

Analysis of Acidulants in White Wine using HPLC

Angelika Gratzfeld-Huesgen

Food

Abstract

Sorbic acid and citric acids are commonly used as acidulants¹ and/or as preservatives. Acetic, propionic, succinic, adipic, lactic, fumaric, malic, tartaric, and phosphoric acids can serve as acidulants as well. Acidulants are used for various purposes in modern food processing. For example, citric acid adds a fresh, acidic flavor, whereas succinic acid gives food a more salty, bitter taste. In addition to rendering foods more palatable and stimulating, acidulants act as

- flavoring agents to intensify certain tastes and mask undesirable aftertastes
- buffering agents to control the pH during food processing and of the finished products
- preservatives to prevent growth of microorganisms
- synergists to antioxidants to prevent rancidity and browning
- · viscosity modifiers in baked goods
- · melting modifiers in cheese spreads and hard candy
- · meat curing agents to enhance color and flavor

Figure 1 Analysis of acidulants in white wine

Conditions

Column

300 [~] 7.8 mm BioRad HPX 87-H, 9 μm **Mobile phase** 0.0035M H₂SO₄ isocratic **Flow rate** 0.6 ml/min **Column compartment** 65 °C

Injection vol 10 µl Detector

UV-VWD detection wavelength 192 nm or 210 nm

Sample preparation Filtration

Agilent Technologies Innovating the HP Way

Sample preparation

Sample preparation depends strongly on the matrix to be analyzed, but in general steam distillation and solid-phase extraction techniques can be used.

Chromatographic conditions

High-performance liquid chromatography (HPLC) with UV-visible diode-array detection (UV-DAD) has been applied in the analysis of citric acid in wine and in a vodka mixed drink. Retention time and spectral data were used as identification tools.

HPLC method performance

Limit of detection

100ng injected amount, S/N = 2 equivalent to 2 ppm with 50 μ l injected volume

Repeatability of

RT over 10 runs <0.1% areas over 10 runs <3 %

Figure 2 Analysis of citric acid in vodka

References

1.

Official Methods of Analysis, Food Compositions; Additives, Natural Contaminants, 15th ed; AOAC: Arlington, VA, 1990, Vol. 2.; Official Method AOAC 986.13: quinic, malic, citric acid in cranberry juice cocktail and apple juice.

Agilent Technologies

Innovating the HP Way

Conditions

Sample preparation filtration Column 300 ~ 7.8 mm BioRad HPX 87-H, 9 μm Mobile phase 0.007M H₂SO₄ isocratic Flow rate 0.6 ml/min Column compartment 65 °C Injection vol 10 μl Detector UV-DAD

Equipment

Agilent 1100 Series

- degasser
- isocratic pump
- autosampler
- thermostatted column compartment
- diode array detector, variable wavelength detector

or refractive index Agilent ChemStation + software

Angelika Gratzfeld-Huesgen is application chemist at Agilent Technologies, Waldbronn, Germany.

For more information on our products and services, visit our worldwide website at http://www.agilent.com/chem

© Copyright 1997 Agilent Technologies Released 09/97 Publication Number 5966-0627E