

ABgene A.S.P. 50

Device Driver User Guide

Notices

© Agilent Technologies, Inc. 2008-2009

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws

User Guide Part Number

G5415-90009

July/2007

Contact Information

Agilent Technologies Inc. Automation Solutions 5301 Stevens Creek Blvd. Santa Clara, CA 95051 USA

Technical Support: 1.800.979.4811 or +1.408.345.8011 service.automation@agilent.com

Customer Service: 1.866.428.9811 or +1.408.345.8356 orders.automation@agilent.com

European Service: +44 12081443513 euroservice.automation@agilent.com

Documentation feedback: documentation.automation@agilent.com

Web: http://www.agilent.com

Acknowledgements

Microsoft and Windows are registered trademarks of the Microsoft Corporation in the United States and other countries.

Warranty

The material contained in this document is provided "as is," and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract. Software is delivered and licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies' standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than Restricted Rights as defined in FAR 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14

(June1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

Safety Noticies

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

A **CAUTION** notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a **CAUTION** notice until the indicated conditions are fully understood and met.

Letter to our Customers

Dear Customer,

The Agilent Technologies acquisition of Velocity11 resulted in the following changes:

- Creation of Agilent Technologies Automation Solutions, formerly Velocity11
- Renaming of some Velocity11 products
- New Customer Service and Technical Support contact information
- New website address for product information

Please make a note of the following changes as they impact this user guide.

Velocity11 product name changes

Velocity11 product name	Changes to
Access2 Automated Microplate Loader	Automated Centrifuge Loader
Element Automation System	BioCel 900 System
IWorks Device Driver Programming Interface	VWorks DCL Interface
PlatePierce Seal Piercing Station	Microplate Seal Piercer
VCode Barcode Print and Apply Station	Microplate Barcode Labeler
Velocity11 Robot	3-Axis Robot
VHooks Integration Interface	VWorks Hooks Interface
VPrep Pipetting System	Vertical Pipetting Station
VSpin Microplate Centrifuge	Microplate Centrifuge
VStack Labware Stacker	Labware Stacker
-	

New contact information

Documentation feedback: documentation.automation@agilent.com

Technical Support: 1.800.979.4811 or +1.408.345.8011

service.automation@agilent.com

Customer Service: 1.866.428.9811 or +1.408.345.8356

orders.automation@agilent.com

European Service: +44 12081443513 euroservice.automation@agilent.com

Web: http://www.agilent.com

Contents

Chapter 1. Introduction	 	 	1
Who should read this guide		 	2
About Velocity11 user guides	 	 	3
What this guide covers	 	 	6
About devices	 	 	8
About device drivers	 	 	9
Installing device drivers	 	 	. 11
Adding devices			
About diagnostics	 	 	. 14
Opening diagnostics		 	. 15
About profiles		 	. 18
Setting the properties for a device	 	 	. 19
Adding and linking Sub Process tasks	 	 	. 22
Using JavaScript to set task parameters	 	 	. 25
About reader output files	 	 	. 27
About device initialization			
Chapter 2. ABgene A.S.P. 50		 	. 31
Workflow for configuring the A.S.P. 50			
Creating an A.S.P. 50 profile			
Setting A.S.P. 50 task parameters			
Managing A.S.P. 50 profiles			
Operating the A.S.P. 50 with diagnostics			
Indov			44

Table of Contents

ii

ABgene A.S.P. 50 Device Driver User Guide

Introduction

This chapter introduces Velocity11 device driverss and provides some basic procedures that are needed to use them.

A Velocity11 device drivers is software that plugs into VWorks or BenchWorks software to allow them to control a specific device.

Before reading this guide, you should be familiar with the VWorks or BenchWorks software user interface. Information about using VWorks or BenchWorks software can be found in the *VWorks User Guide* or *BenchWorks Automation Control User Guide*.

To set up and use Velocity11 device driverss, become familiar with the content in this guide as well as the guides for the devices that use VWorks or BenchWorks software.

1111	This enapter contains the following topics.		
	"Who should read this guide" on page 2		
	"About Velocity11 user guides" on page 3		
	"What this guide covers" on page 6		
	"About devices" on page 8		
	"About device drivers" on page 9		
	"Installing device drivers" on page 11		
	"Adding devices" on page 12		
	"About diagnostics" on page 14		
	"Opening diagnostics" on page 15		
	"About profiles" on page 18		
	"Setting the properties for a device" on page 19		
	"Adding and linking Sub Process tasks" on page 22		
	"Using JavaScript to set task parameters" on page 25		
	"About reader output files" on page 27		
	"About device initialization" on page 29		

This chapter contains the following topics:

Who should read this guide

Job roles

This user guide is for people with the following job roles:

Job role	Responsibilities	
Integrator	Someone who writes software and configures hardware controlled by device drivers.	
Lab manager, administrator, or	Someone who is responsible for:	
technician	☐ Installing device drivers	
	☐ Managing device drivers	
	 Developing the applications that are run using device drivers 	
	☐ Solving the more challenging problems that might arise	
	 Developing training materials and standard operating procedures for operators 	
Operator	Someone who performs the daily production work using the device drivers and solves routine problems.	
	Your organization may choose to create its own procedures for operators including the procedures in this guide.	

For information about	See
Contacting Velocity11	http://www.velocity11.com/contact.html
Accessing online help	"About Velocity11 user guides" on page 3
Device drivers	"About device drivers" on page 9

About Velocity11 user guides

About this topic

This topic describes the different formats of Velocity11 user information and explains how to access the user information.

Formats available

Velocity11 user information is provided to you as:

Online help

☐ A PDF file

☐ A printed book

The information in each format is the same but each format has different benefits.

Where to find user information

Online help

The online help is added to your computer with the Velocity11 lab automation system software installation.

PDF file

The PDF file of the user guide is on the software CD that is supplied with the product.

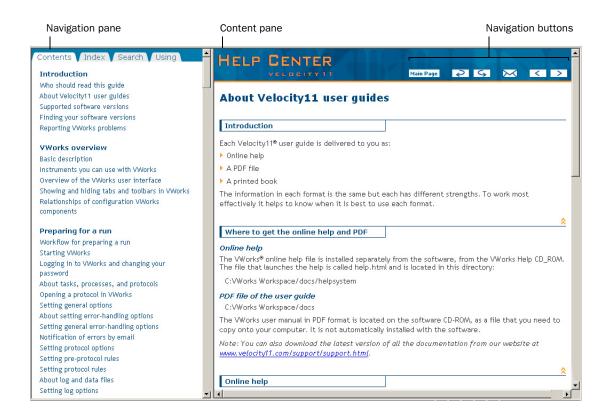
Velocity11 website

You can search the online help or download the latest version of any PDF file from the Velocity11 website at www.velocity11.com.

Note: All Velocity11 user information can be searched from the website at www.velocity11.com.

Online help

The online help is the best format to use when you are working at the computer and when you want to perform fast or advanced searches for information.


To open the online help:

1. In the Velocity11 lab automation software, press F1. The online help window opens.

Main features

The online help window contains the following:

- ☐ Navigation pane. Consists of four tabs. The Contents, Index, and Search tabs provide different ways to locate information. The Using tab contains information about using the help system.
- ☐ *Content pane.* Displays the online help topics.
- ☐ *Navigation buttons*. Enables you to navigate through the pages. The online help includes a navigation pane, content pane, and navigation buttons.

PDF user guides

Computer requirements

To open a user guide in PDF format, you need a PDF viewer. You can download a free PDF viewer from the internet.

Printing and searching

The user guides in PDF format are mainly for printing additional copies. You can perform simple searches in the PDF file, although these searches are much slower than online help searches.

More information

For more information about using PDF documents, see the user documentation for the PDF viewer.

For information about	See
Who this guide is for	"Who should read this guide" on page 2
What's in this guide	"What this guide covers" on page 6

For information about	See
Device driver plug-ins	"About device drivers" on page 9

What this guide covers

About this topic This topic presents an overview of what procedures and information are provided in this user guide. This guide explains how to: ☐ Install the driver for the device ☐ Configure the device in the device manager ☐ Set and use the tasks associated with the device ☐ Use *Device* Diagnostics Also read Information about device driverss not covered in this guide and about running VWorks or BenchWorks software can be found in the VWorks User Guide or the BenchWorks Automation Control User Guide. **Driver version** To find version information for a driver in VWorks: 1. Start VWorks. 2. Click **Help** and select **About VWorks**. The **About VWorks** dialog box lists the version numbers of all the current software for all the devices and plug-ins. To find version information for a driver in BenchWorks: 1. Start BenchWorks. 2. Click Help and select About BenchWorks. The **About BenchWorks** dialog box lists the version numbers of all the current software for all the devices and plug-ins. Firmware version Some devices have firmware installed on them. Because each device is different, the version number may not be the same for all devices. To find version information for device firmware: 1. Open **Device Diagnostics** dialog box. 2. Click **About**. The **About Device Control** message box appears displaying the current version of firmware. What this guide does This guide does not cover the following: not cover ☐ The operation of the device ☐ The operation of VWorks or BenchWorks software ☐ Velocity11 devices, such as the PlateLoc Sealer, VCode Microplate Labeler, and VPrep Pipettor when used in stand-alone mode

VWorks or BenchWorks compatibility

If you have purchased a device drivers plug-in and are installing it yourself, check with the Velocity11 Technical Support to be sure your version of VWorks or BenchWorks software and the device drivers plug-in are using the same version of IWorks software.

BenchWorks versions

Device driver plug-ins used with BenchWorks software may not include some newer features that were specifically added for use with VWorks software and that are described in this manual.

For information about	See
Who this guide is for	"Who should read this guide" on page 2
User documentation	"About Velocity11 user guides" on page 3
Device driver plug-ins	"About device drivers" on page 9

About devices

About this topic

This topic presents a definition of a Velocity11 device and the device

Read this topic if you are unfamiliar with Velocity 11 devices and VWorks or BenchWorks software.

Device defined

A device is an item on your lab automation system that has an entry in the device manager. A device can be a robot, an instrument, or a location on the lab automation system that can hold a piece of labware.

Examples of devices:

11	Velocity11	robot

- ☐ PlateLoc Thermal Plate Sealer
- ☐ Labcyte Echo550
- ☐ Platepad
- ☐ VPrep shelf
- Waste

Device file defined

The data entered into the device manager and saved as a device file contains the configuration information for your devices.

Device file location

Device files have the file name format *file name*.dev and are stored in the folder location that you specify when saving the file.

For information about	See
Device diagnostics	"About diagnostics" on page 14
Device profiles	"About profiles" on page 18
Adding a device to the device manager	"Adding devices" on page 12

About device drivers

About this topic This topic describes what device driverss are and what they do. Velocity 11 device driverss enable mechanical devices or software programs to work with VWorks or BenchWorks software. Read this topic if you are: ☐ An administrator in charge of installing device driverss and managing Velocity11 devices ☐ A lab automation system integrator who writes software and configures hardware controlled by VWorks or BenchWorks software **Device driver** A Velocity 11 device drivers enables VWorks or BenchWorks software to defined control and communicate with the specific type of device. Each type of device that you operate with VWorks or BenchWorks software requires a device driver. For example, VWorks software uses the: ☐ VPrep Pipettor device driver to communicate with the Velocity11 VPrep Pipettor device ☐ Softmax Reader device driver to communicate with Molecular Devices readers **Plug-in defined** A plug-in is a software program that when added to another program extends it. Plug-in device Some device drivers are incorporated directly into the VWorks or BenchWorks software application. Other device drivers are distributed drivers as plug-ins. All the device drivers covered in this guide are the plug-in type. Advantages of distributing device drivers as plug-ins are: ☐ You only need to install the plug-ins for the devices you use ☐ When new plug-ins become available, they can be easily added. There is no need to re-install the VWorks or BenchWorks software application **IWorks interface** The device drivers plug-ins and VWorks or BenchWorks software use

The device drivers plug-ins and VWorks or BenchWorks software use IWorks software as a common interface to communicate with each other. Using a common interface allows the creation of a device drivers plug-in without the necessity of changing the software.

!! IMPORTANT !! Both VWorks or BenchWorks software and the device drivers must be using the same version of IWorks to work properly.

Writing your own device drivers

If you are a lab automation system integrator who writes software and configures hardware controlled by VWorks or BenchWorks software, you can write your own driver plug-in for a new device. Contact the Velocity11 Technical Support for information about how to do this.

What functions do the device driverss provide?

Once installed, the following items are enabled:

☐ Tasks associated with the device.

Device-specific tasks appear in the Protocol Tasks list and are available for use in protocol editor processes.

☐ Task parameters associated with the device.

Device-specific task parameters appear in the Protocol Task Parameters toolbar. These determine the conditions with which to execute the tasks of the device.

☐ Diagnostic commands specific to the device.

Device-specific diagnostic commands and options appear in the *Device* Diagnostics dialog box. These commands enable direct control of the device.

For information about	See
Adding a device to the device manager	"Adding devices" on page 12
Opening diagnostics	"Opening diagnostics" on page 15
Installing a device drivers	"Installing device drivers" on page 11
Devices	"About devices" on page 8

Installing device drivers

About this topic

Devices are integrated into VWorks or BenchWorks software using device drivers plug-ins. Plug-ins need to be installed before the device can be configured and used.

This topic describes how to install device driverss if they are not already installed on your system. Read this topic if you are an administrator in charge of managing Velocity11 devices.

Procedure

To install device driverss:

- 1. Insert the device drivers installation disc into the CD-ROM of the computer running VWorks or BenchWorks software.
- 2. Follow the on-screen instructions for installation, selecting the default values when available.
- 3. When finished, exit VWorks or BenchWorks software.
- 4. Log off Windows and restart your computer.
- 5. Start VWorks or BenchWorks software.

For this application	The default location for the device drivers is
VWorks software	C:\VWorks Workspace\bin\plugins
BenchWorks software	C:\Program Files\Velocity11\BenchWorks\plugins

For information about	See
Device drivers	"About device drivers" on page 9
Opening diagnostics	"Opening diagnostics" on page 15

Adding devices

About this topic

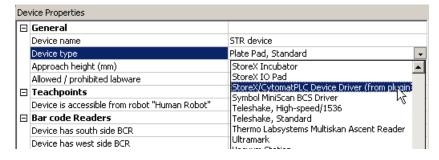
To configure your lab automation system to use a device, you need to add it to a device file in VWorks or BenchWorks software. The VWorks or BenchWorks software device manager uses the information in the device file to communicate and operate the device within the automation system.

This topic describes how to:

☐ Create a new device file	(if one does not already exist)
----------------------------	---------------------------------

☐ Add devices

☐ Save the device file


Read this topic if you are an administrator in charge of managing Velocity 11 devices.

Procedure

To add devices to a device file:

- 1. Make sure that the devices are physically networked to the VWorks or BenchWorks software computer and turned on.
- 2. Start VWorks or BenchWorks software and login as an Administrator.
- 3. Do one of the following:
 - ◆ If you have an existing device file that you want to add to, select File > Device File, click Open, and select your device file.
 - ◆ If you are creating a new device file, select **File > Device File** and click **New**.
- 4. Click the **Device Manager** tab.
- 5. Click **New device** in the **Device List** toolbar and enter a name for the device you are adding.
- 6. In the device manager, set the **Device type**.

The default type is **Plate Pad, Standard**.

7. Repeat step 5 and step 6 for each device.

8. Select File > Device File > Save.

If you are creating a new device file, you are prompted to enter a name for your device file.

Alternatively, you can select ${f File} > {f Save ~All}$. This saves the device file and the current protocol file at the same time.

For information about	See
Device drivers	"About device drivers" on page 9
Setting generic device properties	"Setting the properties for a device" on page 19
Adding a sub-process to a protocol	"Adding and linking Sub Process tasks" on page 22
Opening diagnostics	"Opening diagnostics" on page 15

About diagnostics

About this topic

This topic presents an overview of diagnostics software.

Read this topic if you need to set up or troubleshoot a device running VWorks or BenchWorks software.

Background

Devices can be controlled in real time directly through the VWorks or BenchWorks software Diagnostics using simple commands.

Diagnostics software is used for:

	Troubleshooting
_	Honnieghoomi

	Setting	teachn	ointe
u	Semne	teachd	omus

- Performing manual operations outside a protocol
- ☐ Creating and editing profiles

For example, if an error occurs during a run that leaves a plate and the robot where they should not be, you can use robot diagnostics to move the plate and return the robot to its home position.

Types of diagnostics software

Devices and robots manufactured by Velocity11 include their own diagnostics software. You can find instructions for using this software in the relevant user guide.

For information about	See
Opening diagnostics	"Opening diagnostics" on page 15
Adding a device to the device manager	"Adding devices" on page 12
Device drivers	"About device drivers" on page 9
The definition of devices	"About devices" on page 8

Opening diagnostics

About this topic

Every device has diagnostics software to assist you with troubleshooting and setting up the device. This topic describes how to open a device's diagnostics in VWorks or BenchWorks software.

Read this topic if you need to access a device's diagnostics to perform a device setup task or manually operate a device.

Procedure 1 If you are using VWorks4 software

To open Diagnostics:

1. Click **Diagnostics** on the Control toolbar.

2. In the device file's window, select the device. Expand the general name of the device, if necessary.

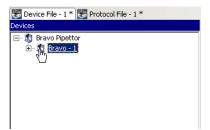
3. Click **Device diagnostics** located at the bottom of the window. The device's diagnostics dialog box opens.

If you are using VWorks3 or BenchWorks software

To open Diagnostics:

1. Click **Diagnostics** on the Control toolbar.

2. In the **Diagnostics** window, select thedevice. Expand the general name of the device, if necessary.



3. Click **Device diagnostics**. The device's diagnostics dialog box opens.

Procedure 2 If you are using VWorks4 software

To open Diagnostics:

- 1. Click the **Device File** tab.
- Select the device from the **Devices** toolbar.
 Expand the general name of the device, if necessary.

3. Click **Device diagnostics** located at the bottom of the **Devices** toolbar.

The device's diagnostics dialog box opens.

If you are using VWork3 or BenchWorks software

To open Diagnostics:

- 1. Click the **Device Manager** tab.
- 2. Select the device from the **Device List** toolbar. Expand the general name of the device, if necessary.

3. Click **Device diagnostics** located at the bottom of the **Device List** toolbar.

The device's diagnostics dialog box opens.

For information about	See
Diagnostics	"About diagnostics" on page 14
About device driverss	"About device drivers" on page 9
Adding a device to the device manager	"Adding devices" on page 12
Setting generic device properties	"Setting the properties for a device" on page 19

About profiles

About this topic

This topic describes what profiles are and what they do.

Read this topic if you are an administrator in charge of managing Velocity 11 devices.

Profiles defined

A profile contains the initialization settings needed for communication between a device and device drivers. The data in a profile is used by VWorks or BenchWorks software to identify each device on the network.

A profile can also contain other basic settings that you are unlikely to change once set up.

Because profiles identify device drivers devices on the network, each device drivers device must have its own profile.

You can create, modify, and delete profiles as needed.

Stored settings

Profiles are stored in the Windows registry.

The settings stored in a device driver profile include:

- ☐ Whether the device is connected using serial or Ethernet
- ☐ If the device is connected using Ethernet, the Device ID of the device on the network
- ☐ If the device is connected using serial, the COM port that the controlling computer uses for communication
- ☐ Configuration of accessories

For information about	See
Device drivers	"About device drivers" on page 9
Adding a device to the device manager	"Adding devices" on page 12
Opening device diagnostics	"Opening diagnostics" on page 15

Setting the properties for a device

About this topic

The device properties provide VWorks or BenchWorks software with additional information about the device's current configuration, such as which profile to use, and stores the information in the device file. The device file is automatically loaded when you open a protocol.

The device properties need to be set when configuring the device. Typically, these properties only need to be set once. This topic describes how to set the following device properties:

	•
l L Genera	٩l

_		
	T 1	
	IDACHN	าเทเ
_	Teachbo	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

■ Barcode

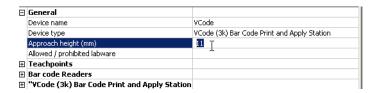
- ☐ Location (for devices with multiple teachpoints)
- ☐ *Device* Properties

Read this topic if you are an administrator in charge of managing Velocity11 devices.

Before you start

Make sure that you have installed the device driver plug-in and have added the device to the device manager.

See "Related information" for procedures on how to do these tasks.

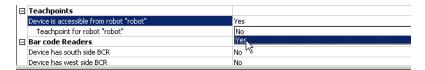

Setting general properties

To set the general properties for a device:

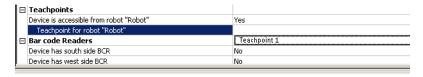
- 1. Click the **Device Manager** tab.
- 2. Select the device from the **Device List** toolbar. (Expand the device name, if necessary.)

Note: For devices with **Locations**, see "Setting location properties" on page 20. If no Locations, continue with step 3.

- 3. In the **General** group, set the following:
 - a. **Approach height**. This is the height to raise the robot gripper above the teachpoint when the robot moves the plate horizontally towards or away from it.


- b. **Allowed/prohibited labware**. Click the adjacent field to open the dialog box. Move the labware classes by selecting them and clicking one of the arrow buttons.
- 4. In the *Device* Properties, select the desired profile if it is not already selected.
- 5. Select **File > Device File > Save** to save the changes to the device file.

Setting teachpoints


Teachpoints are the coordinates in space that a robot travels to in order to interact with a device. Only the devices that are accessible by robots are able to have teachpoints.

To set the teachpoint properties:

- 1. Open the **Device Properties** page.
- 2. In the **Teachpoints** property group, set the following:
 - a. Device is accessible from robot robot's name. Choose Yes or No.

b. **Teachpoint for robot** *robot's name*. Choose a file.

Setting barcode location

If your device has a barcode reader, indicate where the reader is located.

To set the barcode readers property:

1. In the **Barcode Readers** property group, set the side that has the barcode to **Yes**.

Bar code Readers	
Device has south side BCR	Yes
South side BCR COM port	
Device has west side BCR	No
Device has north side BCR	No
Device has east side BCR	No

2. Enter the number of the COM port to which the device is connected.

Setting location properties


Note: The options available under Location groups might differ for software and hardware device drivers. Software devices do not have robot-accessible labware positions.

For hardware devices that have more than one robot-accessible labware position, the approach height, allowable/prohibited labware, teachpoint, and barcode properties are located under Location groups.

To set the Location properties:

- 1. *Hardware device drivers only.* Set the **Use linked location**. Follow the procedure in "Setting the Use linked location" on page 21.
- 2. *Hardware device drivers only* Set the **Teachpoints**. Follow the procedure in "Setting teachpoints" on page 20.

- 3. *Some software device drivers only.* Set the **Approach height** and **Allowed/prohibited labware**. Follow the procedure in "Setting general properties" on page 19.
- 4. Set the **Barcode Readers** location. Follow the procedure in "Setting barcode location" on page 20.
- 5. Assign the **Labware** used by the location by selecting the correct labware type from the list.

- In the *Device* Properties, select the desired profile if it is not already selected.
- 7. Select **File > Device File > Save** to save the changes to the device file.

Setting the Use linked location

Currently, this feature is enabled for the special situations in which there is a storage device such as a PlateHub Carousel, StoreX, or Cytomat and a robot, such as the Velocity11 Translator robot that is shuttling plates between systems.

To use this feature, select yes and then select the device location to which you want to link. This tells the software that the current device location is the same physical location as the device selected from the Device to use list.

Note: Selecting this option when it is not enabled will have no effect on the system.

For information about	See
Device drivers	"About device drivers" on page 9
Installing a device drivers plug-in	"Installing device drivers" on page 11
Profiles	"About profiles" on page 18
Adding a device to the device manager	"Adding devices" on page 12
Opening diagnostics	"Opening diagnostics" on page 15

Adding and linking Sub Process tasks

About this topic

This topic describes how to add a sub-process to a protocol and configure it. Read this topic if you are an administrator or technician and are responsible for creating protocols in VWorks or BenchWorks software.

Before you read this

Before you read this topic, become familiar with the topics in the *VWorks User Guide* or *BenchWorks Automation Control User Guide* describing what a protocol is and how it is created.

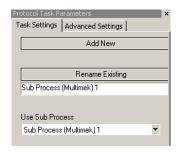
Sub Process task defined

Sub Process tasks indicate the existence of a subroutine within a protocol. Sub-processes typically contain a series of liquid handling tasks used by devices such as the VPrep Pipettor or Multimek dispenser.

Adding a Sub Process task

The first step in creating a pipette process is to add a Sub Process task to the protocol editor. Drag the Sub Process icon into the process.

Setting Sub Process task parameters


When you add the Sub Process task, a new sub-process is started in the pipette process editor. This process is identified by its sub-process link icon.

Because you can have more than one sub-process in a protocol, you must link the Sub Process task to the correct sub-process.

To link the Sub Process task to the correct sub-process:

- 1. In the **Protocol Editor**, add a Sub Process task to the protocol and then select it in the protocol sequence.
- 2. In the **Protocol Task Parameters** toolbar, select the sub-process that you want to use for this pipetting task from the **Use Sub Process** list.

3. If there is only one sub-process and you need to create a second one, click **Add New**.

Associating the subprocess to a device

Because you can have more than one device that uses sub-processes on a lab automation system, you must link each sub-process link icon with one or more devices that you want the sub-process to be able to use. You do this by setting the parameter for the sub-process link icon.

To link a Sub Process task to a device:

1. In the **Pipette Process Editor**, select the **Sub Process** link icon.

2. In the **Available devices** list of the **Pipette Task Parameters** toolbar, select one or more pipettors to link to and click **Add**.

The selected pipettors move to the lower box and become available for use.

For information about	See	
Device drivers	"About device drivers" on page 9	
Setting common device properties	"Setting the properties for a device" on page 19	
Adding a device to the device manager	"Adding devices" on page 12	
Creating protocols	☐ VWorks User Guide ☐ BenchWorks Automation Control User Guide	

Using JavaScript to set task parameters

About this topic

JavaScript programs (scripts) can be used to change the parameters of a protocol task immediately before it is scheduled. This extends the capability of VWorks or BenchWorks software because the parameters can be changed dynamically during a run, based on the following:

- ☐ Information passed from an external source, such as a database
- ☐ The number of times the protocol has cycled
- ☐ Feedback on changing conditions during the run

This topic describes the use of JavaScript to set task parameters in a protocol.

Read this topic if you are an administrator or technician responsible for creating VWorks or BenchWorks software protocols and want to add functionality to a task using JavaScript.


Where scripts are written

Scripts can be written in two ways:

- ☐ Directly into the box in the Advanced Settings tab of the Task Parameters toolbar
- As an external file that is located by clicking Browse in the Advanced Settings tab and navigating to its location on the hard drive

Note: You can also call an external file by embedding the "open ()" function in the box.

The following screenshot displays a short script that prints the parameters of a task to the log toolbar, just before the task runs. In this case, the script is written directly in the Advanced Settings box.

For more information about using JavaScript, refer to the *VWorks User Guide* or the *BenchWorks Automation Control User Guide*.

For information about	See
Using JavaScript in protocols	☐ VWorks User Guide
	☐ BenchWorks Automation Control User Guide

For information about	See
Adding tasks to protocols	☐ VWorks User Guide ☐ BenchWorks Automation Control
	User Guide

About reader output files

About this topic

Plug-in device drivers that are written for plate readers have a common way of naming their output files. This topic explains the concepts related to output file naming. By reading this topic, you will learn how to prevent data in the reader output files from being overwritten by newer data.

Read this topic if you are an operator who wants to make changes to the task parameters for one of these readers:

VR4	Λ	\cap	r
U K 4	-()	()	l

_		
	Analyst	\sim T
	Analyet	(,
_	Δ Halvət	() I

☐ Fusion

☐ Viewlux

☐ Tecan readers

Plug-in default output file

When you first install a reader device drivers plug-in, all data recorded during a protocol or by a manual read using diagnostics software is written to a single file stored in the C: drive.

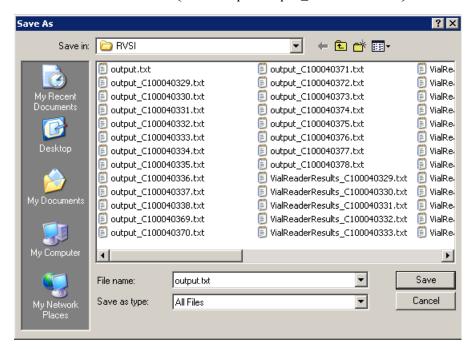
The exact name of the file is specific to the device. For example, the RVSI VR4000 device driver creates a file with the name vialreaderresults.txt.

This file can only store data for one read, which means that the set of data for each read overwrites the last set in the file. To avoid this problem you must set up an output file naming convention.

Profile default output file name

Some device drivers allow more than one device of that type to be used in the lab automation system. In this case, each device must have its own profile. Even if you have only one device, you can still set up multiple profiles for it, with each storing different settings.

In these cases, you probably want each profile to have a separate default output filename to prevent the data from runs using one profile overwriting those of another.


Filename suffixes

To prevent the data from one read overwriting the data from another, you need to append a variable suffix to the file name. You can append a date/time stamp and one or more bar codes on the rack or plate.

Append the following to the output filename:
☐ Date/timestamp
South bar code
☐ West bar code
☐ North bar code
East bar code

Example

The example output file folder below shows that a profile default file name of output.txt was created at one time. At another time, a suffix was appended in the profile for the device drivers, which added a barcode identifier to the file name (for example output_C100040329.txt).

Overriding output file names with tasks

You can override the default output file name that is set in the profile using the Output filename property of the Read task parameters.

"Read tubes" properties			
Use tubes expected parameter	No		
Tubes expected (0-96)	96		
Output filename			

This allows you to use different output file names for every task.

The suffix used for the file name that you set in the task parameters is taken from the suffix specified in the device diagnostics profile. So if you select date/time stamp in the profile, the date/time stamp will also be appended during a run in which you have specified a different file name.

For more information about	See
Opening diagnostics	"Opening diagnostics" on page 15
Profiles	"About profiles" on page 18

About device initialization

About this topic

When working in device diagnostics software, you are often required to initialize the device. This topic explains why device initialization is necessary.

Opening communications

Initializing a device opens communications with it. For example, if the device is connected with a serial cable, the COM port is opened, and if the device is connected with an Ethernet cable, the TCP/IP socket is connected.

Homing motors

Initializing a device homes motors that do not track their position along their line of travel. Homing a motor moves it until it triggers an event, called a home flag. This tells the motor its location.

The motors on some devices automatically move to their home positions when the device is turned on. The motors on other devices must be initialized to be homed.

Setting profile parameters

Initializing a device applies relevant parameters set in the device's profile.

Setting state and memory variables

Most devices store variables in software or firmware. Initializing a device sets these variables to their initial values.

For information about	See
Using Diagnostics	"About diagnostics" on page 14"Opening diagnostics" on page 15
Workflow for configuring devices	"Adding devices" on page 12

ABgene A.S.P. 50

2

The ABgene A.S.P. 50 is an automated seal piercer that with optional equipment can also wash and dry the piercing pins. The A.S.P. 50 can be configured to work in lab automation systems running VWorks.

This chapter contains the following topics:

- □ "Workflow for configuring the A.S.P. 50" on page 32
- ☐ "Creating an A.S.P. 50 profile" on page 33
- ☐ "Setting A.S.P. 50 task parameters" on page 35
- ☐ "Managing A.S.P. 50 profiles" on page 37
- ☐ "Operating the A.S.P. 50 with diagnostics" on page 38

Workflow for configuring the A.S.P. 50

About this topic

This topic presents the workflow for configuring the A.S.P. 50 device driver.

Read this topic if you are an administrator responsible for setting up devices in VWorks.

Before you start

Before you can configure the A.S.P. 50 device driver, you must have installed it. For installation instructions, see "Setting the properties for a device" on page 19.

Workflow

Step	Торіс
1	"Adding devices" on page 12.
2	"Creating an A.S.P. 50 profile" on page 33.
3	"Setting the properties for a device" on page 19.

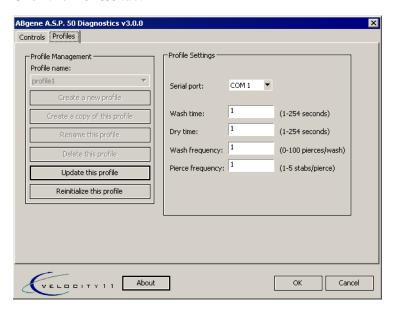
For information about	See	
Device drivers	"About device drivers" on page 9	
Setting A.S.P. 50 task parameters	"Setting A.S.P. 50 task parameters" on page 35	
Using A.S.P. 50 Diagnostics	"Operating the A.S.P. 50 with diagnostics" on page 38	

Creating an A.S.P. 50 profile

About this topic

This topic describes how to create a profile for the A.S.P. 50.

Read this topic if you are an administrator responsible for setting up devices in VWorks.


Before you start

Before you create a profile, you must have added the A.S.P. 50 to the device manager.

Procedure

To create an A.S.P. 50 profile:

- 1. Open Abgene A.S.P. 50 Diagnostics.
- 2. Click the **Profiles** tab.

- 3. In the **Serial port** list, select the number of the computer port that is connected to the A.S.P. 50.
- 4. Click Create a new profile.
- 5. In the **Create Profile** dialog box, enter a name for the profile and click **OK**.

The name appears in the **Profile name** box.

6. In the **Profile Settings** area, set the following:

Setting	Description
Wash time	Length of time for which the pins are washed
Dry time	Length of time for which the pins are dried with air
Wash frequency	The number of piercing cycles before the pins are washed

Setting	Description	
Pierce frequency	The number of times the seal is stabbed in a piercing operation	

7. Click **OK** to save the profile and exit **Abgene A.S.P. 50 Diagnostics**.

For information about	See	
The next step	"Setting the properties for a device" on page 19	
The workflow this procedure belongs to	"Workflow for configuring the A.S.P. 50" on page 32	
Opening diagnostics	"Opening diagnostics" on page 15	
Adding the A.S.P. 50 to the device manager	"Adding devices" on page 12	
Using Diagnostics	"Operating the A.S.P. 50 with diagnostics" on page 38	
Using A.S.P. 50 tasks	"Setting A.S.P. 50 task parameters" on page 35	
Profiles	"About profiles" on page 18	

Setting A.S.P. 50 task parameters

About this topic

When the A.S.P. 50 is added to the device manager, the task associated with the device becomes available in the protocol editor. When a task is added to a protocol, you need to set the parameters for it. This includes choosing which A.S.P. 50 to use and what "Pierce" properties to use.

This topic describes the tasks and their parameters.

Read this topic if you are:

- ☐ An administrator or technician responsible for creating protocols
- ☐ An operator who wants to make changes to the A.S.P. 50 task parameters in a protocol

Note: Operators cannot save changes to protocols.

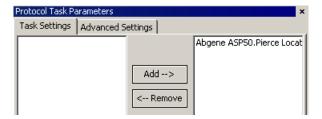
About the Pierce (A.S.P. 50) task

The A.S.P. 50 device driver adds one task to VWorks. This task is used to pierce a plate seal.

The A.S.P. 50 task is represented by this icon in the Protocol Task toolbar:

Pierce (ABgene A.S.P. 50)

The task is available in the protocol editor, but not the pre-protocol editor or post-protocol editor.


Setting Pierce (A.S.P. 50) task parameters

!! IMPORTANT!! The properties used for the pierce, wash, and dry operations during the task are set in the A.S.P. 50 profile.

To set the Pierce (A.S.P. 50) task parameters:

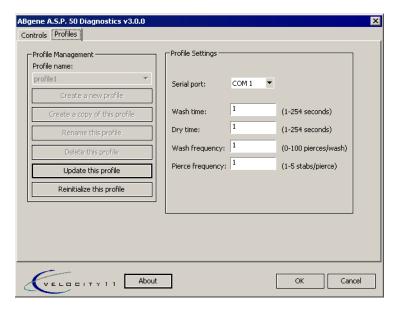
- 1. Add the Pierce (A.S.P. 50) task to a protocol process.
- 2. In the **Protocol Task Parameters** toolbar, make sure the **Task Settings** tab is displayed.
- 3. Select the A.S.P. 50 or A.S.P. 50s and click **Add**.

The device name moves to the right of the **Add** and **Remove** buttons.

There are no Pierce properties to set.

For more information about	See	
The workflow that this procedure belongs to	"Workflow for configuring the A.S.P. 50" on page 32	
Creating protocols, pre-protocols, post-protocols, and pipette processes	VWorks Version 3 Automation Control User Guide	
Opening A.S.P. 50 device properties page	"Setting the properties for a device" on page 19	
Using Diagnostics	"Operating the A.S.P. 50 with diagnostics" on page 38	

Managing A.S.P. 50 profiles


About this topic

This topic describes how administrators and technicians can manage A.S.P. 50 profiles.

Managing profiles

To manage A.S.P. 50 profiles:

- 1. Open A.S.P. 50 Diagnostics.
- 2. Click the **Profiles** tab.

- 3. Select a profile from the **Profile name** list.
- 4. Perform the management task.

Management tasks include the following:

- ◆ Updating the profile. Use the Update command to save edits to an existing profile.
- ◆ Copying a profile.
- Renaming a profile.
- ◆ Deleting a profile.

For more information about	See	
Opening diagnostics	"Opening diagnostics" on page 15	
The workflow for configuring the A.S.P. 50	"Workflow for configuring the A.S.P. 50" on page 32	
Creating a A.S.P. 50 profile	"Creating an A.S.P. 50 profile" on page 33	

Operating the A.S.P. 50 with diagnostics

About this topic

This topic describes how to:

- ☐ Initialize the A.S.P. 50
- ☐ Manually pierce a plate
- ☐ Manually wash and dry the piercing pins

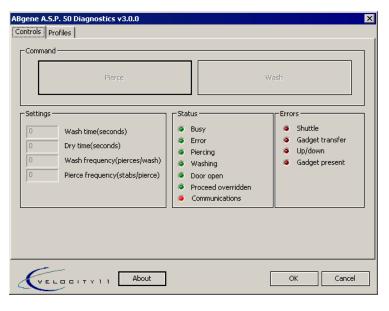
Read this topic if you are an operator who wants to troubleshoot or operate the A.S.P. 50 using direct commands.

Before you start

Before you can send commands to the A.S.P. 50, or receive status information from the A.S.P. 50, you need to initialize it.

To initialize the A.S.P. 50:

- 1. Open A.S.P. 50 Diagnostics.
- 2. Click the **Profiles** tab.
- 3. Select a profile from the **Profile name** list.
- 4. Click **Initialize this profile**.


Manually piercing a plate

The Pierce command pierces the plate in the A.S.P. 50.

The Wash command washes and dries the piercing pins to reduce plateto-plate cross-contamination.

To pierce a plate using A.S.P. 50 Diagnostics:

- 1. Open A.S.P. 50 Diagnostics.
- 2. Click the **Controls** tab.

3. To pierce a plate, click **Pierce**.

4. To wash and dry the piercing pins, click **Wash**.

Note: The parameters set in the profile are used to define the piercing, washing, and drying operations. If you set the Wash frequency to five, after piercing five plates the pins will be washed.

Viewing the A.S.P. 50 status

To view the current status of the A.S.P. 50:

- 1. Open A.S.P. 50 Diagnostics.
- 2. Click the **Controls** tab.
- 3. View the lights in the **Status** area.

Light	Comments
Busy	Performing any operation.
Error	There is an error–check the error lights in the Errors area.
Piercing	Performing a piercing operation.
Washing	Performing a washing operation.
Door open	The door is open.
Proceed overridden	The proceed option on the front display panel is turned off.
	When you initialize the A.S.P. 50, a prompt to proceed is normally shown. This stops the start up process and the shuttle remains inside. If the proceed is overridden, the shuttle will be presented.
Communications	There is no response from the device.

Viewing error information

To view information about errors:

- 1. Open A.S.P. 50 Diagnostics.
- 2. Click the **Controls** tab.
- 3. View the lights in the **Errors** area.

Light	Comments
Shuttle	The shuttle that moves the plate in and out of the A.S.P. 50 is not working correctly
Gadget transfer	The movement of the gadget (piercing head) in the horizontal axis has a problem
Up/down	The movement of the gadget (piercing head) in the vertical axis has a problem
Gadget present	The gadget (piercing head) is <i>not</i> inside the A.S.P. 50

For more information about	See	
Opening diagnostics	"Opening diagnostics" on page 15	
The workflow for configuring the A.S.P. 50	"Workflow for configuring the A.S.P. 50" on page 32	
Managing A.S.P. 50 profiles	"Managing A.S.P. 50 profiles" on page 37	
Creating a A.S.P. 50 profile	"Creating an A.S.P. 50 profile" on page 33	
Initializing a device	"About device initialization" on page 29	

Index

Note: You can search our technical documentation on our website at www.velocity11.com.

```
Α
                                                     L
A.S.P. 50
                                                     linking a pipette process, 22
    about, 31
                                                     linking a pipette process to a device, 23
    about tasks, 35
                                                     location properties, setting for devices, 19
    configuring workflow, 32
                                                     0
    creating profiles, 33
    error lights, 39
                                                     online help, 3
    managing profiles, 37
                                                     output filename property, 28
    Pierce (ABgene A.S.P. 50) task defined, 35
    setting Pierce task parameters, 35
                                                     PDF guide, 3, 4
    status lights, 39
    using diagnostics, 38
                                                     Pierce (A.S.P. 50) task
ABgene A.S.P 50. see A.S.P. 50
                                                         defined, A.S.P. 50, 35
                                                         setting parameters, ABgene A.S.P. 50, 35
В
                                                     pipette process task
bar code properties, setting for devices, 19
                                                         adding, 22
                                                         linking a pipette task to, 22
D
                                                         linking a pipette task to a device, 23
device driver
                                                         setting parameters, 22
    defined, 9
                                                     plug-in, defined, 9
                                                     Proceed overridden, A.S.P. 50, 39
    installing, 11
    writing your own, 10
                                                     profile
device files
                                                         defined, 18
    adding devices to, 12
                                                     profiles
    saving, 12
                                                         creating A.S.P. 50, 33
Device Manager page
                                                         managing A.S.P. 50, 37
    opening, 12
                                                     S
device properties, setting, 19
devices
                                                     Save All command, 13
    defined, 8
                                                     scripts, writing, 25
diagnostics
                                                     software components, 6
    A.S.P. 50, 38
                                                     Sub Process task
    opening, 15, 16
                                                         about, 22
driver version, finding, 6
                                                         adding, 22
F
                                                     T
firmware version, finding, 6
                                                     task parameters, setting
                                                         A.S.P. 50, 35
                                                     tasks
IWorks, about, 9
                                                         about A.S.P. 50, 35
                                                     teachpoints, setting for devices, 19
                                                     W
JavaScript
    using to set task parameters, 25
                                                     workflow for configuring
job roles for readers of this guide, 2
                                                         A.S.P 50, 32
```


User Guide G5415-90009