

EPA Method 1694: Agilent's 6410A LC/MS/MS Solution for Pharmaceuticals and Personal Care Products in Water, Soil, Sediment, and Biosolids by HPLC/MS/MS

Application Note

Environmental

Abstract

An analytical methodology for screening and confirming the presence of 65 pharmaceuticals in water samples was developed using the Agilent G6410A Triple Quadrupole mass spectrometer (QQQ). The method was developed following the guidelines in EPA Method 1694. Four distinct chromatographic gradients and LC conditions were used according to the polarity and extraction of the different pharmaceuticals. Positive and negative ion electrospray were used with two multi-reaction monitoring (MRM) transitions (a quantifier and a qualifier ion for each compound), which adds extra confirmation in this methodology compared with the EPA method. Linearity of response of three orders of magnitude was demonstrated ($r^2 > 0.99$) for all the pharmaceuticals studied. The analytical performance of the method was evaluated for one wastewater sample collected from Boulder Creek, Colorado; positive identifications for carbamazepine and diphenhydramine were found for this sample using the methodology developed in this work.

Authors

Imma Ferrer and E. Michael Thurman Center for Environmental Mass Spectrometry University of Colorado Civil, Environmental, and Architectural Engineering ECOT 441, 428 UCB Boulder, CO 80309 USA Jerry Zweigenbaum Agilent Technologies, Inc. 2850 Centerville Road Wilmington, DE 19808

USA

Introduction

The analytical challenge of measuring emerging contaminants in the environment has been a major research focus of scientists for the last 20 years. Pharmaceuticals and personal care products (PPCPs) are an important group of contaminants that have been targeted, especially in the last decade. In the area of PPCPs there are several methods addressing the analysis of these analytes, including EPA Method 1694 [1], which was recently published (December 2007). This EPA protocol uses solid-phase extraction (SPE) for water sample preparation [1]. The extracts are then analyzed directly by a tandem mass spectrometer using a single transition for each compound. This application note describes the Agilent solution to this method, which is demonstrated with the Agilent model 6410A LC/MS QQQ. The Agilent initial implementation for EPA Method 1694 consists of 65 analytes (of 75 total analytes) and 17 labeled internal standards (of 20 total), which are a mixture of PPCPs that are analyzed each by a single MRM transition. (Note that the other compounds and internal standards could not be obtained at this time.) The method also uses Agilent C-18 and Hydrophilic Interaction Chromatography (HILIC) columns for all analytes. To provide additional confirmation, a second MRM transition was added for 60 of the 65 analytes analyzed. This gives an even greater assurance of correct identification than prescribed by the EPA. Table 1 shows the list of pharmaceuticals studied here.

> Sulfanilamide Thiabendazole Trimethoprim Tylosin

Virginiamycin Digoxin*

Table 1. Analytes Studied in This Work

List of Group 1 Compounds EPA 1694: 46 Analytes

Acetaminophen	Codeine	Flumequine	Penicillin V
Ampicillin	Cotinine	Fluoxetine	Roxithromycin
Azithromycin	Dehydronifedipine	Lincomycin	Sarafloxacin
Caffeine	Digoxigenin	Lomefloxacin	Sulfachloropyridazine
Carbadox	Diltiazem	Miconazole	Sulfadiazine
Carbamazepine	1,7-Dimethylxanthine	Norfloxacin	Sulfadimethoxine
Cefotaxime	Diphenhydramine	Ofloxacin	Sulfamerazine
Ciprofloxacin	Enrofloxacin	Oxacillin	Sulfamethazine
Clarithromycin	Erythromycin	Oxolinic acid	Sulfamethizole
Cloxacillin	Erythromycin anhydrate	Penicillin G	Sulfamethoxazole
**			

*Compound formed intractable Na adduct with current conditions.

List of Group 2, 3, and 4 Compounds: EPA 1694: 19 Analytes

Anhydrotetracycline (2)	Doxycycline (2)	Minocycline (2)	Triclocarban (3) Triclosan (3) Warfarin (3)
Chlorotetracycline (2)	4-Epianhydrotetracycline (2)	Tetracycline(2) Meclocycline (2)	Albuterol (4) Cimetidine (4) Metformin (4)
Demeclocycline(2)	4-Epitetracycline(2)	Gemfibrozil (3) Ibuprofen (3) Naproxen (3)	Ranitidine (4)

List of Labeled Internal Standards

¹³ C ₂ - ¹⁵ N-Acetaminophen	¹³ C ₂ -Erythromycin	¹³ C ₆ -Sulfamethazine	¹³ C ₃ -Trimethoprim
¹³ C ₃ -Atrazine	Fluoxetine-d ₆	¹³ C ₆ -Sulfamethoxazole	Warfarin-d ₅
¹³ C ₃ -Caffeine	Gemfibrozil-d ₆	¹³ C ₆ -2,4,5-Tricloro- phenoxyacetic acid	Carbamazepine-d ₁₀ (Extra compound, not EPA list)
¹³ C ₃ - ¹⁵ N-Ciprofloxacin	¹³ C ₃ -Ibuprofen	¹³ C ₆ -Triclocarban	
Cotinine-d ₃	¹³ C-Naproxen-d ₃	¹³ C ₁₂ -Triclosan	

Experimental

Sample Preparation

Pharmaceutical analytical standards were purchased from Sigma, (St. Louis, MO). All stable isotope labeled compounds used as internal standards were obtained from Cambridge Isotope Laboratories (Andover, MA). Individual pharmaceutical stock solutions (approximately 1,000 µg/mL) were prepared in pure acetonitrile or methanol, depending on the solubility of each individual compound, and stored at -18 °C. From these solutions, working standard solutions were prepared by dilution with acetonitrile and water.

Water samples were collected from the wastewater treatment plant at the Boulder Creek outfall (Boulder, CO) and extracted as per the EPA method. Agilent has introduced a polymeric SPE sorbent with hydrophilic/lipophilic properties that may also be appropriate for this application. "Blank" wastewater extracts were used to prepare the matrixmatched standards for validation purposes. The wastewater extracts were spiked with the mix of pharmaceuticals at different concentrations (ranging from 0.1 to 500 ng/mL or ppb) and subsequently analyzed by LC/MS/MS.

LC/MS/MS Instrumentation

The analytes were subdivided in groups (according to EPA protocol for sample extraction) and LC conditions for the chromatographic separation of each group are as follows.

LC Conditions for Group 1-acidic extraction, positive electrospray ionization (ESI+) instrument conditions

Column	Agilent ZORBAX Eclipse Plus C18 2.1 × 100 mm, 3.5 μ (p/n 959793-902)
Column temperature	25 °C
Mobile phase	10% ACN and 90% $\rm H_{2}O$ with 0.1% HCOOH
Flow rate	0.2–0.3 mL/min
Gradient	$\begin{array}{l} t_{0} = 10\% \; \text{ACN, 0.2 mL/min} \\ t_{5} = 10\% \; \text{ACN, 0.2 mL/min} \\ t_{6} = 10\% \; \text{ACN, 0.3 mL/min} \\ t_{24} = 60\% \; \text{ACN, 0.3 mL/min} \\ t_{30} = 100\% \; \text{ACN} \end{array}$
Injection volumes	15 μL

LC conditions for Group 2-acidic extraction, positive electrospray ionization (ESI+) instrument conditions

Column	Agilent ZORBAX Eclipse Plus C18 2.1 × 100 mm, 3.5 μ (p/n 959793-902)
Column temperature	25 °C
Mobile phase	10% ACN and 90% $\rm H_2O$ with 0.1% HCOOH
Flow rate	0.2 mL/min
Gradient	t ₀ = 10% ACN t ₁₀ = 10% ACN t ₃₀ = 100% ACN
Injection volumes	15 μL

LC conditions for Group 3-acidic extraction, negative electrospray ionization (ESI–) instrument conditions

Column	Agilent ZORBAX Eclipse Plus C18 2.1 × 100 mm, 3.5 μ (p/n 959793-902)
Column temperature	25 °C
Mobile phase	40% MeOH and 60% H ₂ O with 5 mM ammonium acetate, pH 5.5
Flow rate	0.2 mL/min
Gradient	t _{0.5} = 40% MeOH t ₇ = 100% MeOH
Injection volumes	15 μL

LC conditions for Group 4-acidic extraction, positive electrospray ionization (ESI+) instrument conditions

Column	Agilent ZORBAX HILIC Plus 2.1 × 100 mm, 3.5 μm (p/n 959793-901 custom order until November 1, 2008)
Column temperature	25 °C
Mobile phase	98% ACN and 2% H ₂ O with 10 mM ammonium acetate, pH 6.7
Flow rate	0.25 mL/min
Gradient	t ₀ = 98% ACN t ₅ = 70% ACN t ₁₂ = 70% ACN
Injection volumes	15 μL

The mass spectrometer conditions were general to all groups and are as follows.

MS Conditions

Mode	Positive and negative (depending on group) ESI using the Agilent G6410A Triple Quadrupole mass spectrometer
Nebulizer	40 psig
Drying gas flow	9 L/min
V capillary	4000 V
Drying gas temperature	300 °C
Fragmentor voltage	70–130 V
Collision energy	5–35 V
MRM	2 transitions for every compound as shown in Table 1
Dwell time	10 msec

Results and Discussion

Optimization of LC/MS/MS Conditions

The initial study consisted of two parts. First was to optimize the fragmentor voltage for each of the pharmaceuticals studied in order to produce the largest signal for the precursor ion. Typically the protonated molecule was used for the precursor ion. Each compound was analyzed separately using an automated procedure (MassHunter Optimizer software, Agilent Technologies, Santa Clara, CA) to check the fragmentor at each voltage. The data was then selected for optimal fragmentor signal and each compound was optimized again to determine automatically the collision energies for both the quantifying and qualifying ions. Optimal collision energies varied between 5 and 35 V. The MRM transitions and optimized energies used for this study are shown in Tables 2A to 2D.

Table 2A. MRM Transitions and MS Operating Parameters Selected for the Analysis of the Pharmaceutical Compounds in Group 1 (The labeled standards are bold.)

Compound	Fragmentor voltage	MRM transitions (<i>m/z</i>)	Collision energy (eV)
Acetaminophen	90	$\begin{array}{c} 152 \rightarrow 110 \\ 152 \rightarrow 65 \end{array}$	15 35
¹³ C ₂ - ¹⁵ N-Acetaminophen	90	155 → 111 155 → 93	15 25
Ampicillin	70	350 ightarrow 160 350 ightarrow 106	10 15
¹³ C ₃ -Atrazine	120	$\begin{array}{c} 219 \rightarrow 177 \\ 219 \rightarrow 98 \end{array}$	15 25
Azithromycin	130	$\begin{array}{c} 749.5 \rightarrow 591.4 \\ 749.5 \rightarrow 158 \end{array}$	30 35
Caffeine	110	195 → 138 195 → 110	15 25
¹³ C ₃ -Caffeine	110	198 → 140 198 → 112	15 25
Carbadox	80	$\begin{array}{c} 263 \rightarrow 231 \\ 263 \rightarrow 130 \end{array}$	5 35
Carbamazepine	110	$\begin{array}{c} 237 \rightarrow 194 \\ 237 \rightarrow 179 \end{array}$	15 35
Carbamazepine-d ₁₀	110	$\begin{array}{c} 247 \rightarrow 204 \\ 247 \rightarrow 202 \end{array}$	15 35
Cefotaxime	90	$\begin{array}{c} 456 \rightarrow 396 \\ 456 \rightarrow 324 \end{array}$	5 5
Ciprofloxacin	110	$\begin{array}{c} 332 \rightarrow 314 \\ 332 \rightarrow 231 \end{array}$	20 35
¹³ C ₃ - ¹⁵ N-Ciprofloxacin	110	336 → 318 336 → 235	15 35

Compound	Fragmentor voltage	MRM transitions (<i>m/z</i>)	Collision energy (eV)
Clarithromycin	110	748.5 → 158 748.5 → 590	25 15
Cloxacillin	90	$\begin{array}{c} 436 \rightarrow 160 \\ 436 \rightarrow 277 \end{array}$	15 15
Codeine	130	$300 \rightarrow 215$ $300 \rightarrow 165$	25 35
Cotinine	90	$\begin{array}{c} 177 \rightarrow 98\\ 177 \rightarrow 80\end{array}$	25 25 25
Cotinine-d ₃	90	180 → 80 180 → 101	25 25 25
Dehydronifedipine	130	$\begin{array}{c} 345 \rightarrow 284 \\ 345 \rightarrow 268 \end{array}$	25 25 25
Digoxigenin	90	$391 \rightarrow 355$ $391 \rightarrow 337$	15 15
Digoxin	No response, Na adduc		
Diltiazem	130	$\begin{array}{c} 415 \rightarrow 178 \\ 415 \rightarrow 150 \end{array}$	25 25
1,7-Dimethylxanthine	90	$\begin{array}{c} 181 \rightarrow 124 \\ 181 \rightarrow 99 \end{array}$	15 15
Diphenhydramine	70	256 → 167 256 → 152	15 35
Enrofloxacin	130	$\begin{array}{c} 360 \rightarrow 316 \\ 360 \rightarrow 342 \end{array}$	15 15
Erythromycin	90	734.5 → 158 734.5 → 576	35 15
¹³ C ₂ -Erythromycin	90	736.5 → 160 736.5 → 578	25 15
Erythromycin anhydrate	90	$716.5 \rightarrow 158$ $716.5 \rightarrow 116$	25 25
Flumequine	90	$262 \rightarrow 174$ $262 \rightarrow 244$	35 15
Fluoxetine	90	$310 \rightarrow 148$	5
Fluoxetine-d ₆	90	316 → 154	5
Lincomycin	110	$\begin{array}{c} 407 \rightarrow 126 \\ 407 \rightarrow 359 \end{array}$	25 15
Lomefloxacin	130	$\begin{array}{c} 352 \rightarrow 308 \\ 352 \rightarrow 265 \end{array}$	15 25
Miconazole	90	$415 \rightarrow 159$ $415 \rightarrow 69$	35 25
Norfloxacin	70	$320 \rightarrow 302$ $320 \rightarrow 276$	15 15
Ofloxacin	110	$362 \rightarrow 318$	15

Table 2A. MRM Transitions and MS Operating Parameters Selected for the Analysis of the Pharmaceutical Compounds in Group 1 (The labeled standards are bold.) continued

Compound	Fragmentor voltage	MRM transitions (<i>m/z</i>)	Collision energy (eV)
Compound	voltage		(ev)
Oxacillin	70	$\begin{array}{c} 402 \rightarrow 160 \\ 402 \rightarrow 243 \end{array}$	15 5
0 1: : : :	00		
Oxolinic acid	90	$\begin{array}{c} 262 \rightarrow 244 \\ 262 \rightarrow 216 \end{array}$	15 25
Penicillin G	90	$335 \rightarrow 160$	5
	30	$333 \rightarrow 100$ $335 \rightarrow 176$	5
Penicillin V	70	351 ightarrow 160	5
		351 ightarrow 114	25
Roxithromycin	130	837.5 ightarrow 679	15
		837.5 → 158	35
Sarafloxacin	130	386 ightarrow 299	25
		386 ightarrow 368	25
Sulfachloropyridazine	90	285 ightarrow 156	10
		285 ightarrow 92	25
Sulfadiazine	110	251 ightarrow 156	15
		251 ightarrow 92	25
Sulfadimethoxine	80	311 ightarrow 156	20
		$311 \rightarrow 92$	35
Sulfamerazine	110	265 ightarrow 156	15
		265 ightarrow 92	25
Sulfamethazine	90	279 ightarrow 156	15
		279 ightarrow 186	15
¹³ C ₆ -Sulfamethazine	90	$285 \rightarrow 186$	25
		285 ightarrow 162	25
Sulfamethizole	80	$271 \rightarrow 156$	10
		$271 \rightarrow 92$	25
Sulfamethoxazole	110	254 ightarrow 156	15
		254 ightarrow 92	25
¹³ C ₆ -Sulfamethoxazole	110	$260 \rightarrow 162$	15
•		$260 \rightarrow 98$	25
Sulfanilamide	70	$173 \rightarrow 156$	5
		$173 \rightarrow 92$	15
Thiabendazole	130	$202 \rightarrow 175$	25
		$202 \rightarrow 131$	35
¹³ C ₆ -2,4,5-Trichlorophenoxyacetic acid	110	259 → 201	5
0		259 ightarrow 165	25
Trimethoprim	110	$291 \rightarrow 230$	25
		291 ightarrow 261	25
¹³ C ₃ -Trimethoprim	110	294 → 233	25
5 -		$294 \rightarrow 264$	25
Tylosin	110	916.5 → 174	35
-		916.5 ightarrow 772	35
Virginiamycin	110	526 ightarrow 508	5
U 11		$526 \rightarrow 355$	15

 Table 2A.
 MRM Transitions and MS Operating Parameters Selected for the Analysis of the Pharmaceutical Compounds in Group 1 (The labeled standards are bold.) continued

Compound	Fragmentor voltage	MRM transitions (<i>m/z</i>)	Collision energy (eV)
Anhydrotetracycline	90	$\begin{array}{c} 427 \rightarrow 410 \\ 427 \rightarrow 154 \end{array}$	15 25
Chlorotetracycline	110	$\begin{array}{c} 479 \rightarrow 462 \\ 479 \rightarrow 197 \end{array}$	15 35
Demeclocycline	130	$\begin{array}{c} 465 \rightarrow 430 \\ 465 \rightarrow 448 \end{array}$	25 15
Doxycycline	110	$\begin{array}{c} 445 \rightarrow 428 \\ 445 \rightarrow 154 \end{array}$	15 25
4-Epianhydrotetracycline (EATC)	90	$\begin{array}{c} 427 \rightarrow 410 \\ 427 \rightarrow 105 \end{array}$	15 35
4-Epitetracycline (ETC)	110	$\begin{array}{c} 445 \rightarrow 410 \\ 445 \rightarrow 427 \end{array}$	15 5
Minocycline	90	$458 \rightarrow 441$	15
Tetracycline (TC)	110	$\begin{array}{c} 445 \rightarrow 410 \\ 445 \rightarrow 427 \end{array}$	15 5

Table 2B. MRM Transitions and MS Operating Parameters Selected for the Analysis of the Pharmaceutical Compounds in Group 2

Table 2C. MRM Transitions and MS Operating Parameters Selected for the Analysis of the Pharmaceutical Compounds in Group 3

Compound	Fragmentor voltage	MRM transitions (<i>m/z</i>)	Collision energy (eV)
Gemfibrozil	100	$249 \rightarrow 121$	5
Gemfibrozil-d ₆	100	255 → 121	5
lbuprofen	75	205 ightarrow 161	5
¹³ C ₃ -Ibuprofen	75	$208 \rightarrow 163$	5
Naproxen	75	$\begin{array}{c} 229 \rightarrow 169 \\ 229 \rightarrow 170 \end{array}$	25 5
¹³ C-Naproxen-d ₃	75	233 → 169 233 → 170	3 25 5
Triclocarban	100	$\begin{array}{c} 313 \rightarrow 160 \\ 313 \rightarrow 126 \end{array}$	10 25
¹³ C ₆ -Triclocarban	90	$\begin{array}{c} 319 \rightarrow 160 \\ 319 \rightarrow 132 \end{array}$	5 25
Triclosan	75	287 ightarrow 35	5
¹³ C ₁₂ -Triclosan	75	$299 \rightarrow 35$	5
Warfarin	125	$\begin{array}{c} 307 \rightarrow 117 \\ 307 \rightarrow 161 \end{array}$	35 15
Warfarin-d ₅	90	$\begin{array}{c} 312 \rightarrow 161 \\ 312 \rightarrow 255 \end{array}$	15 25

Compound	Fragmentor voltage	MRM transitions (<i>m/z</i>)	Collision energy (eV)
Albuterol (Salbutamol)	90	$\begin{array}{c} 240 \rightarrow 148 \\ 240 \rightarrow 166 \end{array}$	15 5
Cimetidine	100	$\begin{array}{c} 253 \rightarrow 159 \\ 253 \rightarrow 95 \end{array}$	10 25
Metformin	80	$\begin{array}{c} 130 \rightarrow 60 \\ 130 \rightarrow 71 \end{array}$	10 25
Ranitidine	110	315 ightarrow 176 315 ightarrow 130	15 25

Table 2D. MRM Transitions and MS Operating Parameters Selected for the Analysis of the Pharmaceutical Compounds in Group 4

Chromatographic separation was done independently for each group and a dwell time of 10 msec was used for every MRM transition. Figures 1A to 1D show the chromatograms corresponding to 100 ppb standard on column for all the pharmaceuticals studied. Extracted ion chromatograms are overlaid for each one of the target analytes according to their respective protonated molecule and product-ion MRM transitions.

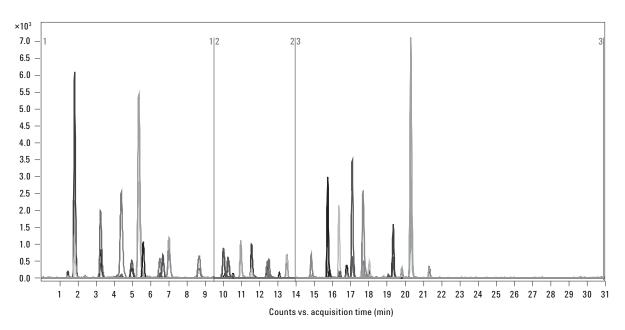


Figure 1A. MRM extracted chromatogram for pharmaceuticals in Group 1. Three time segments were used in this chromatographic separation.

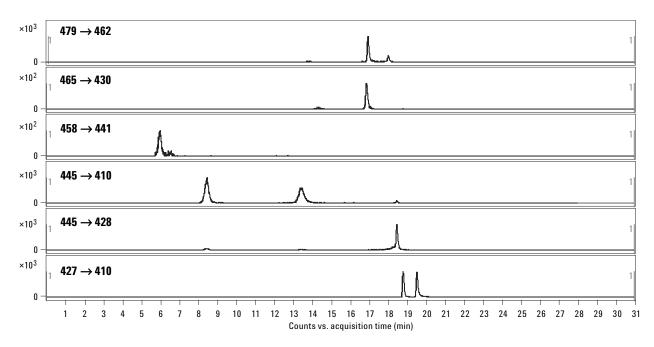


Figure 1B. MRM extracted chromatogram for pharmaceuticals in Group 2. Only one transition shown. See Table 2B for compound identification.

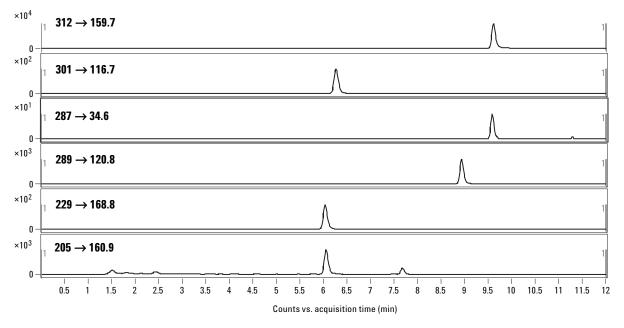


Figure 1C. MRM extracted chromatogram for pharmaceuticals in Group 3. Only one transition shown. See Table 2C for compound identification.

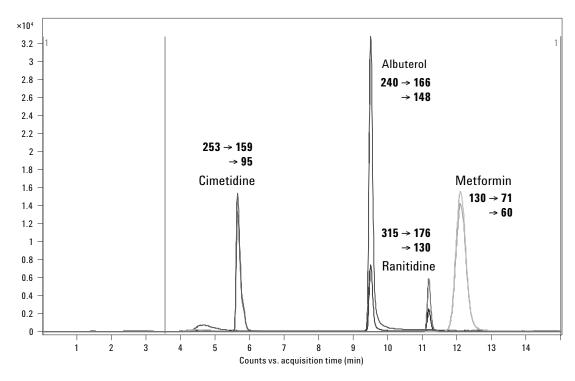


Figure 1D. MRM extracted chromatogram for pharmaceuticals in Group 4.

Application to Wastewater Samples

To confirm the suitability of the method for analysis of real samples, matrix-matched standards were analyzed in a wastewater matrix from an effluent site, at eight concentrations (0.1, 0.5, 1, 5, 10, 50, 100, and 500 ng/mL or ppb concentrations). Figure 2 shows an example standard curve for acetaminophen in the wastewater matrix. In general, all compounds gave linear results with excellent sensitivity over three orders of magnitude, with r^2 values of 0.99 or greater.

Elle Edit View Analyze Method Update Report Tools Help

🗅 🗁 🛃 📭 🂭 Analyze Batch | 🕢 🗄 Layout: 🖽 🔢 🔛 🗛 🧭 Restore Default Layout

Batch Table

Sample Acetamin		in_ Acetaminophen Results												
•	9	Name	Type	Level /	Acq. Date-Time	Data Path	Exp. Conc.	RT	Resp.	S/N	MI	Calc. Conc.	Final Conc.	Accuracy
0	8	1	Blank		6/25/2008 4:17 PM	D:\MassHunter\Data\PPCP_EPA Method\Blank WW Matrix_Group 1.d		3.183	709	3.86	Г	0.0000	0.0000	
0	4		Cal	1	6/25/2008 4:59 PM	D:\MassHunter\Data\PPCP_EPA Method\0.1 ppb WW Matrix_Group 1.d	0.1000	3.120		2.49	Г	0.0000	0.0000	0.0
0	Y		Cal	2	6/25/2008 5:41 PM	D:\MassHunter\Data\PPCP_EPA Method\0.5 ppb WW Matrix_Group 1.d	0.5000	3.148	765	5.76		0.1796	0.1796	35.9
0	P		Cal	3	6/25/2008 6:22 PM	D:\MassHunter\Data\PPCP_EPA Method\1 ppb WW Matrix_Group 1.d	1.0000	3.152		2.01		0.1273	0.1273	
0			Cal	4	6/25/2008 7:04 PM	D:\MassHunter\Data\PPCP_EPA Method\5 ppb W/W Matrix_Group 1.d	5.0000	3.138	1895	8.06		5.7784	5.7784	
0			Cal	5	6/25/2008 7:46 PM	D:\MassHunter\Data\PPCP_EPA Method\10 ppb WW Matrix_Group 1.d	10.0000	3.133	2863	13.98		10.5797	10.5797	105.8
0			Cal	6	6/25/2008 8:28 PM	D:\MassHunter\Data\PPCP_EPA Method\50 ppb WW Matrix_Group 1.d	50.0000	3.142	11147	29.56		51.6506		103.3
EQ8	1		Cal	7	6/25/2008 9:09 PM	D:\MassHunter\Data\PPCP_EPA Method\100 ppb WW Matrix_Group 1.d	100 0000	3.140	20716	51.76		99.0890	99.0890	99.1

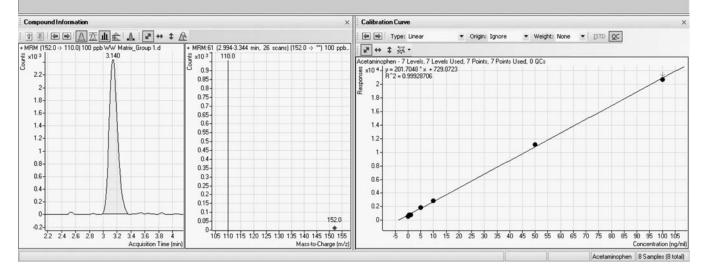


Figure 2. Calibration curve for acetaminophen in a wastewater matrix using a seven-point curve from 0.1 to 100 ng/mL (ppb) using a linear fit with no origin treatment.

Finally, a "blank" wastewater sample was analyzed and the presence of two pharmaceuticals, carbamazepine and diphenhydramine, could be confirmed with two MRM transitions. Figure 3 shows the ion ratios qualifying for these two compounds in a wastewater extract. As shown in Figure 3 in the two ion profiles, both pharmaceuticals were easily identified in this complex matrix due to the selectivity of the MRM transitions and instrument sensitivity. _ & ×

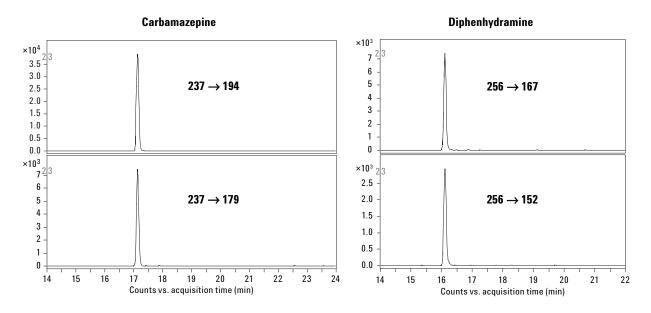


Figure 3. MRM chromatograms of a wastewater sample for carbamazepine and diphenhydramine using two transitions.

Conclusions

The results of this study show that the Agilent 6410A Triple Quadrupole is a robust, sensitive, and reliable instrument for the study of pharmaceuticals in water samples, using high throughput methods. The Agilent 6410A Triple Quadrupole has been shown to be a successful instrument for the implementation of EPA Method 1694.

References

 EPA Method 1694: Pharmaceuticals and personal care products in water, soil, sediment, and biosolids by HPLC/MS/MS, December 2007, EPA-821-R-08-002.

www.agilent.com/chem

Agilent shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this material.

Information, descriptions, and specifications in this publication are subject to change without notice.

© Agilent Technologies, Inc., 2008 Printed in the USA September 19, 2008 5989-9665EN

