

Agilent G1674AA Deconvolution Reporting Software (DRS) Solution for Forensic Toxicology

Getting Started

Agilent Technologies

Notices

© Agilent Technologies, Inc. 2008

No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Agilent Technologies, Inc. as governed by United States and international copyright laws.

Manual Part Number

G1674-90000

Edition

First edition, June 2008

Printed in USA

Agilent Technologies, Inc. 5301 Stevens Creek Boulevard Santa Clara, CA 95052

Warranty

The material contained in this document is provided "as is," and is subject to being changed, without notice, in future editions. Further, to the maximum extent permitted by applicable law, Agilent disclaims all warranties, either express or implied, with regard to this manual and any information contained herein, including but not limited to the implied warranties of merchantability and fitness for a particular purpose. Agilent shall not be liable for errors or for incidental or consequential damages in connection with the furnishing, use, or performance of this document or of any information contained herein. Should Agilent and the user have a separate written agreement with warranty terms covering the material in this document that conflict with these terms, the warranty terms in the separate agreement shall control.

Technology Licenses

The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.

Restricted Rights Legend

If software is for use in the performance of a U.S. Government prime contract or subcontract. Software is delivered and licensed as "Commercial computer software" as defined in DFAR 252.227-7014 (June 1995), or as a "commercial item" as defined in FAR 2.101(a) or as "Restricted computer software" as defined in FAR 52.227-19 (June 1987) or any equivalent agency regulation or contract clause. Use, duplication or disclosure of Software is subject to Agilent Technologies' standard commercial license terms, and non-DOD Departments and Agencies of the U.S. Government will receive no greater than **Restricted Rights as defined in FAR** 52.227-19(c)(1-2) (June 1987). U.S. Government users will receive no greater than Limited Rights as defined in FAR 52.227-14 (June 1987) or DFAR 252.227-7015 (b)(2) (November 1995), as applicable in any technical data.

Safety Notices

CAUTION

A **CAUTION** notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a **CAUTION** notice until the indicated conditions are fully understood and met.

WARNING

A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.

Contents

- 1 Decision Process to Create Your Method Name for the G1674AA Forensic Toxicology Data Base Library (DBL) 5
- 2 Forensic DBL Files Setup 15
- **3 DRS System Verification 17**
- 4 Chromatographic Considerations 27
- 5 Retention Time Calibration and Locking 29
- 6 Final Response Factor Calibration 31
- 7 DRS Setup for Data Acquisition 33
- 8 MS ChemStation: DRS Post-Run Call 39

Agilent G1674AA Deconvolution Reporting Software (DRS) Solution for Forensic Toxicology Getting Started

Decision Process to Create Your Method Name for the G1674AA Forensic Toxicology Data Base Library (DBL)

For convenience, you may want to print this manual to refer to as you proceed through the following chapters and steps. For this chapter, you also may want to have paper and pen/pencil at hand to write down each piece of the method file name you will create.

This process facilitates choosing best method(s) and files to load and set up for your system. It begins by building a method file name based upon the following series of questions about your intended application situation:

- **Step 1** <u>All</u> method file names begin with **FT**, for **E**orensic **T**oxicology. At this point then, your file name is simply **FT**.
- **Step 2** Column Stationary Phase (5 or 35)

Method sets are provided for both DB-5MS and DB-35MS stationary phases:

- DB-5MS method sets are typically the better choice because runs end at a lower temperature (325 °C) relative to DB-35MS methods (345 °C).
- DB-35MS method sets are disadvantaged in that they require the final temperature to be adjusted at setup to obtain desired retention time matches. DB-35MS methods are provided here for:
 - Use in confirmation.
 - And/Or for those labs which run other methods requiring DB-35MS on the same instrument performing forensic toxicology work.

Now choose either DB-5MS (preferred) or DB-35MS as stationary phase:

• For DB-5MS, this is represented by **5** as the next part of the method file name.

• For DB-35MS, this is represented by **35** as the next part of the method file name.

At this point then, your method file name will be *either* **FT5** or **FT35**.

- **Step 3** Analysis Speed (**1X** or **2X** or **3X** or **4X** or **6X**)
 - Methods are provided for five different analysis speeds: 1X , 2X , 3X , 4X , and $6X\colon$
 - Base method sets (1X) have a 10 °C per minute oven ramp. They have highest chromatographic resolutions but require longest analysis times. Thus, for typical screening applications, 1X method sets are unnecessarily long.
 - Numbers 2, 3, 4, and 6 represent method sets designated by the multiple by which the oven ramp is increased, and by the factor by which total analysis time is reduced, relative to the associated base method sets. Thus, 4X method sets run at 40 °C per minute and their total run times are one-fourth that of their associated base method sets.

For most toxicology screening applications, 2X, 3X, or 4X are most likely chosen. Best choice is governed by:

- Oven ramping capability of the gas chromatograph (GC)
- Pumping capacity of the mass spectrometer (MSD)
- Data gathering and processing speed of the MSD

If, for example, the system is a GC with 120-V oven, an MSD with diffusion pump, and with the column connected directly into the MSD, then only 1X or 2X methods can be used.

Method sets 3X , 4X , and 6X require the fast oven (240 V) and performance turbopump because column flow rates exceed 2 mL per minute.

• 6X method sets also require the oven *pillow* accessory to be used to attain the necessary oven rate of 60 °C per minute (use of the pillow requires that the MSD, inlet, and, if used, nitrogen phosphorus detector (NPD) are all located in back GC positions).

Choose the best speed to run based on your column choice and hardware configuration using appropriate information in the following Conditions Tables 1, 2, 3, *or* 4.

in the set of the official off	with Vacuum Outle	at				
	Original 1X Method	2X Method	3X Method	4X Method	6X Method	
Biggest 4 Ions	FT5 1X VAC.m	FT5 2X VAC.m	FT5 3X VAC.m	FT5 4X VAC.m	FT5 6X VAC.m	
Column Bleed Optimized Ions	FT5 1X VAC BL.m	FT5 2X VAC BL.m	FT5 3X VAC BL.m	FT5 4X VAC BL.m	FT5 6X VAC BL.m	
Fatty Acid Matrix Optimized Ions	FT5_1X_VAC_FA.m	FT5_2X_VAC_FA.m	FT5_3X_VAC_FA.m	FT5_4X_VAC_FA.m	FT5_6X_VAC_FA.m	
60						
Agilent Technologies 6890 or						
7890 with Autiinjector and Tray						
Inlet	EPC Solit/solitless	EPC Solit/enlitless	EPC Solit/enlitiess	EPC Solit/solitiess	EPC Solit/enlitless	
Modo	Constant Brossure	Constant Broccura	Constant Broccure	Constant Proceuro	Constant Broccure	
Injustion Type	Constant Fressure Politione	Constant Pressure	Constant Pressure Politione	Constant Flessure Politione	Constant Pressure	
Injection Type		300 april 200				
Injection volume (pL)	1.0	1.0	1.0	1.0	1.0	
Intertemp (°C)	200	200	200	200	200	
Pressure, nominal (psig)	19 Dradifan (DI/E 535a)	4.70 Deadlifers (01/5.525a)	14.4 Deadlifers (DL/E 525a)	28.7 Dradifers (DVE 535a)	Dradifor (DI/E 535a)	
RT Locking Compound	Proditen (SKF-525a)	Proditen (SKF-525a)	Proditen (SKF-525a)	Proditen (SKF-525a)	Proditen (SKF-525a)	
RT Locking Time (min)	17.122	8.561	5.707	4.281	2.854	
Purge Flow (mL/min)	50	50	50	50	50	
Purge Time (min)	1	0.75	0.5	0.4	0.25	
Gas type	Helium	Helium	Helium	Helium	Helium	
Oven						
Voltage (VAC)	120 or 240	120 or 240	240	240	240 and Pillow[1]	
Initial Oven Temp (°C)	100	100	100	100	100	
Initial Oven Hold (min)	1	0.5	0.33	0.25	0.167	
Ramp Rate (°C/min)	10	20	30	40	60	
Final Temp (°C)	325	325	325	325	325	
Final Hold (min)	5	2.5	1.67	1.25	0.833	
Total Run Time (min)	28.5	14.25	9.5	7.13	4.75	
Equilibration time (min)	0.5	0.5	0.5	0.5	0.5	
Column						
Type	DB-5MS	DB-5MS	DB-5MS	DB-5MS	DB-5MS	
Agilent Part Number	122-5532	122-5512	122-5512	122-5512	Custom	
Length (m)	30	122 3312	122 3312	122 3312	10	
Diameter (mm)	0.25	0.25	0.25	0.25	0.25	
Film thicknoce (um)	0.25	0.25	0.25	0.25	0.25	
Nominal Initial Flow (ml. (min)	0.25	0.25	0.25	0.25 5.0	2.4	
Outlet pressure	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	
MSD Agilent Technologies 5975 or						
5973 Inert with Performance Ele	ctronics					
Suggested Minimum Vacuum						
Pumn	Diffusion	Diffusion	Performance Turbo	Performance Turbo	Performance Turbo	
Tune File	Atuno LI	Atuna LL	Atuna II	Atune II	Atuna II	
Modo	Aldrie.0	Ridne.0	Roop	Roop	Roop	
Relyant delay (min)	20an		00	0.7	0.45	
EM voltage	Z.0 Atupo voltogo	1.4 Atuno voltogo	U.0 Atung voltage	U.7 Atuno voltogo	0.40 Atung voltage	
Low made (amu)	Atome voltage	Atone voltage	Atone Voltage	Atome voltage	Atone Voltage	
Low mass (and)	40	4U 670	40	40	4U 670	
mign mass (amu)	5/0	5/0	5/0	5/0	5/0	
	U	U	U	U	U	
	on	on	on	on	011	
Sampling	2	2	1	1	0	
Quad temp (°C)	150	150	150	150	150	
Source temp (°C)	300	300	300	300	300	
l ransfer line temp (°C)	300	300	300	300	300	
[4] required Injection part and MS	2D interface in back pociti	one and G2646 60500 av	on nillow			

Conditions Table 1 GC and MS Conditions for DB-5MS with Vacuum Outlet

	0			
with Atmospheric	Jutlet			
Original 1X Method	2X Method	3X Method	4X Method	6X Method
FT5 1X ATM m	ET5 2X ATMm	ET5 3X ATM m	FT5 4X ATMm	FT5 6X ATM m
ET5 1X ATM BL m	FT5_2X_ATM BL m	ET5 3X ATM BL m	ET5 4X ATM BL m	ETS 6X ATM BL m
ET5 1Y ATM EAm	ET5_2X_ATM_DLan	ET5 3Y ATM EAm	ET5 4Y ATM EA m	ET5_6V_ATM_DEAm
FT5_TA_ATW_FAJII	FT5_ZA_ATM_FAJII	FT5_5A_ATM_FA.III	FT5_4A_ATM_FAJII	FT5_0A_ATM_FAJII
EPC Split/splitless	EPC Split/splitless	EPC Split/splitless	EPC Split/splitless	EPC Split/splitless
Constant Pressure	Constant Pressure	Constant Pressure	Constant Pressure	Constant Pressure
Splitless	Splitless	Splitless	Splitless	Splitless
1.0	1.0	1.0	1.0	1.0
280	280	280	280	280
33	17.8	25.6	33.5	23.1
Prodifen (SKF-525a)	Prodifen (SKF-525a)	Prodifen (SKF-525a)	Prodifen (SKF-525a)	Prodifen (SKF-525a)
17,138	8.569	5,713	4.285	2.856
50	50	50	50	50
1	0.75	0.5	0.4	0.25
Helium	Helium	Helium	Helium	Helium
120 or 240	120 or 240	240	240	240 and Pillow[1]
100	100	100	100	100
1	0.5	0.33	0.25	0.167
10	20	30	40	60.107
225	20	225	225	225
5	25	1.67	1.25	0.022
20.5	14.25	0.5	7.10	4.75
0.5	0.5	0.5	0.5	0.5
DD CHO	55 6140		DD CMO	DD CHO
08-5105	DB-5105	08-505	DB-5W8	DB-SINS Ouetere
122-5532	122-0012	122-0012	122-0012	Custom
30	10	10	10	10
0.25	0.25	0.25	0.25	0.25
0.25	0.25	0.25	0.25	0.25
3	2.2	4	0.2	20
3.8	3.8	3.8	3.8	3.8
tronice				
uomta				
Performance Turbo	Performance Turbo	Performance Turbo	Performance Turbo	Performance Turbo
Atune.U	Atune.U	Atune.U	Atune.U	Atune.U
Scan	Scan	Scan	Scan	Scan
2.8	1.4	0.8	0.7	0.45
Atune voltage	Atune voltage	Atune voltage	Atune voltage	Atune voltage
40	40	40	40	40
570	570	570	570	570
0	0	0	0	0
on	on	on	on	off
2	2	1	1	0
		4.50	4.50	4.50
150	150	150	150	150
150 300	150 300	300	300	300
	with Atmospheric (Original 1X Method FT5_1X_ATM_BL.m FT5_1X_ATM_EL.m FT5_1X_ATM_FA.m EPC Split/splitless Constant Pressure Splitless 1.0 280 33 Prodifen (SKF-525a) 17.138 50 1 Helium 2 120 or 240 100 1 Helium 2 33 30 0.5 28.5 0.5 28.5 0.5 3 3.8 3.8 Performance Turbo Atune.U Scan 2.8 Atune voltage 40 570 0 0	with Atmospheric Outlet Original 1X Method 2X Method FT5_1X_ATM_BL.m FT5_2X_ATM_BL.m FT5_1X_ATM_FA.m FT5_2X_ATM_FA.m FT5_1X_ATM_FA.m FT5_2X_ATM_FA.m EPC Split/splitless EPC Split/splitless Constant Pressure Constant Pressure Splitless Splitless 1.0 1.0 280 280 33 17.8 Prodifen (SKF-525a) Prodifen (SKF-525a) 17.138 8.569 50 50 10 100 120 or 240 120 or 240 120 or 240 120 or 240 100 100 1 0.5 10 20 325 3.25 5 2.5 28.5 14.25 0.5 0.5 0.5 0.5 0.5 0.5 28.5 14.25 0.5 0.25 0.25 0.25 0.25 0.	with Atmospheric Outlet Original 1X Method 2X Method 3X Method FT5_1X_ATM_m FT5_2X_ATM_m FT5_3X_ATM_m FT5_1X_ATM_EL.m FT5_2X_ATM_EL.m FT5_3X_ATM_EL.m FT5_1X_ATM_FA.m FT5_2X_ATM_FA.m FT5_3X_ATM_EL.m FT5_1X_ATM_FA.m FT5_2X_ATM_FA.m FT5_3X_ATM_EL.m FT5_2X_ATM_FA.m FT5_3X_ATM_FA.m FT5_3X_ATM_FA.m EPC Split/splitless EPC Split/splitless EPC Split/splitless Constant Pressure Constant Pressure Constant Pressure Splitless Splitless Splitless Splitless 1.0 1.0 1.0 1.0 280 280 280 280 33 17.8 25.6 Prodifen (SKF-525a) Prodifen (SKF-525a) Prodifen (SKF-525a) 17.138 8.669 5.713 50 50 50 10 100 100 100 100 101 20 30 325 325 14.25 9.5 <	With Atmospheric Outlet 3X Method 4X Method Original 1X Method FT5_2X_ATM.m FT5_3X_ATM_BL.m FT5_4X_ATM_BL.m FT5_1X_ATM_BL.m FT5_2X_ATM_BL.m FT5_3X_ATM_BL.m FT5_4X_ATM_BL.m FT5_1X_ATM_BL.m FT5_2X_ATM_BL.m FT5_3X_ATM_BL.m FT5_4X_ATM_FA.m FT5_2X_ATM_BL.m FT5_2X_ATM_BL.m FT5_3X_ATM_BL.m FT5_4X_ATM_FA.m FT5_2X_ATM_BL.m FT5_3X_ATM_BL.m FT5_4X_ATM_FA.m FT5_4X_ATM_FA.m FT5_2X_ATM_BL.m FT5_3X_ATM_BL.m FT5_3X_ATM_BL.m FT5_4X_ATM_FA.m FT5_2X_ATM_BL.m FT5_3X_ATM_BL.m FT5_4X_ATM_FA.m FT5_4X_ATM_FA.m FT5_3X_ATM_BL.m FT5_3X_ATM_BL.m FT5_4X_ATM_FA.m <t< td=""></t<>

Conditions Table 2 GC and MS Conditions for DB-5MS with Atmospheric Outlet

Table 3. Gas Chromatogra	ph and Mass Spectr	ometer Conditions	for DB-35MS			
	with Vacuum Outle	4t				
	with vacuum outre					
	Original 1X Mothod	2V Mothod	3V Mothod	4Y Mothod	6X Mothod	
Biggest 4 lone	FT35_1X_VAC m	ET35_2X_VAC m	FT35_3X_VAC m	FT35 4X VAC m	ET35 6Y VAC m	
Column Bleed Ontimized Ions	FT35_1X_VAC_BL m	FT35_2X_VAC BL m	FT35_3X_VAC_BL m	FT35_4X_VAC_BL m	FT35_6X_VAC_BL m	
Eatty Acid Matrix Ontimized Ione	ET35_1X_VAC_DLan	ET35_2X_VAC_BLIN	ET35_3X_VAC_DLan	ET35_4X_VAC_DLIN	ET35_6V_VAC_BLIN	
Faity Acid Matrix Optimized Ions	FT35_TA_VAC_FAJII	FTJJ_ZA_VAC_FAJII	TTJJ_JA_VAC_FAJII	TIJJ_4A_VAC_FAII	FIJJ_0A_VAC_FAII	
60						
Agilent Technologies 6890 or						
7890 with Autiinjector and Trav						
rese man Addingester and rray						
Inlet	EPC Split/splitless					
Mode	Constant Pressure					
Injection Type	Splitless	Splitless	Splitless	Splitless	Splitless	
Injection Volume (µL)	1.0	1.0	1.0	1.0	1.0	
Inlet temp (°C)	280	280	280	280	280	
Pressure, nominal (psig)	20.3	3.75	13.1	22.2	10	
RT Locking Compound	Prodifen (SKF-525a)					
RT Locking Time (min)	18.272	9.136	6.091	4.568	3.045	
Purge Flow (mL/min)	50	50	50	50	50	
Purge Time (min)	1	0.75	0.5	0.4	0.25	
Gas type	Helium	Helium	Helium	Helium	Helium	
Oven	100 010	400.040			0.40 1.011 4.43	
Voltage (VAC)	120 or 240	120 or 240	240	240	240 and Pillow[1]	
Initial Oven Temp (°C)	100	100	100	100	100	
Initial Oven Hold (min)	1	0.5	0.33	0.25	0.167	
Ramp Rate ("C/min)	10	20	30	40	60	
Final Temp (°C)	345[2]	345[2]	345 [2]	345[2]	345 [2]	
Final Hold (min)	9	4.5	3	2.25	1.50	
Total Run Time (min)	34.5	17.25	11.5	8.625	5.75	
Equilibration time (min)	0.5	0.5	0.5	0.5	0.5	
Column						
Type	DB-35MS	DB-35MS	DB-35MS	DB-35MS	DB-35MS	
Agilent Part Number	122-3832	122-3832	122-3832	122-3832	Custom	
Length (m)	30	15	15	15	10	
Diameter (mm)	0.25	0.25	0.25	0.25	0.25	
Film thickness (um)	0.25	0.25	0.25	0.25	0.25	
Nominal Initial Flow (mL/min)	1.9	1.1	2.4	4.3	2.82	
Outlet pressure	Vacuum	Vacuum	Vacuum	Vacuum	Vacuum	
MSD						
Agilent Technologies 5975 or						
5973 Inert with Performance Elec	tronics					
Cuggootod Minimum Vocuum						
Pump	Diffusion	Diffueion	Performance Turbo	Performance Turbo	Performance Turba	
Tune File	Atuna Li	Atuna LI	Atune II	Atune LI	Atune II	
Mode	Scan	Scan	Scan	Scan	Scan	
Solvent delay (min)	3	1.4	0.8	0.65	0.41	
EM voltage	Atune voltage	Atune voltage	Atune voltage	Atune voltage	Atune voltage	
Low mass (amu)	40	40	40	40	40	
High mass (amu)	570	570	570	570	570	
Threshold	0	0	0	0	0	
TID	nn	nn	nn	nn	off	
Sampling	2	2	1	1	0	
Quad temp (°C)	150	150	150	150	150	
Source temp (°C)	300	300	300	300	300	
Transfer line temp (°C)	300	300	300	300	300	

Conditions Table 3 GC and MS Conditions for DB-35MS with Vacuum Outlet

Table 4, Gas Chromatogra	ph and Mass Spectr	ometer Conditions	for DB-35MS		
i ante il este oni oniacogra	with Atmospheric	Outlet			
	and Adiospheric				
	Original 4M Made - 4	DV Medles d	2V M-411		CV Medles d
	Original 1X Method	2X Method	3X Method	4X Method	6X Method
Biggest 4 Ions	FI35_1X_AIM.m	FT35_2X_ATM.m	FT35_3X_ATM.m	FI35_4X_AIM.m	FI35_6X_AIM.m
Column Bleed Optimized Ions	FT35_1X_ATM_BL.m	FT35_2X_ATM_BL.m	FT35_3X_ATM_BL.m	FT35_4X_ATM_BL.m	FT35_6X_ATM_BL.m
Fatty Acid Matrix Optimized lons	FT35_1X_ATM_FA.m	FT35_2X_ATM_FA.m	FT35_3X_ATM_FA.m	FT35_4X_ATM_FA.m	FT35_6X_ATM_FA.m
GC					
Agilent Technologies 6890 or					
7890 with Autiinjector and Trav					
1000 with Addingector and Hay					
Inlet	EPC Split/splitless	EPC Split/splitless	EPC Split/splitless	EPC Split/splitless	EPC Split/splitless
Mode	Constant Pressure	Constant Pressure	Constant Pressure	Constant Pressure	Constant Pressure
Injection Type	Snlitless	Snlitless	Snlitless	Snlitless	Snlitless
Injection Volume (ul.)	1.0	1.0	1.0	1.0	1.0
Injection volume (p2)	280	280	280	280	280
Pressure nominal (nsid)	32.5	18	200	33.4	200
RTL ocking Compound	Prodifen (Sk/E-525a)	Prodifen (SKE-525a)	Prodifen (Sk/E-525a)	Prodifen (SKE-525a)	Prodifen (Sk/E-525a)
RT Locking Composite	18 272	9.136	6.091	4 568	3 045
Purge Flow (ml (min)	50	50	50	50	50
Purge Time (min)	1	0.75	0.5	0.4	0.25
Gastyne	Helium	Helium	Helium	Helium	Helium
Cus type	Ticiidiii	ricilditi			Ticlight
Oven					
Voltage (VAC)	120 or 240	120 or 240	240	240	240 and Pillow[1]
Initial Oven Temp (°C)	100	100	100	100	100
Initial Oven Hold (min)	1	0.5	0.33	0.25	0.167
Ramp Rate (°C/min)	10	20	30	40	60
Final Temp (°C)	345 [2]	345 [2]	345 [2]	345 [2]	345 [2]
Final Hold (min)	9	4.5	3	2.25	1.50
Total Run Time (min)	34.5	17.25	11.5	8.625	5.75
Equilibration time (min)	0.5	0.5	0.5	0.5	0.5
Column					
Type	DB-35MS	DB-35MS	DB-35MS	DB-35MS	DB-35MS
Agilent Part Number	122-3832	122-3832	122-3832	122-3832	Custom
Length (m)	30	15	15	15	10
Diameter (mm)	0.25	0.25	0.25	0.25	0.25
Film thickness (um)	0.25	0.25	0.25	0.25	0.25
Nominal Initial Flow (mL/min)	2.9	2.2	3.9	6.1	4.8
Outlet pressure (psig)	3.8	3.8	3.8	3.8	3.8
MCD					
Miau Agilent Technologies 5975 or					
5973 Inert with Performance Elec	tronics				
Suggested Minimum Vacuum					
Pump	Performance Turbo	Performance Turbo	Performance Turbo	Performance Turbo	Performance Turbo
Tune File	Atune.U	Atune.U	Atune.U	Atune.U	Atune.U
Mode	Scan	Scan	Scan	Scan	Scan
Solvent delay (min)	3	1.4	0.8	0.65	0.41
EM voltage	Atune voltage	Atune voltage	Atune voltage	Atune voltage	Atune voltage
Low mass (amu)	40	40	40	40	40
High mass (amu)	570	570	570	570	570
Threshold	0	0	0	0	0
TID	on	on	on	on	off
Sampling	2	2	1	1	0
Quad temp (°C)	150	150	150	150	150
Source temp (°C)	300	300	300	300	300
Transfer line temp (°C)	300	300	300	300	300
[1] required Injection part and MS) D intorfaco in back pocitiv	1 and and G2646-60600 ov	von nillow		

Conditions Table 4 GC and MS Conditions for DB-35MS with Atmospheric Outlet

These Tables provide comparative information useful in deciding best speed(s) to run. If you are uncertain, 2X is a good place to start. If a chosen speed turns out to be too fast, try the next slower speed.

If your MSD is an older model without Performance Electronics (models earlier than 5973 Inert with Performance Electronics), methods faster than 3x may be too fast. With older electronics, high scan speeds may result in significant signal losses.

In the method file naming process, the stationary phase portion from Step 2 is now followed by the speed designation choice. For example, a DB-5MS method which runs at 30 °C per minute at this point now would have the name FT5_3X_.

Step 4 Column Outlet Pressure (**ATM**_*or* **VAC**_)

Method sets are provided for operating the column at either vacuum outlet pressure or at somewhat above atmospheric pressure.

- Vacuum outlet methods (**VAC**) are used when the column end is inserted directly into the MSD interface.
- **ATM**_ methods are for use with Agilent Capillary Flow Technology (CFT) devices where the column end is typically operated at 3.8 psi above atmospheric pressure.

Having retention times collected at the column outlet pressure to be used provides better retention time matching, especially for those compounds eluting near the end of the run.

Note that CFT devices can provide significant advantages to toxicology screening analyses. For example, using a two-way splitter, column effluent may be split between the MSD and an NPD. Added information provided by the NPD is often useful in screening samples.

CFT devices also allow changing or servicing the column without venting the MSD. Another major advantage afforded by the devices is the ability to backflush the analytical column at the end of each run:

- By removing heavy matrix material from the head of the column at the end of each run, column and detector maintenance are substantially reduced.
- Carryover and ghost peaks from previous runs are reduced or eliminated.

At this time, choose either VAC or ATM methods based upon the hardware setup you are using.

In the naming convention, the stationary phase prefix and speed designation are now followed by the outlet pressure term:

- Vacuum outlet methods have VAC_ in the name
- CFT methods have **ATM**_

For example, following from the example in Step 3, a DB-5MS method running at 30 °C per minute, and which is connected directly to the MSD, would have the name, thus far, of **FT5_3X_VAC_**.

Step 5 Ions Used for Quant Database (nothing or _BL or _FA)

Three different versions of each method set are provided based upon choice of ions used in the quant database:

- 1 A method using the largest four ions in a compound's spectrum is supplied.
 - The target ion is the ion with the largest abundance.
 - The three qualifiers are the next three largest ions assigned in order of decreasing abundance.
 - The naming convention to designate the largest four ions method sets is a *null* suffix (*nothing* at all).

These method sets are provided for legacy reasons and are used in some more advanced approaches.

The drawback of the largest four ions approach is that, in some cases, the signal-to-noise performance suffers. For example, if the biggest ion for a compound is 207, and the stationary phase has its largest bleed ion at 207, the signal-to-noise at that mass can be significantly reduced. The same problem is seen with low masses such as 44, where CO_2 and other background gases can result in interferences and increased noise.

- **2** To reduce this signal-to-noise problem, a second method set is provided where ions chosen for the quant database are selected to give optimal signal-to-noise ratios relative to both column bleed and background gases:
 - These methods would normally be chosen as they typically give best overall performance.
 - The naming convention to designate these method sets optimized for column bleed is the suffix **_BL**.
- **3** A third method type is provided where choice of ions has been optimized for samples having large amounts of fatty acids as typically seen in blood samples:
 - These methods give best signal-to-noise ratios in high fatty acid matrices.
 - They are *not* the best choice for samples having low levels of interfering fatty acids.
 - The naming convention to designate these method sets optimized for fatty acids is the suffix **_FA**.

Now choose the method set type best fitting your situation. In most cases, method sets optimized for column bleed ($_BL$) are the best place to start.

Continuing with the example from Step 4, the method name is <u>one</u> of the following three:

- FT5_3X_VAC representing a DB-5MS vacuum outlet method running at 30 $^{\circ}$ C (3X) and using the largest four ions
- FT5_3X_VAC_BL the same method but optimized for column bleed ions
- FT5_3X_VAC_FA the same method but optimized for fatty acid ions

This completes the process for creating the name of the specific method best suited to your application situation.

1 Decision Process to Create Your Method Name for the G1674AA Forensic Toxicology Data Base Library (DBL)

Step 1 Eight methods are preloaded and preconfigured for DRS:

FT5_1X_VAC_BL.m FT5_2X_VAC_BL.m FT5_3X_VAC_BL.m FT5_4X_VAC_BL.m FT5_1X_ATM_BL.m FT5_2X_ATM_BL.m FT5_3X_ATM_BL.m

If your derived method name(s) is/are in this list, proceed to Step 2, part a. Otherwise, proceed to Step 2, part b.

- **Step 2** Copy files to appropriate target folder locations:
 - **a** The eight preconfigured methods are located in the folder:

<drive>:\msdchem\MSDemo\FT Example Methods\

Copy your selected method(s) into your method folder, typically:

<drive>:\msdchem\1\METH0DS\

where **<drive>** is typically your **C**: drive. Recognize that an error made here will likely lead to failures in actual operation.

Continue now to Chapter 3, "DRS System Verification".

- b For all <u>non</u>-preloaded / <u>non</u>-preconfigured methods, you must perform the following file Copy operations. Recognize that error(s) made here will likely lead to failures in actual operation. Also recognize that, where <name> is indicated, this is your derived method name (Chapter 1) and <drive> is typically your C: drive:
 - ✓ Locate your method(s), **<name>.m**, to be used in the folder:

<drive>:\Program Files\Agilent\Forensics DBL\Method\

Copy your selected method(s) to your method folder, typically:

<drive>:\msdchem\1\METHODS\

✓ Copy files **FT35.L** and **<name>.scd** *from* the folder:

<drive>:\Program Files\Agilent\Forensics DBL\GCMS Libraries\

to the folder:

<drive>:\DATABASE\

✓ Copy the files <name>.msl and <name>.cid from the folder:

<drive>:\Program Files\Agilent\Forensics DBL\Libraries\

to the folder:

<drive>:\NIST05\AMDIS32\LIB\

NOTE

.msl and .cid file names do <u>not</u> include the portion representing your ions choice situation. Thus, for example, file FT35_3X_ATM.msl supports all three choice situations: FT35_3X_ATM.m, FT35_3X_ATM_BL.m, or FT35_3X_ATM_FA.m.

✓ Copy the file <name>_Test.D from folder:

<drive>:\Program Files\Agilent\Forensics DBL\Data\

to the folder:

<drive>:\ msdchem\1\DATA\

NOTE

<name>_Test.D names do <u>not</u> include the portion representing your ions choice situation. Thus, for example, test data file FT35_3X_ATM_Test.D supports all three choice situations: FT35_3X_ATM.m, FT35_3X_ATM_BL.m, or FT35_3X_ATM_FA.m.

This completes copying of your files to their working folder locations.

Generating a Test Forensics Toxicology DRS Report

As an example, and to test the DRS process, you can perform an offline manual data analysis exercise to produce a forensic toxicology DRS report using the **FT5_2X_VAC_BL** method case:

- **Step 1** Start the Data Analysis ChemStation.
- Step 2 From the MSD, follow the menu path: Spectrum > AMDIS > Analyze > Settings....
- **Step 3** In the resulting dialog boxes, verify and, if necessary, set parameters on **Identif**. and **Deconv**. tabbed views as in Figure 5 on page 18 and in Figure 6 on page 19, respectively.

Analysis Settings
Identif. Instr. Deconv. Libr. QA/QC Scan Sets
60 Minimum match factor
Multiple identifications per compound
Show standards Only reverse search
Type of analysis: Use Retention Index Data
RI window: 9 + 0 x 0.01 RI Match factor penalties Level: Infinite 100 Maximum penalty 10 No RI in library
Save As Cancel Default Help

Figure 5 AMDIS Analysis Settings- Identif. settings

Analysis Setting	s						
Identif. Instr. Decor	nv. Libr.	QA/QC Scar	n Sets				
12 Component width							
🗖 Omit m/z	C Omit m/z						
Adjacent peak su	btraction:	One	•				
R	esolution:	Medium	•				
s	ensitivity:	Very High	•				
Shape requirements: Medium							
<u>Save</u> Save <u>A</u> s	Cancel	<u>D</u> efault	<u>H</u> elp				

Figure 6 AMDIS Analysis Settings- Deconv. settings

- **Step 4** Select **Save** (settings are permanently saved in the AMDIS initialization file, **onsite.ini**). If prompted to **Reanalyze**, select **No**.
- **Step 5 Exit** AMDIS.
- Step 6 Load the appropriate ChemStation method: select Method > Load Method... and, in this case, browse to and to select FT5_2X_VAC_BL.M, then select OK.
- Step 7 Load the associated ChemStation data file: select File > Load Data File... to browse to and to select FT5_2X_VAC_Test.D, then select OK. The selected data then appears.
- Step 8Again from the ChemStation, open the DRS Method Configurator:DRS > Method Configurator. The following default view appears:

🚨 Compound Identification Configuration 📃 💷 🗙					
Exit Method Association Settings Help					
Method Name:	DRS_Demo				
AMDIS target library:	C:\NIST05\AMDIS32\Lib\DRS_Demo.msl				
RI Calibration Data:	C:\NIST05\AMDIS32\Lib\1Xdata1X.cal				
Perform NIST Search:	Yes				
Use Uncertain Peaks:	Yes				
Open Report:	Yes				
Print Report:	Yes				
Print Graphics:	No				
AMDIS Initialization Settings File:	C:\NIST05\AMDIS32\onsite.ini				

Figure 7 Configurator: default start view

Step 9 From the **Method Name**: dropdown list, select **FT5_2X_VAC_BL**.

Compound Identification Configuration					
Exit Method Association Settings Help					
Method Name:	FT5_2x_VAC_BL				
AMDIS target library:	C:\NIST05\AMDIS32\LIB\FT5_2X_VAC.msl				
RI Calibration Data:	C:\NIST05\AMDIS32\LIB\FT.cal				
Perform NIST Search:	Yes				
Use Uncertain Peaks:	No				
Open Report:	Yes				
Print Report:	Yes				
Print Graphics:	No				
AMDIS Initialization Settings File:	C:\NIST05\AMDIS32\ONSITE.INI				

Figure 8 Forensic toxicology configuration

NOTE The **Method Name:**, as it appears in the DRS Configurator, does <u>not</u> include .m as an extension. This is intentional and is <u>not</u> an error: if any extension is added to the Configurator **Method Name:** entry, failure may occur.

NOTE

Folder paths shown in Figure 7 and Figure 8 on page 20 are based upon default NIST and AMDIS installation locations. If you installed these software applications elsewhere, you should see paths reflecting your local situation. If needed, you can use **Edit Settings** ... via provided Browse buttons, ..., to update specific file locations:

Compound Identification Configuration					
Exit	Method Association Settings Help				
	Edit Settings				
Me	Delete Settings				
AM	New Method Association Settings				

Figure 9 Configurator menu: Edit Settings ...

Step 10 Exit and Save to accept and to preserve these initialization settings:

🚨 Compound Identification Configu					
Exit Method Association Settings Help					
E>	(it and Save				
E>	(it without saving				

Figure 10 Configurator menu: Exit and Save

- **Step 11** To generate the desired DRS report *automatically* at the end of the ChemStation's data analysis process, you must enter a post-run call to macro **trifecta.mac**. Do the following:
 - a Select Method > Edit Entire Method, then check *only* Method information, and select OK.

- **b** In the resulting view, make the following changes:
 - *Unselect* (disable) the **Data Acquisition** check box since data already exists and is loaded (Step 7).
 - *Unselect* (disable) the **Data Analysis** check box since DRS, rather than the ChemStation, is to perform the analysis and to produce the report.
 - Select (check) the Post-Run Cmd/Macro check box and enter <drive>:\MSDChem\msexe\trifecta.mac in the Data Analysis field to run trifecta.mac at the end of the analysis. <drive> is typically your C: drive. Enter useful explanatory text, if desired, into the Method Comments: field:

Method Information	X
Method <u>C</u> omments:	
DRS for Data Reprocessing	
☐ <u>S</u> ave Copy of Method With Data	
Method Sections To Run:	
Inst Control:	
Data Analysis:	
T Data Acquisition	
T Data Analysis	
Post-Run Cmd/Macro:	
Inst Control:	
Data Analysis: C\MSDChem\msexe\trifecta.mac	
OK Cancel <u>H</u> elp	

Figure 11 MS Method Information: Post-Run Cmd/Macro entry

Recognize that, should you *not* want to run DRS with this Method in the future, you need only *uncheck* (disable) the **Post-Run Cmd/Macro** check box. The macro call itself need not be removed.

Step 12 Run DRS on the loaded data file: from the ChemStation, select DRS > Quant + DRS single file. When complete, the DRS software generates a deconvolution report which should appear similar (but not necessarily identical) to Figure 12 on page 24 or Figure 13 on page 25, depending upon the DRS version in use.

3 DRS System Verification

MSD Deconvolution Report Sample Name: 25 drug mix Data File: C:\msdchem\MSDemo\FT5_2X_VAC_Test.D Date/Time: 04:46 PM Tuesday, Apr 8 2008

The NIST library was searched for the components that were found in the AMDIS target library.

			Agilent	AMDIS		NIST	
R.T.	Cas #	Compound Name	ChemStation	Match	R.T. Diff sec.	Reverse Match	Hit
1.579	64040	Phenylethylamine Beta-	7 09			Materi	Num.
1.7657	60151	Amphetamine	7.00	89	-1.8	93	1
1 823	60151	Amphetamine	250 73				ŀ
2 013	122098	Phentermine	82.3	90	19	77	3
2.014	537462	Methamphetamine	261.53				Ŭ.
2.0805	537462	Methamphetamine	201.00	97	-0.2	91	3
3.0875	54115	Nicotine	361.46	93	-0.4	92	2
3.424	43021267	Anhydroecgonine Methyl Ester	5.02	87	0.2	71	2
3 452	771982	Phencyclidine artifact	329.05	89	-0.4	86	-
3.9479	4764174	Methylenedioxyamphetamine (MDA)	172.76	65	-0.5	75	4
4.287	42542109	Methylenedioxymethamphetamine (MDMA)	2265.24	93	-0.2	94	1
4.5739	14089522	Methylenedioxyethylamphetamine	664.13	96	-0.3	95	1
5.6467	57421	Meperidine	149.92	99	-0.3	95	1
6.146	54910893	Fluoxetine	8.45				
6.4900	77101	Phencyclidine	150.71	99	-0.6	94	1
7.7230	76993	Methadone		85	-0.3	77	2
8.075	50362	Cocaine	168.85	93	-0.2	95	1
8.175	72695	Nortriptyline	0.22				
8.3349	529384	Cocaethylene		59	-0.5	45	8
8.5587	302330	SKF-525a		90	-0.1	93	1
8.6934	604751	Oxazepam	64.13	94	-0.1	84	1
8.9781	76573	Codeine	109.55	82	-0.2	93	1
9.048	846491	Lorazepam	27.91	73	-0.3	69	1
9.1821	439145	Diazepam	116.29	95	-0.1	95	1
9.258	125291	Hydrocodone	127.56	80	0.3	94	1
9.3212	1972083	Tetrahydrocannabinol	129.86	99	-0.0	95	1
9.5900	76426	Oxycodone	243.51	81	0.1	92	1
9.8333	846504	Temazepam	121.97	82	0.1	79	1
9.9145	1622624	Flunitrazepam	165.01	99	0.2	91	1
9.916	999517021	Desmethyldoxepin (cis) AC	741.71				
9.9754	561273	Diacetylmorphine	135.29	99	0.3	86	1
10.020	34084509	7-Aminoflunitrazepam	3.08				
10.565	146225	Nitrazepam	651.08	85	-0.0	89	1
10.8721	1622613	Clonazepam		93	0.4	83	1
10.918	4959175	Clonazepam-M (amino-)	2.03				
11.254	999501029	Sulfamethazine AC	21.38				
11.254	28981977	Alprazolam	248.52	71	1.0	91	1
11.9903	50373	Lysergide (LSD)		92	1.0	88	1
12.0866	57249	Strychnine		80	1.5	82	1
12.850	19794935	Trazodone	282.1	94	2.5	86	1

Figure 12 Example Forensic Toxicology DRS report (using G1716AA DRS, version A.03)

MSD Deconvolution Report Sample Name: 25 drug mix Data File: C:\msdchem\1 \DATA\FT5_2X_VAC_Test.D Date/Time: 3:09:39 PM Tuesday, May 20, 2008 Adjacent Peak Subtraction = 1 Resolution = Medium Sensitivity = Very High Shape Requirements = Medium

The NIST library was searched for the components that were found in the AMDIS target library.

			Amount (~ng)		AMDIS		NIST	
R.T.	Cas #	Compound Name	Chem station	AMDIS	Match	R.T. Diff sec.	Reverse Match	Hit Num
1.579	64040	Phenylethylamine, Beta-	7.09					
1.7679	60151	Amphetamine			88	-1.7	92	1
1.823	60151	Amphetamine	250.73	770.3				
2.013	122098	Phentermine	82.3	82.58	90	1.9	77	3
2.014	537462	Methamphetamine	261.53	3345.77				
2.0805	537462	Methamphetamine			97	-0.2	91	3
3.0875	54115	Nicotine	361.46	297.61	93	-0.4	92	2
3.4199	43021267	Anhydroecgonine Methyl Ester	5.02	3.89	83	-0.2	66	2
3.452	771982	Phencyclidine artifact	329.05	297.69	88	-0.3	87	1
3.9479	4764174	Methylenedioxyamphetamine (MDA)	172.76	154.5	65	-0.5	75	4
4.2865	42542109	Methylenedioxymethamphetamine (MDMA)	2265.24	1986.18	92	-0.4	94	1
4.5739	14089522	Methylenedioxyethylamphetamine	664.13	599.34	96	-0.3	95	1
								-

Figure 13 Example Forensic Toxicology DRS report (using G1716AA DRS, version A.04), part 1 of 2

5.6463	57421	Meperidine	149.92	135.44	99	-0.3	95	1
6.146	54910893	Fluoxetine	8.45					
6.4900	77101	Phencyclidine	150.71	137.11	99	-0.6	94	1
7.7208	76993	Methadone		276.04	85	-0.4	77	2
8.075	50362	Cocaine	168.85	155.49	93	-0.2	95	1
8.175	72695	Nortriptyline	0.22					
8.5587	302330	SKF-525a		218.53	90	-0.1	93	1
8.695	604751	Oxazepam	64.13					
8.9741	76573	Codeine	109.55	88.3	83	-0.5	84	1
9.0457	846491	Lorazepam	27.91	18.07	70	-0.6	48	1
9.1821	439145	Diazepam	116.29	96.56	95	-0.1	95	1
9.2549	125291	Hydrocodone	127.56	118.3	80	0.0	94	1
9.3216	1972083	Tetrahydrocannabinol	129.86	123.46	99	-0.0	95	1
9.594	76426	Oxycodone	243.51	206.49	79	0.4	90	1
9.8333	846504	Temazepam	121.97	104.99	82	0.1	78	1
9.9119	1622624	Flunitrazepam	165.01	125.9	99	0.1	90	1
9.916	999517021	Desmethyldoxepin (cis) AC	741.71					
9.9723	561273	Diacetylmorphine	135.29	106.71	99	0.1	85	1
10.020	34084509	7-Aminoflunitrazepam	3.08					
10.565	146225	Nitrazepam	651.08	569.55	85	-0.0	89	1
10.8747	1622613	Clonazepam		264.35	93	0.5	84	1
10.918	4959175	Clonazepam-M (amino-)	2.03					
11.2495	28981977	Alprazolam	248.52	154.84	71	0.7	89	1
11.254	999501029	Sulfamethazine AC	21.38					
11.990	50373	Lysergide (LSD)		234.45	92	1.0	88	1
12.0866	57249	Strychnine		210.55	78	1.5	84	1
12.850	19794935	Trazodone	282.1	221.41	94	2.2	87	1

Figure 14 Example Forensic Toxicology DRS report (using G1716AA DRS, version A.04), part 2 of 2

This completes the process of producing an example post-run manual DRS analysis and report.

Agilent G1674AA Deconvolution Reporting Software (DRS) Solution for Forensic Toxicology Getting Started

Chromatographic Considerations

- **Step 1** If not already done, install the column for your specific method as listed in Conditions Tables 1, 2, 3, or 4.
- Step 2 If you are using a CFT device (for example, a splitter to an NPD) at the end of the column. Make sure CFT restrictors are chosen to accept column flow for your chosen method as listed in Conditions Tables 1, 2, 3, or 4.

Total flow out the CFT restrictors should be at least 30% greater than the column flow listed in the Conditions Table for your method. This ensures a flow rate sufficient to prevent the GC from becoming *Not Ready* as required in the Retention Time Locking calibration step described in Chapter 5.

This completes chromatographic considerations associated with your method(s).

4 Chromatographic Considerations

Agilent G1674AA Deconvolution Reporting Software (DRS) Solution for Forensic Toxicology Getting Started

Retention Time Calibration and Locking

Supplied forensic toxicology DBL methods were each originally constructed by adding data analysis components to the original default ChemStation method.

- **Step 1** Load your chosen method into the ChemStation Instrument session. You may be asked some configuration questions upon loading the method.
- **Step 2** Enter all acquisition parameters for the method as listed in the specific Conditions Table used in determining your method.
- **Step 3** Inject 1 μ L of a 5 ng/ μ L solution to run a sample of the retention time locking compound, proadifen (SKF-525a, CAS number: 302-33-0) to confirm that the method is working appropriately.
- Step 4 Verify that retention time of proadifen is within about ± 1% of the locking time listed in the specific Conditions Table (1, 2, 3, or 4) you used for vacuum outlet methods (VAC_), or ± 2% for CFT outlet methods (ATM_).

If it is *not*, adjust inlet pressure in 1-psig steps and rerun the standard for each step until the retention time falls within the range. If retention time is too short, decrease pressure; if it is too long, increase pressure.

- Step 5 Change the MSD solvent delay time to about one half of the locking time for proadifen and Save the method. This prevents the electron multiplier from being exposed to the solvent peak at the higher flow rate runs for the retention time locking calibration procedure.
- Step 6 Run the retention time locking calibration procedure and lock the retention time of proadifen to that listed in the specific Conditions Table (1, 2, 3, or 4) you used in determining your Method (this procedure is described in your ChemStation's Help topic, "To Lock an MS method").
- **Step 7** After retention time locking is successfully completed, set the MSD solvent delay time back to that listed in the given Conditions Table and **Save** the method.

- **Step 8** Run a calibration sample containing drugs from the FT DBL to confirm the method is working properly. It is best to have a mixture of drugs spanning the retention time range of the method. It is especially important to have some early- and late-eluting compounds:
 - Amphetamine, phentermine, and methamphetamine are good early test compounds.
 - LSD, strychnine, and trazodone are good late test compounds.
- **Step 9** Inspect the chromatogram to confirm the solvent delay is set appropriately to prevent the back end of the solvent peak from producing full-scale response in the MSD. If this is *not* the case, as necessary, either shorten the splitless purge time or lengthen the solvent delay.
- **Step 10** Inspect retention times of drugs in the test mixture to confirm they fall within ± 0.12 minutes of retention times listed in the specific method calibration table you are creating.

Compound retention times are found by loading the method in **Data Analysis** and then selecting the **Calibrate/Edit Compounds** menu item. If using DB-35 (**35**) methods, final temperature of your oven program may need to be adjusted in 1 °C increments from the nominal 345 °C to make retention times of late-eluting compounds such as LSD, strychnine, and/or trazodone, fall into range.

This completes retention time calibration and locking considerations associated with your method(s).

Agilent G1674AA Deconvolution Reporting Software (DRS) Solution for Forensic Toxicology Getting Started

Final Response Factor Calibration

Method calibration tables (quant database) supplied with the FT DBL methods contain only approximate response factor calibrations for each compound. These response factor calibrations have units labeled **~ng**, where **~** indicates each given value to be an approximation:

- The purpose of these ~ calibrations is to provide a *very* approximate indicator of the amount of each compound found in the screening process.
- They are intended to provide an estimated value which can be used as a guide in preparation of a compound-specific, true calibration standard with which to calibrate for each specific compound desired.
- These responses must never be used to report *true* quantitative results.

The provided approximate calibration values are adjusted *after* the method is set up, and with the MSD already having been autotuned, but *before* any actual quantitative calibration is performed. The adjustment is done by injecting a sample containing 5 ng/ μ L of proadifen (this sample solution also could be the retention time locking calibration sample).

- **Step 1** In Data Acquisition, **Load** the FT DBL method you are using.
- Step 2 Run the 5 ng/ μ L proadifen sample and generate a quant report.
- **Step 3** In Data Analysis, **Load** the just-completed data file from the previous step and generate a report.
- **Step 4** Check the reported amount: if the reported amount is 233.57 **~ng**, for example, then approximate response factors in the quant database *all* need to be multiplied by 233.57/5 to *normalize* them to be equivalent to that of the 5 ng/µL proadifen sample.

This normalization is done by selecting menu item: Calibrate > Update... > Global Update > Set Other (via command)...

For this example, enter the command **Cresp[1]=Cresp[1]*233.57/5** (note the required use of square brackets, "[]") and select **OK**:

Figure 15 Changing all RFs by command entry

This step adjusts *all* calibration response factors by the same scaling value, in this example case, of 233.57/5.

NOTE This step must be done *before* you do any actual individual component response factor calibrations. If done later, this adjustment step will incorrectly change your actual calibrated response factor values.

In entering your actual response factor calibration values, change amount units from **~ng** to your working units so, when reports are generated, they correctly indicate the source of your response factor calibrations.

This completes response factor calibration considerations associated with your method(s).

Agilent G1674AA Deconvolution Reporting Software (DRS) Solution for Forensic Toxicology Getting Started

DRS Setup for Data Acquisition

Upon completing Chapter 3, Chapter 4, Chapter 5, and Chapter 6, you are now ready to perform final steps necessary to run your sample analyses. Three cases are to be considered:

- Case 1 Your chosen method is *specifically* FT5_2X_VAC_BL.m as was used in Chapter 3, "DRS System Verification". In this case, you need only reopen the ChemStation view for the post-run call to macro trifecta.mac and make *one* change: to do this, proceed *directly* to Chapter 8, "MS ChemStation: DRS Post-Run Call".
- **Case 2** Your chosen method is one of the *other* seven preloaded / preconfigured ChemStation methods:

FT5_1X_VAC_BL.m FT5_3X_VAC_BL.m FT5_4X_VAC_BL.m FT5_1X_ATM_BL.m FT5_2X_ATM_BL.m FT5_3X_ATM_BL.m FT5_4X_ATM_BL.m

For this second case, do the following:

1 From the ChemStation, open the DRS Configurator:DRS > Method Configurator . The following default view appears:

Compound Identification Configuration					
Exit Method Association Settings Help					
Method Name:	DRS_Demo				
AMDIS target library:	C:\NIST05\AMDIS32\Lib\DRS_Demo.msl				
RI Calibration Data:	C:\NIST05\AMDIS32\Lib\1Xdata1X.cal				
Perform NIST Search:	Yes				
Use Uncertain Peaks:	Yes				
Open Report:	Yes				
Print Report:	Yes				
Print Graphics:	No				
AMDIS Initialization Settings File:	C:\NIST05\AMDIS32\onsite.ini				

Figure 16 Configurator: default start-up view

- 2 Open the **Method Name**: list and select your chosen method name. Remember that, intentionally, there is no **.m** extension as part of the name.
- **3 Exit and Save** to accept and to preserve these DRS Configurator method settings:

Figure 17 Configurator menu: Exit and Save

4 Reopen the ChemStation view for the post-run call to macro trifecta.mac and make *one* change: to do this, proceed *directly* to Chapter 8, "MS ChemStation: DRS Post-Run Call". **Case 3** Your chosen method is one of the *other* 52 ChemStation methods *not* originally preloaded and preconfigured.

For this situation, do the following:

1 From the ChemStation, open the DRS Configurator: DRS > Method Configurator. The following start-up default view appears:

Compound Identification Configuration					
Exit Method Association Settings Help					
Method Name:	DRS_Demo				
AMDIS target library:	C:\NIST05\AMDIS32\Lib\DRS_Demo.msl				
RI Calibration Data:	C:\NIST05\AMDIS32\Lib\1Xdata1X.cal				
Perform NIST Search:	Yes				
Use Uncertain Peaks:	Yes				
Open Report:	Yes				
Print Report:	Yes				
Print Graphics:	No				
AMDIS Initialization Settings File:	C:\NIST05\AMDIS32\onsite.ini				

Figure 18 Configurator: default start-up view

2 Manually add your DRS Configurator method name to the Method Name: list by selecting: Method Association Settings > New Method Association Settings

Figure 19 Configurator menu: New Method Association Settings ...

Add a Configuration						
Method Name:						
AMDIS target librar	y:					
🔲 Use RI Calibratio	n Data:					
	0-441				_	
AMDIS Initialization	i settings File					
🔲 Open Report	🗹 Perform N	IST Search				
🔲 Print Report	✓ Use Uncertain Peaks					
Print Graphics						
	Add	Cancel	Help			

Figure 20 Configurator: Add a Configuration

3 Enter necessary information for your chosen method. As an example, suppose you determined the name of your chosen method (Chapter 1) to be **FT35_3X_VAC_FA**. The following entries and settings would be made:

Add a Configuration			×					
Method Name:	FT35_3X_VAC_FA							
AMDIS target library:	C:\NIST05\AMDIS32\LIB\FT35_3X_VAC.msl							
✓ Use RI Calibration Data:	C:\NIST05	,AMDIS32\LIB\FT.cal						
AMDIS Initialization Settings File:	C:\NIST05	AMDIS32\ONSITE.INI						
Image: Constraint of the second se								
Add	Cancel	Help						

Figure 21 Configurator: adding a given forensic toxicology configuration

NOTE

- 1 There must be *no* .m extension included as part of the **Method Name**: entry.
- 2 For *any* **FI** DRS Configurator method, entries and settings here are the same *except* **Method Name:** and **AMDIS target library:** which are both method dependent.
- **3** Be careful typing entries: an incorrect or missing character will likely cause failure.
 - **4** With entries and settings made for your chosen method, select **Add** to accept the new information. The following confirmation view appears:

Figure 22 Configurator: verifying the added forensic toxicology configuration

NOTE

For **AMDIS target library**: , final entry character(s) may be truncated depending upon total line length. This is not a problem functionally.

5 Exit and Save to accept and to preserve these new DRS Configurator method settings:

Figure 23 Configurator menu: Exit and Save

```
NOTE
```

You can return to this information for editing purposes at any time by opening the DRS Configurator, selecting your method, and then following the menu, **Method Association Settings > Edit Settings**

6 Reopen the ChemStation view for the post-run call to macro trifecta.mac and make *one* change: to do this, proceed *directly* to Chapter 8, "MS ChemStation: DRS Post-Run Call".

To complete the process to generate an automatic DRS analysis and report at completion of each of your analyses, do the following:

- Step 1 If not *already* loaded, load the appropriate ChemStation method: select Method > Load Method... and browse to and select your chosen method, <name>.m, then select OK.
- **Step 2** Select Method > Edit Entire Method , then check *only* Method information, and select OK.
- **Step 3** Select (enable) the **Data Acquisition** check box since new data does not presently exist (see Figure 24 on page 40).

Method Information	×
Method <u>C</u> omments:	
DRS for Data Acquisition	
☐ <u>S</u> ave Copy of Method With Data	
Method Sections To Run:	
Pr <u>e</u> -Run Cmd/Macro:	
Inst Control:	·
Data Analysis:	
✓ Data <u>A</u> cquisition	
🗖 Data Analysis	
✓ Post-Run Cmd/Macro:	
Inst Control:	·
Data Analysis: C:\MSDChem\msexe\trifecta.mac	
OK Cancel <u>H</u> elp	

Figure 24 MS Method Information: Data Acquisition & Post Run Cmd/Macro entry

Step 4 Save the method to preserve this change.

You now should be ready to perform an analysis to generate a DRS report for your chosen method.

As references for additional information, see:

- *"Acquiring and Processing New Data Using a Sequence"* in DRS Help for additional information regarding performing multiple analyses via a Sequence.
- *"Sequence Reprocessing Mode"* in DRS Help for additional information regarding using a sequence to reprocess multiple existing data files.
- "*DRS Troubleshooting and Additional Information*" in DRS Help for problems encountered.

Agilent Technologies, Inc. Printed in USA, June 2008

