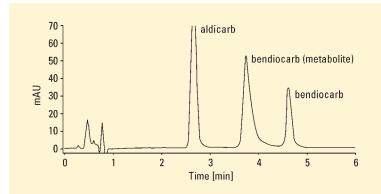


Analysis of Bendiocarb and Metabolite by HPLC

Rainer Schuster

Environmental


Abstract

The bendiocarb insecticide can be extracted from soil either with Soxhlet equipment or by ultrasonic treatment in solution and from water by either a liquid–solid or a liquid–liquid technique.

Separation

Figure 1 shows the separation on a 2.1 mm internal diameter Hypersil ODS column. A constant oven temperature of 40 °C is important here.

- UV-visible detection
- Diode-array detection—for simultaneous multiple wave-lengths and peak identity confirmation by spectra.

Figure 1

Separation of a 20 μl injection containing aldicarb, bendiocarb and metabolite monitored at 212 nm

Conditions

Column 100 x 2.1-mm Hypersil ODS C18, 5 μm **Mobile phase** Water–acetonitrile (65:35 isocratic mixture)

Flow rate

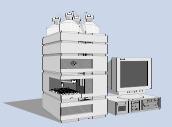
0.36 ml/min **Temperature**

40 °C

Detection 212 nm (16 nm bandwidth) reference 450 nm (100 nm bandwidth)

Diode array detector performance Detection limit 4 µg/l (without sample enrichment

Agilent Technologies Innovating the HP Way


Sample preparation

Narrow-bore technology for lowest solvent consumption and highest sensitivity.

Equipment

Agilent 1100 Series

- binary pump
- autosampler
- thermostatted column compartment
- diode array detector Agilent ChemStation + software

Rainer Schuster is application chemist at Agilent Technologies, Waldbronn, Germany.

For more information on our products and services, visit our worldwide website at http://www.agilent.com/chem

© Copyright 1997 Agilent Technologies Released 10/97 Publication Number 5966-1876E

Agilent Technologies Innovating the HP Way