A Benchtop Sample Preparation Instrument: New Solutions for GC and GC/MS Applications

Rebecca Veeneman Riva ISCC Agilent User Meeting

June 1, 2010

Outline

- A new sample preparation instrument for GC, GC/MS, LC, and LC/MS applications
- Features
- Performance
 - Sample dilution
 - ISTD additon
 - Derivatization
 - Calibration curve standard preparation
- Conclusions

Agilent's Sample Preparation Instrument

Features

- Dilution / Aliquoting
- Liquid Addition (standards, reagents, etc.)
- Heating (derivatization, digestion, etc.)
- Liquid/liquid extraction
- Sample mixing vortex
- Sample tray heating
- Sample tray cooling
- Software based on Easy Sample Prep
 - Drag and drop method editor

Easy Sample Prep – Icon Based Programming

Sample Prep Method Editor

- Drag and drop programming
- Using Add, Mix, Heat and Wait steps to create a custom sample prep program
- Textual display of sample prep steps

Easy Sample Prep – Resource Editor

			Syring	e Parameters		
lesource Name:			Gynnig	Syringe Size (µL):		
Resource Tupe:	Chemical Resource		Number of Washes:		/ashes:	1 0
riesource rype.			Number of Pumps:		Pumps:	1 6
Use Type:	 By Volume Usable Volume per Vial (μL): By Use 			Wash Volum	e (μL):	
			Draw Speed (µL/min): Dispense Speed (µL/min):		./min):	1 2
					1 5	
	Uses per Vial: 📋	\$	Ne	edle Depth Offset (0.1 mm	steps):	-2 0
Display Color:	Red			Viscosity Del	ay (s):	0 0
(C Deserves 1	Curiners Decementary		Air Gap (% Syr. Vol.):		Vol.):	v
(nesource.	byinge raianeters					
	00000	000	00	00000		
	00000	000	00	00000		
	00000	000	00	00000		
	000000	000	00	00000		
	00000	000	00	00000		
	00000	000	00	00000		
	00000	000	00	00000		
	00000	000	00	00000		
	141 101	91	51	41 1		
	Vial Range:					
Add	- Pemeuro	Poplaga	3			Canaal
Adu	L nemove	neplace				Caricei
alkanes 1000	opm			Chemical Resource	1	500 µL/vial
BSTFA EAME 1mg/ml				Chemical Resource	1	500 µL/vial
hexane				Chemical Resource	i	500 µL/vial
isooctane				Chemical Resource	1	500 µL/vial
New Vial				Empty Container	1	1 uses/vial
				and and the state of the second s		
					68	
Hale		Couplance		Print Lougut		Class

Resource Editor

- Specify sample prep resources on tray
- Name resources, specify usage type
- Use colors to identify resources
- Provide default syringe parameters for resources
- Keeps track of resources based on volume allotted or number of uses

Sample Prep Programming Flexibility

- Examples of simple liquid manipulation
 - Reagent additions
 - Aliquoting / Dilutions
 - Mixing
 - Heating
 - L/L Extraction

Dilution

Internal Standard Addition

Small-Volume Sampling

Derivatization

Heating/Mixing Bar Code

In-vial Extraction

Reproducible and Accurate Dilutions and ISTD Additions – For GC

- Add 50 µL isooctane to empty vial
- Add 50 µL standard solution
- Add 0.5 µL ISTD

- Dispensing 50 µL gives
 ~0.5% RSD for 10
 samples by weight
 - Accurate within 1%
- Dispensing 0.5 µL gives
 ~2% RSD for the 10
 samples
- Does not affect standard accuracy

Reproducible Sample Dilutions and ISTD Additions – For LC

- Add 187.5 µL acetonitrile to empty vial
- Add 62.5 µL Diuron standard
- Add 125 µL p-terphenyl

- Dispensing precision is ~0.5% for 10 samples measured gravimetrically
 - Accurate within 2%

Simulated Distillation Calibration Standard Dilution

- Add 495 µL CS₂ to empty vial
- Heat SimDis sample (waxy)
- Mix SimDis sample
- Add 10 µL SimDis sample to CS₂

- 3 samples prepared
- 0.2% RSD by weight for CS₂
- Area repeatability between samples is typically < 5% RSD

Calibration Curve Standard Preparation

Example 4

Calibration Curve Standards Diluted Linearly

- Add 100 µL isooctane to empty vial
- Add varying amounts of stock solution
- Mix

Reproducible Calibration Curve Standards Preparation

- Preparing standards with the automated sample preparation instrument yields more reproducible results than standards prepared manually
- Comparing 3 sets of standards
- Manually made standards were prepared in volumetric flasks

EPA 8270 Standards Preparation

- Add varying amounts (270-300 µL) of methylene chloride to empty vials
- Add varying amounts of stock solution (0.3-30 μL)
- Add 3 µL ISTD
- Mix

EPA 8270 Calibration Curve Standards

- Relative Response Factor %RSDs were normalized to the manual method
 - Manually prepared standards were prepared in autosampler vials
- If automated method is better than Manual \rightarrow Normalized RRF RSD <1
- If manual method better than ALS \rightarrow Normalized RRF RSD >1

Sample Preparation Instrument is as good as a skilled chemist when making a 7-level calibration set – results not significantly different

Faster Sample Preparation

- EPA 8270 calibration curve standards can be prepared in a third of the time using an automated procedure
- Generic standards can be prepared in half the time
- Both achieve the same, if not better reproducibility and accuracy

Fatty Acid Derivatizations

Example 7

- Add 100 µL of BSTFA to 0.5 mL fatty acid solution
- Mix
- Heat at 70°C for 20 minutes

Analyte	Ratio-Manual	Ratio-Automated
Capric acid	0.92	0.92
Capric acid	1.2	1.2
Myristic acid	1.0	1.0
Palmitic acid	1.1	1.1

3 samples prepared

- Manual method RSD: 0.9%
- Automated method RSD: 0.7%

Derivatization reactions yield the same results with less operator involvement

Conclusions

- Samples prepared with an automated sample preparation instrument yield reproducible results
 - Results are as good, if not better than those obtained with manual methods
- Samples prepared with automated methods yield accurate data
 - Results achieve the same level of accuracy expected from manual methods

Increased Lab Productivity

- Automation of sample preparation frees lab personnel for other tasks
- design experiments, work up data
- Improve quality of chromatographic results by providing better precision between samples
- Less rework since autosamplers minimize human variability
- Samples take less time to make

Cost Effective Sample Preparation

- Liters of solvent can be saved per year by converting sample preparation steps to an automated method
- Use 2 mL autosampler vials instead of larger volumetric flasks
- Automating EPA 8270 saves 4 L of methylene chloride per analyst per year
- Reduced exposure to hazardous chemicals
- Fewer mistakes mean more samples per day

Thank you for your attention!

Additional questions can be directed to:

Peter Mrozinski

peter_mrozinski@agilent.com

