用的不是自动进样器,请跳过此部分。

- 1 选择**自动进样器**按钮
- 2 选择前进样器或后进样器选项卡,具体取决于您的硬件配置。
- 3 在进样区域中:
 - a 验证进样针规格是否与硬件配置匹配。
 - **b** 在进样量字段中,输入 1。
- 4 在**清洗和抽吸**区域中:
 - a 对于溶剂 A 清洗,请在进样后字段中输入 5。
 - **b** 对于**样品清洗次数**,请在**进样前**字段中输入 3。
 - c 对于样品抽吸次数,请在进样前字段中输入 5。
- **5** 选择**高级**按钮 →> 。此时会在窗口中显示其他选项。
- 6 在推杆速度区域中,选择快速。
- 7 在**采样深度**区域中:
 - a 选中**启用**复选框。
 - **b** 在此字段中,输入3.6。
- 8 选择**应用**。

自动进样器 「通」 「一 」 世社 日 」 世社 二 □ □ □ □ □ □ □ □ □ □ □ □	
进样 进样针规格: 10 μL 进样望: 1 μL × 1 = 1 μL 多次进样延迟: 0 sec sec 清洗和抽吸 进样前 进样后 体积 (μ1) 溶剂 A 清洗: 0 5 溶剂 B 清洗: 0 0 最大 样品清洗次数: 0 最大 样品抽吸次数: 1	班留时间 进样前:0分钟 进样后:0分钟 ● 堆杆速度 ● 作快速 ● ● 抽取 排出 溶剂清洗 300 µL/min 6000 µL/min 6000 µL/min 送样 6000 µL/min 粘度延迟:7 秒
帮助业	应用(&) 确定 取消

设置 GC 轴	勆加热器参数	友
---------	--------	---

- 1 选择辅助加热器按钮
- 2 对于**辅助加热区 2**,选中**打开**复选框。
- 3 在阶升表中,在数值 ℃ 字段中输入 280。
- 4 选择**应用**。

自动进样器 阀 进样口	
辅助加热区 2 ▼ 打开 280°C	速率 C/min 数值 % C 保持时间 分钟 运行时间 分钟 ▶ (初始值) 280 0 10.125
	最终值将根据 GC 运行时间扩充。
帮助任)	应用 (A)

图 13 GC 辅助加热器参数

设置 GC 信号参数

自动进样器				1 一个	レンジャング 「「「」 辅助加热器	◎ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	▶	器 就绪状系	2	
	信号源 #1:前 #2:后 #3:后 #4:后 显力	部信号 GrII 部信号 (TCI 部信号 (TCI 部信号 (TCI 示双进样信号)))))))) 号分配		数規	采集频率/最小峰宽 0 Hz / .0004 min 0 Hz / .0004 min 0 Hz / .0004 min 0 Hz / .0004 min	: J3: - C	零 保存]]]		<u>*</u>
删除事件	信号事(件表 信号源		时间, ▼	分钟──信号	事件				
帮助(H)								应用(A)	确定	

图 14 GC 信号参数

3 选择确定以将选定的参数下载到 GC,然后关闭 GC 编辑参数 窗口。此时会打开 GC 检测器数据对话框。请参见第 42 页上的 图 15。

编辑要显示的 GC 实时图谱

GC 检测器数据			×
信号 1	信号 2	信号 3	信号 4
🗖 显示	🗖 显示	🗖 显示	🗌 显示
衰滅: 0 2*	衰滅: 0 2^	衰滅: 0 2^	衰減: 0 2^
偏移量: 10 %	偏移量: 10 %	偏移量: 10 %	備移量: 10 %
时间: 5.0 分钟	时间: <u>5.0</u> 分钟	时间: <u>5.0</u> 分钟	时间: <u>5.0</u> 分钟
	确定目	取消 帮助(H)	1
			4

- 图 15 选择要实时绘制图谱的 GC 信号
- 4 从 GC 检测器数据对话框中,清除所有信号的复选框。我们不绘制 GC 信号图谱。
- 5 选择确定以保存设置,然后关闭此对话框。此时会打开 MS 调谐 文件对话框。请参见图 16。

编辑 MS 参数

选择调谐文件		×
路径:C:\MSDCHEM\1\5975\ 上次修改日期: Fri Apr 29 13:49:08 2011 文件:	设置:	
atune. u bfb. u dftpp. u NCICH4. u pcich4. u stune. u target. u	 类型: Pos EI EMV: 1200 V 离子源: 230 °C 四极杆: 150 °C 发射电流: 34.6 uA 电子能里: 70.0 eV CI 气体: 	
确定取消	帮助 (H)	

图 16 选择方法 MS 调谐参数文件

- 1 从文件列表中选择 atune.u。
- 2 选择确定以将调谐文件指定给当前方法,然后关闭 MS 调谐文件 对话框。此时会打开 MS SIM / 扫描参数对话框。
- 3 在 MS 仪器区域中:
 - a 在溶剂延迟字段中, 输入 3.00 min。
 - b 在 EMV 模式下拉列表中,选择增益因子。
 - c 在增益因子字段中,输入1.00。

- d 在采集模式下拉列表中,选择扫描。
- e 在扫描速度下拉列表中,选择正常。
- f 清除采集扫描和 SIM 数据复选框。
- 4 在实时绘图区域的时间窗口字段中,输入10。
- 5 在 MS 窗口 1 区域中:
 - a 从**绘图类型**下拉列表中,选择总计。
 - **b** 在Y坐标字段中,输入 0 到 2000000。
- 6 在 MS 窗口 2 区域中:
 - a 从**绘图类型**下拉列表中,选择**质谱图**。
 - **b** 在 Y 坐标字段中,输入 0 到 1000000。

■S SI■/Scan参数	×
MS 设备参数	
样品进样口: GC	时间窗口(W): 10 分钟
溶剂延迟(0): 3.00 分钟	MS 窗口 1
EMV 模式(E): 増益系数 ▼	Y-坐标: 0 到 2000000
增益系数 (7) 1.00 = 506 V	
采集模式 (₩): 全扫描 ▼	MS 窗口 2
扫描速度(S): 正常 ▼	
采集 Scan 和 SIM 数据(A): 「	⊻-坐标: 0 到 100000
- 调谐文件	
全扫描参数 (P) 区域 (Z)	定时事件 (I)
确定取消	帮助 (H)

- 图 17 设置 MS 扫描参数
- 7 选择编辑扫描参数。此时会打开编辑扫描参数对话框。
- 8 选择**扫描质量范围**选项卡:
 - a 选中扫描组1复选框。
 - b 在起始质量字段中,输入 50.00。
 - c 在结束质量字段中,输入 300.00。

此扫描范围包含所有预测的离子。

3 为定性分析创建方法

编辑扫描参数				<u>? ×</u>
扫描质里数范围 阈值和采样频率 绘	원			
	开始时间 开始时的质 (分钟) 里数(amu)	结束时的质 重数(amu)		
扫描组 1 🔽	3.00 50.00	350.00		
扫描组 2 🛛 🗖				
扫描组 3 🗖				
- 设置摘要				
组开始时间低质量数	[高质量数	阈值	采样频率	TE
1 3.00 50.00	350.00	40	3	2.
				F
低到高原	质量数范围必须为升序1.60	- 1050.00.		
			关闭(C)	帮助

图 18 指定扫描范围

- 9 选择**阈值和采样频率**选项卡:
 - a 在阈值字段中,输入 40。
 - **b** 在**采样频率**字段中,输入 3。

编辑扫描参数				? ×
扫描质里数范围 阈值和采样频率 绘图	1			
	阈值 (计数)	采样频率 (2´n)		
扫描组 1	4C	3		
扫描组 2				
扫描组 3				
4 开始时间 低质量数	三店田粉	()) () () () () () () () () (1
1 3.00 50.00	350.00	40	3	2.
				▶
化何低于业绩的乐概	粉士度物动勿败	右动传为 0 _ 000	000 -	
	2011年1支村10月25年6		1990	
			关闭 (C)	帮助

图 19 设置采样频率和阈值过滤器

10 选择绘图选项卡,在绘图窗口#2 区域中:

- a 在低质量数下面,输入 50。
- **b** 在高质量数下面,输入 400。

绘图窗口 #1 设置为 TIC,因此不需要任何绘图条目。**绘图窗口** #2 是一个包含在 40 和 400 *m/z* 之间找到的所有离子的质谱图。

3 为定性分析创建方法

编辑扫描参数					?)	×
扫描质量数范围	阈值和采样频率 绘图					
	绘图窗	□ #1	绘图窗	j∏ #2		
	低质量数	高质 里 数	低质重数	高质里数 		
扫描组	1		۵0.00 ⁽	400.00		
扫描组	2					
扫描组	3					
── 设盂摘要 ──						
阈值	采样频率	扫描/秒	会图 1 绘图	1 绘图 2	绘图 2	
40	3	1.50		50.00	400.00	
•						
	范围	圆必须为升序1.	60 - 800.00.			
				关闭 ©	帮助	

图 20 指定实时图谱扫描范围

- 11 选择关闭保存设置,并返回到 MS SIM / 扫描参数对话框。
- 12 选择确定以保存参数,然后关闭此对话框。此时会打开方法另 存为对话框。请参见图 21。

保存方法

- 1 在方法文件字段中输入 demoscan.M。
- **2** 选择**确定**以将当前的 ChemStation 方法另存为 **demoscan.m** 方法。

5法另存为	×
方法路径: C:\MSDCHEM\2\METHODS\	
方法文件:	
DEMOSCAN. m	
确定	 帮助 00

图 21 保存方法

有关编辑 GC 参数的一般信息

打开 GC 编辑参数窗口

1 从**仪器控制**中,选择 GC 编辑参数按钮以显示 GC 编辑参数窗口。请参见第 33 页上的图 9。

2 在选择屏幕顶部的参数按钮后,此按钮会以蓝色突出显示,并 且此参数的设置会显示在右侧面板中。GC 仪器状态显示在左 侧面板中。

表 3 列出了 GC 编辑参数窗口按钮的说明。

按钮	操作
应用	将已更改的任何设置下载到 GC。
确定	将已更改的任何设置下载到 GC,并关闭 GC 编辑参数 窗口。
取消	丢弃已更改的任何设置,并关闭 GC 编辑参数 窗口。
帮助	显示当前参数的帮助主题。

表3 GC 编辑参数窗口按钮

将色谱柱添加到 ChemStation 本地清单

使用**向本地目录添加色谱柱**对话框从**色谱柱目录**中选择一个色谱 柱,然后将其添加到您的**本地色谱柱清单**中。此示例将所提供的校 验色谱柱添加到本地清单中。

1 选择配置图标以显示为仪器配置的色谱柱。

自动进村 其他 道	样器			」 校	Ē	移除
		色谱柱	校准结果	进样口	出样口	加热源
∧∥	1	Agilent 19091S-433: 325 °C: 30 m x 250 μm x 0.25 μm HP-5MS 5% Phenyl Methyl Silox: 12345	未校准	前进样口	- 真空 -	1 柱箱 🗖
	2	450 °C:25 m x 320 μm x 0 μm 〈未列出清单〉	未校准	后进样口 了	- 后检测器 -	■ 柱箱 💽
	3	未安装色谱柱	未校准	未指定	其他	1 柱箱 💽
	4	未安装色谱柱	未校准	未指定	其他	▲ 柱箱 📃
	5	未安装色谱柱	未校准	未指定	其他	▲ 柱箱 📃
	6	未安装色谱柱	未校准	未指定	其他	▲ 柱箱 💽
邦助	.	1		应用 (4)	确定	

图 22 为仪器配置的色谱柱

动列标题至1	比,根据该列分组							
目录 编号	制造商	型号	说明	温度, ℃	长度, m	直径, µm	膜厚, μm	校正信息
44 4 #0 /	O►₩₩<							>
₩ ◀ #0 / 将色谱柱	0 ▶ ▶ ♥ < <							>

2 单击**目录**以显示**安装色谱柱 1** 对话框,其中包含本地清单中的 色谱柱列表。

图 23 色谱柱本地清单

3 为定性分析创建方法

3	单击 向本地目录添加色谱柱 以显示 向本地目录添加色谱柱 对
	话框。

)] 本地目录 漆 青指定新目录	加色谱柱 号,然后从下面列表□	中选择您要添加到本地目录的目录项					×
	拖动列标题到	至此,根据该列分组						^
	制造商	型号	说明	温度, ℃	长度, m	直径, μm	膜厚, μm	≡
	Agilent	19091J-413	HP-5 5% Phenyl Methyl Siloxane	325	30	320	0.25	
	Agilent	19091J-416	HP-5 5% Phenyl Methyl Siloxane	325	60	320	0.25	
	Agilent	19091J-431	HP-5 5% Phenyl Methyl Siloxane	325	15	250	0.25	
	Agilent	19091J-433	HP-5 5% Phenyl Methyl Siloxane	325	30	250	0.25	
	Agilent	19091J-436	HP-5 5% Phenyl Methyl Siloxane	325	60	250	0.25	
	Agilent	19091J-441	HP-5 5% Phenyl Methyl Siloxane	325	10	100	0.4	
	Agilent	19091J-442	HP-5 5% Phenyl Methyl Siloxane	325	20	100	0.4	
	Agilent	19091L-005	HP-50+ 50% Phenyl Methyl Siloxane	310	50	200	0.11	
	Agilent	19091L-102	HP-50+ 50% Phenyl Methyl Siloxane	310	25	200	0.33	
	Agilent	19091L-105	HP-50+ 50% Phenyl Methyl Siloxane	310	50	200	0.33	
	Agilent	19091L-111	HP-50+ 50% Phenyl Methyl Siloxane	310	15	320	0.5	~
	HH H +	#73 / 1060 🕨 🕨 🕨	H <				>	
	为目:	录定义新色谱柱	新目录号: HP5MS433					
	00 .	除所选的色谱柱	将选定色谱柱添加到目录	已完	[成		帮助	

图 24 色谱柱目录

- 4 向下滚动色谱柱列表找到 19091J-433 型号, 然后输入 hp5ms433 作为新目录号。
- 5 单击**将选定的色谱柱添加到目录**以显示**安装色谱柱 1** 对话框, 其中选定的色谱柱现已添加到本地清单列表中。

M۱.	以下列表选择	要安装的色谱柱	:						
拍	脑列标题至此	比根据该列分组							
	目录 编号	制造商	型号	说明	温度, ℃	长度, m	直径, µm	膜厚, μm	校正 信息
Þ	HP5MS433	Agilent	19091J	HP-5 5	325	30	250	0.25	Uncalibra

图 25 具有已添加的色谱柱的本地清单

可为仪器快速添加和配置已添加到本地清单的色谱柱。请参见 第 51 页上的 "选择和配置色谱柱"。

选择和配置色谱柱

此示例选择了以前添加到本地色谱柱清单中的色谱柱,并将其配置为 色谱柱编号 1。请参见第 48 页上的 "将色谱柱添加到 ChemStation 本地清单"。

1 选择**配置**图标,然后单击色谱柱1的**色谱柱**说明以选择该色谱 柱。在此处选定的色谱柱编号将使用我们添加的色谱柱进行替换。

自动进	祥器 首谱柱	() () () () () () () () () ()	<mark> </mark> 进样ロ 助进样器	包谱柱	植箱	を	「図 辅助加热器	愛 事件	信号	10000000000000000000000000000000000000	<u>!</u> 1.2 计数器	就绪状态							
													目录		校正			移除	
		色谱柱							校准约	串果				进样口		出样口		加热源	
\uparrow	1	Agilent 19 HP-5MS	091S-433: 3 5% Phenyl M	325 °C: 30 r /lethyl Silox	n x 250 μm : 12345	x 0.25 μm			未校准					前进样印	, 🗖	真空		柱箱	
1	2	450 °C: 25 《未列出》	5 m x 320 µr 青単>	n x0 μm					未校准					后进样口		后检测器	•	柱箱	•
_	3	未安装色	谱柱						未校准					未指定	-	其他	•	柱箱	•
	4	未安装色	谱柱						未校准					未指定	-	其他	•	柱箱	-
	5	未安装色							未校准					未指定	-	其他	•	柱箱	-
	6	未安装色							未校准					未指定	-	其他	•	柱箱	-
帮!	助(H)													应用(v			取消	

2 单击**目录**以显示**安装色谱柱 1** 对话框,其中包含本地清单中的 色谱柱列表。

	录选择色谱	柱 1										
从巴	【下列表选择】	要安装的色	谱柱:									_
拖	动列标题至此	1.根据该列	分组									
	目录 编号	制造商	型号		说明	温度	ŧ, °C	长度, m	直径, µm	膜厚, μm	校正 信息	
►	HP5MS433	Agilent	19091J-433	HP-5 5%	Phenyl Methyl Silo	xane	325	30	250	0.25	Uncalibrated	
Image: test state	<pre>4 #1 /</pre>	1	8								>	
H	 #1 / 将色谱柱法 	1 🕨 🕨	비 <]큐								>	

图 27 色谱柱本地清单

图 26 为仪器配置的色谱柱

3 从本地清单列表中选择色谱柱,然后单击安装选定色谱柱,以显示编辑 GC 参数的配置面板,其中选定的色谱柱将替换以前为仪器配置的色谱柱 1。

自动进	样器		ゴ ^山 ^{进样口}	〇 色谱柱	した	シンシーを	「② 辅助加热器	③ 事件	偏号	入 配置	▲ 1,2, 计数器	就 绪状态							
其他	色谱柱	模块 自	■动进样器											_					
													目录		校正			移除	
		色谱柱							校准编	吉果				进样口		出样口		加热源	
\uparrow	1	Agilent 1 HP-5MS	9091S-433: 5% Phenyl I	325 °C: 30 r Methyl Silox	n x 250 μm : 12345	x 0.25 μm			未校准					前进样口	-	真空	-	柱箱	
	2	450 °C∷ 2 《未列出	25 m x 320 μ 沾清单>	m x O µm					未校准					后进样口	-	后检测器	•	柱箱	•
_	3	未安装住	邑 谱柱						未校准					未指定	-	其他	•	柱箱	-
	4	未安装住	邑 谱柱						未校准					未指定	•	其他	•	柱箱	-
	5	未安装住	邑谱柱						未校准					未指定	•	其他	•	柱箱	-
	6	未安裝住							未校准					未指定	•	其他	•	柱箱	-
帮	助田													应用(&)		确定		取消	

图 28 为仪器配置的色谱柱

- 4 在进样口标题下拉列表中,选择色谱柱进样口所连接的项目。
- 5 在出样口标题下拉列表中,选择色谱柱出样口所连接的项目。 对于 MS,请选择**真空**。
- 6 在**加热源**标题下拉列表中,选择用于控制色谱柱温度的方法。

从 7890A GC 上传参数

- 1 在右侧面板中单击鼠标右键。
- 2 从快捷菜单中,选择将方法下载到 GC。

自定义状态面板视图

1 在状态面板中,选择**设置实际值**按钮,即会打开**状态项目**对 话框。

状态项目	×
选择要显示的状态项目	
状态条目 ✓ 柱温箱 ✓ CC 信息 ✓ 运行信息 ✓ LTM ✓ 前进样口 ✓ 前進样口 ✓ 前检测器 ✓ 辅助加热区 ✓ QQQ> ✓ 色谱柱 ✓ 阀	 ↑ ↓ 全选 全部清除
帮助	保存

- 2 在状态项目列表中选中要在状态面板中显示的项目的复选框。
- 3 要在所显示的列表中上下移动某个项目,请选择该项目,然后 按向上或向下箭头按钮,直到位于所需的位置。
- 4 选择保存以保存这些设置,然后返回到 GC 编辑参数窗口。

3 为定性分析创建方法

Agilent G1701EA MSD Productivity ChemStation 入门指南

运行扫描方法

查看工作	日志	62
拍制快照	61	
运行方法	58	
调用方法	57	
准备样品	56	

4

在本章中,准备了一个数据采集示例,并且 ALS 中装有样品、溶 剂清洗瓶和溶剂废液瓶。运行单个样品,并在数据采集期间,拍制 快照以说明如何在运行完成之前查看部分分析结果。最后,工作日 志显示在查看运行期间采取的操作。

4 运行扫描方法

准备样品

1 使用 10 ng/mL 5975 MSD 样品 (仅限 P/N 05970-60045 或 P/N 5074-3025,日本)填充样品瓶,然后盖上样品瓶。

如果您使用的不是 ALS,请跳过剩余步骤。

- 2 将样品瓶放到 GC 样品盘的位置 1 中。
- 3 在溶剂清洗瓶中装入异辛烷溶剂,然后将其放入进样器转盘位置A。
- 4 将废液瓶放在转盘位置 B。

调用方法

 从 PC 左桌面上,选择 ChemStation 快捷菜单,即会打开仪器控 制窗口。

- 2 选择调用方法按钮 2 选择调用方法按钮 打开调用方法窗口。导航查找并选择 demoscan.M。
- 3 选择确定以调用此方法,然后关闭此对话框。

4 运行扫描方法

运行方法

。此时会打开**开始运行**对话框,其 中预填了 GC ALS、进样口位置和 MS 连接到选项。

进祥位置- ●前 ○后 ○双 操作员姓名(0): JTOHAY SMITH	MS 连接到 ● 前进样口 ● 后进样口
数据路径 (P): C:\msdchem\2\DATA\ 关品	浏览
数据文件名称 (F): [EVALDEMO. D	数据文件名称 (2):
所期条形码 (B): 样品量 (A): 「 「 「 「 「 」 1	预期条形码 (B): 样品量 (A): 乘积因子 (M): 1
样品瓶编号 (V): 1 样品虚名称 (T): ▼ 送择进样里: ○ 当前方法 ↓ L ○ 强制使用 1 ↓ L	样品瓶編号 (V): 样品虚名称 (T): 法择进样里: ○ 当前方法 µL ○ 强制使用 µL

1 选择**运行方法**按钮

图 29 开始单样品运行

2 在**操作员姓名**字段中,输入您的姓名。

- 3 在**前进样口**区域中:
 - a 在数据文件名称字段中,输入 EVALSCAN_1。
 - b 在样品名称字段中,输入样品名称 (可选)。
 - c 在其他信息字段中,输入扫描说明(可选)。
 - d 在**预期条形码**字段中,输入条形码(可选)。
 - e 在样品瓶编号字段中,输入1。
 - f 在选择进样量字段中,选择当前方法。
- 4 在**要运行的方法部分**区域中:
 - a 选中数据采集复选框。
 - b 清除数据分析复选框。
- 5 在仪器处于就绪状态时,如左上角的绿色空闲指示器所示,请选择确定和运行方法,以关闭此对话框,然后开始运行。就绪状态指示器变为"运行"。请参见第 60 页上的图 30。

如果仪器未处于就绪状态,系统将提示您忽略此情况。当状态 为"就绪"时,此对话框将自动关闭。

GC Acquisition
Waiting for GC ready To override ready, press Override.

在溶剂延迟期间,系统将提示您忽略此情况。当到达延迟时间 时,此对话框将自动关闭。

采集				
	是否忽略溶剂弧	₤迟(3.00	分钟)	?
	警告: 忽略 缩短》	}溶剂延迟⊒ 灯丝寿命。	可能会	
	是(Y)	i	雪(N)	

6 在洗脱第二个化合物之后,观察 TIC 实时图谱,然后转到 第 61 页上的"拍制快照"。

4 运行扫描方法

图 30 单样品运行时的仪器控制窗口

拍制快照

当目标化合物在长时间运行期间早期洗脱,并且您要立即分析该化 合物时,则快照很有用。系统会利用在拍制快照之前采集的所有数 据创建快照数据文件。

- 1 在运行期间,请选择视图>数据分析以打开数据分析视图。
- 2 选择文件 > 拍制快照。此时会打开数据分析窗口,其中显示此时间点之前为运行获取的 TIC。

图 31 快照数据文件的 TIC

在导航窗格中观察快照数据文件的位置。它位于快照子目录下 为此运行指定的数据目录中,其名称与为该样品指定的数据文 件相同。

- 3 分析目标化合物。
- 4 退出数据分析,然后返回到**仪器控制**视图。

4 运行扫描方法

查看工作日志

系统保留一个名称 MSLOGBK.LOG 的工作日志,其中记录了采集 之前和采集期间所有的仪器错误和状态消息。

当前工作日志可让您查看仪器诊断信息和在当前以及以前的采集 期间记录的任何质谱图。它位于仪器目录中。

,此时会打开**工作日志**菜单。

2 选择**当前日志**显示有效地日志。

1 选择工作日志按钮

方法 (M) 仪器 (L) 序列 (S) 视图 (V) 终止 (A) 验证 (C) 安全控制 (L) 窗口 (W) 帮助 (H) ■当前日志 □□	<u> </u>
	<u> </u>
CUENCEATION 己知始化自动 12:04:01 04/90/9011	
□ UTEMSTATION C.将始化后初。 13:04:01 04/29/2011 ▲	
方法 正在调用方法 DEFAULT.M 13:04:21 04/29/2011	
方法 保存方法default.m 13:08:43 04/29/2011	
方法 已保存default.m 13:08:43 04/29/2011	
方法 正在调用方法 DEFAULT.M 13:09:17 04/29/2011	
· 调谐 Autotune 已初始化. 13:09:38 04/29/2011	
方法 正在调用方法 DEFAULT.M 13:09:57 04/29/2011	
· 调谐 Autotune 已初始化. 13:10:20 04/29/2011	
CHEMSTATION 发生了关闭事件。 13:10:33 04/29/2011	
CHEMSTATION 已初始化启动。 13:11:31 04/29/2011 13:11:31 04/29/2011	
方法 正在调用方法 DEFAULT.M 13:11:38 04/29/2011	
CHEMSTATION 意外关闭后对启动进行了初始化。 13:41:09 04/29/2011	
方法 正在调用方法 DEFAULT.M 13:41:16 04/29/2011	
方法 保存方法default.m 13:49:10 04/29/2011	
方法 已保存default.m 13:49:11 04/29/2011	
方法 正在调用方法 DEFAULT.M 13:49:11 04/29/2011	
调谐 QuickTune已初始化 13:49:37 04/29/2011 13:49:37 04/29/2011	
方法 正在调用方法 DEFAULT.M 13:49:43 04/29/2011	
方法 正在调用方法 DEFAULT.M 13:50:23 04/29/2011	
方法 正在调用方法 DEFAULT.M 14:00:47 04/29/2011	
CHEMSTATION 意外关闭后对启动进行了初始化。 14:24:19 04/29/2011	
方法 正在调用方法 DEFAULT.M 14:24:35 04/29/2011	
方法 保存方法default.m 14:44:26 04/29/2011	
方法 已保存default.m 14:44:26 04/29/2011 14:44:26 04/29/2011	
Method 将方法从 6890 转换到 7890 GC: 14:44:51 04/29/2011	
C:\MSDCHEM\2\METHODS\DEFAULT.M	
方法 正在调用方法 DEFAULT.M 14:44:56 04/29/2011	
方法 保存方法default.m 14:44:56 04/29/2011	
方法 已保存default.m 14:44:56 04/29/2011	
方法 保存方法default.m 14:45:04 04/29/2011	
方法 已保存default.m 14:45:04 04/29/2011 🔹	
	· · · ·
	►.

图 32 打开当前工作日志

- 3 打开工作日志后,再次选择**工作日志**按钮,然后从菜单中选择:
 - **打开日志**可从仪器目录中的所有工作日志列表中选择要打开 的工作日志。
 - 清除日志可删除当前显示的工作日志。
 - 另存为日志可将所显示的工作日志保存到新的文件中。
 - 打印日志可打印显示的工作日志。
- 4 退出"仪器控制"程序。

4 运行扫描方法

Agilent G1701EA MSD Productivity ChemStation 入门指南

定性数据分析

积分峰 66 编辑用于生成报告的方法 74 显示提取离子色谱图(EIC) 76 启用或禁用右键单击上下文菜单 78 分析数据 79 检索质谱库 83 打印窗口、TIC、质谱图或方法 86 保存数据分析方法 87 退出数据分析程序 88

定性数据分析通过以下方法标识样品中的化合物:

- 对采集扫描数据中的峰进行积分
- 根据这些峰标识质谱图中的离子
- 将在峰中找到的离子与已知化合物的谱库(存储在您的系统中) 中的离子进行比较
- 报告为每个峰找到的化合物的标识

本章将逐一介绍这些过程。

5 定性数据分析

积分峰

积分是一种用于在色谱图中查找峰并确定其大小的工具。在定性分 析中,需要进行积分才能生成百分比报告、生成谱库检索报告并在 谱库中检索已积分的峰。

1 使用桌面数据分析图标 启动数据分析程序。

图 33 初始数据分析窗口

2 选择**调用数据文件**按钮 . 此时会显示**选择数据文件**对 话框。

e

<mark>送择数据文件</mark> 路 ^{[]: \msdchem\2\data}		×
EIII更改路径 (C)	操作员: perkins 样品瓶: 1 其他信 10 ng per component 样品名称: demoscan sample P 000 000 000 000 000 000 000 000 000 0	
 确定	取消 帮助 @	

3 选择**更改路径**。此时会打开**浏览文件夹**对话框。

浏览文件夹	×
选择包含数据文件的文件夹	
田 → 軟盘驱动器 (A:)	
🖂 🖴 本地磁盘 (C:)	
🛨 퉲 agilent	
🕀 🌗 Database	
lenv	
🕀 🍌 EnvDemo	
🛨 🕕 hp	
🖃 🍌 msdchem	
🛨 📑 😼 5975	
🍑 5975. OLD	
🕀 🎍 data	•
新建文件夹(M) 确定 取消	i j
	11.

- 4 导航查找 evaldemo.d。这是来自我们样品扫描分析中的数据 文件。
- 5 选择**确定**。
- 6 在选择数据文件对话框中,选择确定。此时会调用此数据文件, 并显示总离子流图 (TIC)。

编辑积分事件

在运行方法的数据分析部分时,使用自动积分对色谱图进行积分。 使用 ChemStation 默认自动积分参数可以成功积分大多数色谱图。 但是,您可以自定义自动积分参数,并为特定色谱图添加积分事件。在运行方法时,会保存和使用这些事件。

1 选择**积分参数**按钮 💆 🚅 。此时会打开**编辑积分事件**对话框。

注意

这假设 ChemStation 积分器是指定的积分器。

编辑积分事件				×
可选事件(2)	事件())	值(V)	时间(T)	
基线维持 打开 ▼	初始面积截除	0	初始	1
	积分器事件名称 值 初始面积截除 0	时间		
	初始峰宽 0.027 肩峰检测 0FF	初始初始	•	
	利閒佩1直 18.2	利赗		
		即省	邦助(37)	

- 2 要更改初始面积截除、初始峰宽或初始阈值,请执行以下操作:
 - a 在积分器事件名称列表中选择要更改的参数。此参数显示在 事件字段中,并且当前值显示在值字段中。
 - b 在值字段中输入自定义值。
 - c 选择输入。自定义值现在将在值列表中列出。

- 3 要更改**肩峰检测**,请执行以下操作:
 - a 在积分器事件名称列表中选择**肩峰检测**。此参数显示在事件 字段中,并且当前设置显示在值字段中。
 - b 选择值字段。将显示编辑积分事件确认消息。
 - c 选择是更改设置。
- 4 要添加积分事件,请执行以下操作:
 - a 从可能事件下拉列表中,选择要添加到积分中的事件。
 - b 在值或时间字段中输入必需的信息。
 - c 选择输入。此事件和值或时间现在已在积分器事件名称、值、 时间列表中列出。
- 5 选择应用以在 TIC 窗口中查看结果。
- 6 选择保存以保存自动积分参数。此时会打开保存事件对话框。

保存events	×
C:\MSDCHEM\2\METHODS\DEMOSCAN.m\	
manual integration 1 e	
确定 取消 帮助 创	

- 7 输入文件名。
- 8 选择确定以关闭编辑积分事件对话框。这些结果将显示在 TIC 窗 口中。

将积分事件保存到方法中

1 选择自动积分按钮 ________。积分结果显示在 TIC 窗口(图 34) 中,并且会显示一条确认消息。

■SD 化学工作站	
② 是否将自动积分参数保存到方法?	
[][[[[[[]]]]][[[]]][[[]]][[[]]][[]]][

2 选择**是**以保存积分,或者选择**否**继续,不将此积分保存到方 法中。

如果选择**是**:会出现一条确认消息,其中显示已保存的自动积分参数文件名。选择**确定**将积分保存到方法中。

图 34 积分的色谱图

手动积分峰

- 1 如果需要, "编辑积分事件"或调用保存的积分事件文件。
- 2 选择工具 > 选项以显示选择数据分析选项对话框。

选择数据分析选项
▼ 标记质谱峰(L)
□ 自动设定 Y 轴坐标(A)
□ 命令行(C)
□ 堆栈(S)
▼ 手动积分(M)
□ 启用右键单击数据分析的鼠标操作(E)
确定取消

- 3 选择手动积分以开启手动积分,然后单击确定。在TIC 窗口中, 鼠标光标变成十字准线。
- 4 如果在 TIC 中单击鼠标右键显示了上下文菜单,请从菜单中选 择**启用标准数据分析鼠标操作**。
- 5 在色谱图中单击鼠标左键并拖动可放大的目标峰。
- 6 单击鼠标右键并拖动可在峰上绘制积分基线。释放鼠标后,将 使用所选的积分器对峰进行积分。

如果要删除峰的积分数据,请将光标放到该峰上,然后双击鼠标 右键。
查看表中的积分结果

埶	据表								×
	积分								
	💷 教据表								×
	TIC: evaldem	no. d\data.ms							
	demoscan san	np⊥e							
	峰是	保留时间	────────────────────────────────────	修實		工始时间			
	<u>₩≢∽</u> 1	5.281	BV	0.023	44191981	5.210	5.342		
	3	6. 431 7. 740	BB BB	0.027 0.028	69317820 59113575	6.250 7.630	6.563 7.877		
	4	9.777	BBA	0.024	54740746	9.650	9.953		
				打印(P)	复制(C)				
							关闭(C)	帮助	(H)

1 选择**色谱图 > 积分结果...。**此时会打开**表格**窗口,并列出结果。

- 2 要打印积分表,请选择打印,然后导航到您的打印机。
- **3** 要将表复制到剪贴板以在另一个应用程序(如 MS Excel)中使用,请选择**复制**。
- 4 选择**关闭**以关闭对话框。

编辑用于生成报告的方法

1 选择**方法 > 编辑方法**。此时会打开选择报告对话框。

选择报告						
☑ 百分比报告()	P)					
🔲 谱库检索报告	□ 谱库检索报告(L)					
□ 定里报告(Q)						
🗆 自定义报告(□ 自定义报告(C)					
🗆 更新自定义数	(U)					
	确定		帮助(H)			

2 选择**百分比报告**和确定。也可以选择其他报告类型。

百分比报告选项		×
排序依据	<u>信号</u>	
目的地————————————————————————————————————		
□ 屏幕(S)		
☑ 打印机 (8)		
□ 文件 (F)		
和分参数文件 (I)	浏览 (8)	
确定	取消 帮助 00	

此时会打开**百分比报告选项**对话框。

- 3 在目标窗格中,检查要生成报告所在的位置。
- 4 选择**确定**。此时会显示一条确认消息。

5 选择是。此时会打开**方法另存为**对话框。

方法另存为		×
方法路径:		
C:\MSDCHEM\2\METHODS\		浏览
方法文件:		
default.m		
确定	取消	帮助

- 6 选择确定将设置保存到当前方法中。
- 7 要交互地生成报告,请选择**色谱图 > 百分比报告**。此时会在新 窗口中显示报告。

面积百分比报告 ▲ 数据这件 : 0 evaldemo.d 菜集 : 7 Sep 1989 13:59 操作者 : perkins 样品 : demoscan sample 其他 : 18 ng per component ALS 样品瓶:1 样品乘积因子:1 和分参数 : autoint1.e 和分器 : 化学工作站 方法 : C:\MSDCHEM\2\METHODS\default.m 标题 : 信号: TIC: evaldemo.d\data.ms 峰 保留时间<起始 峰顶 截止 峰 # 分钟 扫描 扫描 共型 峰高 面积 * 382.4434 1 5.281 2 6.431 3 7.740 326 3 7.740 326 3 7.740 326 4 9.777 578	C:\	nsdchen\2	2\data	\eval d	emo. d'	rtere	s. txt					
和分参数 : autoint1.e 和分器 : 化学工作站 方法 : C:\MSDCHEM\2\METHODS\default.m 标题 : 信号: TIC: evaldemo.d\data.ms 峰 保留时间 起始 峰顶 截止 峰 峰高 修正 修正 % # 分钟 扫描 扫描 扫描 共型 峰高 面积 %最大值 总量 	→ 数数采操样其ALS	諸文件 王 王 祥品瓶	: C:\r : eva] : 7 { : perk : demo : 10 r : 1	nsdche Ldemo Sep 19 kins Dscan ng per 样品詞	em\2\(.d)89 sampi comj 乘积因	Jata\ 13:59 Le]子:	t 1		面积百	ī 分比报告	-	<u> </u>
信号: TIC: evaldemo.d\data.ms 峰 保留时间 起始 峰顶 截止 峰 峰高 修正 修正	和分 积分 方法)参数)器 ::	: auto : 化学 C:\MSE :	oint1. 之工作的 OCHEMY	.e 沾 、2、ME1	LHOD2,	\default.	m				
1 5.281 24 32 40 BU 3024034 44191981 63.75% 19.437% 2 6.431 153 176 192 BB 3918879 693178220 100.00% 30.488% 3 7.740 326 339 356 BB 3267388 59113575 85.28% 26.000% 4 9.777 578 594 616 BBA 3560214 54740746 78.97% 24.076%	信号 峰 作 #	☆ 号: TIC: R留时间 分钟	- evalo 起始 扫描 	1emo.o 峰顶 扫描 	i\data 截止 扫描 	a.ms 峰 类型	峰高 峰高	修正 面积	修正 % 最大值 	% 1. 总量		
	1 2 3 4	5.281 6.431 7.740 9.777	24 153 326 578	32 176 339 594	40 192 356 616	BV BB BB BBA	3024034 3918879 3267388 3560214	44191981 69317820 59113575 54740746	63.75% 100.00% 85.28% 78.97%	19.437% 30.488% 26.000% 24.076%		_

显示提取离子色谱图 (EIC)

1 选择离子色谱图按钮 此时会打开提取离子色谱图对 话框。

提取离子色谱图	
时间范围(R): 5.030 到(T)	9.997 分钟
离子(I)	
1: 85.00	4: 154.00
2: 87.00	5: 170.00
3: 153.00	6: 270.00
使用 m/z 的范围:从() - 0.30	到(0)+ 0.70
确定取消	帮助 (H)

- 2 在时间范围字段中,输入要提取的范围。最初会显示数据文件 的完整时间范围。您可以通过输入适当的起始值和结束值来指 定更短的时间范围。
- 3 在离子区域中,输入目标离子质量数。您可以最多指定6个 离子。
- 4 在使用 m/z 范围字段中,输入目标范围。每个离子的默认 m/z 范围是指定的离子数量的 -0.3 到 +0.7。您可以通过输入适当的 起始值和结束值来指定更改此范围。
- 5 选择确定。此时会打开一个显示每个离子色谱图的窗口。

6 选择**合并格式**按钮 从分别显示离子的色谱图切换为重叠 显示离子的色谱图。

启用或禁用右键单击上下文菜单

可以启用右键单击上下文菜单,以直接从色谱图或质谱图窗口(而 不是使用主菜单或工具栏按钮)轻松访问常见的数据分析任务。

从工具栏选择**切换数据分析鼠标操作**按钮可在启用和禁用此上下 文菜单之间切换。在启用增强型数据分析上下文菜单后,会禁用标 准的右键鼠标操作。启用的上下文菜单显如图 35 所示。

图 35 右键单击上下文菜单

有些鼠标操作(如对峰质谱图求平均值和手动编辑峰基线), 要求 进行标准鼠标操作。

分析数据

 通过单击鼠标左键并拖动以在峰周围创建一个矩形,放大第一 个峰。放大选定区域的色谱图。这是化合物十二烷的峰。

图 36 放大的峰

- 2 启用堆栈窗口:
 - a 从主菜单中,选择**工具 > 选项**。
 - b 在选择数据分析选项对话框中,选择堆栈和确定。此时会打 开数据分析变量观察窗口。

數据分	计行变	望观察	×
名称 X Y 7	值空空穴		
T RO R1	A 空口 空上	evaldemo. d\data. ms	
R2 R3 R4 R5	°°°°°		
R6 R7 R8			
R9	空。		

将光标放在第一个峰的最高点处,然后双击右键以显示质谱图。
 必须使用标准鼠标操作。

图 37 峰顶点处的质谱图

数据分析变量观察窗口现在显示 X 寄存器中的峰质谱图。

从质谱图中扣除基线噪音

通过从目标峰中扣除基线信号(噪音),使用质谱图扣除可提高质 谱图质量。

1 利用在堆栈 X 寄存器中存储的峰顶点,将光标放在峰的极限上, 然后右键双击。即会在数据分析变量观察窗口中的 X 寄存器中 显示和放置质谱图。X 寄存器中的上一个质谱图 (峰顶点)会 移动到 Y 寄存器。

2 选择**扣除**按钮 ______。出现的差异 (Y - X) 将显示为标题后面 带有 [-] 的质谱图。请参见图 38。

图 38 十二烷的已扣除质谱图

选择目标离子和定性离子

目标离子

必须为要定量的每个化合物(目标化合物)选择一个目标离子。理 想情况下,目标离子是目标化合物的特征,用于将目标化合物与具 有类似保留时间的其他化合物区分开来。

定性离子

定性离子是目标化合物的质谱图中出现的辅助特征离子。这些离子 相对于目标离子的存在和正确数量有助于标识正确的目标化合物。

为十二烷选择峰和定性离子

第81页上的图38中十二烷的质谱图检验表明,存在十二烷 (mw = 170)分子离子170,并将用作目标离子。在十二烷的一半 mw 处的85离子也很显著,并将用作定性离子。

为其他化合物选择峰和定性离子

重复第 79 页上的"分析数据"下面的操作过程,以在我们的样品 中选择其他化合物峰,并为这些化合物确定目标离子和定性离子。建 议的选择如表 4 中所示,并用于在以后设置 SIM 采集和定量分析。

表4 目标离子和定性离子选择

化合物	目标离子	定性离子	驻留时间
联苯	154	153	60
十二烷	170	85	60
一氯联苯	188	152	60
棕榈酸甲酯	270	87	60

检索质谱库

谱库检索会对照参比质谱库比较未知化合物的质谱图。检索可根据 参比谱库标识与未知化合物质谱图非常类似的质谱图。

您可以在 TIC 中对单个峰 (质谱图)或所有已积分峰进行检索。

检索单个质谱图

- 选择要检索的质谱图 (数据分析变量观察窗口中的 X)。请参 见第 81 页上的图 38。
- 2 选择**选择谱库**按钮 ______。此时会打开**谱库检索参数**对话框。

诺库检索	参数	×
检索顺序	谱库名称 如果匹配度小于以下值,则检索下一个谱库	
1		
2		
3 [
	确定 取消 帮助 OO	

3 选择**浏览**,在**浏览文件夹**窗口中导航查找并选择演示谱库 demo.l。

浏览文件夹	×
选择谱库	
	_
- 💻 桌面	_
🔄 🗉 🚔 库	
🛨 📙 3000Hanover	
□ 🖳 计算机	
🗉 🛃 软盘驱动器 (A:)	
🖂 🖂 本地磁盘 (C:)	
🛨 🌗 agilent	
🖃 🌗 Database	
🌗 demo. 1	
ENV	
🛨 🌗 EnvDemo	
🛨 🍌 hp	-
新建文件夹(M) 确定 即	2消
	//

选择**确定**。输入文件路径后,将首先检索到此谱库。使用位置 4 2和3天津您购买和安装的任何其他谱库。

诺库检 索	参数		×
检索顺序	著	如果匹配度小于以下值, 则检索下一个谱库	
1	C:\Database\demo.1	浏览 0	
2		浏览 0	
3			
	确定取消	帮助 (H)	

选择确定保存选择。 5

右键双击此质谱图。即会执行检索,并显示结果。 6

生成自动谱库检索报告

1 打开数据文件。

对话框。

2 选择**谱库检索报告**按钮

。此时会打开**谱库检索报告选项**

诺库检索报告选 项	×
类型	摘要▼
目的地	
□ 屏幕 (S)	
☑ 打印机(₽)	
□ 文件 (7)	
积分参数文件 (I)	() () () () () () () () () () () () () (
1	
要使用的谱图(V)	
顶点	
	确定 取消 帮助 00

- 3 从**类型**下拉列表中,选择**详细**。
- 4 在目标区域中,选择打印机。
- 5 从要使用的质谱图下拉菜单中,选择顶点-峰起点。此选择会自动从峰顶点处的质谱图中扣除峰起点处的质谱图,此操作已在上一节第81页上的"从质谱图中扣除基线噪音"中手动执行。
- 6 选中确定生成报告。

5 定性数据分析

多多 ジオ 木 ミ A	数据路径 数据文件 采集者 晶 性 LS 样品瓶 LS	: C:\msdc : evalden : 7 Sep : perkins : demosca : 10 ng p ī: 1 样点	ehem\2\data\ no.d 1989 13:59 s nn sample per component 品乘积因子: 1			
ł	佥索库 :	C:\Databa	use\demo.1	最小匹配度:	0	
ラオ	未知谱图: 识分事件:	顶点 化学工作	站积分器 - autoint1.	. е		
¥‡	ŧ R.T.	面积%	谱库/ID	参比#	CAS#	匹配度
1	5.278	19.44 C:\ Dode	Database\demo.1 cane	1	000112-40-3	96
2	6. 431	30.49 C:\ Biph	Database\demo.l enyl	2	000092-52-4	95
9	3 7.737	26.00 C:\ 4-Ch	Database\demo.l lorobiphenyl	3	002051-62-9	98
4	9.780	24.08 C:\ Meth	Database\demo.l yl palmitate	4	000112-39-0	99

图 39 谱库检索报告

打印窗口、 TIC、质谱图或方法

在您设置打印机后,您可以打印您正在屏幕上查看的数据文件的窗口、扫描、质谱图或方法。

选择打印机

- 1 选择文件 > 选择打印机。
- 2 从系统中的打印机列表中选择打印机。
- 3 选择**确定**。

更改页面方向

- 1 选择文件 > 打印机设置。
- 2 选择打印方向。
- 3 选择**确定**。

选择要打印的项目

1 选择文件 > 打印。此时会显示"打印"对话框。

打印	
○ 选定的窗口(○ TIC & 谱图 ○ 方法(M) ○ 选择打印机(w) S)
	取消

2 选择:

1

- 选定窗口可打印打开的窗口,并在"输入"对话框中的窗口 标题中输入窗口编号。
- TIC 和质谱图可打印这些图形。
- 方法可打印方法参数。
- 选择打印机可从系统中的打印机列表中选择打印机。
- 3 选择确定打印您的选择。

保存数据分析方法

此时会打开**方法另存为**对

诂框。		

选择**保存方法**按钮

方法另存为	×
方法路径:	
C:\MSDCHEM\2\METHODS\ 浏览	
default.m	
确定 取消 帮助	

 输入方法的名称,然后选择确定以将更新的参数保存到此方 法中。

退出数据分析程序

注意

1 选择**文件 > 退出**。此时会显示一条警告消息。

2 选择**是**关闭此程序。

如果未保存方法,则单击是立即退出时将丢失所做的更改。

Agilent G1701EA MSD Productivity ChemStation 入门指南

创建 SIM 定量方法

6

简介 90 创建 SIM 方法 91 同时采集扫描和 SIM 数据 (SIM / 扫描模式) 96 SIM / 扫描模式循环频率 98

本章介绍如何使用在定性分析期间找到的目标离子和定性离子为 我们的标准样品创建 SIM 方法。我们还将检验如何设置可用于执 行同时 SIM 和扫描数据采集的方法。

6 创建 SIM 定量方法

简介

选定离子监测 (SIM) 模式是一种数据采集技术,在此模式下,要获 取最高灵敏度,只需监测选定离子碎片。

要找到适合于 SIM 数据采集的条件,请分析以下扫描数据:

- 为每个峰监测的离子 (m/z) 使用 MS SIM 参数可以为每个选定 离子监测定义最多 100 组离子 (每组最多包含 60 个离子),但 是,Agilent 建议您尽可能少地使用离子,从而使信噪比最大化。
- **切换组的最佳时间** Agilent 建议您选择一个切换组的时间,在 此时间峰分离良好,可避免由于样品基质效应导致保留时间发 生变化。

创建 SIM 方法

1 从仪器视图中,选择调用方法按钮,即会打开调用方法对话框。

2 导航查找并选择 evalscan.M。

由于为获得较好的色谱图数据分辨率而在此方法中设置了 GC 采集参数,因此,请使用此方法作为起点,并且仅更改方法中 的 MS 参数。

调	用方法	×
	调用方法	
	🔒 env	-
	🕀 🌗 EnvDemo	
	🛨 퉲 hp	
	🖃 🌗 msdchem	
	III 🕕 🔢 🛨	
	🖂 퉲 2	
	🛨 퉲 data	
	🖃 퉲 methods	
	🛨 퉲 default	
	🕀 鷆 default.m	
	🛨 퉲 DEMOSCAN. m	
	EVALSCAN. m	-
		í

3 选择确定以调用此方法,然后关闭此对话框。

。此时会打开 MS SIM / 扫描参数

对话框。

■S SI■/Scan参数	×
MS 设备参数 样品进样口: GC	- 实时绘图
溶剂延迟 @): 3.00 分钟 EMV 模式 ©): 相对值 ▼ 相对电压 (V) 0 = 1200 V 采集模式 @): 誕择离子监测 ▼	MS 窗口 1 绘图类型: [总离子流图 ▼ Y-坐标: 0 到 2000000 MS 窗口 2 绘图类型: [无 ▼ Y-坐标: 0 到 100000
词皆文件————————————————————————————————————	
SIM 参数 (£) 区域 (亿) 确定 取消	定时事件 ①

5 从采集模式下拉框中,选择 SIM。

- 6 选择 SIM 参数。此时会打开编辑 SIM 参数对话框。
- 7 在组名字段中,输入1。组1即会显示在右面板表中。
- 8 对于**分辨率**,请选择**高**。
- 9 在编辑离子区域中,为组1离子时间段中的所有8个离子输入值。
 - a 在 *m/z* 和 **驻留**字段中,为第 93 页上的表 5 中的这些化合物 输入离子值。
 - b 在每次添加离子之后,请选择**添加 / 修改离子**。

图 40 输入组1离子

表5 SIM 离子选择

化合物	目标离子	定性离子	驻留时间
联苯	154	85	60
十二烷	170	85	60
一氯联苯	188	152	60
棕榈酸甲酯	270	87	60

10 选择关闭保存设置,并返回到 MS SIM / 扫描参数对话框。

11 选择**确定**。

12 选择保存方法按钮

。此时会打开**方法另存为**对话框。

13 在方法文件字段中,输入 evalsim,然后选择确定。

方法另存为	
方法路径: 	
DEVALSIM M	
14 选择 编辑整个方法 按钮。此时会打开编 话框。	扁辑方法 对
15 仅选中 方法信息 复选框。清除 数据分析 和 仪器/采	集 复选框。
编辑方法	
选择要编辑的方法部分:	
☑ 方法信息(M)	
□ 仪器/采集(A)	
□ 数据分析(Y)	

帮助(H)

确定

取消

18 在要运行的方法部分区域中,选中数据采集复选框。

16 选择确定。此时会打开方法信息对话框。 17 在方法备注字段中,输入此方法的说明。

入门指南

创建 SIM 定量方法 6

方	法信	息														×	1
	方法	注释	(C):														
	This	s is	the	SIM	method	l for	the	5975	MSD	Sampl	e	(P/N	05970-	-60045	5)		
	◄	将疗	5法副	本保	存在数排	屠文件	夹中	(S)									
	- 要i	国行の	的方法	法部分												 	
		预测	国行宏	/命令	(E):												
							仪器	空制:									
						i	数据	分析:									
	☑	数	屠采集	(A)													
		数	屠分析	(Y)													
		后读	国行宏	/命令	(T):												
							仪器	空制:									
						i	数据	分析:									l
						đ	角定		取	消		?助(F	I)				

19 选择确定。此时会打开**方法另存为**对话框。

方法另存为	×
方法路径:	
C:\MSDCHEM\2\METHODS\	
方法文件:	
EVALSIM. M	
确定	 帮助 (H)

20 确认已在方法文件字段中输入了 evalsim, 然后选择确定。

同时采集扫描和 SIM 数据 (SIM / 扫描模式)

如果我们从包含扫描参数的方法开始,然后还输入了类似于我们为 evalsim.m 方法输入的 SIM 参数,则我们的方法中已包含了所有必 需的参数,但有一个参数除外。我们只需要选中用于指定我们要同 时采集这两种数据类型的框。

在 SIM / 扫描模式下, 在每个模式中获取的数据点数将减少, 并且 我们将查看这会对总循环频率产生怎样的影响。

______。此时会打开 MS SIM / **扫描参数**

2 选中采集扫描和 SIM 数据复选框。

1 选择 MS 参数 按钮

对话框。

3 从采集模式下拉框中,选择扫描。

∎S SI∎/Scan参数	×
_MS 设备参数	
样品进样口: GC	时间窗口(W): 10 分钟
溶剂延迟 (0): 3.00 分钟 BMV 模式 (2): 相对值 ▼ 相对电压 (V) 0 = 1200 V 采集模式 (M): 全扫描	MS 窗口 1 绘图类型: 总离子流图 ▼ Y-坐标: 0 到 2000000 MS 窗口 2 绘图类型: 天 ▼
	Y-坐标: 0 到 100000
词道文件 ATUNE. U	
全扫描参数 (P) 区域 (Z)	定时事件 (T)
确定取消	帮助 (H)

4 选择**扫描参数**。此时会打开**编辑扫描参数**对话框,我们可以在 其中查看以前的设置。

编輯扫描参数			
扫描质量数范围 阈值和采样频率 绘	8		
	开始时间 开始时的质 (分钟) 里数(amu)	结束时的质 里数(smu)	
扫描组 1 🔽	3.00 50.00	350.00	
扫描组 2 🔲			
扫描组 3 🔽			
_ 设置摘要			
组 开始时间 低质量数	うちょう うちょう うちょう うちょう しんしょう しんしょ しんしょ	阈值	采样频率
1 3.00 50.00	350.00	40	3 2
•			
低到高	质里数范围必须为升序1.60	0 - 800.00.	
·			关闭(C) 帮

5 选择**质量范围**选项卡,并注意星号。

设置摘要表**(扫描 / 秒***)中的星号表示此处显示的**扫描 / 秒**不代 表实际的循环数。有关详细信息,请参见第 98 页上的 "SIM / 扫 描模式循环频率 "。

- 6 记下扫描模式的循环频率。
- 7 选择关闭返回到 MS SIM / 扫描参数对话框。
- 8 从采集模式下拉框中,选择 SIM。
- 9 选择 SIM 参数。此时会打开编辑 SIM 参数对话框,我们可以在 其中查看以前的设置。
- 10 选择**质量范围**选项卡,然后记下 SIM 模式的循环频率。
- 11 选择关闭返回到 MS SIM / 扫描参数对话框。
- 12 选择确定以保存参数,然后关闭此对话框。
- 13 使用 sim_scan.M 名称保存此方法。

此处记录的各个循环频率将用于在下一节第 98 页上的"SIM / 扫描 模式循环频率 " 中计算实际循环频率。

SIM / 扫描模式循环频率

在 SIM / 扫描模式中,要完成一个循环, MSD 会在采集一组 SIM 数据后采集一组扫描数据。为了获得实现高效色谱图积分所需的数据点数,可能有必要提高扫描速度或降低 SIM 驻留时间。请参见图 41。

图 41 SIM / 扫描模式

实际循环频率是使用图 42 中的方程式计算的。

Where A = Scan cycles per second B = SIM cycles per second

图 42 SIM / 扫描循环

在从 SIM 数据采集模式切换到扫描模式时,将会耗费大约 5% 的可 用运行时间。

对于我们的示例,扫描 = 2.44 次循环 / 秒,SIM = 1.97,这将导致 实际循环时间为 1.04 次循环 / 秒。为增大数据点数,我们会减小 SIM 驻留时间,并提高扫描速度。

Agilent G1701EA MSD Productivity ChemStation 入门指南

运行序列

备制样品	100	
创建序列	101	
保存序列	103	
调用序列	104	
运行序列	105	
打印序列	日志	106

本章介绍如何创建和运行序列。

序列是要分析的样品列表和要用于每个分析的指定方法。定义序列 后,序列可以在无人值守的情况下运行,可自动处理在序列中定义 的样品。

在安装 ALS 后,整个分析(从样品进样到报告结果)可自动进行, 从而节省您的时间。

运行此序列时生成的数据文件可在以后用于开发定量分析。

备制样品

- 1 准备 1:2 序列稀释因子的 100 ng/mL 5975 MSD 己烷样品(仅限 P/N 05970-60045 或 P/N 5074-3025,日本),以制作 50 ng/mL 和 25 ng/mL 方法校正样品。
- 2 准备 1:2 序列稀释因子的 10 ng/mL 5975 MSD 己烷样品(仅限 P/N 05970-60045 或 P/N 5074-3025,日本),以制作 5 ng/mL 和 2.5 ng/mL 方法校正样品。
- 3 用每种标样(2.5、5、10、25 和 50 ng/mL)大约 500 μL 填充样品瓶。

如果您使用的不是 ALS,请跳过剩余步骤。

- 4 将样品瓶按浓度升序放入 GC 样品盘的位置 1 到 5。
- 5 在溶剂清洗瓶中装入异辛烷溶剂,然后将其放入进样器转盘位置 A。
- 6 将空的废液瓶放在转盘位置 B。

如果使用 ALS,请按最低浓度到最高浓度的顺序将标样放入 GC。

创建序列

1 选择**编辑序列**按钮

。此时会打开**样品日志表**。

- 在类型列下的样品行1中,单击单元格以激活下拉列表,然后 选择样品。
- 3 如果将最低浓度的样品放在 ALS 样品盘位置 1 中,请在**样品瓶** 列下输入 1。
- 4 在样品列下输入 Standard 5 ng/mL。
- 5 在方法 / 关键字列下:
 - a 单击鼠标右键并选择**浏览查找方法**。此时会打开**浏览文件夹** 对话框。
 - b 导航查找并选择 evalsim.M。
 - c 选择确定。方法名称将出现在此列中。
- 6 在数据文件列下,输入 SIM01。

### 数据路	日志表 径 (1): [C:\MSDCHEM\2\DA	.TA		〕 方法路径 @): [C:\MS	DCHEM\2\METHODS\EVALSIM. M	
	类型	样品瓶	样品	方法/关键字	数据文件	注释/
1	样品▼	1	Standard 2.5ng/mL	demoSIM	STD01	
2						
3						
4						
5						
6						
6						
°						
10						
11						
12						
13						
14						
15						
					取消 帮助 创	

7 突出显示行 1 到行 5。

8 单击鼠标右键并选择**递增重复行**。向表中添加四行,每行包含 递增的样品瓶编号和数据文件名称。

塘路径(D): C:\MSDCHEM\2\DA	TA	浏览 (3) 方法路径 @):	C:\MSDCHEM\2\M	ETHODS\EVALSIM.M	浏览 @)
	类型	样品瓶	样品	方法/关键字		数据文件	注释/
1	样品▼	1 S	tandard 2.5ng/mL	demoSIM	STD01		
2	样品	2 S	tandard 2.5ng/mL	demoSIM	STD02		
3	样品	3 S	tandard 2.5ng/mL	demoSIM	STD03		
4	样品	4 S	tandard 2.5ng/mL	demoSIM	STD04		
5	样品	5 S	tandard 2.5ng/mL	demoSIM	STD05		
6							
7							
8							
9							
10							
11							
12							
13							
14							
_							

9 在行1的**样品**列下,将值更改为 Std 2.5 ng/mL。

10 在行 3 的样品列下,将值更改为 Std 10 ng/mL。

11 在行 4 的样品列下,将值更改为 Std 25 ng/mL。

12 在行 5 的样品列下,将值更改为 Std 50 ng/mL。

■ 样品 ****892%			220027-000	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	TRUCH CANTERNORS FRANCEL	
安贝北西北省11	<u>२</u> (ш). јс. (msucл£m (2 (u)) ж . д и	样只资			おけま立/仕	<u>刘凤也</u> … 注释/
		1+11.00%	тенн	月本(入键子	\$214×11	·王+=(.
1	样品_▼	1	Standard 2.5ng/mL	demoSIM	STD01	
2	样品	2	Standard 5ng/mL	demoSIM	STD02	
3	样品	3	Standard 10ng/mL	demoSIM	STD03	
4	样品	4	Standard 25ng/mL	demoSIM	STD04	
5	样品	5	Standard 50ng/mL	demoSIM	STD05	
6						
7						
8						
9						
10						
11						
12						
13						
14						
•						
				确定	取消 帮助(出)	

13 选择确定以关闭样品日志表。

保存序列

兰。此时会打开**保存序列**对

2 在文件名字段中,输入 eval。

1 选择序列另存为 ... 按钮

话框。

🥘 调用序列		×
查找范围(I):	퉬 sequence	
最近 说问的位 更一 桌面 计算机	名称 default.s	
回 网络	文件名(0): 文件类型(T):	eval 送择 自定义(*.S) ▼ 取消 取消

3 选择**保存**。此时会关闭此对话框,并保存此序列。

7 运行序列

调用序列

2 在文件名字段中,输入 eval.s。

🤯 保存序列					×
🌀 🕞 - 📙 • 计算机 •	本地磁盘 (C:) + msdchem + 2 + sequence	•	· 🙀 搜索 sequence		- 2
组织 ▼ 新建文件夹				-	0
☆ 收藏夹	名称 ~	修改日期	类型 :	UN	
┃┃ 下载 ■■ 桌面	default. =	2010/12/23 10:37	s 文件	12 KB	
 □ 库 1 视频 □ 图片 □ 文档 • 文档 					
▶ 计算机 置 本地磁盘 (C:) ▲ CD 驱动器 (D:) Acr					
🗣 व्यि					
文件名 00): eval 保存类型 (T): 序列文	7件 (*. s)				•
🖹 隐藏文件夹			保存(S)	取消	

3 单击**选择**以关闭此对话框,并调用此序列。

运行序列

。此时会打开**开始序列**对话框。

- 2 在要运行的方法部分区域中,选择完整方法。
- 3 在**序列说明**字段中,输入此序列的说明。
- 4 在操作员姓名字段中,输入您的姓名。
- 5 在数据文件目录字段中,将 eval 添加到此路径中。
- 6 选择**运行序列**。

1 选择运行序列按钮

开始序列 eval.s Last Hodified: Tue Hay 03 09:14:55 2011	×
要运行的方法部分 序列条形码选项 • 完整方法(L) ○ 禁用此序列的条形码(I) • 口便新处理(R) ○ 当不匹配时,强制进样(A),并继续序列 • 当不匹配时,不进样(D),但继续序列	
□ 覆盖现有数据文件(0)	
序列说明(C): SIM Acquisition	
操作员姓名(P): John Smith	
数据文件目录(F): C:\MSDCHEM\2\DATA\ 浏览	
预运行宏/命令	
序列运行后执行的宏/命令 仪器控制: 数据分析:	
运行序列(U) 确定 取消 帮助(H) 输入操作员姓名]

此时会显示**序列状态**栏。在序列运行期间,您可以监测样品运 行次数、样品剩余数量以及正在处理的当前样品瓶。使用序列 状态栏上的按钮可以暂停序列,访问数据分析或编辑尚未运行 的序列样品条目。

	<u>_</u>
运行 1 / 5 样 1 C:\MSDCHEM\2\DATA\STD01.D 【编辑】数据分析	暂停 ▲

图 43 序列状态栏

打印序列日志

。此时会打开**选择要打印的项**对话框。

2 选中序列日志复选框。

选择要打印的项	
☑ 序列日志(S)	
🔲 当前序列(C)	
🗌 仪器参数(I)	
🗌 数据分析参数(D)	
🔲 详细数据分析参数(E)	
确定 取消	

3 选择确定。此时会显示要打印的序列日志。

开始执行序列 Tue May 03 09:18:07 2011

1

仪器名称: Online 序列文件: C:\msdchem\2\sequence\eval.s 注释 : SIM Acquisition 操作员 : John Smith 数据路径: C:\MSDCHEM\2\DATA\ 方法路径: c:\msdchem\4\METHODS\ 行类型 样品瓶 数据文件 方法 样品名称

Tue May 03 09:28:33 2011 已检测到致命序列错误。 GC 预运行异常终止

Agilent G1701EA MSD Productivity ChemStation 入门指南

设置定量数据库

8

为数据库添加化合物条目 108 添加校正曲线 115 查看或编辑现有数据库 120

本章介绍如何将化合物添加到数据库中。在标识化合物后,定量数 据分析可通过将未知量化合物的响应与定量数据库存储的已知量 化合物的响应进行比较来确定样品中的化合物量。

为数据库添加化合物条目

1 启动"增强型数据分析"程序。

2 选择调用方法按钮

。可能会打开一个确认消息对话

框。如果打开该对话框,请选择是。此时会打开调用方法窗口。

调用方法	×
调用方法	
🛨 🍌 EnvDemo	
🛨 🍌 hp	
🖃 📙 msdchem	
I 🕂 🕕 🕂	
🖃 🌗 2	
🛨 🌗 data	
🖃 🌗 methods	
🛨 📙 default	
🛨 📙 default.m	
🛨 📙 DEMOSCAN. m	
🛨 📙 EVALSCAN. m	
🖃 🍌 EVALSIM. M	-
新建文件夹(M) 确定 取	肖

- 3 选择 demosim 方法,然后单击确定。
- 4 选择**调用数据文件**按钮 ______。此时会打开**选择数据文件**对 话框。
- 5 选择更改路径。此时会打开浏览文件夹对话框。
- 6 导航查找并选择 C:\msdchem\1\data\demosim。
- 7 选择确定。此路径即会显示在路径字段中。
| <mark>法择数据文件</mark>
路 C:\msdchem\2\data\demosim | | |
|---|--------------------------|--|
| 更改路径(C)
DEMOSIMO1.D
DEMOSIMO2.D
DEMOSIMO3.D
DEMOSIMO5.D | 操作员
样品瓶
其他信
样品名 | : twi
: 2
2.5 ng/uL
称: Standard A 2.5 ng/uL |
| | | |
| | 时间>
确定 | → 4.00 6.00
消帮助00) |

8 从文件列表中,选择 SIM01.D。

然后,我们将使用调用下一个文件的功能。它将记住此数据目 录和从中选择的最后一个文件,然后,只要单击一下图标,就 会自动调用下一个数据文件。

9 选择确定。此时会打开 TIC 窗口。

10 选择**设置定量**按钮 。此时会显示一条确认消息。选择 确定。

- 11 选择确定。此时会启用标准右键。
- 12 此时会打开**定量数据库设置**对话框。

定里数据库设置		
校正标题(T)		
MSD Sample		
┌定位峰		
参考峰窗口(R)	2.000	分钟
非参考峰窗口(M)	1.000	分钟 ▼
相关性窗口(W)	0.100	分钟
(信号间的保留时间匹配)		☑ 使用 RTEINT (U)
新化合物信息		
积分参数文件()		浏览
测定(M)	面积	×
缺省 +/-(0)	0.500	最小预期保留时间
曲线拟合(V)		线性回归
线性回归的数据点加权(A)		等里加权
浓度单位(0)	ng/uL	
内标物浓度 (I)	0.000000	
	确定	取消 帮助 0t)

- 13 输入以下信息以设置将为此数据库中的所有化合物初始设置的 参数。如果有些化合物需要不同的参数,则稍后可以在数据库 中更改这些参数。
 - a 校正标题 -MSD 样品。
 - **b 浓度单位** ng/uL
 - c 选择使用 RTEINT。对于 MS 数据,建议使用 RTE 积分器。

ş	自揖化合物				×
	序号	保留时间	信号	化合物名称	
				[北宫初列表结果]	
	•				
	标在化合物名	3称前的 * 表示内标	物 (ISTD)		
		插入上方(II)		退出(E)	帮助(H)

14 选择确定以保存设置,然后打开编辑化合物对话框。

标识化合物

设置定量数据库的第一部分是通过从已知样品中选择目标离子和 定性离子来标识和命名化合物。

 从编辑化合物对话框中,选择插入上方。此时会打开定量设置 对话框。

- 2 在名称字段中,输入第一个化合物名称联苯。
- 3 在 TIC 窗口中, 放大联苯峰 (在保留时间 4.7 附近)。
- 4 将光标放在峰的最高点处,然后双击右键。此保留时间将添加 到保留时间字段中。扫描显示在更低的窗口中,并且在定量设 置对话框的保留时间中显示此保留时间。

目标离子是在定量设置对话框中选择的。

5 在扫描窗口中,将牛眼光标放在目标离子 (154) 上,然后同时 单击两个鼠标键。此时会显示目标离子的 m/z。

第一个定性离子是在定量设置对话框中选择的。

6 在扫描窗口中,将牛眼光标放在第一个定性离子 (153)上,然后同时单击两个鼠标键。m/z 将添加到第一个定性离子字段中,并且计算比率,然后将计算所得比率添加到比率字段中。

定重设置		×
名称	bipheny	
保留时间	4.684 分钟	□ 内标物
○ 目标离子(<u>T</u> 154.000	
O Q <u>1</u>	153.000 比	50.310
⊙ Q <u>2</u>	0.000 比	0.000
O Q <u>3</u>	0.000 比	0.000
保存(<u>S</u>)	退出(E)	帮助(出)

注意

要清除不正确的离子选择,请选择该离子的单选按钮。然后,将光 标放在不包含离子的区域,同时单击两个鼠标键.

- 7 选择保存将联苯峰添加到数据库中,然后清除定量设置对话框。
- 8 使用在定性分析中标识的目标离子和定性离子添加剩余化合物。

衣り	日你禹	丁州正性禺	丁匹辝

± ~

ᄆᆂᅕᄀᇷᅌᄮᅕᄀᄮᅒ

化合物	目标离子	定性离子	驻留时间
联苯	154	153	60
十二烷	170	85	60
一氯联苯	188	152	60
棕榈酸甲酯	270	87	60

- 9 在添加所有化合物之后,请选择**退出**以返回到**编辑化合物**对 话框。
- 10 查看化合物列表。如果需要进行任何更正操作,请双击该化合物,然后在**定量设置**对话框中重新输入这些信息。

ġ	自由化合物				X
I	序号	保留时间	信号	化合物名称	
	1 2 3 4	4, 684 3, 823 5, 438 6, 542	154.00 170.00 152.00 87.00	biphenyl dodecane chlorobiphenyl methly pamitate [化合物列表结束]	
	▲ 标在化合物名	3称前的 * 表示内标物 	(ISTD)		▶ 帮助(H)

11 选择退出。此时会显示一条确认消息。

此过程将继续到下一节第 115 页上的"添加校正曲线"。

添加校正曲线

设置定量数据的第二部分是输入样品组中化合物的浓度。该组中的 每个样品都包含用于创建校正曲线的不同化合物浓度。

添加校正剂级别1

 选择是会显示在上面的"标识化合物"的步骤 11 中出现的确认 消息。此时会打开更新校正对话框。

● 添加级别(提供新校正级别	ID) (A)		┌级别 ID
化合物浓度(C):	2. 5>0000		新级别 ID(N)
内标浓度(I):	0.000000		2.5
			已有级别 ID (E
○ 更新(选择已有校正级别 ID	າໜ		
□ 响应 (3)	C 均值	€ 替换	
■ 保留时间(T)	C 均值	€ 替换	
▶ 替换定性离子相对师	<u>应</u> (Q)		
■ 更新质量数分布(M)			

- 2 对于第一个校正剂,
 - a 选择**添加级别**。
 - **b** 化合物浓度输入 2.500000。
 - c 在级别 ID 区域的新级别 ID 字段中,输入 2.5。
- 3 选择**执行更新**。此时会打开**编辑化合物**对话框,并显示第一个 校正点。

8 设置定量数据库

编辑化合物 化合物 #1 1	biphenyl		×
检索条件: 💿 保留时	间 〇名称 〇序号 🗌	査技化合物で)	
● ● 化合物数据库	识别 校正 用户定义 高级 报告中		
□□□ ● 外标化合物 □□□ ■ biphenyl	■. <compund ident="" info=""></compund>		×
dodecane chlorobiphenyl	名称(A) biphenyl	浓度单位(I) ng/uL 化合物类型(C)	
methly pamitate	用于定望分析的信号	┌ 定里选项	- 1
	保留时间(R) 4.684 RRT	定 里类型(U) 目标化合物 ▼	
	提取信号开始时间(X)	样品内标物浓度(D) 0.000000	1
	· 0.500 + 0.500 ● 分钟(M) ○ %	响应值计算依据[Y] 面积 💌	
		标识方法[D] 定性离子符合,最佳保留时间 ▼	
	定量信号(T) 目标离子 ▲ 不确定性百分比(C)	最大匹配数(B) 9	j
	m/z 相对响应值 相对值 ▼	扣除方法(S) 扩展面积定量	
	目标离 子(G) 154.00 100.00	曲线拟合(F)	
	Q1 153.00 50.30 20.00	加权(E) 等重加权	
	Q2 0.00 0.00 20.00	biphenyl	
	Q3 0.00 0.00 20.00	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	
	2.5 2.500000 559596.000000		
		4.00e+005	
		2.00e+005-	
Ξi	龍 取消 帮助 00	打印校正曲线 (P) 夏制校正曲线 (C)	

图 44 第一个校正添加到校正曲线中

- 4 选择**标识**选项卡。
- 5 在**定量**区域中,选择:
 - a 标识方法 所有都匹配
 - b 扣除方法 平均第一个和最后一个
- 6 选择**确定**。此时会显示一条确认消息。

编辑化合物 化合物 #1 biphenyl	×
🕜 将保存当前更改,是否继续?	
确定 取消	

7 选择确定保存所做更改。

此时会打开"定量报告"窗口。要添加其他校正级别,请参见 下一节。

将校正剂级别 5、10、25 和 50 添加到校正曲线中

对 SIM02(级别 = 5)、SIM03(级别 = 10)、SIM04(级别 = 25) 和 SIM05(级别 = 50)重复此操作过程。

- 1 选择**调用下一个数据文件**按钮 。此时会自动调用下一个 数据文件 (SIM02、SIM03、...)。
- 选择更新校正按钮
 此时会打开选择更新选项对话框。

5.择更新选项
 ● 更新一个级别(U) ○ 快速级别更新(Q) ○ 大東京(A)
· ① 至面更新(G) · 确定 取消

3 选择**更新一个级别**和确定。此时会显示一条确认消息。

- 4 选择是。此时会打开**更新校正**对话框。
- 5 对于此校正剂,
 - a 选择**添加级别**。
 - b SIM02 (级别 = 5)、SIM03 (级别 = 10)、SIM04 (级别 = 25)和SIM05 (级别 = 50)的化合物浓度。
 - c 在级别 ID 区域的新级别 ID 字段中,为 SIM02(级别=5)、
 SIM03 (级别=10)、 SIM04 (级别=25)和 SIM05
 (级别=50)输入值。
- 6 选择**执行更新**。此时会打开**编辑化合物**对话框,并显示新的校 正点。

- 7 选择标识选项卡。
- 8 在定量区域中,选择:
 - a 标识方法 所有都匹配
 - b 扣除方法 平均第一个和最后一个
- 9 在"将校正剂级别 5、10、25 和 50 添加到校正曲线中"下继续 执行上述步骤,直到添加了所有的浓度级别。完成的校正曲线 如第 118 页上的图 45 中所示。

图 45 完成的定量数据库

10 选择确定关闭此窗口。

保存数据库

- 1 选择**保存方法**按钮 .此时会打开**方法另存为**对话框,其 中的**方法路径**和**方法文件**字段中会显示当前方法的名称。
- 2 选择**确定**。

查看或编辑现有数据库

- 1 选择编辑化合物按钮 ^{4,4}。此时会打开编辑化合物对话框。
- 2 在导航树中选择化合物。每个选项卡中都会显示对应的信息。
- 要将校正曲线复制到剪贴板,以用于另一个应用程序,请选择 复制校正曲线。
- 4 要打印校正曲线,请选择**打印校正曲线**。

"标识"选项卡

- 化合物名称
- 浓度单位
- 化合物类型
- 保留时间信息
- 用于定量的信号
- 校正信息
- 定量参数
- "校正"选项卡
 - 浓度单位
 - 每个级别 ID 的响应
- " 用户定义 " 选项卡
 - A1 到 A3 字母数字项, 最多 19 个字符
 - N5 到 N9 数字项

" 高级 " 选项卡

- 面积修正质量数
- 修正因子
- 用于目录和限定化合物定量的积分参数文件。"总数"字段 可让您将指定的定性离子响应添加到目标离子相应。此方法 仅在使用扩展面积定量方法的面积定量中有效。

"报告"选项卡

- CAS # 专为化学文摘社编号设计的。但是,您可以对任何 其他编号或化合物信息使用此编号。
- 替代物含量 / 基质添加含量
- 基质 A 和 B 浓度
- 信号最低和最高值
- MS 数据库名称
- 参比质谱图编号

8 设置定量数据库

Agilent G1701EA MSD Productivity ChemStation 入门指南

生成报告

9

在运行后自动生成报告 124 为以前采集的数据生成详细报告 129

本章介绍如何修改方法以在每个样品运行结束时生成报告,以及如 何从**数据分析**视图交互生成报告。

在运行后自动生成报告

调用方法

- 2 导航查找并选择 demosim.m。
- 3 选择确定以关闭此对话框,并调用此方法。

编辑用于生成报告的方法

 Ⅰ 从仪器视图中,选择编辑整个方法...按钮 ______。此时会打 开编辑方法对话框。

编辑方法	×
选择要编辑的方法部分:	
☑ 方法信息(M)	
□ 仪器/采集(A)	
☑ 数据分析(Y)	
确定 取消 帮助(H)	

- 2 仅选中**方法信息**和数据采集复选框。清除仪器 / 采集复选框。
- 3 选择确定。此时会打开**方法信息**对话框。

方法信息
方法注释(C):
This is the SIM method for 5975 MSD sample
□ 将方法副本保存在数据文件夹中(S)
┌要运行的方法部分
□ 预运行宏/命令(E):
仪器控制:
数据分析:
✓ 数据采集(A)
✓ 数据分析(Y)
□ 后运行宏/命令(T):
仪器控制:
数据分析:
确定 取消 帮助(H)

- 4 在**方法备注**字段中,输入此方法的说明。
- 5 在**要运行的方法部分**区域中,选中**数据采集**和**数据分析**复选框, 然后清除**后运行宏 / 命令**复选框。
- 6 选择确定。此时会打开选择报告对话框。

选择报告		
□ 百分比报告()	P)	
🔲 谱库检索报告	; (L)	
☑ 定重报告(Q)		
🗆 自定义报告((C)	
🗆 更新自定义数	(II)	
	确定	 帮助(H)

- 7 选中**定量报告**复选框,并清除所有其他复选框。
- 8 选中确定。此时会打开定量报告选项对话框。

定里报告)	选项		×
类型	摘要		•
-目的地-			
□ 屏幕	靠(R)		
☑ 打印	Ū机(P)		
□ 文件	‡ (F)		
	确定	取消	帮助(H)

- 9 从**样式**下拉列表中,选择**摘要**。
- 10 在目标区域中,选中打印机复选框,并清除所有其他复选框。
- 11 选择确定。此时会打开选择运行方法打印机对话框。

迭	择运行方法	长的	打印机			
	Microsoft Fax	XPS	Document	Writer	-	
	Adobe PDF					
	·					
	选择	1	取消	1	帮助(36)	
		-		. .		

- 12 选择打印机,并单击选择。此时会打开**方法另存为**对话框。
- 13 选择**确定**以将设置保存到当前方法,或为此方法输入新的文件名。

运行方法并生成报告

基本 高级	
当前方法进样类型: GC ALS	
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	
前进样口	「后进样口」 数据文件名称 (2):EVALDEMO. D 浏览
样品名称 @): Demo QReport 其他信息 (I):	样品名称 (D): 其他信息 (D):
「	TQBIRTOPICD: 0 样品里(金): 0 乘和因子(M): 1
样品瓶编号 (2): 1	祥品瓶编号 W):
样品盘名称 ①: Agilent ALS 法择进样里: ③ 当前方法 1 μL	样品盘名称 ①: Agilent ALS 达择进样里: で 当前方法 0 µL
 ・ 强制使用 	○ 强制使用 µL
認定行的方法部分	法(12) 取消 帮助(12)

1 在修改方法以打印已调用的定量摘要报告后,单击绿色箭头以 显示**开始运行**对话框。

- 2 在数据文件目录字段中,将 eval1 添加到此路径中。
- 3 在数据文件名称字段中,输入 evalunkn.d。
- 4 在**操作员姓名**字段中,输入您的姓名。
- 5 在**样品名称**字段中,输入样品名称。
- 6 为 ALS 中的样品位置输入**样品瓶**编号。
- 7 在要运行的方法部分区域中,选择数据采集和数据分析。

8 选择**确定并运行方法**。即会运行此方法,并在运行完成后自动 生成摘要定量报告。

图 46 摘要定量报告

为以前采集的数据生成详细报告

调用方法

- 使用桌面图标 記述 启动数据分析程序。
 从仪器视图中,选择调用方法按钮 。
 此时会打开调用方法对话框。
 导航查找并选择 demosim.m,然后选择确定。
 - 1 从工具栏中,选择调用数据文件按钮 。此时会打开选 择数据文件对话框。
 - 2 从列表中选择 evalunkn.d。
 - **3 在路径字段中**,输入C:\msdchem\1\DATA\eval1。
 - 4 选择确定以调用此文件,然后关闭此对话框。

生成详细的定量报告

1 选择**生成报告**按钮

此时会打开**定量报告选项**对话框。

定里报告说	选项	×
类型	摘要	
「目的地一	(R)	
☑ 打印	机 (P)	
□ 文件	(F)	
	确定 取消 帮助 OO	

2 从**样式**下拉列表中,选择**详细**。

3 在目标区域中,选中打印机复选框,并清除所有其他复选框。

4 选择确定。此时会关闭此对话框,并打印报告。

图 47 详细的定量报告

Agilent G1701EA MSD Productivity ChemStation 入门指南

10 重新校正和定量未知样品

创建重新校正序列 132 保存序列 134 运行序列 135

考虑到系统存在差异,需要定期对校正曲线进行重新校正。 ChemStation 可以使用此处描述的重新校正序列自动执行此重新 校正。这通常是在运行样品之前按计划执行。

创建重新校正序列

1 选择**编辑序列**按钮

,此时会打开**样品日志表**。

- 在类型列下的样品行1中,单击单元格以激活下拉列表,然后 选择校正。
- 3 如果将最低浓度的样品放在 ALS 样品盘位置 1 中,请在**样品瓶** 列下输入 1。
- 4 在样品列下输入 Std 2.5ng。
- 5 在方法 / 关键字列下:
 - a 单击鼠标右键并选择**浏览查找方法**。此时会打开**浏览文件夹** 对话框。
 - b 导航查找并选择 demosim.M。
 - c 选择确定。方法名称将出现在此列中。
- 6 在数据文件列下,输入 Stdupdate01。

】样品 数据路	日志表 径 (1):	TA		浏览 @)	方法路径 (4):	C:\MSDCHEM\	4\METHODS		浏览 @)]		
	类型	样品瓶	样品	方法/关键字	数据文件	注释/关键 字	乘积因子	级别	更新 BF	更新 RT	更新 QI	更新 MZ
1	校正		1 Std 2.5ng	demoSIM	stdupdate01		1.00000	2.5	替换	替换	替换	替换
2	校正		2 Std 5ng	demoSIM	stdupdate02		1.00000	5	替换	替换	替换	替换
3	校正		3 Std 10ng	demoSIM	stdupdate03		1.00000	10	替换	替换	替换	替换
4	校正		4 Std 25ng	demoSIM	stdupdate04		1.00000	25	替换	替换	替换	替换
5	校正		5 Std 50ng	demoSIM	stdupdate05		1.00000	50	替换	替换	替换	替换
6	样品▼		6 unknown01	demoSIM	unknown01		1.00000		-	•	•	-
7												
8												
9												
10												
11												
12												
13												
14												
15												
	确定 取消 帮助 30											

- **7** 在级别列下,输入 2.5。
- 8 在更新 RF 列下,单击单元格以激活下拉列表,然后选择替换。
- 9 在更新 RT 列下,单击单元格以激活下拉列表,然后选择替换。
- 10 在更新 0I 列下,单击单元格以激活下拉列表,然后选择替换。
- 11 突出显示行 1 到行 5。

- 12 单击鼠标右键并选择**重复行和增量**。向表中添加四行,每行包 含递增的样品瓶编号和数据文件名称。
- 13 在行 2 的样品列下,将值更改为 Std 5 ng。
- 14 在行 3 的样品列下,将值更改为 Std 10 ng。
- 15 在行4的样品列下,将值更改为 Std 25 ng。
- 16 在行 5 的**样品**列下,将值更改为 Std 50 ng。
- 17 在行 2 的级别列下,将级别更改为 Std 5 ng。
- 18 在行 3 的级别列下,将级别更改为 Std 10 ng。
- 19 在行 4 的级别列下,将级别更改为 Std 25 ng。
- 20 在行 5 的级别列下,将级别更改为 Std 50 ng。

4日日	志表			T MUT on 1	÷1±00/7 /m).	a. Lucroumut	(Lungyong		2407.00	1		
织胡花白1全	w, щ): jL: \msdchem\4\DA	1A 样品资	样品	<u> </u>	力法路径 侧 :	注释/关键	和知因之	纪别		更新	更新	更新
4	大王	ттинлы	1714	/]/二/入谁子	SX14XIT	字	3401AIDI J	300.01	RF	RT ++ IA	QI ++ 15	MZ
1	校止		1 Std 2.5ng	demoSIM	stdupdateU1		1.00000	2.5	管狭	管狭	管決	菅狭
2	校正		2 Std 5ng	demoSIM	stdupdateU2		1.00000	5			菅狭	一 一 管 換
3	校正		3 Std 10ng	demoSIM	stdupdate03		1.00000	10	菅换	管换	管换	
4	校正		4 Std 25ng	demoSIM	stdupdate04		1.00000	25	替換	替换	替换	替换
5	校正		5 Std 50ng	demoSIM	stdupdate05		1.00000	50	 	替换	替换	替换
6	样品▼		6 unknown01	demoSIM	unknown01		1.00000		•	-	-	-
7												
8												
9												
10												
11												
12												
13												
14												
16												
4												•
	<u> 确定</u> 取消 帮助 90											

21 在行6中,为分析输入未知样品,如上图所示。

22 选择确定以关闭样品日志表。

保存序列

此时会打开**保存序列**对

2 在文件名字段中,输入 updatequant。

1 选择序列另存为 ... 按钮

话框。

3 选择**保存**。此时会关闭此对话框,并保存此序列。

运行序列

选择 运行序列 按钮	0
台序列 updatequant.s Last ∎odified: Tue ∎ay 03 11:16:39 2011	×
要运行的方法部分————————————————————————————————————	
◎ 完整方法(L)	
C 仅重新处理(R) C 当不匹配时, 强制运件(B), 并推续序列 C 当不匹配时, 不进样(D), 但继续序列	
□ 覆盖现有数据文件(0)	
序列说明(C): Sample Sequence	
操作员姓名(P): John Smith	
数据文件目录(F): C:\msdchem\4\DATA\eval12 浏览	
预运行宏/命令	
仪器控制:	
数据分析:	
序列运行后执行的宏/命令————————————————————————————————————	
仪器控制: ()() ()() ()() ()() ()() ()() ()() () ()	
数据分析:	
输入要放入数据文件的目录名称	
	选择运行序列按钮 。此时会打开开始序列对话框 \$

- 2 在**要运行的方法部分**区域中,选择**完整方法**。
- 3 在**序列备注**字段中,输入此序列的说明。
- 4 在**操作员姓名**字段中,输入您的姓名。
- 5 在数据文件目录字段中,将 eval2 添加到此路径中。
- 6 选择运行序列。demoSIM 方法的校正表将得到更新,并且使用 重新校正的校正曲线计算 / 报告未知样品结果。

10 重新校正和定量未知样品

Agilent G1701EA MSD Productivity ChemStation 入门指南

11 创建冷却方法

创建冷却方法 138 使用冷却方法 139

本章介绍如何创建和存储用于仪器维护任务的方法。使用这种类型 的方法有助于防止仪器的电子元件和色谱柱受到损坏,从而避免出 现诸如灼伤或电击之类的伤害。

创建冷却方法

- 1 选择视图 > 仪器控制。
- 2 选择 GC 编辑参数按钮 。此时会打开 GC 编辑参数 窗口。

4 在最高柱箱温度字段中,输入 35°C。

5 在**柱箱阶升**表中,清除所有条目。

自动进样器	= <mark>1</mark> 进样□	〇 色谱柱	植	ー を か と 別 器	レンジャング 「「「」 「「「」」「」 「「」」「」」 「」」	③ 书件		》 配置	▲ 1,2, 计数器	11 就绪状态		
☑ 柱箱温度	意为开	实际状态	5		(初始值)	。速 。 c	[牽 /min		值 C 50	保持时间 分钟	0	运行时间 分钟
50 ° C 平衡时间		50 ° C		*	阶升 1		35		300		2	9.1429
U.5 分钟 最高柱箱温度 325 ° C									, , , , , , , , , , , , , , , , , , ,			

6 选择进样口按钮 。此时会显示进样口参数。

- 7 选择前进样口或后进样口选项卡,具体取决于您的硬件配置。
- 8 选中加热器复选框,然后在对应的字段中输入 35°C。
- 9 选中压力复选框。在色谱柱较热时,必须保持色谱柱流量来防止损坏色谱柱。

- 10 选择**辅助**按钮
- 11 清除第2 辅助加热器的开启复选框。

- 12 选择确定。
- 13 选择保存方法按钮 。此时会打开方法另存为对话框。 14 在"方法文件"字段中,输入 cool down。
- 15 选择**确定**。

使用冷却方法

要使用冷却方法,请调用此方法,访问编辑 GC 参数窗口,然后在 右面板中右键单击鼠标。从上下文菜单中选择**将方法下载到 GC**。 此时会显示一条确认消息。

选择**确定**以关闭此消息,然后返回到 **GC 编辑参数**窗口。 在 GC 进入 " 就绪 " 状态后,请进行维护。 11 创建冷却方法

Agilent G1701EA MSD Productivity ChemStation 入门指南

关闭系统

关闭 MS 142 关闭 GC 143

本章介绍如何关闭 MS 和 GC。

12 关闭系统

关闭 MS

- 1 选择视图 > 调谐和真空控制 ...。
- 2 选择真空 > 放空 ...。此时会显示一条确认消息。

3 放空循环对话框将打开,并一直保持打开状态,直到放空完成。可通过选择退出关闭此对话框,但是,此过程仍会继续。 要重新打开放空循环状态窗口,请选择视图 > 真空状态。

真空状态										
	正在放空循环									
循环已开始 剩余时间 :	循环已开始 Tue Jul 26 14:18:19 2011 剩余时间: 17:55 分钟(估算值)									
涡轮泵:	实际值 关闭	目标	状态							
涡轮泵转速: 离子源:	62% 162 °C	< 50% < 100	未到设定速度							
四极杆:	137 C	< 100								
涡轮泵已关闭,MS 正在冷却。										
. ži	闭(C)	帮助(H)								

4 选择确定以关闭此对话框。

如果您正在先冷却仪器,请勿在此时关闭 MS。在关闭已配置 的仪器时,**仪器控制**窗口将关闭。

5 选择**关闭**。

关闭 GC

- 1 在仪器控制中,调用 GC 冷却方法。
- 2 访问编辑 GC 参数窗口。
- 3 在右面板中右键单击,然后从快捷菜单中选择将方法下载到 GC。此时会显示一条确认消息。

Agilent 7890A	×
方法下载完毕。	
/	
确定	

- 4 选择确定以关闭此消息,然后返回到 GC 编辑参数窗口。
- 5 关闭编辑 GC 参数窗口,然后退出 ChemStation。
- 6 在 GC 进入 " 就绪 " 状态时,关闭 GC 和 MS 的电源。
- 7 关闭载气。
- 8 关闭 PC 和所有外围设备的电源。

12 关闭系统

Agilent G1701EA MSD Productivity ChemStation 入门指南

常见问题解答

13

- Q. 我应该隔多长时间对我的 MSD 进行自动调谐?
- A. 通常不需要太频繁地进行调谐,差不多每个月一次,最多每周 一次。如果您怀疑存在与调谐相关的问题,请使用"检查调谐 "程序,以确认 MS 未得到调整,然后再对其进行重新调谐。
- Q. 有两个自动调谐选项可供使用:调谐 MSD 和快速调谐。我应 该使用哪个自动调谐来调谐我的 MSD?
- A. Agilent 建议对常规应用使用"调谐 MSD"。它可在校正剂 (PFTBA) 质量范围 (69、219和502)内获得最高仪器灵敏 度。可以使用 Q 极和 EM 之间的高能二极管 (HED) 获得更高 质量范围的灵敏度。对要求最高灵敏度的应用使用高质量调 谐,但不要求传统的丰度比率达到 100% m/z 69、35 85% m/z 219和1 5% m/z 502。使用"快速调谐"可对峰宽、质量分布和丰度进行微调,而不会更改离子比。
- Q. 我有在溶剂峰 (保留时间为 5.5 5.7 分钟)之前就洗脱的分 析物(保留时间为 4.5 分钟),我该如何采集数据并对化合物 (与此化合物类似,在溶剂峰之前洗脱)进行定量分析?
- A. 您可以在方法中更改设置,以控制 MSD 何时打开以采集数据。要更新方法以采集分析物的数据,请执行以下操作:
 - 1 选择视图 > 仪器控制。
 - 2 选择仪器 > MS SIM / 扫描参数 ...。
 - 3 在溶剂延迟字段中,输入4.0。
 - 4 选择定时事件。此时会打开 MS 定时事件表。
 - 5 在表顶部的时间下面,输入 5.0 min。
 - 6 按 Tab 键切换到下一个字段,然后从此列表中选择**检测器** 事件类型。
 - 7 移动到"参数1"字段,从列表中选择关闭,然后单击添加 按钮。此事件将显示在此表中。
 - 8 添加另一个时间事件行。在时间下面,输入 7.0 min,选择 检测器事件类型,然后为"参数 1"选择 打开。单击确定。

- Q. 我的有些分析物的灵敏度降低了,有些分析物根本检测不到。 我应该怎么做才能再次检测到这些分析物?
- A. 您的 GC/MSD 系统灵敏度降低可能是由于以下问题导致的:
 - 样品:样品中的分析物已蒸发或退化。
 - 色谱柱:色谱柱受到污染或所用的液相有缺陷。
 - GC进样口:由于进样口衬管、分流口或隔垫不干净或损坏 导致泄漏。
 - MSD:离子源受到污染或退化,方法中使用的质量分布不正确。
 - 色谱柱连接:进样端口密封垫圈松脱或在进样口上安装色谱 柱的高度不正确导致的泄露。
 - 进样口:方法使用的分流比不正确,或者需要更长的吹扫 时间。
 - 进样器:进样针使用隔垫材料塞住,或进样针使用的进样量 不正确。
 - MSD 或 GC: MSD 或 GC 流量系统存在缺陷。

要提高灵敏度,请执行以下操作:

- a 进行调谐评估以验证 MSD 性能。
- b 有关分步式故障排除过程,请参考硬件手册。
- c 致电 Agilent 客户联系中心。
- Q. 在尝试调用数据文件时,消息行中显示"无MS数据"。
- A. 如果选定的数据文件夹 (datafolder.d) 不包含原始数据文件 (data.ms),则会显示"无MS数据"消息。不管何时为数据采 集调用方法,都会创建数据的数据文件文件夹。如果用户或主 机系统中止了采集,则不会在此数据文件夹中创建 data.ms 文件,但此数据文件夹将仍保留在此目录中。
- Q. 右键双击时,不再显示质谱图。光标变成十字准线 (+)。
- A. 这可能是在数据分析中开启了手动积分功能。这意味着,双击鼠标键时,将尝试删除已积分的峰,而不是选择要显示的质谱图。在此模式下,鼠标光标在色谱图窗口中显示为十字准线(+)。要通过鼠标选择质谱图,请关闭手动积分。为此,请使用工具>选项菜单打开数据分析选项对话框,然后取消选择手动积分选项。色谱图窗口中的光标应该会变回垂直线。

- Q. 哪种方法是用于选择质谱图的最常推荐的方式?在峰顶点处选择、在峰起点和结束点的平均值处选择,或从峰顶点扣除基线?
- A. 我们建议在峰顶点处选择质谱图。对于低浓度的峰,还建议在 峰附近扣除基线质谱图。如果峰的前端与另一个峰重叠,则在 结束点使用基线质谱图比较合适。
- Q. 峰起点、峰顶点和峰结束点处的质谱图模式各不相同。这是否 意味着此峰包含两个化合物?
- A. 在 5973 数据中,通常情况是,更低质量范围的丰度在峰起点处更高,而更高质量范围的丰度在峰结束点处更高。这些现象是由扫描过程导致的。在采集数据时,将从高到低扫描质量范围。由于从 GC 色谱柱出样口洗脱的分子数具有高斯轮廓图,因此,在峰起点处采集更高质量范围时,离子源中的样品分子数相对较小,但在采集更低质量范围时,该数量会急剧增大。在峰结束点处,也会出现相反的情况。这并不总是意味着同时洗脱两个化合物,即使在一个峰中存在不同的质谱图模式也是如此。
- Q. 我该如何假定该峰是匹配列表中的化合物? 谱库检索结果的 匹配度是什么?
- A. 匹配度就是将未知化合物正确标识为参比化合物。如果值大于 90,则说明匹配度非常高。如果值小于 50,则意味着未知 化合物和参比化合物之间存在巨大差异,并且匹配并非是完 全精确。通常情况下,存在概率值 ±5 的差异并不十分显著。 概率值前面的星号 (*)指示在匹配中使用了分子离子。如果没 有任何星号,则未使用分子离子。由于许多因素会影响匹配度 以及匹配列表中化合物的排序,因此,应该将此列表作为对未 知化合物标识的解释性指导。您不应假定列在首位的匹配项 就是唯一正确的答案。在最终分析中,化学分析师需要结合使 用 PBM 和其他信息来确定匹配项标识是否正确。例如,应该 考虑未知化合物质谱图与可信样品质谱图的图形比较、样品 历史记录相关知识和其他相关信息。

- Q. 谱库检索列出了相同化合物的不同质谱图。为什么?
- A. NIST 或 WILEY 谱库是商业性数据库。由于这些谱库包含不同制造商使用不同仪器对一种化合物进行分析所得的 MSD 数据,因此,检索结果可能列出重复的化合物。要避免出现这种重复,请使用**质谱图 > 编辑策略**打开 "检索策略"对话框,然后选中**移除重复的 CAS 编号**复选框。
- Q. 我如何根据各种特性查找质谱库中包含的化合物?
- A. 请使用参数检索。使用参数检索软件可以从谱库中检索质谱 图。单击视图 > 参数检索打开参数检索模式。此时会显示检 索参数框,并且菜单栏会发生变化。选择要用于检索的谱库。 选择要在检索中使用的标准(在复选框中加上 X 标记),然 后为这些参数指定此值或值范围。通常,指定的标准越多,检 索到的化合物越少。如果没有指定任何参数,则将检索整个谱 库。单击检索按钮启动检索。将显示参数检索结果对话框,该 对话框中显示前 10 个匹配化合物。单击参数检索结果对话框 中的检索下一个按钮,以从谱库中检索下一组匹配化合物。单 击关闭按钮退出参数检索结果对话框,然后单击视图 > 数据 分析,返回到标准数据分析应用程序模式。

- Q. 我如何按我选择的缩放比例打印色谱图?
- A. 使用命令行。如果在"增强型数据分析"应用程序中没有启用 命令行,请使用工具>选项菜单打开数据分析选项对话框, 然后选择命令行选项。键入 draw 2,r0,3:5,0:500000,然 后按 Enter 键。将在窗口 #2 中显示保留时间为 3 到 5 分钟, 丰度为 0 到 500000 的色谱图。使用文件>打印 ... 打开打印 对话框,然后单击选定窗口。在此窗口中键入 2 以打印色谱 图。
- Q. 在更换色谱柱后,我没有看到任何色谱峰。我使用的是 SIM 方法。我该如何恢复此峰?
- A. 在分析期间,会切换通常用于 SIM 方法和所采集离子中的峰 分组。由于在更换色谱住时峰的保留时间通常会发生偏移,因此,如果化合物保留时间偏移到下一个组,则下一个组不会包 含该峰的离子,因而不会显示色谱峰。在这种情况下,请采集 扫描数据并查找精确的保留时间,以调整 SIM 方法。
- Q. 为什么离子色谱图和非 TIC 可用于定量分析?
- A. 与 TIC 相比,提取离子色谱图 (EIC) 可提供更稳定的结果, 因为 EIC 具有更好的信噪比,并且对基质产生的影响最小。
- Q. 有些峰不能使用自动积分进行积分。我如何对这些峰进行积分?
- A. 在对 TIC 或 EIC 进行自动积分时,数据分析软件将尝试为当 前色谱图查找最佳积分参数,并对其进行积分。自动积分是一 个全自动的两步过程。如果自动积分没有提供满意的记过,则 可以自定设置初始事件。
- Q. 由于峰形状质量差,无法使用积分事件对峰进行积分。是否有 其他任何方法可用来对此峰进行积分?
- A. 使用手动积分模式。将鼠标光标放在此色谱图上。如果色谱图窗口中的光标是垂直线,则鼠标模式现在是平均质谱图,并且应该开启了手动积分模式。为此,请使用工具>选项菜单打开数据分析选项对话框,然后选择手动积分。色谱图窗口中的光标应该变成十字准线(+)。在色谱图中单击鼠标左键并拖动可放大的目标峰。单击鼠标右键并拖动可在峰上绘制积分基线。释放鼠标后,将对峰进行积分。如果要删除峰的积分数据,请将光标放到该峰上,然后双击鼠标右键。

- Q. 我如何将积分结果导出到 Microsoft Excel 中?
- A. 单击**色谱图 > 积分结果**...。将显示与当前数据文件关联的积分结果表。单击复制按钮可将表格形式的数据保存到剪贴板。 打开电子表格,单击要插入数据所在的单元格。从编辑菜单中选择**粘贴**命令。您可能必须使用 Excel 菜单调整这些数据。
- Q. 我如何将色谱图图形从我的 MS Chemstation 导出到另一个 Windows 应用程序?
- A. 您可以使用工具 > 复制窗口菜单将选定的"数据分析"窗口复制到剪贴板。然后,在系统提示输入您要复制的图形窗口的编号("1"表示质谱图,"2"表示 TIC)时,输入相应的编号。单击确定即可将选定的窗口复制到剪贴板。然后,从另一个应用程序中,您可以使用粘贴命令将剪贴板中的内容复制到该应用程序中。
- Q. 定量报告的积分结果和我的积分结果存在差异。为什么?
- A. 定量报告的积分结果是使用在定量数据库的第 1 页化合物中 指定的目标离子的提取离子色谱图生成的。并且,如果文件是 在定量数据库的第 3 页中指定的,则可使用特定的积分事件 来进行积分。如果您提取离子色谱图,并使用相同的积分事件 文件,则可以获得相同的积分结果。
- Q. 我可以在定量报告的色谱图中看到某个峰,但该报告的文本 结果却显示 N.D.,为什么?
- A. 有两个原因。第一,确保将正确的积分事件用于定量。使用校正>编辑化合物 打开编辑化合物对话框。验证是否在化合物的第3页上为目标离子输入了特定的积分文件名。另一种原因可能是峰的浓度低于定量下限。设置积分参数,以至少对最低浓度标准样品峰进行积分,并通过面积截除或其他事件限制要积分的较小峰。(例如,如果最低限制为1ppb,则积分事件设置为至少对1ppb的峰进行积分。)在详细的定量报告中,峰看上去更大,即使实际峰非常小也是如此,因为目标离子和定性离子的离子色谱图也会按标准缩放比例进行打印。在这种情况下,峰低于定量下限,将相应地报告 N.D.。

- Q. 我对要用于设置校正曲线的数据文件进行定量。结果显示了 不同的定性离子比。为什么?
- A. 定量数据库的第 1 页上定性离子比是在寄存化合物时使用相对于质谱图的目标离子丰度的丰度计算的(=丰度比)。定量结果计算使用目标离子和定性离子的积分(面积)结果(=面积比)的比率。这些计算结果的差异就会导致这种征兆。要调整定性离子比差异,请单击校正>更新以打开校正选项对话框,然后选择更新一个级别。在显示更新级别对话框时,请选择更新级别选项以及替换定性离子相对响应子选项,然后按进行更新按钮。现在,您可以使用相同的定性离子比生成定量报告。

13 常见问题解答

© Agilent Technologies, Inc.

美国印刷, 2011 年 7 月

G1701-97070