

Agilent FTIR

Instrument Interface

Application

Programming Manual

2 Agilent FTIR Instrument Interface Application Programming Manual

Notices

© Agilent Technologies, Inc. 2010,

2011

No part of this manual may be

reproduced in any form or by any

means (including electronic storage

and retrieval or translation into a

foreign language) without prior

agreement and written consent from

Agilent Technologies, Inc. as governed

by United States and international

copyright laws.

Manual Part Number

0020-412

Edition

Second edition, April 2011

Printed in USA

Agilent Technologies, Inc.

Warranty

The material contained in this

document is provided “as is,” and is

subject to being changed, without

notice, in future editions. Further, to

the maximum extent permitted by

applicable law, Agilent disclaims all

warranties, either express or implied,

with regard to this manual and any

information contained herein,

including but not limited to the

implied warranties of merchantability

and fitness for a particular purpose.

Agilent shall not be liable for errors

or for incidental or consequential

damages in connection with the

furnishing, use, or performance of

this document or of any information

contained herein. Should Agilent and

the user have a separate written

agreement with warranty terms

covering the material in this

document that conflict with these

terms, the warranty terms in the

separate agreement shall control.

Technology Licenses

The hardware and/or software

described in this document are

furnished under a license and may be

used or copied only in accordance

with the terms of such license.

Restricted Rights Legend

If software is for use in the

performance of a U.S. Government

prime contract or subcontract,

Software is delivered and licensed as

“Commercial computer software” as

defined in DFAR 252.227-7014 (June

1995), or as a “commercial item” as

defined in FAR 2.101(a) or as

“Restricted computer software” as

defined in FAR 52.227-19 (June 1987)

or any equivalent agency regulation or

contract clause. Use, duplication or

disclosure of Software is subject to

Agilent Technologies’ standard

commercial license terms, and non-

DOD Departments and Agencies of the

U.S. Government will receive no

greater than Restricted Rights as

defined in FAR 52.227-19(c)(1-2) (June

1987). U.S. Government users will

receive no greater than Limited Rights

as defined in FAR 52.227-14 (June

1987) or DFAR 252.227-7015 (b)(2)

(November 1995), as applicable in any

technical data.

Contents

Agilent FTIR Instrument Interface Application Programming Manual 3

Contents

1. Overview 7

2. Data Types and Notation 9

Standard data types 9

Enumerations 10

Data structures 11

3. FTIRInst DLL 15

Summary of function interfaces 15

Typical usage patterns 17

FTIRInst_SetTargetDeviceUsb 19

FTIRInst_SetTargetDeviceSerialPort 20

FTIRInst_SetTargetDeviceNetwork 21

FTIRInst_Init 22

FTIRInst_Deinit 23

FTIRInst_SetComputeParams 24

FTIRInst_dptrStartSingleBeam 25

FTIRInst_dptrStartSpectrum 27

FTIRInst_dptrGetLiveSpectrum 29

FTIRInst_dptrGetSingleBeam 32

FTIRInst_dptrGetBackground 33

FTIRInst_dptrGetClean 35

Contents

4 Agilent FTIR Instrument Interface Application Programming Manual

FTIRInst_dptrGetSpectrum 36

FTIRInst_dptrGetRatioSpectrum 38

FTIRInst_KillCollection 39

FTIRInst_SetLaserWaveNumber 40

FTIRInst_SetPathLen 41

FTIRInst_GetLaserWaveNumber 42

FTIRInst_GetPathlenEx 43

FTIRInst_GetVersion 44

FTIRInst_GetVersionEx 45

FTIRInst_GetStatus 46

FTIRInst_GetStatusEx 48

FTIRInst_CheckProgress 49

FTIRInst_CheckProgressEx 50

FTIRInst_CheckProgressStruct 52

FTIRInst_StartCoaddedIGram 53

FTIRInst_StartCoaddedIGramNotify 54

FTIRInst_dptrGetCoaddedIGram 55

FTIRInst_RegisterButton1 57

FTIRInst_RegisterButton2 58

FTIRInst_dptrSetBackground 59

FTIRInst_dptrGetLiveSingleBeam 60

FTIRInst_dptrGetLiveIGram 62

FTIRInst_GetIrGain 64

Contents

Agilent FTIR Instrument Interface Application Programming Manual 5

FTIRInst_SetIrGain 65

FTIRInst_RegisterStatus 66

FTIRInst_RegisterStatusEvents 67

FTIRInst_SetAppLedState 68

FTIRInst_I2cAdc_GetReadings 69

FTIRInst_I2cIo_SetPinDirs 71

FTIRInst_I2cIo_SetPinVals 72

FTIRInst_I2cIo_GetPinVals 73

FTIRInst_GetExtTemps 74

FTIRInst_GetExtTemp 76

FTIRInst_GetOemNvmemData 77

FTIRInst_SetOemNvmemData 78

Contents

6 Agilent FTIR Instrument Interface Application Programming Manual

This page is intentionally left blank.

Overview

Agilent FTIR Instrument Interface Application Programming Manual 7

1. Overview

The main component for interfacing to the Agilent MicroLab
instruments is through the FTIRInst.DLL interface DLL. This DLL
provides a set of C-Callable, high-level language interface calls for
communicating with the Agilent instrumentation products. The DLL
interface can be invoked from VB, C, and C# modules, and is
compatible with Microsoft® Windows®, Microsoft .NET Framework,
and Microsoft Windows CE .NET Compact Framework platforms. The
interface described in this document details the functional interface
for use by a C# InteropService client wrapper class.

The interface DLL will encapsulate and wrap all details of the Driver
interface layer below the DLL level. A simulation DLL
(FTIRInst_sim.DLL) provides a software-only test solution, to
provide an interface plug-in replacement that works seamlessly with
applications built for the FTIRInst target interface.

NOTE The simulation DLL may not provide all of the functionality described in this

document, and the return values may differ from those that the live instrument

DLL provides.

The wrapper class for C# provides a number of interfaces designed
for ease of use in interfacing with C# client applications. These
routines generally wrap the DLL routines, provide data type
transformations, and or combine a number of DLL routines into one
call.

Overview

8 Agilent FTIR Instrument Interface Application Programming Manual

For network configuration of network-capable FTIR devices, see the
separate document, Agilent Instrument Interface: Network
Supplement. Access remains through the same DLLs.

Figure 1. Architectural block diagram of interface

Client application(s) — (Higher level UI layer)

(Optional) .NET InteropServices (C#) DLL interface class

wrapper

MLInstrumentInvoke.cs

DLL interface layer

FTIRInst.DLL / FTIRInst_sim.DLL

Instrument driver layer

mInstUsb.DLL, mInst.DLL, mFTIR.sys

Data Types and Notation

Agilent FTIR Instrument Interface Application Programming Manual 9

2. Data Types and Notation

Standard data types 9

Enumerations 10

Data structures 11

The data types used in this document are the types as defined in the
Microsoft .NET Framework.

Standard data types

 int: 32-bit integer (typically a long or DWORD in older style
languages)

 short: 16-bit integer

 float: 32-bit floating point value (typically a float or single
precision value in older style languages)

 double: 64-bit floating point value (typically a double precision
value in older style languages)

 ref and or array[]: This is the .NET notation convention for a
reference to a data type or a reference to an array of values
(typically a pointer or ByRef value in older style languages)

 public and private: Protection and accessibility level of a variable
or function

Data Types and Notation

10 Agilent FTIR Instrument Interface Application Programming Manual

Enumerations

Specific sets of values stored as 32-bit integer values as follows:

PHASETYPE { PT_MERTZ = 1, PT_FORMAN = 2, PT_FORMANRES = 3 };

APODTYPE { APOD_NONE = 0, APOD_BOXCAR = APOD_NONE,

APOD_TRIANGULAR = 1,

APOD_WEAKNORTONBEER = 2, APOD_MEDIUMNORTONBEER = 3,

APOD_STRONGNORTONBEER = 4, APOD_HAPPGENZEL = 5,

APOD_BESSEL = 6,

APOD_COSINE = 7, APOD_HANNING = APOD_COSINE, };

FTIR_STATE { FTIR_Init = 0, FTIR_Collecting = 1, FTIR_DataReady

= 2,

FTIR_Aborting = 3, FTIR_Error = 4, };

PHASEPOINTS { PP_128 = 128, PP_256 = 256, PP_512 = 512, PP_1024

= 1024 };

OFFSETCORRECTTYPE { OT_NONE = 0, OT_ALL = 1, OT_ENDS = 2 };

ZFFTYPE { ZFF_NONE = 0, ZFF_2 = 1, ZFF_4 = 2, ZFF_8 = 3,

ZFF_16 = 4 };

SAMPLINGTECHNOLOGYTYPE { ST_NONE = 0, ST_ATRSINGLE = -1,

ST_ATRTRIPLE = -3,

ST_ATRNINEBOUNCE = -9, ST_TRANSMISSIONCELL = 1,

ST_GASCELL = 2,

ST_REFLECTANCE = 3, };

ML_INSTRUMENT_TYPE { eInstrumentType_Undefined = 0,

eInstrumentType_ML = 1, eInstrumentType_MLP = 2,

eInstrumentType_MLX = 3, eInstrumentType_Exoscan =

4, };

DATAXTYPE { XT_ARB = 0, XT_WN = 1, XT_uM = 2, XT_nM = 3,

XT_Seconds = 4,

XT_Minutes = 5, XT_MassCharge = 9, XT_RAMSHFT = 13,

XT_Points = 22, XT_Hours = 30, XT_AMU = 50,

XT_Custom = 51 };

DATAYTYPE { YT_ARB = 0, YT_IGRAM = 1, YT_Abs = 2, YT_Percent =

11,

YT_Intensity = 12, YT_RelAbundance = 13, YT_Trans =

128,

YT_Refl = 129, YT_Custom = 51, YT_Abundance = 52, };

REJECTREASON { RR_GOOD = 0, RR_20PCT = 0x00010004,

RR_CENTERBURST = 0x00010005, RR_HW_UNSTABLE =

0x00010010 };

Data Types and Notation

Agilent FTIR Instrument Interface Application Programming Manual 11

Data structures

Structures of information, usually passed by reference, as follows:

struct _instrumentMLDiag

{

 public int nVersion; // struct version (100 to

102)

 public int nEnergyStatus; // Height of Center burst

 public int nLaserStatus;

 public int numTemps;

 public int nBatteryMinutes;

 public int nBatteryPct;

 public int nBatteryState; // bits: 1=connected, 2=ac

connected,

 // 4=charging, 16=fully

charged

 public float fSourceCurrentStatus;

 public float fSourceVoltageStatus;

 public float fSpare;

 public float fTempCPU; // Cpu board temperature

 public float fTempPower; // Power board temperature

 public float fTempIR; // IR board temperature

 public float fTempDetector; // Detector temperature

 // MLDiag 102+

 public Int32 nSystemStatus; // System Status

 public Int32 nShutdownReason; // System Shutdown Reason

};

struct _instrumentMLVersion

{

 public int nVersion; // struct version (100 to

103)

 public int fwRev; // firmware rev

 public int dllRev; // dll rev

 public int nReserved0; // reserved; return value is

undefined

 public int instrType; // ML_INSTRUMENT_TYPE enum

value

 public int sampleTechType; // negative ==> ATR

 public int atrType; // 1, 3, 9 (for ATR type

sampleTechs)

Data Types and Notation

12 Agilent FTIR Instrument Interface Application Programming Manual

 public int spare; // always returned as 0

 public double dLaserWN; // in WN

 public double dBasePathLength; // Transmission/gascell

sampleTechs in mm

 public double dAdjPathLength; // Transmission/gascell

sampleTechs in mm

 // MLVersion 101+

 // Serial number (in WCHAR-compatible format)

 public short serialNo01;

 public short serialNo02;

 public short serialNo03;

 public short serialNo04;

 public short serialNo05;

 public short serialNo06;

 public short serialNo07;

 public short serialNo08;

 public short serialNo09;

 public short serialNo10;

 public short serialNo11;

 public short serialNo12;

 public short serialNo13;

 public short serialNo14;

 public short serialNo15;

 public short serialNo16;

 public short serialNo17;

 // MLVersion 102+

 public int nCpuBrdRev;

 public int nPwrBrdRev;

 public int nIrBrdRev;

 public int nLasBrdRev;

 // MLVersion 103+

 public int nUpdFwRev;

 public int nBootloaderFwRev;

 public int nFpgaRev;

};

struct _progress

{

 public int nStructSize; // size bytes of struct (initially

= 28)

Data Types and Notation

Agilent FTIR Instrument Interface Application Programming Manual 13

 public FTIR_STATE state;

 public int currentUnits;

 public int totalUnits;

 public int recentRejected;

 public int rejectReason; // reason, or Good if the last

scan good

 public int numRejectsSame; // num consec rejects w same

rejectReason

};

Data Types and Notation

14 Agilent FTIR Instrument Interface Application Programming Manual

This page is intentionally left blank.

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 15

3. FTIRInst DLL

Summary of function interfaces 15

Typical usage patterns 17

Summary of function interfaces

int FTIRInst_SetTargetDeviceUsb(wchar_t *pDeviceName);

int FTIRInst_ SetTargetDeviceSerialPort(long nPort);

int FTIRInst_ SetTargetDeviceNetwork(wchar_t *pDeviceName);

int FTIRInst_Init();

int FTIRInst_Deinit();

int FTIRInst_SetComputeParams(PHASEPOINTS ppoints,
PHASETYPE ptype, APODTYPE papod, APODTYPE iapod, ZFFTYPE
zff, OFFSETCORRECTTYPE offset);

int FTIRInst_dptrStartSingleBeam(int numScans, ref double from,
ref double to, int res, int bAutoSetBkg, int bAutoSetClean);

int FTIRInst_dptrStartSpectrum(int numScans, ref double from, ref
double to, int res, DATAXTYPE xtype, DATAYTYPE ytype, int
bAutoSetUnknown);

int FTIRInst_dptrGetLiveSpectrum(ref double from, ref double to,
int res, DATAXTYPE xtype, DATAYTYPE ytype, double[] array, int
size, ref double actualFrom, ref double actualTo, ref int actualRes);

FTIRInst DLL

16 Agilent FTIR Instrument Interface Application Programming Manual

int FTIRInst_dptrGetSingleBeam(double[] array, int size, ref double
actualFrom, ref double actualTo, ref int actualRes);

int FTIRInst_dptrGetBackground(double[] array, int size, ref double
actualFrom, ref double actualTo, ref int actualRes);

int FTIRInst_dptrGetClean(double[] array, int size, ref double
actualFrom, ref double actualTo, ref int actualRes);

int FTIRInst_dptrGetSpectrum(double[] array, int size, ref double
actualFrom, ref double actualTo, ref int actualRes);

int FTIRInst_dptrGetRatioSpectrum(double[] bkgarray, double[]
smparray, double[] outarray, int size, DATAYTYPE ytype);

int FTIRInst_KillCollection();

int FTIRInst_SoftReset();

int FTIRInst_SetLaserWaveNumber(ref float newLaser);

int FTIRInst_SetPathlen(ref float newPathlength);

int FTIRInst_GetLaserWaveNumber(ref float curLaser);

int FTIRInst_GetPathlenEx(ref _instrumentMLVersion, ref float
curPathlength);

int FTIRInst_GetVersion(ref int fwRev, ref int dllRev, ref int
serialNo);

int FTIRInst_GetVersionEx(ref _instrumentMLVersion _vInfo);

int FTIRInst_GetStatus(ref int nEnergyStatus, ref float
fBatteryStatus, ref float fSourceCurrentStatus, ref float
fSourceVoltageStatus, ref int nLaserStatus, ref float fDetectorStatus);

int FTIRInst_GetStatusEx(ref _instrumentMLDiag _dStatus);

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 17

FTIR_STATE FTIRInst_CheckProgress(ref int currentUnits, ref int
totalUnits);

FTIR_STATE FTIRInst_CheckProgressEx(ref int currentUnits, ref
int totalUnits,ref int rejectedScans);

int FTIRInst_CheckProgressStruct(ref _progress pProgress);

int FTIRInst_StartCoaddedIGram(int numScans, int nRes, int
nPhasePts);

int FTIRInst_dptrGetCoaddedIGram(double[] pArray, int
nArraySize);

int FTIRInst_dptrSetBackground(double[] pArray, int nSize, double
from, double to, int nRes)

 int FTIRInst_dptrGetLiveSingleBeam(int res, double[] pArray, long
size, ref double actualFrom,ref double actualTo, ref int actualRes);

 int FTIRInst_dptrGetLiveIGram(int res, double[] array, int size, ref
int pActualFrom, ref int pActualTo, ref int pActualRes);

int FTIRInst_GetIrGain (ref int nVal);

int FTIRInst_SetIrGain (int res, uint flags);

int FTIRInst_RegisterStatus (IntPtr whandle int wm_MessageID);

int FTIRInst_SetAppLedState (int nLedState);

Typical usage patterns

1 Call one of the SetTargetDeviceXxx() functions to choose the
interface to connect over, and to provide any additional
identifying information that will allow a connection to a device. If
none of these functions are called, the DLL interface will default
to connecting to the first USB device that is found.

2 Call FTIRInst_Init and check the return value to make sure the
instrument connects properly.

3 (Optional) Check version numbers.

4 Call FTIRInst_SetComputeParams with the required settings.

FTIRInst DLL

18 Agilent FTIR Instrument Interface Application Programming Manual

5 Call FTIRInst_dptrStartSingleBeam to start the data collection
sequence.

6 Monitor the instrument status with
FTIRInst_CheckProgressStruct. When the instrument state
changes to FTIR_DataReady, a single beam is ready.

7 Call FTIRInst_dptrGetSingleBeam to determine the size of the
memory array that will be needed for the returned single beam.
This is done by setting the ‘array’ parameter to zero (and all
other parameters to valid values).

8 Allocate a memory array of sufficient size to receive the single
beam result and call FTIRInst_dptrGetSingleBeam again but
this time with the ‘array’ parameter set to point to the memory
array.

9 If you want to get another single beam, go back to Step 4.

10 If you want to collect a spectrum, collect a single beam with the
‘setAsBackground’ flag on, then call the same sequence (4,5,6,7)
but substitute FTIRInst_dptrStartSpectrum and
FTIRInst_dptrGetSpectrum for the single beam calls.

11 You can collect and monitor spectra by calling
FTIRInst_dptrGetLiveSpectrum. This automatically (and
temporarily) switches to numCoadds == 1 and returns when the
next spectrum is available. This would typically be used to
display a live spectrum for the user or to monitor for sample
contact, and so on. Each time FTIRInst_dptrGetLiveSpectrum is
called, a new spectrum is returned. If you call it before the next is
ready, the function will not return until a fresh spectrum is
available. Terminate collection of the live spectra by calling
FTIRInst_KillCollection.

12 To change collection parameters, go back to Step 3.

13 Before exiting the application, be sure to call FTIRInst_Deinit
for an efficient shutdown.

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 19

FTIRInst_SetTargetDeviceUsb

The FTIRInst_SetTargetDeviceUsb function should be called before
calling FTIRInst_Init if it is desired to connect to an FTIR device over
the USB interface.

C# declaration

int FTIRInst_SetTargetDeviceUsb(wchar_t *pDeviceName);

C++ declaration

long FTIRInst_SetTargetDeviceUsb(wchar_t *pDeviceName);

Parameters

pDeviceName

[in] A placeholder for a pointer to a wide-character string that gives
an identifying name to the FTIR device to connect to. This is not
currently used, and should be set to 0 (null).

Return values

This function returns 0 if successful, otherwise an error code is
returned.

-1 == General Error

Remarks

USB is the default connection method. Currently, the first USB
device that is found is the one that a connection is made to; multiple
USB FTIR devices are not currently supported. In the future, this
function may allow a caller to choose among multiple USB FTIR
devices. For the time being, the pDeviceName pointer is ignored, and
it is recommended that a 0 (null) value be passed in.

FTIRInst DLL

20 Agilent FTIR Instrument Interface Application Programming Manual

FTIRInst_SetTargetDeviceSerialPort

The FTIRInst_SetTargetDeviceSerialPort function should be called
before calling FTIRInst_Init if it is desired to connect to an FTIR
device over a serial port (or virtual serial port) interface; Bluetooth
connections are made using a virtual serial port.

C# declaration

int FTIRInst_SetTargetDeviceSerialPort(int nPort);

C++ declaration

long FTIRInst_SetTargetDeviceSerialPort(long nPort);

Parameters

nPort

[in] Serial port number to connect over; may be virtualized.

Return values

This function returns 0 if successful, otherwise an error code is
returned.

-1 == General Error

Remarks

Some FTIR devices are configured with a Bluetooth interface, and
can be connected to using a virtual serial port (also known as virtual
COM port). The pairing between the host device (for example, PC)
and FTIR device must be done outside of the purview of the FTIR
DLL, and a virtual serial port assigned. Subsequently the device can
be connected to by calling this function with the serial port number
that was assigned.

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 21

FTIRInst_SetTargetDeviceNetwork

The FTIRInst_SetTargetDeviceNetwork function should be called
before calling FTIRInst_Init if it is desired to connect to an FTIR
device over the network interface, either wired Ethernet or wireless.

C# declaration

int FTIRInst_SetTargetDeviceNetwork(wchar_t *pDeviceName);

C++ declaration

long FTIRInst_ SetTargetDeviceNetwork(wchar_t *pDeviceName);

Parameters

pDeviceName

[in] A pointer to a wide-character string that gives the network name
of the FTIR device to connect to. This may be an IP address in dotted-
notation, or a hostname if such a name can be resolved on the local
network.

Return values

This function returns 0 if successful, otherwise an error code is
returned.

-1 == General Error

Remarks

It is recommended that the device name (hostname) string is a string
representation of the IP address of the target FTIR device; for
example, ‘192.168.1.2’. Care must be taken that the target FTIR
network device is reachable by the client machine — the system
routing tables and firewall must be configured to provide a path to
the device; pinging the device can assist in ensuring that it is
reachable.

FTIRInst DLL

22 Agilent FTIR Instrument Interface Application Programming Manual

It is possible to pass a network device name (hostname) as the input
string, but the name must be resolvable by the client machine. Early
development should avoid using hostnames and use IP addresses.

This function is called to connect over wired Ethernet or wireless —
the local network configuration will dictate whether and how the
FTIR device is reached. The FTIR device must have its network
configuration set appropriately to appear reachable on the network.

Although the FTIR DLL provides a manner of accessing network
devices, it is not able to provide any network support functionality —
see your network administrator for more assistance.

FTIRInst_Init

The FTIRInst_Init function should be called before using any other
functions in this component DLL.

C# declaration

int FTIRInst_Init();

C++ declaration

long FTIRInst_Init();

Parameters

None.

Return values

This function returns 0 if successful, otherwise an error code is
returned. Any other value indicates that the instrument failed to
initialize properly.

-1 == Internal Error

-2 == Cannot connect to the instrument. The instrument is probably
off or disconnected.

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 23

Remarks

Be sure to check the return value. No other FTIRInst functions will
succeed if this fails.

FTIRInst_Deinit

The FTIRInst_Deinit function should be called at the conclusion of
use of the DLL. If this is not called before exiting, the DLL cannot
clean up before terminating, resulting in a very slow application
shutdown.

C# declaration

int FTIRInst_Deinit();

C++ declaration

long FTIRInst_Deinit();

Parameters

None.

Return values

This function always returns 0.

Remarks

None.

FTIRInst DLL

24 Agilent FTIR Instrument Interface Application Programming Manual

FTIRInst_SetComputeParams

The FTIRInst_SetComputeParams function should be called before
using any of the data collection calls, in order to set the
interferogram compute parameters. Default values will be used if no
changes are made to the instrument through this call.

C# declaration

int FTIRInst_SetComputeParams(
 PHASEPOINTS ppoints,
 PHASETYPE ptype,
 APODTYPE papod,
 APODTYPE iapod,
 ZFFTYPE zff,
 OFFSETCORRECTTYPE offset
);

C++ declaration

long FTIRInst_SetComputeParams(
 PHASEPOINTS ppoints,
 PHASETYPE ptype,
 APODTYPE papod,
 APODTYPE iapod,
 ZFFTYPE zff,
 OFFSETCORRECTTYPE offset
);

Parameters

ppoints

[in] The number of phase points to be used for the COMPUTE
algorithm.

ptype

[in] Phase correction type. (Currently only Mertz phase correction is
supported).

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 25

papod

[in] The phase apodization type.

iapod

[in] The interferogram apodization type.

zfftype

[in] The type of zero fill factor to be used in the COMPUTE.

offset

[in] The type of offset correction to be used in the COMPUTE.

Return values

If successful, this function returns a 1 value if successful. A value of 0
is returned for failure.

Remarks

Default values are: 512 Phasepoints, Mertz Correction, Triangular
phase apodization, HappGenzel interferogram apodization, NO zero
fill factor, NO offset correction.

FTIRInst_dptrStartSingleBeam

The FTIRInst_dptrStartSingleBeam function is called to start the
single beam collection of data.

C# declaration

int FTIRInst_dptrStartSingleBeam (
 int numScans,
 ref double from,
 ref double to,
 int res,
 int bAutoSetBkg,
 int bAutoSetClean
);

FTIRInst DLL

26 Agilent FTIR Instrument Interface Application Programming Manual

C++ declaration

long FTIRInst_dptrStartSingleBeam (
long numScans,
double * from,
double * to,
long res,
long bAutoSetBkg,
long bAutoSetClean
);

Parameters

numScans

[in] The number of scans to be completed.

from

[in] The starting wave number in the spectral range.

to

[in] The ending wave number in the spectral range.

res

[in] The resolution.

bAutoSetBkg

[in] When this is non-zero, the next single beam collected will be kept
as the new ‘background’ reference single beam. This will be used in
the calculation of a spectrum.

bAutoSetClean

[in] When this is non-zero, the next single beam collected will be kept
as the new ‘clean’ reference single beam.

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 27

Return values

Negative return values are error codes.

-1 == the instrument is not connected (or FTIRInst_Init has not been
called).

-2 == specified resolution value is not valid.

-3 == instrument is not in a valid state to start data collection. State
must not be FTIR_Collecting or FTIR_Aborting.

If successful, this function returns a positive value. This value
corresponds to the number of data points that will be returned later
when calling FTIRInst_dptrGetSingleBeam. The array size can also
be obtained from FTIRInst_dptrGetSingleBeam.

Remarks

A single beam in a non-background corrected spectrum. You must
acquire a single beam and tag it as the background before you can
use FTIRInst_dptrStartSpectrum. The background single beam is
used in the calculation of the spectrum.

FTIRInst_dptrStartSpectrum

The FTIRInst_dptrStartSpectrum function is called to start the
collection of a spectrum. There must be a valid tagged single beam
before a spectrum can be calculated.

C# declaration

int FTIRInst_dptrStartSpectrum(
 int numScans,
 ref double from,
 ref double to,
 int res,
 DATAXTYPE xtype,
 DATAYTYPE ytype,
 int bAutoSetUnknown
);

FTIRInst DLL

28 Agilent FTIR Instrument Interface Application Programming Manual

C++ declaration

long FTIRInst_dptrStartSpectrum(
 long numScans,
 double * from,
 double * to,
 long res,
 DATAXTYPE xtype,
 DATAYTYPE ytype,
 int bAutoSetUnknown
);

Parameters

numScans

[in] The number of scans to be completed.

from

[in] The starting wave number in the spectral range.

to

[in] The ending wave number in the spectral range.

res

[in] The resolution.

xtype

[in] Units of the X-axis of the spectrum.

ytype

[in] Units of the Y-axis of the spectrum.

bAutoSetUnknown

[in] (Reserved for future use. Set to zero.)

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 29

Return values

If successful, this function returns the number of points in each scan.
If no background data is present, a -3 is returned. If background data
is available but is incompatible, a -4 is returned. -1 is returned if the
scan cannot be started for any other reason.

Remarks

None.

FTIRInst_dptrGetLiveSpectrum

The FTIRInst_dptrGetLiveSpectrum function is called to get the data
from the last good collected spectrum.

C# declaration

int FTIRInst_dptrGetLiveSpectrum(
 ref double from,
 ref double to,
 int res,
 DATAXTYPE xtype,
 DATAYTYPE ytype,
 double[] array,
 int size,
 ref double actualFrom,
 ref double actualTo,
 ref int actualRes
);

FTIRInst DLL

30 Agilent FTIR Instrument Interface Application Programming Manual

C++ declaration

long FTIRInst_dptrGetLiveSpectrum(
 double* from,
 double* to,
 long res,
 DATAXTYPE xtype,
 DATAYTYPE ytype,
 double* array,
 long size,
 double* actualFrom,
 double* actualTo,
 long* actualRes
);

Parameters

from

[in] The starting wave number in the spectral range.

to

[in] The ending wave number in the spectral range.

res

[in] The resolution.

xtype

[in] The unit type of the X-axis of the interferogram.

ytype

[in] The unit type of the Y-axis of the interferogram.

array

[out] The array of doubles containing the spectral data.

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 31

size

[out] The length of the array.

actualFrom

[out] The actual starting wave number from the spectral range.

actualTo

[out] The actual ending wave number from the spectral range.

actualRes

[out] The actual resolution.

Return values

If successful, this function returns the length of the data array. If no
background data is present, a -3 is returned. If background data is
available but is incompatible, a -4 is returned. -1 is returned if the
scan cannot be started for any other reason.

Remarks

This initiates the collection of a sequence of live spectra for
monitoring. A background single beam must be available. The first
time this is called, the system automatically (and temporarily)
switches numScans to 1, and then waits for the completion of one
scan, computes a spectrum and returns. Subsequent calls wait for the
next spectrum, then return. If scan has been completed before the
second call, this function will return that spectrum immediately, but
it will not return the same spectrum on consecutive calls.

FTIRInst DLL

32 Agilent FTIR Instrument Interface Application Programming Manual

FTIRInst_dptrGetSingleBeam

The FTIRInst_dptrGetSingleBeam function is called to get a
completed single beam.

C# declaration

int FTIRInst_dptrGetSingleBeam(
 double[] array,
 int size,
 ref double actualFrom,
 ref double actualTo,
 ref int actualRes);

C++ declaration

long FTIRInst_dptrGetSingleBeam(
 double* array,
 long size,
 double* actualFrom,
 double* actualTo,
 long* actualRes);

Parameters

array

[out] The array of data.

size

[out] The length of the array.

actualFrom

[out] The actual starting wave number from the spectral range.

actualTo

[out] The actual ending wave number from the spectral range.

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 33

actualRes

[out]. The actual resolution.

Return values

If successful, this function returns the length of the data array. On
error, a zero or negative value is returned.

Remarks

After initiating the collection of a single beam (using
FTIRInst_dptrStartSingleBeam) and monitoring for
FTIR_DataReady (using FTIRInst_CheckProgressStruct), the
completed single beam may be retrieved using this call.

If you call FTIRInst_dptrGetSingleBeam with the array parameter
set to zero and all other parameters set properly, the return value
will be the length (in number of data points) of the output array. You
can then allocate an appropriately-sized array to receive the result
data.

FTIRInst_dptrGetBackground

The FTIRInst_dptrGetBackground function retrieves the instrument's
stored background spectrum.

C# declaration

int FTIRInst_dptrGetBackground(
 double[] array,
 int size,
 ref double actualFrom,
 ref double actualTo,
 ref int actualRes);

FTIRInst DLL

34 Agilent FTIR Instrument Interface Application Programming Manual

C++ declaration

long FTIRInst_dptrGetBackground(
 double* array,
 long size,
 double* actualFrom,
 double* actualTo,
 long* actualRes);

Parameters

array

[out] The array of data.

size

[out] The length of the array.

actualFrom

[out] The actual starting wavenumber from the spectral range.

actualTo

[out] The actual ending wavenumber from the spectral range.

actualRes

[out] The actual resolution.

Return values

If successful, this function returns the length of the data array. On
error, a zero or negative value is returned.

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 35

Remarks

If you call FTIRInst_dptrGetBackground with the array parameter
set to zero and all other parameters set properly, the return value
will be the length (in number of data points) of the output array. You
can then allocate an appropriately-sized array to receive the result
data.

FTIRInst_dptrGetClean

The FTIRInst_dptrGetClean function retrieves the instrument's
stored Clean spectrum.

C# declaration

int FTIRInst_dptrGetClean(
 double[] array,
 int size,
 ref double actualFrom,
 ref double actualTo,
 ref int actualRes);

C++ declaration

long FTIRInst_dptrGetClean(
 double* array,
 long size,
 double* actualFrom,
 double* actualTo,
 long* actualRes);

Parameters

array

[out] The array of data.

size

[out] The length of the array.

FTIRInst DLL

36 Agilent FTIR Instrument Interface Application Programming Manual

actualFrom

[out] The actual starting wavenumber from the spectral range.

actualTo

[out] The actual ending wavenumber from the spectral range.

actualRes

[out] The actual resolution.

Return values

If successful, this function returns the length of the data array. On
error, a zero or negative value is returned.

Remarks

If you call FTIRInst_dptrGetClean with the array parameter set to
zero and all other parameters set properly, the return value will be
the length (in number of data points) of the output array. You can
then allocate an appropriately-sized array to receive the result data.

FTIRInst_dptrGetSpectrum

The FTIRInst_dptrGetSpectrum function retrieves the instrument's
stored spectrum.

C# declaration

int FTIRInst_dptrGetSpectrum(
 double[] array,
 int size,
 ref double actualFrom,
 ref double actualTo,
 ref int actualRes);

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 37

C++ declaration

long FTIRInst_dptrGetSpectrum(
 double* array,
 long size,
 double* actualFrom,
 double* actualTo,
 long* actualRes);

Parameters

array

[out] The array of data.

size

[out] The length of the array.

actualFrom

[out] The actual starting wavenumber from the spectral range.

actualTo

[out] The actual ending wavenumber from the spectral range.

actualRes

[out] The actual resolution.

Return values

If successful, this function returns the length of the data array. On
error, a zero or negative value is returned. If the array that is passed
in is too small, then a value of -9 is returned.

Remarks

Null can be passed in for the array parameter and the length of the
data will be returned.

FTIRInst DLL

38 Agilent FTIR Instrument Interface Application Programming Manual

FTIRInst_dptrGetRatioSpectrum

The FTIRInst_dptrGetRatioSpectrum function returns the ratio of the
background spectrum with the sample spectrum.

C# declaration

int FTIRInst_dptrGetRatioSpectrum(
 double[] bkgarray,
 double[] smparray,
 double[] outarray,
 int size,
 DATAYTYPE ytype);

C++ declaration

long FTIRInst_dptrGetRatioSpectrum(
 double* bkgarray,
 double* smparray,
 double* outarray,
 long size,
 DATAYTYPE ytype);

Parameters

bkarray

[in] The array of doubles containing the background spectrum data.

smparray

[in] The array of doubles containing the sample spectrum data.

outarray

[out] The array of doubles containing the return spectrum.

size

[out] The length of the outarray.

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 39

ytype

[in] The unit type of the Y-axis of the spectrum.

Return values

The function always returns size, as passed in, if successful. A value
of 0 is returned for failure.

Remarks

None.

FTIRInst_KillCollection

The FTIRInst_KillCollection function stops the collection of data
within the instrument.

C# declaration

int FTIRInst_KillCollection();

C++ declaration

long FTIRInst_KillCollection();

Parameters

None.

Return values

This function returns 0 if successful, otherwise an error code is
returned. Currently no errors are defined.

Remarks

None.

FTIRInst DLL

40 Agilent FTIR Instrument Interface Application Programming Manual

FTIRInst_SetLaserWaveNumber

The FTIRInst_SetLaserWaveNumber sets the value of the Laser
Wavenumber that is stored in the instrument’s EEPROM and used in
calculation of spectra.

C# declaration

int FTIRInst_SetLaserWaveNumber(
 ref float newLaser
);

C++ declaration

long FTIRInst_SetLaserWaveNumber(
 float* newLaser
);

Parameters

newLaser

[in] The value of the wavenumber.

Return values

This function returns 0 if successful, otherwise an error code is
returned. Currently no errors are defined.

Remarks

The actual wavenumber of the instrument laser is used in the
calculation of spectra. This value, after determination by a
calibration procedure, is stored in EEPROM in the instrument by
calling this function. This function does not implement the
calibration procedure; it simply supplies the value to the instrument
for use and storage.

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 41

FTIRInst_SetPathLen

The FTIRInst_SetPathLen sets the value of the PathLength number
that is stored within the instrument’s EEPROM.

C# declaration

int FTIRInst_SetPathlen(
 ref float newPathlength
);

C++ declaration

long FTIRInst_SetPathlen(
 float* newPathlength
);

Parameters

newPathlength

[in] The value of the new pathlength.

Return values

This function returns 0 if successful, otherwise an error code is
returned. Currently no errors are defined.

Remarks

None.

FTIRInst DLL

42 Agilent FTIR Instrument Interface Application Programming Manual

FTIRInst_GetLaserWaveNumber

The FTIRInst_GetLaserWaveNumber gets the current value of the
laser wavenumber that is stored the instrument’s EEPROM.

C# declaration

int FTIRInst_GetLaserWaveNumber(
 ref float curLaser
);

C++ declaration

long FTIRInst_GetLaserWaveNumber(
 float* curLaser
);

Parameters

curLaser

[out] The value of the laser wavenumber.

Return values

This function returns 0 if successful, otherwise an error code is
returned. Currently no errors are defined.

Remarks

None.

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 43

FTIRInst_GetPathlenEx

The FTIRInst_GetPathlenEx gets the current value of the pathlength
that is stored within the instrument’s version information.

C# declaration

int FTIRInst_GetPathlenEx(
 ref _instrumentMLVersion mlvers,
 ref double pathlen
);

C++ declaration

long FTIRInst_GetPathlenEx(
 _instrumentMLVersion *mlvers,
 double *pPathlen
);

Parameters

mlvers

[in] The instrument version information.

pathlen

[out] The value of the current pathlength.

Return values

This function returns 0 if successful, otherwise an error code is
returned. Currently no errors are defined.

Remarks

None.

FTIRInst DLL

44 Agilent FTIR Instrument Interface Application Programming Manual

FTIRInst_GetVersion

The FTIRInst_GetVersion gets the current value of the firmware
version, the DLL version, and the serial number of the instrument.

C# declaration

int FTIRInst_GetVersion(
 ref int fwRev,
 ref int dllRev,
 ref int serialNo);

C++ declaration

long FTIRInst_GetVersion(
 long* fwRev,
 long* dllRev,
 long* serialNo);

Parameters

fwRev

[out] The current version of the instrument firmware.

dllRev

[out] The current version number of the instrument interface DLL.

serialNo

[out] The serial number of the instrument.

Return values

This function returns 1 if successful, otherwise an error code is
returned. Currently no errors are defined.

Remarks

This method has been made obsolete by the FTIRInst_GetVersionEx
function.

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 45

FTIRInst_GetVersionEx

The FTIRInst_GetVersionEx gets the current version information
from the instrument.

C# declaration

int FTIRInst_GetVersionEx(
 ref _instrumentMLVersion _vInfo
);

C++ declaration

long FTIRInst_GetVersionEx(
 instrumentMLVersion* _vInfo
);

Parameters

vinfo

[out] Current version information from the instrument. The
_instrumentMLVersion struct contains the same information as
provided by the FTIRInst_GetVersion function and also contains info
about the instrument type.

Return values

This function returns 0 if successful, otherwise an error code is
returned. A value of -1 is returned if the instrument is not connected,
and a value of -2 is returned if the _vInfo pointer is null.

Remarks

The structure that is pointed to by _vInfo must be allocated by the
caller, and the nVersion field must be filled in with the appropriate
version of the structure. The version much match the size of the
structure, since the function will fill in as many fields as the nVersion
value dictates.

FTIRInst DLL

46 Agilent FTIR Instrument Interface Application Programming Manual

NOTE There is no longer an integer serial number field in the structure — the serial

number is always stored in the wide-character serialNoXX array, allowing any

alphanumeric character to appear in a serial number.

To access the serialNoXX array, the caller may need to translate from
wide characters (Unicode) to ‘multi-byte’ (generally 8-bit ASCII); this
can be done using the WideCharToMultiByte() Windows function.
For those callers already using Unicode, they can reference the string
directly, starting at the first character in the structure; it may be
easier to reference the serialNoXX array as wchar_t serialNo[17]
instead of individual characters, depending on the development
environment.

FTIRInst_GetStatus

The FTIRInst_GetStatus gets the current status information from the
instrument.

C# declaration

int FTIRInst_GetStatus(
 ref int nEnergyStatus,
 ref float fBatteryStatus,
 ref float fSourceCurrentStatus,
 ref float fSourceVoltageStatus,
 ref int nLaserStatus,
 ref float fDetectorStatus);

C++ declaration

long FTIRInst_GetStatus(
 int* nEnergyStatus,
 float* fBatteryStatus,
 float* fSourceCurrentStatus,
 float* fSourceVoltageStatus,
 int* nLaserStatus,
 float* fDetectorStatus);

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 47

Parameters

nEnergyStatus

[out] The current energy status from the instrument.

fBatteryStatus

[out] The current battery status.

fSourceCurrentStatus

[out] The source current.

fSourceVoltageStatus

[out] The source voltage.

nLaserStatus

[out] The current status of the laser.

nDetectorStatus

[out] The current status of the detector.

Return values

This function returns 1 if successful, otherwise a 0 is returned for
failure.

Remarks

This function has been made obsolete by the FTIRInst_GetStatusEx
function.

FTIRInst DLL

48 Agilent FTIR Instrument Interface Application Programming Manual

FTIRInst_GetStatusEx

The FTIRInst_GetStatusEx gets the extended status information from
the instrument.

C# declaration

int FTIRInst_GetStatusEx(
 ref _instrumentMLDiag _dStatus
);

C++ declaration

long FTIRInst_GetStatusEx(
 instrumentMLDiag* _dStatus
);

Parameters

_dStatus

[out] An _instrumentMLDiag struct containing instrument status.

Return values

This function returns 1 if successful, otherwise an error code is
returned. A -1 is returned if the instrument is not connected, and a -2
is returned if the _dStatus pointer is null.

Remarks

The structure that is pointed to by _dStatus must be allocated by the
caller, and the nVersion field must be filled in with the appropriate
version of the structure. The version much match the size of the
structure, since the function will fill in as many fields as the nVersion
value dictates.

System status values

SYSSTAT_UNCONNECTED 0x00000001 // std startup state

SYSSTAT_CONNECTED 0x00000002

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 49

SYSSTAT_CONNECTION_LOST 0x00000100 //was connected,
but lost connection

SYSSTAT_SHUTTINGDOWN 0x00001000

SYSSTAT_SHUTDOWN 0x00002000 // implies now
unconnected

System shutdown values

SHDOWN_NOTVALID 0x00000000

SHDOWN_USERBUTTON 0x00000001

SHDOWN_BATTERYCRITICAL 0x00000010

FTIRInst_CheckProgress

The FTIRInst_CheckProgress function returns the current state of the
instrument.

C# declaration

FTIR_STATE FTIRInst_CheckProgress(
 ref int currentUnits,
 ref int totalUnits
);

C++ declaration

FTIR_STATE FTIRInst_CheckProgress(
 long* currentUnits,
 long* totalUnits
);

Parameters

currentUnits

[out] The current number of successful scans completed since the
FTIRInst_dptrStartSpectrum was called.

FTIRInst DLL

50 Agilent FTIR Instrument Interface Application Programming Manual

totalUnits

[out] The total number of scans to be completed before the spectrum
can be computed.

Return values

The function returns one of these values:

 FTIR_Init = 0,

 FTIR_Collecting = 1,

 FTIR_DataReady = 2,

 FTIR_Aborting = 3,

 FTIR_Error = 4

Remarks

This function has been made obsolete by the CheckProgressStruct
function.

FTIRInst_CheckProgressEx

The FTIRInst_CheckProgressEx function returns the current state
information from the instrument.

C# declaration

FTIR_STATE FTIRInst_CheckProgressEx(
 ref int currentUnits,
 ref int totalUnits,
 ref int rejectedScans);

C++ declaration

FTIR_STATE FTIRInst_CheckProgressEx(
 long* currentUnits,
 long* totalUnits,
 long* rejectedScans);

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 51

Parameters

currentUnits

[out] The current number of successful scans completed since the
FTIRInst_dptrStartSpectrum was called.

totalUnits

[out] The total number of scans to be completed before the spectrum
can be computed.

rejectedScans

[out] The total number of rejected scans out of the last 10 scans to be
completed.

Return values

The function returns one of the following values:

 FTIR_Init = 0,

 FTIR_Collecting = 1,

 FTIR_DataReady = 2,

 FTIR_Aborting = 3,

 FTIR_Error = 4

Remarks

This function has been made obsolete by the CheckProgressStruct
function.

FTIRInst DLL

52 Agilent FTIR Instrument Interface Application Programming Manual

FTIRInst_CheckProgressStruct

The FTIRInst_CheckProgressStruct function returns the current state
information from the instrument in the form of a _progress Struct.

C# declaration

int FTIRInst_CheckProgressStruct(
 ref _progress pProgress
);

C++ declaration

long FTIRInst_CheckProgressStruct(
 progress* pProgress
);

Parameters

pProgress

[out] The _progress struct containing information about the progress
of the current run.

Return values

This function returns the size of the _progress structure that is
returned; this value is returned both when a valid pointer is passed
in, as well as if a null pointer is passed in.

Remarks

None.

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 53

FTIRInst_StartCoaddedIGram

The start call takes the number of scans to coadd, the resolution (in
wavenumber: 2, 4, 8, 16), and the number of phase points to the left
of the centerburst; valid values for nPhasePts are the standard
power-of-two values (128, 256, 512, 1024).

C# declaration

int FTIRInst_StartCoaddedIGram(
 int numScans,
 int nRes,
 int nPhasePts
);

C++ declaration

long FTIRInst_StartCoaddedIGram(long numScans, long nRes,
nPhasePts);

Parameters

numScans

[in] The number of scans to run before returning the completed
coadded IGram.

nRes

[in] The resolution (in wavenumber: 2, 4, 8, 16).

nPhasePts

[in] The number of phase points to the left of the centerburst.

Return values

The return value will be 0 for success, and a negative number for
failure.

FTIRInst DLL

54 Agilent FTIR Instrument Interface Application Programming Manual

Remarks

None.

FTIRInst_StartCoaddedIGramNotify

The start call takes the number of scans to coadd, the resolution (in
wavenumber: 2, 4, 8, 16), and the number of phase points to the left
of the centerburst; valid values for nPhasePts are the standard
power-of-two values (128, 256, 512, 1024). The client is ‘notified’ of
completion by signal of the passed in Operation System event handle.

C# declaration

int FTIRInst_StartCoaddedIGramNotify(
 int numScans,
 int nRes,
 int nPhasePts
 IntPtr eventHandle);

C++ declaration

long FTIRInst_StartCoaddedIGramNotify(long numScans, long
nRes, nPhasePts, HANDLE hReadyEvent);

Parameters

numScans

[in] The number of scans to run before returning the completed
coadded IGram.

nRes

[in] The resolution (in wavenumber: 2, 4, 8, 16).

nPhasePts

[in] The number of phase points to the left of the centerburst.

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 55

hReadyEvent

[in] Handle of a Windows Event to be set by the DLL when the next
IGram is available.

Return values

The return value will be 0 for success, and a negative number for
failure.

Remarks

If a valid handle to an Operating System event is passed in, the DLL
will call SetEvent on that handle when the requested igram is
available. The caller is responsible for creating the event, ensuring
that it is not set when the call is made and destroying the event when
no longer needed. The system will only set the event once per call to
StartCoaddedIGramNotify. After being notified, the application must
call StartCoaddedIGramNotify again to request another igram and
another notification.

FTIRInst_dptrGetCoaddedIGram

This function fills in the array pointed to by pArray with Igram data.
Calling this function with (pArray==0) will return the number of
entries in the current array. If (pArray!=0), the nArraySize value
MUST be set to the size of the pArray buffer that is being passed in,
in elements. This will be used to verify that the array is large enough.

C# declaration

int FTIRInst_dptrGetCoaddedIGram(
 double[] pArray,
 int nArraySize
);

FTIRInst DLL

56 Agilent FTIR Instrument Interface Application Programming Manual

C++ declaration

long FTIRInst_dptrGetCoaddedIGram (
 double *pArray,
 long nArraySize
);

Parameters

pArray

[out] The array that is to be populated the the coadded IGram data.

nArraySize

[in] The length of the pArray array that is being passed.

Return values

The return value is the number of elements in the array, which may
be less (and should be) than the nArraySize value that is passed in. A
value of -9 is returned if the size of the passed-in array is too small,
per the nArraySize argument.

NOTE It is not guaranteed that the returned array size will always be the same from

coadd to coadd. If there is a shift in the position of the centerburst, it may be

possible to get more or less points. See remarks below.

Remarks

Note that the number of elements in an Igram array is NOT equal to
the number of points dictated by nRes and nPhasePts in the
StartCoaddedIgram() call. There are a number of padding points that
may be added both to the left and right of the Igram, to ensure that a
full set of data is provided. These padding points will always be
returned in the GetCoaddedIgram() call, and can be dealt with as
desired by the calling application.

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 57

The array size checking is required because there is a rare chance
that the size might change, due to receiving a new coadded Igram,
between a Get call with (pArray==0) and a subsequent call with
(pArray!=0). By design, the system will return a size that is
approximately 100 data points larger than necessary. Then, if a small
fluctuation happens in the size of the igram, the buffer will have
adequate capacity to handle it. The return value from this function
will reflect the actual number of data points filled into the array.

FTIRInst_RegisterButton1

This function is called to register the Windows message that is
returned when the instrument’s trigger is pulled.

C# declaration

int FTIRInst_ResigerButton1(
 IntPtr whandle
 ref int wm_MessageID
);

C++ declaration

long FTIRInst_ ResigerButton1 (
 HWND whandle,
 long* wm_MessageID
);

Parameters

whandle

[in] The handle of the form that is going to handle the message.

wm_MessageID

[out] The ID of the Windows message that is posted when the trigger
on the instrument is pulled.

FTIRInst DLL

58 Agilent FTIR Instrument Interface Application Programming Manual

Return values

This method always returns a 0.

Remarks

None.

FTIRInst_RegisterButton2

This function is called to register the Windows message that is
returned when the instrument’s navigation buttons are pushed.

C# declaration

int FTIRInst_ResigerButton1(
 IntPtr whandle
 ref int wm_MessageID
);

C++ declaration

long FTIRInst_ ResigerButton1 (
 HWND whandle,
 long* wm_MessageID
);

Parameters

whandle

[in] The handle of the form that is going to handle the message.

wm_MessageID

[out] The ID of the Windows message that is posted when either of
the side buttons on the Agilent 4100 ExoScan FTIR are pressed.

Return values

This method always returns a 0.

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 59

Remarks

None.

FTIRInst_dptrSetBackground

The FTIRInst_dptrSetBackground sends background data to the
instrument. This background data is then used when the instrument
creates spectrums when either calling
FTIRInst_dptrGetLiveSpectrum or FTIRInst_dptrStartSpectrum.

C# declaration

int FTIRInst_SetBackground (
 double[] pArray,
 int nSize,
 double from,
 double to,
 int nRes);

C++ declaration

long FTIRInst_SetBackground (
 double* pArray,
 long nSize,
 double* from,
 double* to,
 long nRes);

Parameters

pArray

[in] The array of data containing the background information.

nSize

[in] The size of the data being passed in.

FTIRInst DLL

60 Agilent FTIR Instrument Interface Application Programming Manual

from

[in] The starting X value.

to

[in] The ending X value.

nRes

[in] The resolution.

Return values

This function returns 0 if successful, otherwise an error code is
returned:

 -2: Could not access target object buffer.

 -1: Memory allocation error.

Remarks

None.

FTIRInst_dptrGetLiveSingleBeam

The FTIRInst_dptrGetLiveSingleBeam function is called to get the
data from the last good collected single beam.

C# declaration

int FTIRInst_dptrGetLiveSingleBeam (
 int res,
 double[] pArray,
 int size,
 ref double actualFrom,
 ref double actualTo,
 ref int actualRes);

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 61

C++ declaration

long FTIRInst_dptrGetLiveSingleBeam (
 long res,
 double* pArray,
 long size,
 double* actualFrom,
 double* actualTo,
 long actualRes);

Parameters

res

[in] The resolution of the single beam.

pArray

[out] The array that is to be filled with the single beam data.

size

[in] The size of the array being passed in.

actualFrom

[out] The actual From value.

actualTo

[out] The actual To value.

actualRes

[out] The actual resolution.

Return values

This function returns the size of the array if successful. Otherwise, an
error code is returned:

 -4: Could not acquire the single beam.

FTIRInst DLL

62 Agilent FTIR Instrument Interface Application Programming Manual

 -9: pArray is too small to hold data.

 -11: Device is no longer connected.

Remarks

To get the size of the data, a null should be passed in as the pArray
argument. This will trigger the function to return the size of the
array. An array of the correct size should then be allocated and the
function should be called a second time while passing the allocated
array in as the pArray argument.

FTIRInst_dptrGetLiveIGram

The FTIRInst_dptrGetLiveIGram function is called to get the data
from the last good collected IGram.

C# declaration

int FTIRInst_dptrGetLiveIGram (
 int res,
 double[] pArray,
 int size,
 ref int actualFrom,
 ref int actualTo,
 ref int actualRes);

C++ declaration

long FTIRInst_dptrGetLiveIGram (
 long res,
 double* pArray,
 long size,
 long* actualFrom,
 long* actualTo,
 long actualRes);

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 63

Parameters

res

[in] The resolution of the IGram.

pArray

[out] The array that is to be filled with the IGram data.

size

[in] The size of the array being passed in.

actualFrom

[out] The actual From value.

actualTo

[out] The actual To value.

actualRes

[out] The actual resolution.

Return values

This function returns the size of the array if successful. Otherwise, an
error code is returned:

 -4: Could not acquire the interferogram.

 -9: Returned if the pArray parameter is too small for the data.
Could also return this value if the size parameter is too small.

 -11: Device is no longer connected.

FTIRInst DLL

64 Agilent FTIR Instrument Interface Application Programming Manual

Remarks

To get the size of the data, a null should be passed in as the pArray
argument. This will trigger the function to return the size of the
array. An array of the correct size should then be allocated and the
function should be called a second time while passing the allocated
array in as the pArray argument.

FTIRInst_GetIrGain

The FTIRInst_GetIrGain function is called to get the current Ir Gain
value from the instrument.

C# declaration

int FTIRInst_GetIrGain(
 ref int nVal);

C++ declaration

long FTIRInst_GetIrGain(
 long* nVal);

Parameters

nVal

[out] The value of the Ir Gain variable in the instrument.

Return values

This function returns a 0 if successful. On any error, it will return a
-1.

Remarks

None.

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 65

FTIRInst_SetIrGain

The FTIRInst_SetIrGain function is called to set the current Ir Gain
value in the instrument.

C# declaration

int FTIRInst_SetIrGain(
 int nVal,
 uint flags);

C++ declaration

long FTIRInst_SetIrGain(
 long nVal,
 unsigned long flags);

Parameters

nVal

[in] The value of the Ir Gain variable that the instrument will use
when scanning.

flags

[in] A flag to tell the instrument to give the instrument additional
commands. A ‘0’ value will do nothing. ‘1’ will set the value to non-
volatile memory.

Return values

This function returns a 0 if successful. On any error, it will return a
-1.

Remarks

Passing in a -1 as the nVal argument will make the instrument use the
factory-set default value as the gain.

FTIRInst DLL

66 Agilent FTIR Instrument Interface Application Programming Manual

FTIRInst_RegisterStatus

This function is called to register the Windows message that is
returned when the instrument’s progress changes.

C# declaration

int FTIRInst_RegisterStatus(
 IntPtr whandle
 int wm_MessageID
);

C++ declaration

long FTIRInst_ RegisterStatus (
 HWND whandle,
 long wm_MessageID
);

Parameters

whandle

[in] The handle of the form that is going to handle the message.

wm_MessageID

[out] The ID of the Windows message that is posted when the
instrument progress or state changes.

Return values

This method always returns a 0.

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 67

Remarks

The wParam parameter of the message that is posted will contain the
current status of the instrument. The available values are:

 SYSSTAT_UNCONNECTED 0x00000001 // std startup
state

 SYSSTAT_CONNECTED 0x00000002

 SYSSTAT_CONNECTION_LOST 0x00000100

 SYSSTAT_SHUTTINGDOWN 0x00001000

 SYSSTAT_SHUTDOWN 0x00002000

The lParam parameter contains the current progress of the
instrument. The upper 16 bits contains the current progress value
and the lower 16 bits contains the total progress.

If the instrument status is currently SYSSTAT_CONNECTION_LOST,
all get live signal calls will return -11. Most other calls will return a -4
error message. In general, all calls to the FTIRInst assembly should
cease while the instrument has any status but
SYSSTAT_CONNECTED.

FTIRInst_RegisterStatusEvents

This function is called to register for events to be triggered when the
instrument’s progress or status changes.

C# declaration

int FTIRInst_RegisterStatusEvents(
 IntPtr hEvent
);

C++ declaration

long FTIRInst_ RegisterStatusEvents(
 HANDLE hEvent
);

FTIRInst DLL

68 Agilent FTIR Instrument Interface Application Programming Manual

Parameters

hEvent

[in] The handle of the event that will be set by the framework when
the instrument progress of state has changed.

Return values

This method always returns a 0.

Remarks

The hEvent parameter gives the handle of an event that will be set by
the framework when the instrument progress or state changes. The
progress will change as scans are coadded, and the state will change
if the instrument is shut down or loses its physical connection.

The client that calls this function should wait for the event to be set,
typically using WaitForSingleObject() or one of its relatives. After
the client is done processing the event, it is responsible for calling
ResetEvent() so that a new event may be sent.

As part of processing this event, the client will need to ascertain
what progress and/or state has changed; this information may be
garnered by calling FTIRInst_CheckProgressStruct() or
FTIRInst_GetStatusEx().

FTIRInst_SetAppLedState

This function is called to set the state of the ‘Application’ LED;
possible states are Off, Red, and Amber.

C# declaration

int FTIRInst_SetAppLedState(
 int nLedState);

C++ declaration

long FTIRInst_SetAppLedState(
 long nLedState);

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 69

Parameters

nLedState

[in] The state of the application LED.

Possible states, and their integer values, are:

 Off 1

 Amber 2

 Red 3

Return values

This method returns a 0 if the call was successful, and a -1 if there
was an error.

Remarks

The application LED is set to Amber when the FTIR device is first
started — this is to signify that the instrument is not yet
communicating with a host. After the host software has connected to
the device, it may control the LED as it deems appropriate; one
example would be to set the LED to the Off state to denote that the
host software is communicating with the device. It may also be
desirable to set the LED to the Red state when the application has
found that an error has occurred.

FTIRInst_I2cAdc_GetReadings

This function is called to retrieve the readings from the external I2C
analog-to-digital converter (ADC).

C# declaration

int FTIRInst_I2cAdc_GetReadings(
 int *pArray);

FTIRInst DLL

70 Agilent FTIR Instrument Interface Application Programming Manual

C++ declaration

long FTIRInst_I2cAdc_GetReadings(
 long *pArray);

Parameters

pArray

[out] A pointer to a caller-allocated array of 8 32-bit values; the
values will be filled in by this function if successful. Only the least
significant 12 bits of each value are relevant, as the supported ADC
provides only 12 bits of data.

Return values

This method returns a 0 if the call was successful, and a -1 if there
was an error.

Remarks

This function is specific to the Burr-Brown ADS7828 ADC, which is
an I2C device that is externally attached to the FTIR device I2C bus,
and configured with an address of 0x94 (0x95 with the Read bit set).
This devices provides 8 channels of analog-to-digital conversion.

The FTIR device will occasionally — about once every ten seconds —
sample the values in the ADC, and cache them for return through this
function; calling this function does not initiate an ADC conversion.

Only the least significant 12 bits of each 32-bit value are relevant,
since the ADS7828 is a 12-bit ADC that provides only 12 bits of
resolution. It is the responsibility of the caller to interpret the 12 bits
of information, converting the bits into a voltage, and subsequently
understanding what that voltage means.

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 71

FTIRInst_I2cIo_SetPinDirs

This function is called to set the directions of the PCA9555 I/O lines.

C# declaration

int FTIRInst_I2cIo_SetPinDirs(
 int vals);

C++ declaration

long FTIRInst_I2cIo_SetPinDirs(
 long vals);

Parameters

vals

[in] Each of the least significant 16 bits dictates the signal direction
for a pin.

Possible bit states, and their integer values, are:

 Output 0

 Input 1

Return values

This method returns a 0 if the call was successful, and a -1 if there
was an error.

Remarks

This function is specific to the Philips PCA9555 16-bit port expander.
All 16 bits of the port expander are used, and positioned in the least
significant bits of the 32-bit values used in this API. Port 0 is in the
LSB, while Port 1 is in the next most significant byte.

MSB LSB

0 0 Port 1 Port 0

FTIRInst DLL

72 Agilent FTIR Instrument Interface Application Programming Manual

By default, the PCA9555 defines all pins as inputs upon power-up or
reset. Hardware must deal with such startup conditions
appropriately. The PCA9555 has a weak (100 kilohm) pullup resistor
on each pin that pull each input pin high when undriven.

FTIRInst_I2cIo_SetPinVals

This function is called to set the drives of the PCA9555 I/O lines.

C# declaration

int FTIRInst_I2cIo_SetPinVals(
 int vals);

C++ declaration

long FTIRInst_I2cIo_SetPinVals(
 long vals);

Parameters

vals

[in] Each of the 16 least significant bits dictates the drive for a pin
defined as an output.

Possible bit states, and their integer values, are:

 Drive Low 0

 Drive High 1

Return values

This method returns a 0 if the call was successful, and a -1 if there
was an error.

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 73

Remarks

A value written to a pin defined as an input is not relevant as long as
the direction remains set to input. The caller is responsible for
managing any electrical issues related to driving pins and changing
their directions.

See FTIRInst_I2cIo_SetPinDirs for additional information.

FTIRInst_I2cIo_GetPinVals

This function is called to get the values read from the PCA9555 I/O
lines.

C# declaration

int FTIRInst_I2cIo_GetPinVals(
 long *pVals);

C++ declaration

long FTIRInst_I2cIo_GetPinVals(
 long *pVals);

Parameters

pVals

[out] A pointer to a caller-allocated 32-bit value that will receive the
input values sensed by the PCA9555. Each of the 16 least significant
bits corresponds with a pin, and is set to describe its read state.

Possible states, and their integer values, are:

 Read Low 0

 Read High 1

Return values

This method returns a 0 if the call was successful, and a -1 if there
was an error.

FTIRInst DLL

74 Agilent FTIR Instrument Interface Application Programming Manual

Remarks

The FTIR device will occasionally — about once every ten seconds —
sample the values in the PCA9555, and cache them for return
through this function. Calling this function does not initiate a capture
of data; this makes looking for momentary events (for example,
button presses) infeasible.

The bit values for pins that are defined as inputs are more relevant
for this function than those defined as outputs. Note that the value
read for a pin may differ from what is driven, even for pins defined
as outputs, if external circuitry is driving the pin more strongly than
the PCA9555 is.

See FTIRInst_I2cIo_SetPinDirs for additional information.

FTIRInst_GetExtTemps

This function is called to retrieve the temperatures measured by up
to four temperature sensors attached to the external I2C bus.

C# declaration

int FTIRInst_GetExtTemps(
 float *pfTemp1, float *pfTemp2, float *pfTemp3, *pfTemp4);

C++ declaration

long FTIRInst_GetExtTemps(
 float *pfTemp1, float *pfTemp2, float *pfTemp3, *pfTemp4);

Parameters

pfTemp1

[out] A pointer to a caller-allocated 32-bit float value that will be
filled with the temperature of sensor 1 (I2C address 0x98); in case of
an error, the value remains as it was when passed in.

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 75

pfTemp2

[out] A pointer to a caller-allocated 32-bit float value that will be
filled with the temperature of sensor 2 (I2C address 0x9A); in case of
an error, the value remains as it was when passed in.

pfTemp3

[out] A pointer to a caller-allocated 32-bit float value that will be
filled with the temperature of sensor 3 (I2C address 0x9C); in case of
an error, the value remains as it was when passed in.

pfTemp4

[out] A pointer to a caller-allocated 32-bit float value that will be
filled with the temperature of sensor 4 (I2C address 0x9E); in case of
an error, the value remains as it was when passed in.

Return values

This method returns a bit-code denoting which temperature sensor
values have valid data. If Temp1 is valid, then 0x01 (the LSbit) is
ORed in; if Temp2 is valid, then 0x02 is ORed in; if Temp3 is valid
then 0x04 is ORed in; if Temp4 is valid then 0x08 is ORed in.

A negative number (-1, -2) is returned in case of an error.

Remarks

This function is specific to LM75 (and compatible) temperature
sensors, which are I2C devices that are attached to the FTIR device
external I2C bus. Sensor 1 has an I2C address of 0x98, Sensor 2 has
an I2C address of 0x9A, Sensor 3 has an I2C address of 0x9C, and
Sensor 4 has an I2C address of 0x9E.

Temperature values are read from the temperature sensors no more
frequently than every 5 seconds, so no change in values will be seen
if this function is called more frequently.

FTIRInst DLL

76 Agilent FTIR Instrument Interface Application Programming Manual

FTIRInst_GetExtTemp

This function is called to retrieve the temperature measured by an
OEM temperature sensor attached to the external I2C bus.

C# declaration

int FTIRInst_GetExtTemp(
 float *pfTemp);

C++ declaration

long FTIRInst_GetExtTemp(
 float *pfTemp);

Parameters

pfTemp

[out] A pointer to a caller-allocated 32-bit float value that will be
filled with the temperature of sensor 1 (I2C address 0x96); in case of
an error, the value remains as it was when passed in.

Return values

This method returns a 1 if the call was successful, and a negative
value (-1, -2) if there was an error.

Remarks

This function is specific to the LM76 temperature sensor, which is an
I2C device that can be attached externally to the FTIR device I2C bus
by an OEM. The temperature sensor must be of type LM76 (or
identical), and must have an I2C address of 0x96.

Temperature values are read from the temperature sensors no more
frequently than every 5 seconds, so no change in value will be seen if
this function is called more frequently.

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 77

FTIRInst_GetOemNvmemData

This function is called to retrieve the OEM data stored in the device’s
non-volatile memory.

C# declaration

int FTIRInst_GetOemNvmemData(
 byte[] aData,
 int nBufSize);

C++ declaration

long FTIRInst_GetOemNvmemData(
 unsigned char *pData,
 long nBufSize);

Parameters

pData

[out] A pointer to a caller-allocated buffer that will be filled with the
OEM data that is stored inside of a device.

nBufSize

[in] An integer value that represents the size of the buffer that is
being passed in.

Return values

This method returns the number of bytes retrieved if the call was
successful; this value is always 128.

A negative value is returned if there was an error; -1 for a general
error, -2 for nBufSize too small.

Remarks

Each FTIR device has non-volatile memory, a portion of which can be
used to store OEM data; this memory will persist across power losses
to the device.

FTIRInst DLL

78 Agilent FTIR Instrument Interface Application Programming Manual

The OEM is solely responsible for managing this data. When an FTIR
device is first provided to an OEM, the contents of the OEM NVMEM
should contain bytes of all 0xFF. The OEM must choose how to
organize his data, must fill the NVMEM with such data, and must
interpret the data after reading it from the device. Data is always
handled as a single, atomic, 128 B package, for both get and set.

The OEM NVMEM data is fixed at 128 bytes. The nBufSize value that
is passed in to this function must be at least 128 B; a larger value will
allow the function to continue, while a smaller value will return an
error. In general, nBufSize should always be 128.

FTIRInst_SetOemNvmemData

This function is called to set the data that is stored in the device’s
non-volatile memory.

C# declaration

int FTIRInst_SetOemNvmemData (
 byte[] aData,
 int nBufSize);

C++ declaration

long FTIRInst_SetOemNvmemData(
 unsigned char *pData,
 long nBufSize);

Parameters

pData

[out] A pointer to a caller-allocated buffer that contains the OEM
data that is to be stored inside of a device’s non-volatile memory.

nBufSize

[in] An integer value that represents the size of the buffer that is
being passed in.

FTIRInst DLL

Agilent FTIR Instrument Interface Application Programming Manual 79

Return values

This method returns the number of bytes written if the call was
successful; this value is always 128.

A negative value is returned if there was an error; -1 for a general
error, -2 for nBufSize too small.

Remarks

Each FTIR device has non-volatile memory, a portion of which can be
used to store OEM data; this memory will persist across power losses
to the device. See the GetOemNvmemData() documentation for more
details.

The OEM NVMEM data is fixed at 128 bytes. The nBufSize value that
is passed in to this function should be 128 (bytes); a larger value will
allow the function to continue, but only the first 128 bytes will be
stored in non-volatile memory; a smaller value will return an error.
In general, nBufSize should always be 128.

FTIRInst DLL

80 Agilent FTIR Instrument Interface Application Programming Manual

This page is intentionally left blank.

