


Analysis of Water-Soluble Vitamins by HPLC

Udo Huber

Pharmaceutical

Vitamins are compounds, which are necessary to maintain a healthy and properly functioning human organism. A few milligrams a day are enough to regulate the utilization of nutrients, such as carbohydrates, fats, proteins and minerals. Usually vitamins are supplied in food.

Figure 1 shows the HPLC chromatogram of the eleven water-soluble vitamins pyridoxamine (B_6) , thiamine (B_1) , niacinamide, pyridoxal (B_6) , pyridoxine (B_6) , aminobenzoic acid, pantothenic acid, folic acid, riboflavin (B_2) , biotin and thiotic acid using gradient analysis on a reversed phase column and UV detection. The autosampler temperature was set to 4 °C to avoid decomposition of the samples.

Conditions

Column

4.6 x 75 mm Zorbax SB-C18, 3.5 µm Mobile phase $A = 0.05M KH_2PO_4$ in water (pH = 2.5), B = acetonitrileFlow rate 1.0 ml/min Gradient at 0 min 0.6 % B at 0.5 min 0.6 % B at 4 min 6 % B at 12 min 30 % B at 17 min 60 % B **Column** wash at 19 min 60 % B at 20 min 0.6 % B **UV** detector variable wavelength detector 204 nm, standard cell **Column compartment temperature** 15 °C Stop time 20 min Post time 10 min **Injection volume** 5 µl

Agilent Technologies Innovating the HP Way

HPLC Performance

Compound	LOD for S/N=2 (mg/l)*	Precision of RT (RSD of 10 runs) (250 mg/l)*	Precision of Area (RSD of 10 runs) (250 mg/l)*
Pyridoxamine	0.3	0.09	0.17
Thiamine	0.7	0.23	0.90
Niacinamide	0.7	0.22	0.28
Pyridoxale	0.3	0.36	0.28
Pyridoxine	0.3	0.39	0.13
Aminobenzoic			
acid	0.4	0.13	0.14
Pantothenic acid	2.5	0.07	0.34
Folic acid	0.7	0.08	0.15
Riboflavin	0.7	0.05	1.04
Biotin	6.0	0.05	0.33
Thiotic acid	6.0	0.04	1.50

* Injection volume: 5 µl

The performance of the HPLC method is shown in the table above.

The HPLC method presented here shows an easy but reliable and precise analysis of the water-soluble vitamins pyridoxamine (B_6) , thiamine (B_1) , niacinamide, pyridoxal (B_6) , pyridoxine (B_6) , aminobenzoic acid, pantothenic acid, folic acid, riboflavin (B_2) , biotin and thiotic acid. The values for LOD, precision of RT and precision of area show the good performance of the analysis.

Equipment

Agilent 1100 Series

- Quaternary pump (includes vaccum degasser)
- Thermostatted autosampler
- Thermostatted column
 compartment
- Variable wavelength detector, standard flow cell 10-mm path length, 13-µl cell volume
 Alternative:

• Binary pump

- Vacuum degasser
- Diode array detector standard flow cell 10-mm path length, 13-µl cell volume
- Agilent ChemStation + 3D software

Columns

- Zorbax SB-C18, 3. 5 μm,
 4.6 x 75 mm (Agilent part number 866953-902)
- Recommended: Guard cartridges Zorbax SB-C18, 5 µm, 4.6 x 12.5 mm (Agilent part number 820950-920, 4/pk)

Note:

Since the method was specifically developed on the Agilent 1100 Series system you might not be able to reproduce this analysis on an older system or even on a new system with lower performance. To avoid sample decomposition it is necessary to use a cooled autosampler, for example, the Agilent 1100 Series thermostatted autosampler.

© Copyright 1998 Agilent Technologies Released 12/98 Publication Number 5968-2971E

Agilent Technologies