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INTRODUCTION
DNA microarray technology is a powerful research tool that enables the
global measurement of transcriptional changes between paired RNA
samples. While strong biological inferences can be made from microarray
transcriptional data, they must be made within the proper biological and
experimental context. This is because DNA microarrays capture a static
view of a dynamic molecular event. This static view challenges researchers
to tease out meaningful biological changes from the associated noise (due
to sample acquisition, target labeling, microarray processing, etc.).

There are ten common pitfalls that new users often face when interpreting
DNA microarray results. The early recognition of these pitfalls will help
minimize false leads and maximize the biological value of the resulting
microarray data.



PITFALL 1: 
FOCUSING ON IMAGE QUALITY
OVER DATA QUALITY

The visual inspection of microarray images is an important component to assessing hybridization
quality. Often, non-random hybridization issues that may compromise data quality can be flagged upfront

by visual inspection (i.e. non-specific binding, scratches, bubbles, etc.). 

However, image quality should not be the sole metric for hybridization performance when optimizing DNA microarray experiments.
This pitfall is highlighted in Figure 1. Here, a scientist performed a cDNA microarray hybridization (Figure 1a) and decided to
make protocol modifications in order to increase the overall microarray intensity. Although the new modifications did improve the
overall intensity (Figure 1b) they also introduced additional data skewing that would surely compromise downstream
interpretation.

There may also be occasions (although less frequent) whereby poor quality images could hide good data quality. For example,
incorrect computer image contrast settings may give the impression that a microarray is of poor quality when, in fact, the
underlying data may be sound. So while image quality often correlates with data quality, it should not be used independently as
the sole metric of hybridization success.

Figure 1: a) Customer-generated cDNA hybridization results
following Agilent’s recommended protocols for target labeling.
b) The image and scatter plot resulting from several protocol
changes that were made to increase microarray intensity. The
additional noise in the scatter plot is a direct result of the
protocol modifications.  
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PITFALL 2: 
PAYING MORE ATTENTION TO
ABSOLUTE SIGNAL THAN SIGNAL-TO-NOISE

This topic is a continuation of the first pitfall and refers to both microarray and scanner issues.
When working with DNA microarrays, users should recognize that signal-to-noise is more important

than absolute signal.   

In terms of microarray signal, there are many factors that can impact spot signal intensity including: target quality, feature
diameter, probe quantity, and target specific activity. However, increased spot signal is not an advantage if the corresponding
background signal is also increased (Figure 2). This is because increased background signal will directly impact detection
sensitivity and the ability to extract data from biologically relevant transcripts of low abundance.

This is also an issue regarding scanner PMT adjustments. While researchers may increase PMT gain in order to increase
microarray signal, the adjustment could have the detrimental effect of increasing the background signal in a proportionate fashion.
Figure 2 highlights the impact of scanner signal-to-noise on detection sensitivity. For these reasons, users should focus on signal-
to-noise rather than absolute signal.

Figure 2: Signal-to-noise. a) This plot represents an intensity
histogram of a row of microarray spots. Each peak represents the
intensity value of a given spot (red and green channel) and higher
peaks correspond to increased spot signal intensity. If the
background noise were increased detection sensitivity would be
compromised, as several spots would be indistinguishable from the
noise. b) This figure plots the green signal-to-noise versus signal for
a microarray scanned on three scanners. In this example, only 158
spots are below the detection limit of the Agilent DNA microarray
scanner (S/N=3) compared to 8154 spots on Brand Z
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PITFALL 3: 
FAILING TO INTERPRET REPLICATE RESULTS WITHIN
THE CONTEXT OF THE ‘LEVEL’ OF REPLICATION

Although replicate experiments offer statistical benefits, users should be aware that different levels of
replication provide different answers. Figure 3 highlights the main levels of replication in a microarray

experiment. In this example one could focus on three mice, three tissue isolates from the same mouse, three
RNA isolations, three labeling reactions, three microarrays, or three replicate spots on a single microarray. While all of these are
examples of replication, the level of replication will directly affect the variability of the replicate measurements.

For example, the red lines in Figure 3a represent the use of a single target (from one RNA isolation, of one tissue isolate, of one
mouse) for three identical microarray hybridizations. Because the target for all three hybridizations is identical, the only newly
introduced variability is a function of the microarray hybridization. This variability includes microarray manufacturing, hybridization,
slide washing, and handling. Microarray replicates of the same target will not offer additional information regarding the variability
across mice. Similarly, replicates at the level of tissue isolation may include variability due to dissection methods, cellular
heterogeneity, and spatial/temporal expression patterns, but will not provide additional information regarding variability across
mice.

Finally, replication at the level of biology (Figure 3b) will include variability due to strain, disease states, treatment variation, and
environmental factors in addition to the variability introduced by subsequent levels (RNA isolation, labeling, etc.). So while
technical replicates are important to ensure the procedure is running properly, biological replicates are important to enable
transcriptional measurements to be generalized across biological samples (mice in this example). In general, we recommend an
appropriate mix of technical and biological replicates depending upon the experimental aim and sample/budgetary limitations.
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Figure 3: Levels of replication. a) Replication at the level of
microarray hybridization, representing one target hybridized on
three identical microarrays. b) Replication at the level of biology,
representing the use of labeled target from three independent
mice. Details explained in text.



PITFALL 4: 
ASSUMING THAT STATISTICAL SIGNIFICANCE IS
EQUIVALENT TO BIOLOGICAL SIGNIFICANCE

DNA microarray results generally include transcripts that are considered ‘differentially expressed’
between RNA samples and transcripts that are considered ‘unchanged’ between samples. This

distinction is typically determined by a statistical test using the spot intensity values for each transcript.
Although the use of statistics is recommended for defining differential expression, the statistical confidence of differential
expression calls may not always reflect the biological relevance of a particular transcriptional change.

This is because all transcripts have a normal physiological range of abundance in vivo. Some reports suggest that transcript levels
may fluctuate 20-30% in normal biology, simply as a function of how tightly genes are regulated
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results of a given microarray hybridization may indicate the down-regulation of a particular gene, this change may be well within
the normal physiological range for this transcript (Figure 4a). As a result, this apparent ‘down-regulation’ may have less
biological significance within the context of the experiment. In order to better estimate the physiological range of transcripts, some
researchers perform baseline experiments to model normal transcriptional variation
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In addition, technical replicates at lower levels (Figure 4b) may increase the statistical confidence in a particular measurement by
decreasing the variability introduced by replicate hybridizations. In other words, replicate hybridizations from a single RNA prep
may increase the statistical confidence of transcriptional changes observed for that RNA sample only. However, this one RNA
isolation may not be representative of the gene’s biological response across mice, for example. So statistical significance does not
always equal biological significance.

Figure 4: a) Each red spot represents the transcriptional
abundance of a specific gene with an associated error bar. This
figure suggests that the ‘experimental’ measurement for this gene
is within its normal range of transcriptional physiology.
b) Replicates at the level of microarray hybridization (see text). 
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PITFALL 5: 
IGNORING EXPERIMENTAL
DESIGN CONSIDERATIONS

While many researchers appropriately focus on the handling of DNA microarrays, users should also
recognize that the design of the experiment is as important as the implementation of the experiment. For

two-color microarray experiments this includes both hybridization design and processing design.

Hybridization design refers to the combination of samples that are compared on a single microarray slide, with one sample labeled
green and the other labeled red. Consideration for hybridization design is important because it minimizes the inefficient use of
resources (samples, microarrays) and the potential generation of data that cannot appropriately answer the biological question
being asked. 

Consider the two hybridization designs shown in Figure 5, representing the comparison of normal versus treated mice. While the
hybridization design of Figure 5a offers the direct comparison of normal and treated mice on the same microarray, the pooled-
normal sample precludes any measurement of biological variability across normal mice. As a result, it will be difficult to separate
biological noise from technical noise in the resulting data. The use of an independent reference sample in Figure 5b, on the other
hand, will enable the measurement of variability across normal samples but will involve the hybridization to a sample of no
biological interest (i.e., the independent reference). While an in depth discussion regarding hybridization design options (direct,
loop, balanced block, reference, multi-factorial) is beyond the scope of this paper, researchers should ensure that the hybridization
design is consistent with the scientific aim of the experiment.

Processing design refers to the handling of samples throughout the complete course of a microarray experiment (including RNA
isolation, target labeling, hybridization, scanning, etc.). The importance of processing design is shown in Figure 6a.

Here a scientist hybridized two groups of samples (treated vs. reference; untreated vs. reference) with the expectation that an
unsupervised clustering algorithm would discriminate the two treatment groups based upon the similarity of the resulting
expression profiles. Unfortunately, because all treated samples were processed on one day and all untreated samples on a
different day, the greatest source of variability in the resulting data was the date of processing, rather than the biological treatment
group. A more appropriate process design would have included randomizing the samples so that an equal number of treated and
untreated samples were processed on the same day (Figure 6b).

Although one may be tempted to run a microarray experiment and to figure out the data later, careful up-front consideration must
be made to proper hybridization design and processing design. Remember, the design of an experiment is as important as the
implementation of the experiment.
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Figure 5: Sample hybridization design options for comparing
RNA from normal and treated mice. a) This figure represents
the separate comparisons of pooled RNA from normal mice
versus the RNA from treated mice on three separate
microarray hybridizations. b) Each RNA sample (normal or
treated) is compared to an independent ‘reference’ RNA
sample, indicated by the blue box.



PITFALL 6: 
USING EXPERIMENTAL CONDITIONS THAT ARE
DIFFERENT FROM THE ERROR MODEL CONDITIONS

The goal of any measurement tool is to provide an estimate of quantitative truth. In the case of DNA
microarrays, this ‘truth’ is of differential gene expression. And, like other quantitative tools, DNA

microarray measurements are typically associated with an estimate of measurement error.

For DNA microarrays, this error can be systematic error (i.e., error that can be corrected for such as background subtraction or dye
normalization) or random error (i.e., error that cannot be captured, but which can be modeled). To estimate the random error
associated with expression measurements from a particular microarray platform, one can perform many hybridizations under
identical experimental conditions. With this approach, the normal level of noise associated with a microarray platform can be
estimated, independent of biology or technician. Once the random noise associated with a microarray platform is understood, this
information can be applied to the interpretation of future, smaller data sets.

While a complete explanation regarding the use of error models is beyond the scope of this paper (for review, see reference 4),
the concept behind this pitfall is straightforward. Error models are only accurate under the identical conditions that were used to
model the error. In other words, researchers who are implementing an error model in their analyses must use the same
experimental conditions that were used for the initial development of the error model. This means using the same labeling
protocols, wash conditions, scanner models, and manufacturer’s recommendations. Any changes introduced in the process or
protocols may add noise that was not initially present in the experiments used to estimate the random error. As a result, the error
model (random error estimation) may not be accurate.

Figure 6: Sample results from a poorly processed microarray
experiment. a) The unsupervised hierarchical cluster of 9
microarray hybridizations (Normal vs. Reference; Treated vs.
Reference) shows grouping of similar experiments based upon the
day of processing rather than sample biology. Here processing
noise is greater than biological noise. b) An alternative sample
processing strategy randomizes the sample handling across two
days in order to minimize the processing bias. Here an equal
number of untreated samples are processed on Day 1 as
treated samples. 
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PITFALL 7: 
PAYING MORE ATTENTION TO THE MAGNITUDE OF THE
LOG RATIO THAN THE SIGNIFICANCE OF THE LOG RATIO

In early microarray experiments, many researchers filtered microarray data by defining an arbitrary
fold-change cutoff for transcripts, such as a 2-fold cutoff. This refers to the ratio of cyanine 5-red labeled

target to cyanine 3-green labeled target. If a microarray spot had an intensity of 10,000 counts in the red
channel and 5,000 counts in the green channel it would have a ratio of 10,000/5,000= 2, with Log102=0.3. Because of the poor
quality of early microarray technology, only transcripts with a fold change greater than 2 (i.e., x<-2 or x>+2) were considered
biologically real. Less attention was given to transcripts with smaller fold changes. Therefore, users focused on the magnitude of
the Log Ratio in defining ‘true’ transcriptional differences. This fold-change threshold is depicted in Figure 7.

Another approach for defining ‘true’ transcriptional changes focuses on the significance of the Log Ratio. This refers to a statistical
definition of significance whereby an estimate is assigned for the probability(P) that a given Log Ratio could occur by chance
alone. In other words, if we assume that no transcriptional differences exist between two RNA samples (i.e., average Log
Ratio=0), statistics can be used to estimate if an observed change is consistent with this assumption. For example, a Log Ratio
with the estimate P<0.01 would suggest that this Log Ratio measurement would be observed about 1% of the time in repeated
samplings by chance alone, assuming that its true Log Ratio=0. The smaller the P-value, the less likely the measurement would be
observed by chance alone and the more likely that the change is reflective of true differential expression (i.e., the assumption of
Log Ratio=0 is not supported). Another way to think of P-value thresholds is the acceptable false-positive rate for a given
microarray experiment. So setting a Log Ratio P-value threshold, such as P <0.001, is another approach to filtering microarray
data. Only transcripts that pass this filter (i.e., have a P-value equal to or less than 0.001) are considered statistically significant.

As suggested by this pitfall, users should place equal or greater emphasis on the statistical significance associated with Log Ratio
values rather than simply the magnitude of the Log Ratio values. The importance of this point is highlighted on the inset of Figure
7. Here two transcripts of similar mean intensities are shown with different Log Ratio magnitudes. Because the transcript with the
larger fold-change also has a large measurement error, it is not considered statistically significant. In this example, the transcript
with the smaller measurement error and Log Ratio magnitude is considered significant.

The arrows in Figure 7 indicate the difference between the two filtering methods. By applying a 2-fold threshold to these data,
the transcripts marked by the thick arrow would be considered false-positives, while the data marked by the thin arrow would be
considered false-negatives. So it is as important to consider the statistical significance of Log Ratio measurements when filtering
data, as it is to consider the magnitude of the Log Ratio measurements.
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Figure 7: Log Ratio vs. Log Intensity plot of two microarray
hybridizations, where each dot represents a transcript’s error-
weighted averaged Log Ratio across two hybridizations. Blue
dots represent genes that are not considered statistically
significant at P<0.01, red dots represent genes that are
significantly up-regulated and green dots are genes that are
significantly down-regulated. The dashed line represents a
2-fold Log Ratio threshold.



PITFALL 8: 
AUTOMATICALLY ASSUMING THAT Q-PCR, RPA, OR
NORTHERN BLOT ANALYSIS IS NEEDED TO CONFIRM
EVERY MICROARRAY RESULT

In the early application of DNA microarray technology, it was common to confirm observed expression
changes by an alternative technology such as Q-PCR, Northern Blots, or Ribonuclease Protection Assays. This confirmation
approach was necessary to screen out false-positive results due to the poor quality of early printing methods and the inherent
challenges of cDNA clone handling (contamination, PCR issues, re-sequencing, clone tracking/storage, etc.). Today, because of
improved manufacturing quality and content quality (in situ oligo synthesis, ink jet technology, no cDNA clone handling), the
downstream approaches to data confirmation are not strictly limited to these methods. Rather, the confirmation approach should
be consistent with the scientific aim of the experiment.

Figure 8 highlights four experimental applications and the alternative confirmation methodologies that may apply. For example, if
DNA microarrays are used to suggest a cellular phenotype that discriminates cluster groups of tumors (Figure 8a), then the
confirmation approach may focus on the hypothesized phenotype rather than confirming the specific transcripts comprising the
cluster. For example, Bittner et. al. predicted differences in cutaneous melanoma spreading and migration based upon DNA
microarray results and confirmed this prediction by a series of cellular assays to measure motility and invasiveness
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DNA microarrays are being used to develop a prognostic classifier for metastasis or BRCA1 mutations, then the confirmation
approach of the classifier may include testing independent primary tumors or sequencing BRCA1 for putative mutations
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If the scientific aim were to predict a deregulated cellular pathway following experimental treatment, then the downstream
confirmation approach might include cellular assays that test the integrity of the suggested pathway, rather than performing Q-PCR
of every transcriptional alteration comprising the pathway (Figure 8b). Other experimental aims (Figure 8 c,d) may include
functional confirmation and the use of RNAi for target validation. 

In summary, the downstream confirmation methods should be consistent with the scientific aim of the experiment. This is not to
imply that Q-PCR or similar technologies are no longer of value, but simply to suggest that technological improvements no longer
necessitate the confirmation of every transcriptional change in a microarray experiment.

Figure 8: Different
experimental goals may
necessitate different
confirmation methods. The
four experimental aims
represented here are
described in the text.
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PITFALL 9: 
CUTTING UPFRONT COSTS AT THE EXPENSE OF
DOWNSTREAM RESULTS

Although focus is often placed on the cost of a microarray slide, this can be insignificant relative to the
costs associated with sample acquisition and downstream experimentation (Figure 9). Sample

acquisition costs may include obtaining precious tumor biopsies, developing animal knockout models,
synthesizing new compounds, or cloning transfection constructs, for example. These are the costs incurred prior to the microarray
hybridization. Downstream costs may include the time/labor/energy involved with interpreting microarray data as well as the
resulting experimental steps that are pursued as a direct result of this interpretation.

Since it only takes about three days to perform a microarray hybridization (compared to the weeks or months involved with sample
acquisition and data interpretation) it is critical that the microarray results are an accurate reflection of biology and not of poor
quality microarrays, inappropriate experimental design, or improper sample handling. The time and costs associated with a
microarray experiment are generally lower than the time and costs associated with pursuing poor quality data.

One example of this pitfall was previously shown (Figure 1) whereby a scientist modified a labeling protocol in order to increase
microarray intensity and to avoid the cost of an optimized commercial labeling kit. A second example involved a customer who
substituted Cot-1 DNA blocker that was available in his lab for an empty tube of Cot-1 that was recommended by the microarray
vendor. Unfortunately, different Cot-1 preparation methods result in different singleton purity levels that can cross-hybridize to DNA
features and interfere with the true Log Ratio measurements. So while both modifications were cost effective and thought to be
benign, they had a potentially large impact on the resulting data quality.

This is an important pitfall to consider because many researchers sacrifice the use of quality microarrays, reagents and equipment
in an effort to minimize cost. However, by doing so they risk spending months interpreting data that may be less accurate than
would have been obtained by a greater investment in the microarray experiment. This investment includes the use of quality
microarrays, reagents, and scanner, the rigorous adherence to optimized protocols, and the careful consideration of an
experimental design that will maximize data interpretation.

Since it only takes a few days to perform a microarray hybridization, users should invest in this process to maximize the value of the
resulting data rather than cutting corners to minimize cost and risk generating data that is less reflective of true biological changes.
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Figure 9: Relative costs
associated with a
microarray experiment.



PITFALL 10: 
PURSUING ONE PATH IN
DATA INTERPRETATION

The proper interpretation of DNA microarray results should always be done within the context of
biological information, experimental design, and statistical output, as shown in Figure 10. If pursued

independently, each individual path in this figure could result in misleading biological interpretation.

First, supporting biological information (such as the experimental hypothesis, clinical information, literature, etc..) is invaluable for
interpreting DNA microarray results. However, this knowledge cannot be the sole framework for interpretation in the absence of
proper statistics or experimental design considerations. This can lead to biased conclusions or discounted transcriptional
observations that conflict with the initial hypothesis. For example, imagine that a scientist predicted cytoarchitectural changes
resulting from a specific drug treatment in culture. If the data were interpreted solely within the context of the initial hypothesis,
the scientist might simply look for cytoarchitectural genes in the resulting data and mistakenly overlook other meaningful
transcriptional changes. So although the biological context is important, the hypothesis should not bias the interpretation in the
absence of statistical methods.

The converse of this is also true. Many microarray facilities employ statisticians to cull microarray data and to identify the relevant
transcriptional changes. This is important in order to minimize the pursuit of false leads. However, following this path alone may
lead to statistical candidate genes that do not make sense within the context of the experiment (i.e., due to the level of replication,
hybridization design, normal physiological range, etc.). So this path should not be pursued independently.

The true path to success in data interpretation is at the interface of the three paths shown in Figure 10. Data interpretation must
be done within the context of biological information, statistical results, and experimental design. As a result, it is recommended
that microarray biologists work very closely with statisticians to ensure that statistical interpretation is consistent with the
biological/experimental framework of the project.
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Figure 10: Path to
success, described in text.
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SUMMARY
In summary, the power of DNA microarray technology is
widely recognized for it’s utility in basic research, cancer
prognosis, toxicogenomics, and drug discovery. However,
it’s value as a research tool is dependent upon its proper
use and appropriate data interpretation. By recognizing the
common pitfalls in data analysis, new users will minimize
the time and costs associated with pursuing false leads
and maximize the biological meaning present in microarray
data sets.
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