

1.8V CMOS 16-BIT BUS TRANSCEIVER WITH 3-STATE OUTPUTS

IDT74AUC16245 ADVANCE INFORMATION

FFATURFS:

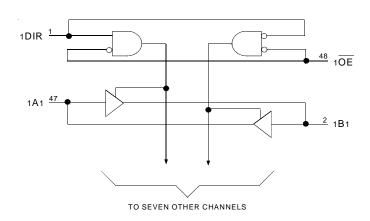
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- 1.8V Optimized
- 0.8V to 2.7V Operating Range
- · Inputs/outputs tolerant up to 3.6V
- Output drivers: ±9mA @ VDD = 2.3V
- · Supports hot insertion
- · Available in TSSOP, TVSOP, and VFBGA packages

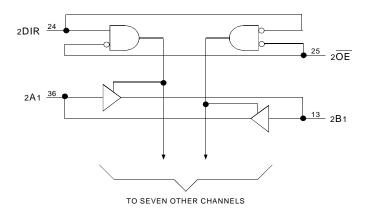
APPLICATIONS:

- · High performance, low voltage communications systems
- · High performance, low voltage computing systems

DESCRIPTION:

This 16-bit bus transceiver is built using advanced CMOS technology. The AUC16245 is designed specifically for asynchronous communications between data buses. The control function implementation minimizes external timing requirements.


This device can be used as one 16-bit transceiver or two 8-bit transceivers. It allows data transmission from A bus to B bus or from B bus to A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so that the buses are effectively isolated.


This device is fully specified for partial power-down applications using IOFF. The IOFF circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The AUC16245 is designed with a ± 9 mA output driver. This driver is capable of driving a moderate load while maintaining speed performance.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to Voo through a pull-up resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

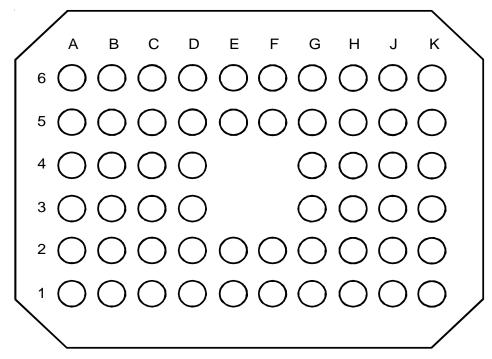
FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

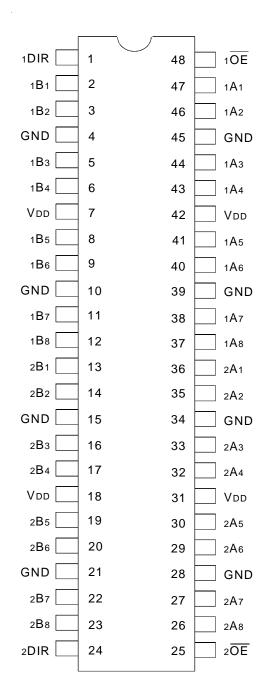
SEPTEMBER 2002

PINOUT CONFIGURATION


6	1 OE	1A2	1A4	1A6	1A8	2A1	2A3	2A5	2A7	2 OE
5	NC	1A1	1A3	1A5	1A7	2A2	2A4	2A6	2A8	NC
4	NC	GND	VDD	GND			GND	VDD	GND	NC
3	NC	GND	Vdd	GND			GND	VDD	GND	NC
2	NC	1B1	1B3	1B5	1B7	2B2	2B4	2B6	2B8	NC
1	1DIR	1B2	1B4	1B6	1B8	2B1	2B3	2B5	2B7	2DIR
	Α	В	С	D	E	F	G	Н	J	К

NOTE:

NC = No Internal Connection


VFBGA

56 BALL VFBGA PACKAGE LAYOUT

TOP VIEW

PIN CONFIGURATION

TSSOP/ TVSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description		Max	Unit	
VTERM	Terminal Voltage with Respec	t to GND	-0.5 to +3.6	V	
	(all input and VDD terminals)				
VTERM	Terminal Voltage with Respec	t to GND	-0.5 to +3.6	V	
	(any I/O or Output terminals ir	n high-			
	impedance or power-off state)				
VTERM	Terminal Voltage with Respec	-0.5 to +3.6	V		
	(any I/O or Output terminals in				
	low state)				
Tstg	Storage Temperature		-65 to +150	°C	
lout	Continuous DC Output Currer	nt	±20	mA	
lik	Continuous Clamp Current	Vi > VDD	+50	mA	
		VI < 0	-50		
Іок	Continuous Clamp Current, V	-50	mA		
IDD	Continuous Current through	±100	mA		
Iss	each VDD or GND				

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE ($TA = +25^{\circ}C$, f = 1.0MHz, VDD = 2.5V)

Symbol	Parameter	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance ⁽¹⁾	VIN = VDD or GND	3		pF
CI/O	I/O Port Capacitance ⁽²⁾	VI/O = VDD or GND	7		pF

NOTES:

- 1. Applies to the Control Inputs.
- 2. Applies to ports A and B.

PIN DESCRIPTION

Pin Names	Description		
x OE 3-State Output Enable Inputs (Active Low)			
xDIR Direction Control Inputs			
хАх	A Side Inputs or 3-State Outputs		
хВх	B Side Inputs or 3-State Outputs		

FUNCTION TABLE (EACH 8-BIT SECTION)(1)

Inp	outs			
х <mark>ОЕ</mark>	xDIR	Outputs		
L	L	Bus B Data to Bus A		
L	Н	Bus A Data to Bus B		
Н	Х	Z		

NOTE:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - Z = High-Impedance

RECOMMENDED OPERATING CHARACTERISTICS(1)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vdd	Supply Voltage		0.8	2.7	V
		VDD = 0.8V	VDD	_	
		VDD = 1.1V to 1.3V	0.65 x Vdd	_	1
VIH	Input HIGH Voltage Level	VDD = 1.4V to 1.6V	0.65 x Vdd	_	V
		VDD = 1.65V to 1.95V	0.65 x Vdd	_	1
		VDD = 2.3V to 2.7V	1.7	_	1
		VDD = 0.8V	_	0	
		VDD = 1.1V to 1.3V	_	0.35 x VDD	1
VIL	Input LOW Voltage Level	VDD = 1.4V to 1.6V	_	0.35 x VDD	V
		VDD = 1.65V to 1.95V	_	0.35 x VDD	
		VDD = 2.3V to 2.7V	_	0.7	1
Vı	Input Voltage		0	2.7	V
Vo	Output Voltage	Active State	0	Vdd	V
		3-State	0	2.7	
		VDD = 0.8V	_	-0.7	
		VDD = 1.1V	_	-3	
Іон	HIGH Level Output Current	VDD = 1.4V	_	-5	mA
		VDD = 1.65V	_	-8]
		VDD = 2.3V	_	-9	1
		VDD = 0.8V	_	0.7	
		VDD = 1.1V	_	3	1
lol	LOW Level Output Current	VDD = 1.4V	_	5	mA
		VDD = 1.65V	_	8	
		VDD = 2.3V	_	9	
Δt/Δν	Input Transition Rise or Fall Time		_	5	ns/V
TA	Operating Free-Air Temperature		-40	+85	°C

NOTE:

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE(1)

Following Conditions Apply Unless Otherwise Specified:

Operating Conditions: $TA = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter		Test Conditions		Min.	Тур.	Max.	Unit
lін	Input HIGH or LOW Current	Data Inputs	VDD = 2.7V, VI = VDD or GND		_	_	±10	μA
IIL		Control Inputs		_	_	±5		
loff	Input/Output Power Off Leaka	age	$VDD = 0V$, VIN or $VO \le 2.7V$	_	_	±10	μA	
IOZH ⁽²⁾	High Impedance Output Curr	ent	VDD = 2.7V	Vo = VDD	_		±10	μΑ
IOZL ⁽²⁾	(3-State Output Pins)			Vo = GND	_	_	±10	
IDDL	Quiescent Power Supply Current		VDD = 0.8V to 2.7V		_	_	20	μΑ
IDDH			VIN = GND or VDD					
IDDZ								

NOTES:

- 1. All unused inputs of the device must be held at VDD or GND to ensure proper operation.
- 2. For the I/O ports, the parameters lozH and lozL include the input leakage current.

^{1.} All unused inputs of the device must be held at VDD or GND to ensure proper operation.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit	
		VDD = 0.8V - 2.7V	IOH = -100μA	VDD - 0.1	_	_	
		VDD = 0.8V	Iон = -0.7mA	_	0.55	_	
Vон	Output HIGH Voltage	$VDD = 1.1V^{(2)}$	Iон = -3mA	0.8		_	V
		VDD = 1.4V ⁽³⁾	Iон = -5mA	1	_	_	
		$VDD = 1.65V^{(4)}$	IOH = -8mA	1.2	_	_	
		$VDD = 2.3V^{(5)}$	Iон = -9mA	1.8		_	
		VDD = 0.8V - 2.7V	IOH = 100μA	_		0.2	
		VDD = 0.8V	IOL = 0.7mA	_	0.25	_	
Vol	Output LOW Voltage	$VDD = 1.1V^{(2)}$	IoL = 3mA	_		0.3	V
		$VDD = 1.4V^{(3)}$	IoL = 5mA	_	_	0.4	
		$VDD = 1.65V^{(4)}$	IoL = 8mA	_		0.45	
		$VDD = 2.3V^{(5)}$	IOH = 9mA	_	_	0.6	

NOTES:

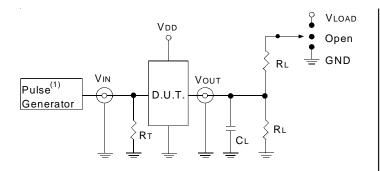
- 1. VIL and VIH must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS table for the appropriate VDD range. TA = -40°C to +85°C.
- 2. Demonstrates operation for nominal VDD = 1.2V.
- 3. Demonstrates operation for nominal VDD = 1.5V.
- 4. Demonstrates operation for nominal VDD = 1.8V.
- 5. Demonstrates operation for nominal VDD = 2.5V.

OPERATING CHARACTERISTICS, TA = 25°C

Syı	mbol	Parameter		Test Conditions	VDD = 0.8V	VDD = 1.2V	VDD = 1.5V	VDD = 1.8V	VDD = 2.5V	Unit
Сы	D	Power Dissipation	Outputs Enabled	CL = 0pF	22	23	24	25	29	pF
		Capacitance	Outputs Disabled	f = 10MHz	1	1	1	1	1	

SWITCHING CHARACTERISTICS(1)

		VDD = 0.8V	VDD = 0.8V VDD = 1.2V±0.1V		VDD = 1.	5V±0.1V	V VDD = 1.8		= 1.8V±0.15V		VDD = 2.5V±0.2V	
Symbol	Parameter	Тур.	Min.	Max.	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	Unit
t PLH	Propagation Delay	5.6	0.5	3.1	0.5	2	0.5	1.5	2	0.4	1.9	ns
tphl.	xAx to xBx or xBx to xAx											
tpzh tpzl	Output Enable Time xOE to xAx or xBx	10	0.7	4.6	0.7	3.1	0.7	2.1	3.1	0.7	2.6	ns
tphz tplz	Output Disable Time xOE to xAx or xBx	12.8	0.8	6.8	0.8	5	0.8	3.4	4.8	0.5	2.9	ns


NOTE:

1. See TEST CIRCUITS AND WAVEFORMS. TA = -40°C to +85°C.

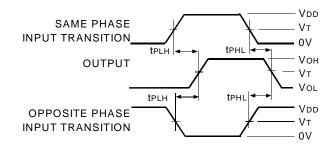
TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS(1)

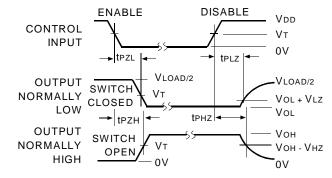
Symbol	VDD = 0.8V	VDD = 1.2V±0.1V	VDD = 1.5V±0.1V	VDD = 1.8V±0.15V	$V_{DD} = 2.5V \pm 0.2V$	Unit
VLOAD	2xVdd	2xV _{DD}	2xVdd	2xVdd	2xVdd	V
VT	VDD/2	VDD/2	VDD/2	VDD/2	VDD/2	V
VLZ	100	100	100	150	150	mV
VHZ	100	100	100	150	150	mV
RL	2	2	2	1	0.5	kΩ
CL	15	15	15	30	30	pF

Test Circuits for All Outputs

DEFINITIONS:


 $\ensuremath{\text{CL}}$ = Load capacitance: includes jig and probe capacitance.

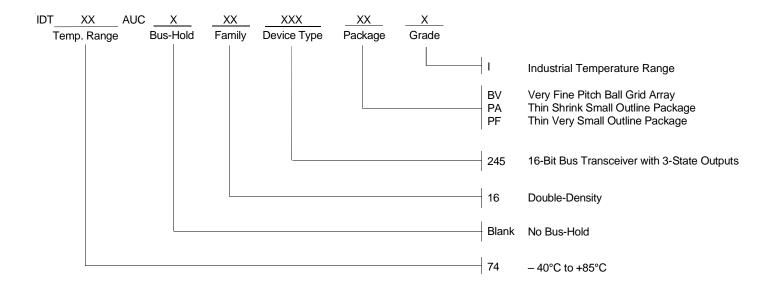
RT = Termination resistance: should be equal to ZouT of the Pulse Generator.


1. Pulse Generator for All Pulses: Rate \leq 10MHz; Slew Rate \geq 1V/ns.

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	VLOAD
Disable High Enable High	GND
All Other Tests	Open

Propagation Delay



NOTE:

 ${\it 1. \ Diagram\ shown\ for\ input\ Control\ Enable-LOW\ and\ input\ Control\ Disable-HIGH.}$

Enable and Disable Times

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way

Santa Clara, CA 95054

for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com

for Tech Support: logichelp@idt.com (408) 654-6459