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High reproducibility is essential to correctly
assess the extent of differential gene
expression.  Each step in the preparation of
a microarray contributes noise that can
affect the reproducibility of microarray
signal data.  To assess reproducibility,
metrics are needed that can be compared
across microarray platforms.  

This paper uses data from the Agilent
microarray system, in particular, to
demonstrate metrics for evaluating quality
and reproducibility.  These metrics show
that the Agilent microarray system, along
with Rosetta Resolver algorithms, produces
data that provides high confidence for gene
expression interpretations.  

These metrics can be used to calculate the
reproducibility of microarray technology:

• Metrics to evaluate the microarray
preparation process

• Signal statistics (%CV) for each gene on
each array

• Signal statistics (%CV) for each gene
across microarrays spotted with the
same sample

• Log ratio statistics (SD) for all genes on
each self-self microarray (Figure 1a)

• Log ratio statistics (SD) for each gene on
each differential expression microarray
(Figure 1b)

• Log ratio statistics (SD) for each gene
across all differential expression
microarrays

• Biological replicate metrics

This paper presents comparisons of these
metrics with and without features
identified as anomalous by the Agilent
Feature Extraction software:

• Reproducibility with and without data
points flagged as outliers

• Reproducibility with and without data
points subjected to a test that evaluates
if a signal is well above background

• Reproducibility with and without data
points from microarrays containing an
abnormal number of flagged outliers or
low signals

Because an early version of the Agilent
Feature Extraction software (v. 4.0.45) was
used to produce the results, researchers
can expect even better reproducibility with
current versions of the Feature Extraction
software than that presented in this
document.

OVERVIEW

This paper serves as a guide for
evaluating the reproducibility of
microarray technology* and shows:

• How to design the experiments
needed to evaluate reproducibility

• Why omission of outlier features
and low-signal microarrays
increases reproducibility

• Why the use of biological replicates
increases reproducibility

• How high reproducibility of Agilent
microarray technology increases
confidence in differential
expression results.

* Microarray technology refers to the entire
microarray process, including the steps of array
synthesis/deposition, target labelling,
hybridization, wash, scan, and feature
extraction/data processing. 
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EXPERIMENTAL DESIGN

Theoretical design

Researchers need to design only two
experiments in order to produce sufficient
data to reliably calculate the metrics
described in the introduction. 

• Experiment type 1—
Four self-self microarrays (Figure 1a),
two of which contain one sample labeled
with both dyes and two of which contain
a second sample labeled with both dyes.
Four dye-swap differential expression
microarrays (Figure 1b), two of which
contain both samples, each labeled with
a different dye and the other two of
which contain both samples, each with
the labels switched from the order in the
first two microarrays.  

• Experiment type 2—
Same microarray design and sample
types as in Experiment type 1.  To be
able to measure biological replicate
metrics, the RNA sample preparations
for Experiment type 2 must be different
that those in Experiment type 1.  

Both types of experiments should use
replicate probe sequences per gene per
microarray, which enables the calculation
of intra-array statistics.  Preferably, each
microarray should contain at least 10 genes
to evaluate intra-array reproducibility.
These genes should span the full signal
range, and each gene should have at least
15 feature replicates per gene.

Agilent designed the microarrays used for
this paper under constraints for the needs
of a customer.  These constraints led to a
design with 29 genes, each with 5 feature
replicates.

Figure 1a:  Experiment type 1 with 4 self-self
microarrays

Figure 1b:  Experiment type 1 with 4 dye-swap
differential expression microarrays



Actual design and conditions

Five experiments (A-E, see below) were carried out to assess the performance of Agilent microarray technology.  
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Experiment A Sample 1 vs. 2, RNA prep A (Experiment type 2)

Experiment B Sample 1 vs. 2, RNA prep B (Experiment type 2)

Experiment C Sample 3 vs. 4 (Experiment type 1)

Experiment D Sample 5 vs. 6 (Experiment type 1)

Experiment E Sample 7 vs. 8 (4 Self-self microarrays; 4 Dye-swap differential
expression microarrays)

• Only experiments A and B were
necessary for a complete performance
evaluation.  

• The customer requested that
experiments C-E be carried out for
biological interest.  

• Each experiment used eight custom in-
situ microarrays (60-mers; 8,455
features) to measure reproducibility and
differential expression of a biological
sample pair (40 microarrays total).  

• The customer requested that Agilent
design the microarray probe content to a
eukaryotic organism of interest.  

• Agilent used probe selection algorithms
developed by Agilent Technologies and
Rosetta Biosoftware.  

• The probe design of the arrays was the
same for all experiments and contained
29 genes of primary interest to the
customer.  These 29 genes had five
replicate probes per array, thus enabling
intra-array probe statistics.

• Agilent microarray technology used in
these experiments included the Agilent
2100 Bioanalyzer; Agilent labeling kits,
Agilent in-situ microarrays, Agilent
hybridization and wash protocols,
Agilent scanner, Agilent Feature
Extraction software (v.4.0.45); and
Rosetta Resolver software (v.2.0).  

• To reproduce the experimental variability
that microarray users may experience,
each experiment used Agilent
microarrays from different lots
manufactured on different days from
different printers.  

• Also, multiple scientists performed
sample labeling, hybridization and
washing of the microarrays.   



Box 2: Agilent microarray data analysis

Operations on Features

Features and Features and Inlier features
Spots local back- LB's with inlier and local back-

grounds pixels only grounds (new
(raw signal) signal)

Operations on Signal Data

Background- Dye-normalized High-end cor-
Raw Signal subtracted signal signal rected signal

Final processed
signal

Defines features
and background

Subtracts
background

Removes outliner
pixels

Removes dye
bias

Flags outlier
features

Fits nonlinear
curve

Uses surrogates
for low signals
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EVALUATION OF THE
PREPARATION PROCESS

Before summary statistics are calculated
on individual genes, the microarray
preparation process is evaluated.  If there
is a major flaw in the process—either with
microarray printing or sample labeling,
hybridization or washing—the number of
anomalous features across the microarray
will be greater than average. 

The first step is to check for slide and
background anomalies by viewing the
images, with different color scales, in the
Image Analysis portion of the Agilent
Feature Extraction software.  

The second step is to review the
quantitative metrics for each microarray
[See Box 1 for definitions of terms in Italics
and Box 2 for the Agilent microarray data
analysis (feature extraction) process.]:

• Percent of features flagged as non-
uniform outliers in either the green
or red channel (control type = 0) 

• Percent of features flagged as
saturated in both the green and red
channels (control type = 0) 

• Average of net green and net red
signals, averaged over entire array
(control type = 0) 

• Average of net local background
green and net red signals, averaged
over entire array (inliers) 

• The SD of net local background
green and net red signals, over
entire array (inliers).

A summary of these metrics is shown for
all five experiments in Table 1.  There are
four arrays that have a high number of
features flagged as non-uniform (> 5 %).
These appear in bold in the table.   

Non-uniform outliers are features flagged
by the Agilent Feature Extraction software
if the population of pixels within a feature
spot used to calculate the signal average
has a high signal standard deviation (SD).
These features often lead to incorrect log
ratio results.  Thus, they are flagged and
not used in statistical and Rosetta
Resolver analyses.

All features on Agilent microarrays are
assigned a control type: 0, 1, and -1:
Type 0 = all experimental features 
Type 1 = positive control features 
Type -1 = negative control features 

Net signal is the raw signal with scanner
constant offset subtracted.

Statistics for local backgrounds ring
around each feature) are calculated using
local backgrounds from all control types of
features.  In addition, global statistics are
calculated on “inlier” local backgrounds.
That is, they pass both non-uniform outlier
and population outlier flags.

Box 1: Terminology
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Table 1: Microarray Quality Metrics Summary 

Expt.
Array
Type5

Sample #
(red)

Array
Name6

Experimental Features Local Backgrounds (Inliers)

%Flags Net Signal4

Avg. G. R

Signal Averages Signal Std. Dev.

Non-uniform Resolver7 Green Red Green Red

A Diff 1A 08_A01 1.4 1.4 592 65 8 1.9 1.3
A Diff 1A 37_A02 3.2 3.2 949 55 5 1.4 0.9
A Diff 2A 08_A02 1.1 1.1 511 70 10 2.4 1.3
A Diff 2A 37_A01 2.6 2.6 946 53 4 1.3 0.8
A Self 1A 07_A02 2.5 2.7 994 59 6 1.3 1.0
A Self 1A 38_A01 1.3 1.5 1083 53 4 0.9 0.8
A Self 1A 07_A01 2.6 2.7 802 59 5 1.8 1.1
A Self 1A 38_A02 1.7 1.7 784 56 5 1.1 0.9
B Diff 1B 10_A01 2.1 2.1 1152 61 4 1.2 1.0
B Diff 1B 35_A02 1.1 1.1 1054 52 5 1.6 1.0
B Diff 2B 10_A02 3.9 3.9 967 64 5 2.2 1.4
B Diff 2B 35_A01 1.2 1.2 683 50 4 1.4 0.9
B Self 1B 09_A02 2.3 2.6 1198 58 5 1.3 1.0
B Self 1B 36_A01 0.5 0.7 1092 50 4 1.0 1.1
B Self 2B 09_A01 1.3 1.4 943 57 4 1.3 1.0
B Self 2B 36_A02 1.0 1.1 797 51 5 0.9 1.2
C Diff 3 12_A01 2.9 3.0 1131 71 11 2.4 2.0
C Diff 3 33_A02 3.7 3.8 1552 59 5 1.3 1.4
C Diff 4 12_A02 1.7 1.8 1104 70 11 3.4 2.0
C Diff 4 33_A01 10.1 10.1 1425 58 4 1.2 1.2
C Self 3 11_A02 3.5 3.6 1379 74 12 3.5 2.8
C Self 3 29_A01 16.1 16.2 1861 64 8 1.6 1.9
C Self 4 11_A01 2.6 2.6 835 63 7 5.3 3.8
C Self 4 29_A02 1.0 1.1 1418 66 9 2.8 2.6
D Diff 5 20_A01 5.0 5.2 1147 55 7 1.3 1.4
D Diff 5 34_A02 1.5 1.7 1398 58 5 1.2 1.1
D Diff 6 20_A02 3.8 3.9 1035 58 8 1.4 1.2
D Diff 6 34_A01 3.5 3.7 1124 57 4 1.4 1.1
D Self 5 19_A02 4.3 4.5 1131 59 10 1.5 1.6
D Self 5 30_A01 62.8 62.8 1660 61 9 2.4 1.7
D Self 6 19_A01 1.3 1.6 970 57 8 1.3 1.6
D Self 6 30_A02 1.4 1.8 1462 63 7 2.4 1.5
E Diff 7 22_A02 49.0 49.0 3316 52 4 0.9 0.8
E Diff 7 27_A01 1.0 1.1 1330 60 5 1.2 1.0
E Diff 8 22_A01 3.6 3.6 994 53 3 0.8 0.8
E Diff 8 27_A02 1.6 1.7 1098 60 6 0.8 1.0
E Self 7 21_A01 0.8 0.8 1101 54 4 1.9 1.3
E Self 7 28_A02 0.5 0.6 987 59 7 1.4 1.1
E Self 8 21_A02 1.0 1.2 1473 56 5 1.3 1.0
E Self 8 28_A01 0.6 0.8 1343 58 6 1.1 0.9

1 Net signal is the raw signal with scanner constant offset subtracted.
2 The Array Type is either Self (self-self hybridization microarray) or Diff (differential expression dye-swap microarray).  The Sample # (red) is listed in

many tables, along with the Array Type.  From the Sample # (red) and the Array Type, one also knows the type of green sample used on that array.
3 The naming convention for microarrays is NN_A0s, where NN are the two right-most numbers of the microarray barcode and where s is the side num-

ber (A01 is the left side and A02 is the right side).
4 Agilent Feature Extraction software uses two criteria to flag Rosetta Resolver not to use Agilent data in its calculations: 1) if features are flagged as

non-uniform in either the green OR red channel, or 2) if features are flagged as saturated in both the green AND red channels.
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Outlier microarrays

A plot of the % features flagged as non-
uniform for each microarray in each
experiment is shown in Figure 2.  The
average of the % features flagged as non-
uniform for all microarrays is 5.3%, and the
average for the % features flagged as
either Non-uniform or saturated, as flagged
for Rosetta Resolver, is 5.4%.  The four
microarrays with > 10% features flagged as
Non-uniform are shown as stars in the
figure.  When these outlier microarrays are
omitted from the calculation, the averages
decrease to 2.1% flagged as Non-uniform
and 2.2% flagged for Rosetta Resolver.  

Figure 2: % of experimental features flagged as
non-uniform for Experiments A-E

Low signal microarrays

In Table 1, Experiment A, microrrays 8_A01
and 8_A02 both showed
significantlyreduced net signal compared
with their respective duplicate microarrays,
37_A02 and 37_A01. 

This paper discusses the impact of omitting
these potential outlier and low signal
microarrays on composite signal and log
ratio statistics and analyses.



7

Figure 3:  Signal % CV calculated for five
replicate probes (intra-gene)

The probes in Figure 3 are randomly located on
each microarray (intra-array) and represent only
one set of the 29 genes on the microarray.

Table 2: Experiment B — Summary of intra-array, intra-gene green signal statistics 

Experimental Features N Avg. of %CV SD of %CV

All features 232 26.3% 40%

All features except those flagged for Rosetta Resolver 226 25.7% 40%

Inlier features [all features except those flagged for
Rosetta Resolver or not Well Above Background
(WABk)]

212 17.3% 12%

Terminology

5 The “Well Above Background” test is a more
stringent test than the t-test that determines if
a feature is positive and significant against
background.  This test requires that a feature’s
background-subtracted signal be 2.6 times
greater than the background SD.  This require-
ment approximates the requirement that the
feature’s raw signal be greater than 99% of the
background population’s signal.  

EVALUATION OF
REPRODUCIBILITY WITH SIGNAL
STATISTICS (%CV)

Calculation of signal statistics (intra-
array, intra-gene)

The first step of this analysis is to calculate
the average and standard deviation (SD) of
the signals from the green or red channel
for each gene (intra-gene) of the 29-gene
set.  These 29 genes have five replicate
features (same probe sequences) randomly
spread across the microarray (Figure 3),
allowing probe statistics (intra-array).  The
reproducibility metric is the  % coefficient
of variation, or %CV, where %CV = 100% *
(SD/average).  For Experiment B, the
average, SD and %CV of the 5 replicate
feature signals within a microarray were
calculated for each gene using the green
final processed signals.  

Calculation of summary signal statistics

The second step is to calculate the
summary statistics for all the genes on all
the microarrays for one experiment.  From
the signal statistics (%CV) of Experiment B,
the average and SD of the %CV’s were
calculated for all features and are
presented in Table 2, Row 1, along with the
number of data points.  Because
experiment B has 8 microarrays and the
analysis used 29 genes, the maximum
number of data summary points used for
experiment B = 8*29 = 232.  There are
fewer data points if flagged features are
omitted. 
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Figure 4b: Expt. B—Intra-array signal statistics
of INLIER features versus gBkSubSignal

Fgure 4b shows the intra-array, intra-gene
%CV’s of experiment B for only inlier features
that pass the WABk test (same as Table 2, row
3) plotted against the green background-
subtracted signal.  The average of the %CVs for
inlier features equals 17.3%.

Effect of omitting flagged outlier features
on summary signal statistics

Signal statistics should be calculated with
a subset of data that is of the highest
quality.  Only feature data that has passed
three criteria are used.  Features flagged as
non-uniform are omitted from calculations
of signal statistics.  Saturated features are
also omitted from statistics, as their
signals have hit a ceiling.  Finally, features
that are not “Well Above Background”
(WABk) are omitted from signal statistics,
as their signal is very low.  However, the
features that are not well above
background are still used for calculating log
ratio statistics.  

Single experiment

The impact of omitting these flagged
features on summary signal statistics is
shown in Table 2 and Figure 4a and Figure
4b for experiment B.  

• If a gene has features that have been
flagged as non-uniform or saturated
(flagged for Rosetta Resolver), the %CV
of the signals from feature replicates
calculated for that gene will be higher
than if the flagged features had been
omitted (Table 2, rows 1 and 2,
respectively).  Genes that have features
flagged for Rosetta Resolver are shown
as dark pink symbols in Figure 4a.  

• If genes have features that fail the
WABk test, they generally also have
higher %CV’s than if these features are
omitted (Table 2, rows 1 and 3,
respectively).  Genes that fail the WABk
test are shown as triangles in Figure 4a.  

• The inlier data (Table 2, row 3), shown
as light blue circles in Figure 4a, are
also shown in a zoom view (note
change in Y-scale) in Figure 4b.  The
average %CV using only inlier features
(not flagged for Rosetta Resolver and
passing WABk) is 17.3% (Table 2, Row
3), which is less than the 26.3 %CV
(Table 2, Row 1) using all features, as
expected.  

• The distribution of the %CV’s of the
inlier features is also tighter than when
all features are used.  That is, the SD of
the %CV’s is 12% vs. 40%, respectively
(Table 2, rows 3 and 1, respectively).  

• Figure 4b also demonstrates the
expected result that signal
reproducibility is better (lower %CV) at
higher average signals.

Figure 4a:  Expt. B—Intra-array signal statistics vs gBkSubSignal for ALL features, including flagged
features 

Figure 4a shows the intra-array, intra-gene %CV’s of experiment B for all features (same as Table 2,
row 1) plotted against the green background-subtracted signal.  All features, including flagged data,
are shown.  The features that are flagged as non-uniform or saturated are shown in dark pink; inlier
features are light blue.  The shapes show the features that pass the Well-Above Background
(WABk) flag in both the red and green channels (circles), one channel (triangle), or neither channel
(squares).  The average of the %CVs for all features equals 26.3%.
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Table 3: All Experiments—Summary of intra-array, intra-gene inlier signal statistics

Expt. N

Green %CV Statistics Red %CV Statistics
Median Avg. Median Avg.

A 214 15.7% 17.8% 13.8% 17.4%

B 212 14.2% 17.3% 11.7% 13.2%

C 216 18.6% 14.4% 12.7% 16.9%

D 176 12.5% 15.3% 11.1% 12.6%

E 198 7.6% 11.5% 6.4% 8.5%

All experiments

Table 3 shows the intra-array statistics for
all 5 experiments, using the inlier set of
features (e.g., Table 2, row 3 for Experiment
B).  The analysis was performed on the
final processed signals for both the green
and red channels.  Table 3 shows the
average %CV and the median %CV.
Medians better reflect the central tendency
of the data because they are much more
robust to outliers than are averages.  In
Table 3, the median %CV in every
experiment is less than the average %CV.

Calculation of composite signal statistics
(intra-gene, intra-sample, inter-feature)

Another metric evaluates a composite of
both intra-array and inter-array
reproducibility.  This metric calculates the
signal statistics for the replicate features
for each gene (intra-gene) within an array
(intra-array) and among microarrays (inter-
array) that have a given sample (intra-
sample) for that signal channel.  For each
of the experiments, there were 4
microarrays (inter-array) with one type of
sample in the green channel and 4
microarrays with the second type of
sample in the green channel.  There was a
maximum of (5
features/gene/microarray)*(4
microarrays/sample-type) = 20 features
summarized per gene (inter-feature).  Inter-
feature statistics can only be calculated on
a gene if at least 2 of the 20 features/gene
remain, after flagged features are omitted.  

The average, SD, and %CV of these 20
signals were calculated for each gene, for
the two sample types.  There were 29
genes in the set analyzed and two types of
samples used per channel.  Therefore,
29*2= 58 data points are possible, if all
features are used.  After flagged or low
signal features are omitted, there may be
fewer than 58 data points (see Table 4a,
Experiments D and E). 

Figure 5:  Signal %CV calculated for twenty features (inter-feature)

The features (blue spots) for each gene (intra-gene) for each labeled sample (intra-sample) are
randomly located across four microarrays (inter-array) in Figure 5.  Microarrays with “+1” polarity
have sample_1 labeled with the red dye and sample_2 labeled with the green.  The opposite is true
for microarrays with “-1” polarity (e.g. red = sample_2; green = sample_1).  The features in the
figure represent just one set of the 29 genes on the microarray.  See Figure 1 for a description of the
dye-swap microarrays used in the experiment.  See Figure 3 for a representation of intra-array
calculations.
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Expt.
Array
Type

Sample #
(red)

Array
Name

Experimental Features
%Flags Net Signal

Avg. G. RNon-uniform Resolver
A Diff 1A 08_A01 1.4 1.4 592
A Diff 1A 37_A02 3.2 3.2 949
A Self 1A 07_A02 2.5 2.7 994
A Self 1A 38_A01 1.3 1.5 1083
A Diff 2A 08_A02 1.1 1.1 511
A Diff 2A 37_A01 2.6 2.6 946
A Self 2A 07_A01 2.6 2.7 802
A Self 2A 38_A02 1.7 1.7 784

Section of Table 1

Table 4a: All Experiments—Summary of composite signal statistics

Well
Above_Bk

Green (%CV) Red (%CV)

Expt. Test? N Median Avg. N Median Avg.

A No 58 35.5% 40.7% 57 36.0% 47.0%

Yes 46 33.9% 35.5% 45 34.9% 40.5%

B No 58 27.9% 32.1% 57 25.2% 30.8%

Yes 45 24.7% 27.9% 40 25.1% 31.4%

C No 58 27.1% 31.5% 58 26.9% 30.4%

Yes 39 23.3% 27.6% 34 23.3% 26.9%

D No 57 35.1% 39.1% 57 35.1% 37.9%

Yes 34 31.9% 36.8% 30 31.9% 37.4%

E No 55 36.2% 38.6% 55 32.1% 36.3%

Yes 43 26.9% 32.3% 41 23.3% 30.5%

Effect of omitting flagged outlier features
on composite signal statistics

The features were filtered for two flags:
passing the non-uniform flag and not being
saturated.  The summary average of the
signal %CV’s and median of the signal
%CV’s were calculated from the remaining
data points.  The filtered features were
then tested to see if their signals were well
above the background (WABk).  A second
set of summary statistics (avg. %CV and
median %CV) were calculated for features
that were inliers and that passed the
WABk test.  Results of these calculations
appear in Table 4a.  Note that N for
features not subject to the WABk test is
less than 58 for Experiments D and E,
whereas N for features subject to the
WABk test is less than 58 for all five
experiments.  See the section, “Calculation
of composite signal statistics” on the
previous page for an explanation.
In Table 4a the calculations for the filtered
signals that were not screened for the
“Well Above Bk” test (WABk) are shown in
the rows where “Well Above Bk Test?” =
“No”.  The statistics for the filtered signals
that passed the WABk test are shown in
the rows where “Well Above Bk Test?” =
“Yes”.  The calculations on features that
passed the WABk test yielded %CV’s that
were predictably lower than those for the
feature sets that included non-WABk
features.  

For example, in experiment A, “sample 1”
is in the red channel for two self-self
microarrays (7_A02 and 38_A01, see
section of Table 1 on the next page) and
two dye-swap microarrays (8_A01 and
37_A02, see section of Table 1 below).  The
inter-feature statistics (average, SD, and
%CV across the inliers of the 20 features)
are calculated for each of the 29 genes for
this sample.  The 4 microarrays with
“sample 2” in the red channel provide 29
more gene-sample data points, for a total
of 58 data points, before filtering data for
flagged features.  After the features are
screened for non-uniform outliers and for
saturation, 58 data points still remain.

When the “Well Above Bk” test is applied
to the features, only 46 data points remain
(See Table 4a, Row 2) and the %CV’s are
lower than when the test was not applied
(Table 4a, Row 1).  

The %CV’s for this composite analysis
(Table 4a) are higher for each experiment
than the corresponding intra-array %CV’s
(Table 3), since the composite %CV’s are
encompassing the additional noise of
combining features across 4 different
microarrays (inter-array) and across
microarrays that are self-self or dye-swap
types (inter-type).  
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Effect of omitting low signal microarrays
on composite signal statistics

Experiment A demonstrates the power of
evaluating microarrays for quality before
including them in results.  Microarrays
8_A01 and 8_A02 (see above) had much
lower average net signals than the other
microarrays of experiment A.  The intra-
gene, intra-sample, inter-feature signal
statistics were repeated with experiment A,
omitting these two microarrays (Table 4b).
The %CV’s for the green and red channels
decreased, when compared with
Experiment A using all microarrays (Table
4a).  For example, for Experiment A with all
arrays and features that had not passed the
WABk test, the median %CV was 35.5%
(Table 4a), and without the two low signal
arrays, the median %CV for the same
feature set was 25.1%. 

The above analysis demonstrates the
impact of microarray variation upon signal
statistics.  However, since differential
expression experiments are performed as
ratio experiments, variations in red or green
channel signals within or across
microarrays are attenuated when
calculating the log ratios, as discussed in
the next section.

Table 4b: Experiment A—Composite signal statistics after omitting low signal
microarrays

Well Above_Bk
Test?

Green (%CV) Red (%CV)

N Median Avg. N Median Avg.

No 57 25.1% 35.4% 57 27.8% 34.7%

Yes 45 23.3% 29.2% 45 26.4% 31.7%
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EVALUATION OF
REPRODUCIBILITY WITH LOG
RATIO STATISTICS (SD)

Calculation of log ratio statistics for a
self-self microarray (intra-array, inter-
gene)

A very important metric for microarray
reproducibility is the standard deviation
(SD) of the log ratios of self-self arrays.  A
log ratio is the log of the ratio of the final
processed signal in the red channel to the
final processed signal in the green channel.
This metric evaluates the level of noise
produced by the preparation process for
each microarray.  Therefore, microarray
technology that produces lower SD’s of the
self-self log ratios also has higher
sensitivity for detecting significant
differentially expressed genes.  
All non-control features that are inliers can
be used for this metric, since the log ratios
of all genes should be approximately equal
to 0 for a self-self array.  A global average
and SD of log ratios for all the genes (inter-
gene) are calculated for each self-self array
(intra-array).  For accuracy, we expect the
average of the ratios of self-self arrays to
be equal to 1.  Therefore, the average of
the log ratios is expected to be equal to 0.
For reproducibility, we expect that the
global SD of all the log ratios to be close to
0.  As the SD decreases, the “noise
envelope” decreases, and the sensitivity of
detection increases.  

Figure 6a: Experiment B, microarray 9_A01
(Self)—Experimental features including flags
(n=7,986)

Figure 6a shows all the data (inlier and
outlier) from a self-self array (expt. B,
microarray 9_A01) as log of red vs. log of
green background-subtracted signal.  This
type of plot is instructive, as it shows the
underlying signal data, which is
subsequently normalized, converted to ratio
of (red/green) and finally converted to log
ratio (red/green).  The tightness of the
points about the diagonal relates to the SD
of the log ratios.  Log ratios of all
experimental features (control type = 0)

were analyzed for this metric, not just the
set of 29 genes used with other
reproducibility metrics.  All features,
including flagged data, are shown.  The
features that are flagged as non-uniform or
saturated are shown in dark pink; inlier
features are light blue.  The shapes show
the features that pass the Well-Above
Background (WABk) flag in both the red
and green channels (circles), one channel
(triangle), or neither channel (squares).  

Figure 6b: Expt. B, microarray 9_A01 (Self)—Log
ratio versus the log of the Avg (green and red)
BkSubSignal

Effect of omitting flagged outlier features
on log ratio statistics for self-self
microarrays

Single experiment

The same data shown in Figure 6a is
presented in a more typical log ratio vs. log
signal plot in Figure 6b.  If the flagged data
are not omitted, the SD of the log ratios is
0.078.  The average log ratio (approximately
0) and SD bars are shown in Figure 6b.
When the features that are flagged for
either non-uniform or saturation (pink
symbols) are removed (as is done during
the data import into Rosetta Resolver), the
SD of the log ratios decreases to 0.071.

11 A log ratio is the log of the ratio of the final
processed signal in the red channel to the final
processed signal in the green channel.
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• The signal %CV’s (average of green and
red signal %CV’s) were also highest for
these same 2 genes (Figure 7d, 7e,
dark pink symbols).  

• Figure 7e shows the attenuating effect
of using ratios.  There are 27 genes
with average signal %CV’s ranging from
2% to 18%.  Yet the majority of these
genes have log ratio SD’s < 0.03, with
no relation between the log ratio SD
and %CV.  Thus, even though there may
be a wide range of signal variability,
there is a narrow range of log ratios.  

Figure 7a: Experiment B—Intra-array log ratio reproducibility (max N = 5 features/ gene; 29
genes/microarray)

Figure 7a shows log ratios for 29 genes from experiment B, microarray 10_A01 (Diff array), plotted
versus the average background-subtracted signals for the red and green channels.  The 5 feature
replicates for each gene are connected by lines.  

All experiments

The analysis with flagged features omitted
was performed on each of the 4 self-self
arrays in a given experiment, yielding 4
SD’s of the log ratios.  The average of the 4
SD’s of the log ratios for each experiment
is shown in Table 5. The averages of the SD
of the log ratios are very similar across the
5 experiments.  The average number of
inlier features that were used for each
microarray calculation is also shown in
Table 5.  Experiment D has a lower average
number of features used because of the
high number of non-uniform features
omitted, especially from microarray 30_A01
(see Table 1).

Calculation of log ratio statistics for
differential expression microarrays (intra-
array, intra-gene)

The previous analysis could be performed
across all genes (inter-gene) on a
microarray because the microarray set
studied included only self-self microarrays.
However, metrics for differential expression
microarrays are also necessary.  The
microarray design should therefore include
a set of genes with multiple feature
replicates per microarray when microarray
performance is being evaluated.  This
microarray design lends itself to calculating
“intra-gene” statistics of log ratios for a
given microarray (intra-array).  See Figure
3.  Again, all log ratio statistics are
calculated using features that are inliers to
both the non-uniform and saturated flags.

Single experiment

The SD of the log ratios for each gene was
calculated (max N = 5 inlier features/gene)
for each microarray.  The figures below use
data from one experiment (B) and one array
(10_A01) to show that the log ratio SD’s
and the signal %CV’s are greater when the
log ratio is near 0 and/or when the overall
signal is low.  The figures also show the
attenuating effect of using log ratios.  

Table 5: Summary of log ratio standard deviations (SD’s)

Expt.
Avg. # of

Features/Array
Average

SD_Log Ratio
A 7844 0.082

B 7899 0.090

C 7547 0.074

D 6603 0.088

E 7954 0.076

• In Figure 7a the log ratios are
extremely tightly clustered for the
replicates at moderate to high signals
but are less tightly clustered at lower
signals.  This noise versus signal
pattern appears for most of the
reproducibility metrics for both signals
and log ratios. 

• The 2 genes with the highest SD’s have
log ratios near 0 (Figure 7b) and have 2
of the lowest average signals (Figure
7c, dark pink symbols).  The average SD
of the log ratios is 0.037 and the
median SD is 0.017.  
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Figure 7b: Experiment B—Intra-array log ratio
averages and SD’s (median SD of log ratio =
0.017)

Figure 7b shows a plot of the intra-array, intra-
gene average log ratios and log ratio SD’s for
the 29 genes on microarray_10_A01 from
experiment B.

Figure 7c: Experiment B—Relation between log
ratio SD’s and high-end corrected signal.

Figure 7d: Experiment B—Relation between
signal %CV and high-end corrected signals

In Figures 7d and 7e signal %CV’s are the
average of the green %CV and the red %CV for
each gene.
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All experiments

This standard deviation analysis was
repeated for all microarrays.  A summary of
the intra-gene, intra-array log ratio SD’s is
shown in Table 6.  The median SD of the
log ratios for each experiment and array
type is summarized, as well as the total
number of genes used in the calculations.
The small variation in the standard
deviations of the log ratios reflected in
Table 6 demonstrates the power of using
log ratios for differential expression
analyses.  That is, even though the feature
replicates may have fluctuating signals
(Table 3), the replicate log ratios of the
red/green signals are less variable.
The median of the SD’s of the log ratios is
presented by experiment and by microarray
type (i.e. Self or Diff).  The intra-array SD of
the log ratios is calculated for each gene
(of the set of 29 genes) for each array (n= 5
features/gene per array).  Each experiment
has 4 microarrays of a given type (i.e. Self
or Diff).  Thus, the total number of genes
summarized is (29 genes/microarray)*(4
microarrays/type) = 116 genes/microarray
type.  The median SD is calculated from
these 116 SD’s of the log ratios.
Microarrays with a high number of non-
uniform outliers may have only 1 replicate
(of max 5 feature replicates) of a gene as
an inlier.  Intra-array SD’s are only
calculated if there are at least 2 feature
inliers for a given gene on a given
microarray.  Thus, those experiments with
fewer than 116 genes per array type had
genes with too few inliers.  

Table 6: Summary of the SD’s of log ratio statistics (intra-array, intra-gene)

Self Dye-swap

Expt.
Genes /

Array Type

Median
SD_Log Ratio

per Gene
Genes /

Array Type

Median
SD_Log Ratio

per Gene
A 116 0.021 116 0.030

B 116 0.022 116 0.026

C 116 0.018 116 0.024

D 102 0.022 116 0.020

E 110 0.014 110 0.013

Calculation of composite log ratio
statistics for differential expression
microarrays (inter-feature, intra-gene,
inter-array)

The final metric used to evaluate log ratio
reproducibility is to evaluate all replicates
(inter-feature) of a given gene (intra-gene),
across all dye-swap microarrays (inter-
array).  The log ratios calculated from the
Agilent Feature Extraction software are
used for those microarrays with “+1”
polarity (e.g. red = sample_1; green =
sample_2).  A “polarity-corrected” log ratio,
calculated as (log ratio)*(-1), is used for
those microarrays with “-1” polarity (e.g.

red = sample_2; green = sample_1).  This
allows summary statistics to be performed
on the “polarity” corrected log ratios
across both polarities of dye-swap
microarrays.  For a given gene, in a given
experiment, the average and the SD of the
polarity-corrected log ratios is calculated.
(See Figure 8)  The maximum number of
features used is (5
features/gene/microarray)*(4 microarrays)
= 20 features/gene/experiment.  If any
features are flagged, there will be fewer
than 20 features used/gene.  As discussed
above, all log ratio statistics are calculated
using features that have not been flagged
as non-uniform and saturated.

Figure 7e: Experiment B—Relation between log
ratio SD’s and signal %CV 
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Single experiment

Figure 9 shows the average and the SD (n
= 20 features) of the polarity-corrected log
ratios (“PolLogRatio”) for each of the 29
genes, from experiment B.  As seen in
Figure 7b, log ratios near zero typically
have higher SD’s.  The median of these 29
SD’s is 0.11.  

The gene shown highlighted (blue star) in
Figure 9 is discussed in the next section,
“Producing high confidence in differential
expression results”.

All experiments

This analysis is summarized in Table 7 for
each experiment, that is, across 29 genes
and 4 dye-swap microarrays for each
experiment, A through E.  As discussed
above and shown in Figure 8, each gene
has 20 feature replicates that are used in
this calculation.  There will be fewer than
20 if outliers are omitted.  The actual
average number of features used for each
SD calculation is shown in Table 7.  The
median SD is calculated from the 29 gene
SD’s for each experiment.  The resulting
inter-feature, inter-array SD’s of the log
ratios shown in Table 7 are higher than the
intra-array SD’s (Table 6), because
additional noise from multiple microarrays
(inter-array) and from dye-swap arrays
(inter-polarity) contributes to the overall
noise.  

Figure 8:  Summary statistics on “polarity”
corrected log ratios

Figure 9: Experiment B—Composite log ratio
statistics of dye-swap microarrays (intra-gene,
inter-array, inter-polarity)

Table 7: Summary of composite log ratio statistics of dye-swap (diff) microarrays 

Expt. Avg. Features/ Gene Median of SD_Log Ratio
A 19.8 0.0120
B 19.7 0.110

AB 39.4 0.127
C 19.3 0.081
D 19.4 0.056
E 17.8 0.126
*E 14.7 0.077

{*E= E, omitting microarray 22_A02} :



17

Effect of using biological replicates

Experiments A and B used different
biological preparations of two samples for
the {sample 1, sample 2} dye-swaps.  Thus,
an “inter-biological replicate” metric can be
calculated.  The SD of the log ratios was
calculated for each gene by grouping all
inlier features across the 8 dye-swap
microarrays combined from experiments A
and B (i.e. “inter-experiment” and “inter-
biological replicate”; thus, max N = 8 * 5 =
40 features/gene).  The median SD of the
polarity-corrected log ratios = 0.127, which
was very similar to the median SD’s from
the individual experiments A (median SD =
0.12) or B (median SD = 0.11).

Effect of omitting outlier and low signal
microarrays on composite log ratio
statistics

Experiment E demonstrates the power of
evaluating the preparation process for each
microarray before including it in the results.
Microarray 22_A02 had an extremely high
number of non-uniform flagged features
(Table 1).  Even though the flagged features
are omitted from analyses, the high number
of outliers may indicate that the overall
microarray quality is low and that even the
inlier features may be problematic.  This
type of problem can result from
hybridization or wash artifacts.  The inter-
feature, intra-gene, inter-array statistics of
the log ratios was repeated for experiment
E, after omitting microarray 22_A02.  The
median of the SD of the log ratios
decreased from 0.126 to 0.077 (Table 7).

Experiment A had two microarrays (8_A01,
8_A02) with lower signal than the other
dye-swap microarrays.  Analyses in Tables
4a,b demonstrated that omitting these 2
microarrays would decrease the inter-array
signal %CV, as expected.  However, the
omission of these same 2 microarrays had
much less of an impact on the inter-array
SD’s of the log ratios.  The median SD of
the log ratio = 0.105 when the 2
microarrays were omitted, compared with
median SD = 0.120 with all microarrays of
experiment A.  This demonstrates the
attenuating power of using ratios for
differential expression analysis; that is,

even though there may be large variations
in the green or red signals of gene
replicates, the variation of the resulting
ratios will be much reduced (see also the
discussion of Figure 7e).

Confidence in differential expression
results

High reproducibility of the final calculated
results is absolutely essential for the
correct interpretation of differential gene
expression.  This paper uses custom
calculations to show the reproducibility of
Agilent microarray technology across
multiple microarrays.  Rosetta Resolver
also uses the final results produced by the
Agilent Feature Extraction software to
evaluate reproducibility across multiple
microarrays and ultimately the extent of
gene expression.  The Agilent results for
single microarrays that are used by Rosetta
Resolver include the log ratios and their
associated log ratio errors.  Below, a
common threshold test using unweighted
data is compared with significance tests (p-
value) using unweighted data or Resolver
weighted data to show the advantage of
the latter for interpreting gene expression
results.

Disadvantage of constant threshold tests

All the analyses in this paper used
statistics of a population (average, SD, etc)
without weighting the data points.  With
unweighted data points, a common method
to determine if a log ratio is significantly
different from zero is to use a constant
threshold.  For example, a constant
threshold of significance may be to require
the change in differential expression to be
> 2-fold, which is the equivalent of
requiring that the ratio be greater than 2 or
less than 0.5, or requiring that the log ratio
be greater than 0.30 or less than –0.30.
This constant threshold method of
determining significance of ratios can
result in a high number of false calls at low
signal ranges (false positives) and a high
number of missed calls (false negatives) at
moderate to high signal ranges (Figure 10).  

Advantage of significance tests using
Agilent error propagation and Rosetta
Resolver weighted data

Rather than relying upon simple constant
thresholds, the Agilent and Rosetta
systems determine differential expression
based upon signal/noise.  Agilent
Technology Feature Extraction software
extends the accuracy of the data by
propagating errors for each signal and
background measured.  Calculations using
this propagated error and Rosetta’s
Universal Error Model yield a log ratio error
and p-value for the log ratio of each
feature.  A log ratio error can be thought of
as a SD about the log ratio.  A p-value is a
metric that indicates if the log ratio is
significantly different from zero.  A signal to
noise (S/N) metric can be calculated for a
single feature by dividing the absolute(log
ratio) by the log ratio error.  Similarly, an
un-weighted, population-based S/N can be
calculated for replicate features by dividing
the absolute(average log ratio) by the SD of
the log ratios.  The error around log ratios
is generally signal-dependent (see Figures
6b and 7c).  That is, a log ratio of a certain
value may not be significant, using log ratio
errors or p-values, if the features have low
or noisy signals (i.e. low S/N), or the same
log ratio value may be significant if the log
ratio was obtained with features at higher
signals, or with features of lower signal and
low noise (i.e. high S/N).  

Rosetta Biosoftware’s Resolver software
improves the accuracy of the S/N analysis
by weighting each log ratio, using Agilent
Feature Extraction log ratio errors.  The
weighted log ratios, errors and p-values can
be calculated for a single microarray or
across multiple arrays, using Rosetta
Resolver’s weighted “combine” algorithms.
The “combine” algorithms use the
individual errors associated with each log
ratio as well as reproducibility metrics of
the log ratios (i.e. using intra-probe or intra-
gene and/or inter-array replicates).  The
result of the combine analysis yields a
single log ratio and p-value obtained from
the replicate log ratios.  Users can set the
p-value threshold that determines
significance for each experiment (e.g.
typically choosing a p-value   0.01 or 0.001). 
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Example of the effect of using significance
testing with or without weighting data on
the interpretation of differential
expression results

Comparing the results of these different
types of significance testing, when used on
a gene with a low signal and high
reproducibility, demonstrates the power of
the Agilent and Rosetta method to evaluate
differential expression.  These tests were
used on a gene that can be seen in Figure 9
(see highlighted gene; blue star symbol).
This gene has an unweighted average
polarity-corrected log ratio = - 0.18 (i.e. a
ratio of 0.66) and a SD of log ratios = 0.056

(N= 20; experiment B).  A significance test
using a constant threshold of 2-fold change
(ratio > 2 or < 0.5, or log ratio > 0.30 or <
–0.30) would not label this gene as
significantly differentially expressed
because the ratio of 0.66 is not less than
0.5 (or, the log ratio of –0.18 is not less
than –0.30).  The ratio of the unweighted
log ratio to its error (i.e. the S/N) is equal
to {absolute(-0.18)/0.056 } ~ 3.2.  A p-value
calculated from this data would be just <
0.01; thus, showing that this gene is
borderline down-regulated.

However, when this gene was analyzed
with Rosetta Resolver, its weighted log

ratio was calculated to be -0.21, and its
error was calculated to be 0.03.  These
values lead to a ratio of the weighted log
ratio to its error (i.e. S/N) of 7.  Therefore,
the gene was determined to be very
significantly down-regulated (p-value <
0.001), since this feature had good
signal/noise and reproducibility across
microarrays.  Rosetta’s weighted combine
algorithms thus improve the sensitivity of
detection (S/N = 7) compared to
significance testing of unweighted data
(S/N = 3.2).  In contrast, the unweighted
constant threshold method was not able to
detect this gene as significantly
differentially expressed.  

Figure 10:  Disadvantage of a constant threshold to evaluate differential expression

Figure 10 shows a plot of the log ratio versus the log of the intensity for all the features from the
four differential expression microarrays used in Experiment B.  This is a Rosetta Resolver “combine”
plot.  The constant threshold is represented on the plot by the two lines at log ratios of +0.30 and
–0.30.  The genes whose p-values were calculated as less than or equal to 0.01 were labeled up-
regulated (red) or down-regulated (green).
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CONCLUSION

This paper has presented a series of
custom metrics to evaluate the
reproducibility of microarray technology.  In
particular, experiments were performed to
illustrate the reproducibility of Agilent
microarray technology.  This paper has also
shown that the combination of the
reproducibility of Agilent microarray
technology, Agilent error propagation, and
Rosetta Resolver algorithms provide high
confidence in differential expression
results.
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