ETX-1641CLDNA 系列 嵌入式 ETX 单板计算机 版本: A0

非常感谢您购买"EVOC"产品

在打开包装箱后请首先依据物件清单检查配件,若发现物件有所 损坏或是有任何配件短缺的情况,请尽快与您的经销商联络。

- ☑ 1 块 ETX-1641CLDNA 系列主板
- ☑ 1 条 IDE 电缆 (80 线)
- ☑ 1 条 10 针转 9 针 COM 口电缆
- ☑ 1本用户手册
- ☑ 1本《AMI BIOS 设置指南》
- ☑ 一张 EVOC 光盘
- ☑ 备用跳线帽

声明

除列明随产品配置的配件外,本手册包含的内容并不代表本公司的承诺,本公司保留对此手册更改的权利,且不另行通知。对于任何因安装、使用不当而导致的直接、间接、有意或无意的损坏及隐患概不负责。

订购产品前,请向经销商详细了解产品性能是否符合您的需求。

EVOC是研祥智能科技股份有限公司的注册商标。本手册所涉及到的其他商标,其所有权为相应的产品厂家所拥有。

本手册内容受版权保护,版权所有。未经许可,不得以机械的、 电子的或其它任何方式进行复制。

安全使用小常识

- 1. 产品使用前,务必仔细阅读产品说明书;
- 2. 对未准备安装的板卡,应将其保存在防静电保护袋中;
- 3. 在从防静电保护袋中拿出板卡前,应将手先置于接地金属物体上一会儿(比如10秒钟),以释放身体及手中的静电;
- 4. 在拿板卡时,需佩戴静电保护手套,并且应该养成只触及其边缘部分的习惯;
- 5. 为避免人体被电击或产品被损坏,在每次对主板、板卡进行拔插 或重新配置时,须先关闭交流电源或将交流电源线从电源插座中 拔掉;
- 6. 在需对板卡或整机进行搬动前,务必先将交流电源线从电源插座 中拔掉;
- 7. 对整机产品,需增加/减少板卡时,务必先拔掉交流电源;
- 8. 当您需连接或拔除任何设备前,须确定所有的电源线事先已被拔掉;
- 9. 为避免频繁开关机对产品造成不必要的损伤,关机后,应至少等 待30秒后再开机。

目 录

第一章 产品介绍	1
简介	1
订购信息	2
环境与机械尺寸	2
微处理器	2
芯片组	2
系统存储器	2
显示功能	3
音频功能	3
网络功能	3
IDE 功能	3
USB 功能	3
I/O 功能	4
BIOS	4
电源类型	4
延伸接口与扩充总线	4
Super I/O 看门狗定时器	4
第二章 安装说明	5
产品外型尺寸图	5
接口位置示意图	5

跳线功能设置	6
系统内存安装	7
CD_IN 接口	7
ETX 连接器	8
第三章 BIOS 功能简介	13
附录	14
Watchdog 编程指引	14
I/O 口地址映射表	17
IRQ 中断分配表	19

第一章

产品介绍

简介

EXT-1641CLDNA系列主板是一款在标准ETX结构(95mm×114mm)尺寸上开发的嵌入式主板,采用AMD Geode™ LX系列处理器+CS5536芯片组设计,标准配置板载AMD Geode™ LX800(运行频率:500MHZ)超低功耗处理器;提供一条200Pin DDR 200/266 SO-DIMM系统内存插槽,系统内存最大可支持到1G。主板支持CRT、TFT(可选 LVDS)显示输出、单路10/100Mbps网络、Audio、一个IDE、二串口、一并口、四个USB、可扩展4个32位的PCI总线设备、16位ISA总线、255级看门狗定时器等功能。结合ETX总线架构,用户可根据需要极为方便的开发个性要求的嵌入式应用系统,主要特点如下:

- ◆ 板载AMD Geode™ LX800 (运行频率: 500MHZ)超低功耗处理器,采用无风扇设计;
- ◆ 一条200Pin DDR 200/266 S0-DIMM系统内存插槽,内存最大容量可扩充到1G:
- ❖ 板载一个10/100M以太控制器;
- ❖ 板载AC97 控制器,支持MIC-in/Line-in/ Speaker-out /CD in;
- ◆ 主板上所有功能接口均需通过主板上的X1-X4连接器延伸到 ETX底板上使用:
- ❖ 255级看门狗定时器;
- ❖ 可扩展4个32位的PCI总线设备、16位ISA总线。

EXT-1641CLDNA系列主板以其超强的功能、超低的功耗,可 广泛应用于信息家电、仪器仪表、电力系统、数控机床、等各种 嵌入式领域。

订购信息

型号	描述				
ETX-1641CLDNA	嵌入式ETX单板板载AMD Geode™ LX系列处理器 /TFT/LAN/AUDIO				
ETX-1641LDNA-LVDS	嵌入式ETX单板板载AMD Geode™ LX系列处理器/LVDS/LAN/AUDIO				

环境与机械尺寸

工作环境:

温度: -20℃~60℃;

湿度: 5%~95% (非凝结状态);

储存环境:

温度: -40℃~80℃;

湿度: 5%~95% (非凝结状态);

尺寸: 114.0mm×95.0mm

微处理器

板载AMD Geode™ LX系列超低功耗处理器。

芯片组

AMD Geode™ LX系列处理器+CS5536芯片组。

系统存储器

提供一条200Pin DDR 200/266 S0-DIMM系统内存插槽,内存最大容量可扩充到1G。

显示功能

AMD Geode™ LX系列处理器集成高性能2D图形控制器,采显示内存和系统内存共享技术。

- ◆ CRT显示分辨率高达1920x1440x32 bpp at 85 Hz; 1600x1200x32 bpp at 100 Hz;
- ◆ 最高支持 24-bit TFT & LVDS LCD, 显示分辨率高达 1600x1200:
- ◆ ETX-1641CLDNA型号主板支持TFT LCD显示输出; ETX-1641CLDNA-LVDS支持LVDS LCD显示输出;
- ❖ 支持CRT/LCD双屏显示输出。

音频功能

板上集成一个标准的AC97音效芯片,提供优质的声音效果。 支持MIC-in/Line-in/Speaker-out/CD in。

网络功能

主板集成了一个 10/100Mb 以太网控制器, 为您提供高速稳定的 网络平台。

IDE 功能

提供一个ATA100/66/33标准IDE通道,可支持两个标准IDE设备。

USB 功能

提供四个USB2.0高速接口。

警语: 1) 务必使用合格的 USB 设备,并确认其接地良好。接地不良会损坏系统; 2) 任何时候,当需要用手触摸 USB 设备时,请先用双手触摸机箱将身体上的静电释放; 3) 当需要带电拔出 USB 设备时,务必确认 USB 设备处于待机状态(不工作)。

I/0 功能

主板支持以下I/0功能

- ▶ 一个高速并行接口, 支持SPP/EPP/ECP标准;
- ▶ 2个串口:
- ▶ 支持标准的PS/2 键盘鼠标;

BIOS

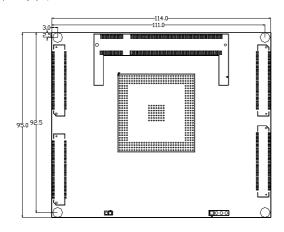
AMI 新内核的PnP BIOS。

电源类型

支持 AT/ATX 电源供电.

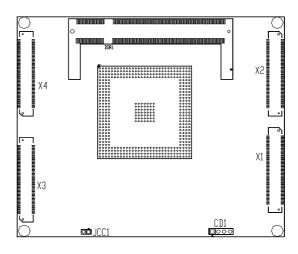
延伸接口与扩充总线

主板需要配合 ETX 架构的底板才能使用,通过 X1、X2、X3、X4 连接器将主板扣在底板上,通过底板来延伸主板上的所有功能接口及 总线设备使用。


Super I/O 看门狗定时器

- 255级,可编程;
- 1(分)分辨率的16位向下计数器;
- 可编程时间到中断;
- 时间到事件复位系统;

第二章


安装说明

产品外型尺寸图

(单位:mm)

接口位置示意图

跳线功能设置

提示:如何识别跳线、接口的第一针脚

观察插头插座旁边的文字标记,会用"1"或加粗的线条或三角符号表示;看看背面的焊盘,方型焊盘为第一针脚;电缆上的红线或其它标记表示要与插座的第一脚相接。

CMOS内容清除/保持设置(可选功能项)

在通常情况下,CMOS的功能电路被设计在底板上,使用底板上的电池来保存主板的CMOS信息。该主板上同样设计有CMOS的功能电路供用户选择使用。

- ❖ CMOS由钮扣电池供电;
- ◆ 如果由于BIOS设置不当而引起系统不能正常启动,则可尝试清除 CMOS内容以便恢复所有系统参数的默认值,再启动系统。通过短接JCC1针来实现此项功能。

建议清除CMOS内容的步骤及方法:

关闭计算机电源; (2) 短接JCC1插针几秒钟后移开; (3) 接通电源, 开启计算机; (4) 启动后根据屏幕提示操作,通常按F1键进入BIOS 设置,重载最优缺省值; (5) 保存并退出设置。

JCC1

设置	CMOS 状态
开路	正常工作状态, (默认设置)
短接	清除CMOS内容,(所有BIOS设置恢复成出厂值)

系统内存安装

本主板配有一条DDR (Double Data Rate) SO-DIMM (Dual Inline Memory Modules) 200pin内存插槽 (图示标识为DDR1)。

安装内存条时,要注意以下几点:

- ➤ 安装时, 先对准 SO-DIMM 先对准 SO-DIMM 存储条与 SO-DIMM 插槽的缺口, 用力插到位, 再将 SO-DIMM 条向下并扣入 SO-DIMM 插槽, 使 SO-DIMM 插槽两侧的手柄扣紧并锁住 SO-DIMM 存储条;
- ➤ 可使用符合 Intel 2.5V DDR 200/266 规格的 200Pin DDR 内存条, 主板最大内存容量达 1.0GB;
- ➤ 最好选择带 SPD (内存自动识别功能)的 SO-DIMM 内存条,以保证内存条工作稳定;

CD IN接口

提供一组单列4Pin的CD连接器接针(CD1),需使用四芯CD线(最好使用屏蔽线)将CD1接针与您的光驱相连接。当您使用CD-ROM播放CD碟时须用到此CD线。

管脚	信号名称
1	CD 左
2	音频信号地
3	音频信号地
4	CD 右

ETX 连接器

EXT-1641CLDNA 主板背面有四个 ETX 连接器 (X1-X4)。以下是 X1-X4 连接器的功能说明及引脚定义。

1. X1连接器接口定义(PCI-Bus, USB, Sound)

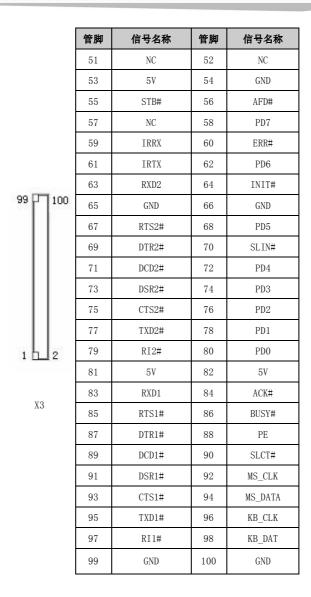
	管脚	信号名称	管脚	信号名称	管脚	信号名称	管脚	信号名称
	1	GND	2	GND	51	5V	52	5V
	3	PCICLK2	4	PCICLK3	53	PAR	54	SERR#
	5	GND	6	GND	55	PERR#	56	NC
	7	PCICLK0	8	PCICLK1	57	PME#	58	USB2#
	9	REQ3#	10	GNT3#	59	PLOCK#	60	DEVSEL#
	11	GNT2#	12	3V	61	TRDY#	62	USB3#
	13	REQ2#	14	GNT1#	63	IRDY#	64	STOP#
to eve	15	REQ1#	16	3V	65	FRAME#	66	USB2
1	17	GNTO#	18	NC	67	GND	68	GND
	19	5V	20	5V	69	AD16	70	CBE2#
	21	SERIRQ	22	REQO#	71	AD17	72	USB3+
	23	AD0	24	3V	73	AD19	74	AD18
	25	AD1	26	AD2	75	AD20	76	USB0#
	27	AD4	28	AD3	77	AD22	78	AD21
99	29	AD6	30	AD5	79	AD23	80	USB1#
	31	CBE0#	32	AD7	81	AD24	82	CBE3#
	33	AD8	34	AD9	83	5V	84	5V
	35	GND	36	GND	85	AD25	86	AD26
	37	AD10	38	LINE_IN_L	87	AD28	88	USB0
	39	AD11	40	MIC	89	AD27	90	AD29
	41	AD12	42	LINE_IN_RL	91	AD30	92	USB1
	43	AD13	44	NC	93	PCIRST#	94	AD31
	45	AD14	46	Line_Out_L	95	INTC#	96	INTD#
	47	AD15	48	AUDIO_GND	97	INTA#	98	INTB#
	49	CBE1#	50	Line_Out_R	99	GND	100	GND

100

X1

2. X2连接器接口定义(ISA-Bus)

	管脚	信号名称	管脚	信号名称	管脚	信号名称	管脚	信号名称
	1	GND	2	GND	51	5V	52	5V
	3	SD14	4	SD15	53	SA6	54	IRQ5
	5	SD13	6	MASTER#	55	SA7	56	IRQ6
	7	SD12	8	DREQ7	57	SA8	58	IRQ7
	9	SD11	10	DACK7#	59	SA9	60	SYSCLK
	11	SD10	12	DREQ6	61	SA10	62	REFSH#
	13	SD9	14	DACK6#	63	SA11	64	DREQ1
	15	SD8	16	DREQ5	65	SA12	66	DACK1#
2 1	17	MEMW#	18	DACK5#	67	GND	68	GND
	19	MEMR#	20	DREQ0	69	SA13	70	DREQ3
	21	LA17	22	DACKO#	71	SA14	72	DACK3#
	23	LA18	24	IRQ14	73	SA15	74	IOR#
	25	LA19	26	IRQ15	75	SA16	76	IOW#
	27	LA20	28	IRQ12	77	SA18	78	SA17
100 _ 99	29	LA21	30	IRQ11	79	SA19	80	SMEMR#
X2	31	LA22	32	IRQ10	81	IOCHRDY	82	AEN
ΛΔ	33	LA23	34	I0CS16#	83	5V	84	5V
	35	GND	36	GND	85	SD0	86	SMEMW#
	37	SBHE#	38	MEMCS16#	87	SD2	88	SD1
	39	SA0	40	OSC	89	SD3	90	NOWS#
	41	SA1	42	BALE	91	DREQ2	92	SD4
	43	SA2	44	TC	93	SD5	94	IRQ9
	45	SA3	46	DACK2#	95	SD6	96	SD7
	47	SA4	48	IRQ3	97	IOCHCK#	98	RSTDRV
	49	SA5	50	IRQ4	99	GND	100	GND


3. X3 连接器接口定义(VGA, LCD, Video, COM1, COM2, LPT, Irda, Mouse, Keyboard):

LVDS Interface Pinout

Parallel Interface Pinout

	管脚	信号名称	管脚	信号名称	管脚	信号名称	管脚	信号名称
	1	GND	2	GND	1	GND	2	GND
	3	RED	4	BLUE	3	RED	4	BLUE
	5	HSY	6	GREEN	5	HSY	6	GREEN
	7	VSY	8	DDCLK	7	VSY	8	DDCLK
	9	NC	10	DDDAT	9	NC	10	DDDAT
	11	NC	12	NC	11	B4	12	SHFCLK
	13	NC	14	NC	13	B5	14	DE
	15	GND	16	GND	15	GND	16	GND
00	17	NC	18	NC	17	B1	18	В3
	19	NC	20	NC	19	В0	20	B2
	21	GND	22	GND	21	GND	22	GND
	23	TXOUT3#	24	NC	23	G2	24	G5
	25	TXOUT3	26	NC	25	G3	26	G4
	27	GND	28	GND	27	GND	28	GND
	29	TXOUT2#	30	TXCLK	29	R4	30	G1
	31	TXOUT2	32	TXCLK#	31	R5	32	G0
	33	GND	34	GND	33	GND	34	GND
	35	TXOUT0	36	TXOUT1	35	R1	36	R3
	37	TXOUTO#	38	TXOUT1#	37	R0	38	R2
	39	5V	40	5V	39	5V	40	5V
	41	NC	42	NC	41	NC	42	VSYNC
	43	NC	44	BLON#	43	NC	44	BLON#
	45	NC	46	DIGON	45	HSYNC	46	DIGON
	47	NC	48	NC	47	NC	48	NC
	49	NC	50	NC	49	NC	50	NC

Х3

X4 连接器接口定义(IDE, Ethernet, Miscellaneous) 4.

	管脚	信号名称	管脚	信号名称	管脚	信号名称	管脚	信号名称
	1	GND	2	GND	51	NC	52	PIDE_IOR#
	3	5V_SB	4	NC	53	NC	54	PIDE_IOW#
	5	PS_ON	6	SPEAKER	55	NC	56	PIDE_DRQQQ
	7	PWRBT#N	8	BATT	57	NC	58	PIDE_D15
	9	KBINH	10	LILED	59	NC	60	PIDE_DO
	11	RSMRST#	12	ACTLED	61	NC	62	PIDE_D14
	13	NC	14	SPEEDLED	63	NC	64	PIDE_D1
	15	NC	16	NC	65	GND	66	GND
99 100	17	5V	18	5V	67	NC	68	PIDE_D13
	19	OVCR#	20	NC	69	NC	70	PIDE_D2
	21	NC	22	NC	71	NC	72	PIDE_D12
	23	SMBCLK	24	SMBDATA	73	NC	74	PIDE_D3
	25	NC	26	NC	75	NC	76	PIDE_D11
	27	NC	28	DASP_S	77	NC	78	PIDE_D4
1 4 2	29	NC	30	PIDE_CS3#	79	NC	80	PIDE_D10
X4	31	NC	32	PIDE_CS1#	81	5V	82	5V
Λ4	33	GND	34	GND	83	NC	84	PIDE_D5
	35	NC	36	PIDE_A2	85	NC	86	PIDE_D9
	37	NC	38	PIDE_A0	87	NC	88	PIDE_D6
	39	NC	40	PIDE_A1	89	NC	90	CBLID_P#
	41	NC	42	NC	91	RXD#	92	PIDE_D8
	43	NC	44	IRQ14	93	RXD	94	NC
	45	NC	46	PIDE_AK#	95	TXD#	96	PIDE_D7
	47	NC	48	PIDE_RDY	97	TXD	98	IDERST#
	49	5V	50	5V	99	GND	100	GND

第三章

BIOS 功能简介

主板BIOS相关功能简介请参照我公司的《AMI BIOS设置指南》。

附录

Watchdog 编程指引

ETX-1641CLDNA系列主板提供一个可按分或按秒计时的,最长达 255级的可编程看门狗定时器(以下简称WDT)。通过编程,WDT超时事件可用来将系统复位或者产生一个可屏蔽中断。

以下用C语言形式描述了WDT的编程。必须注意:在对WDT进行操作之前,需先进入WDT编程模式;在结束对WDT的操作之后,退出WDT。对WDT的编程需遵循以下步骤:

- ▶ 讲入 WDT 编程模式
- ▶ 设置 WDT 工作方式/启动 WDT/关闭 WDT
- ▶ 退出 WDT 编程模式

WDT的编程方法,请参看以下示范代码:

```
#define INDEXP 0x2e
#define DATAP 0x2f
//Super I/O Watchdog
#define STARTPROG { outportb(INDEXP, 0x87);
outportb(INDEXP, 0x87);}
#define ENDPROG outportb(INDEXP, 0xaa);
#define SELEDEV(x) { outportb(INDEXP, 7);
outportb(DATAP, x); }
#define WRITEREG(reg, val) { outportb(INDEXP, reg);
outportb(DATAP, val); }
//1. Initialize Watchdog device
short SIOWTD Setup(short irq)
```

```
/* irg=3, 4, 5, 6, 7, 9, 12, 0:disable interrupt, 0xff:reset*/
 //Start programming Watchdog
 STARTPROG
 //Activate the Watchdog Device
 SELEDEV(8) //Select Logical device 8
 WRITEREG (0x30, 0x01) //Activate the device
 outportb (INDEXP, 0x2b);
 unsigned char oldval=inportb(DATAP);
 if(irg==0xff) //WatchDog Timeout will reset System
 oldval &= 0xef: //BIT4=0
 WRITEREG(0x2b, oldval):
 else //Watchdog Timeout will cause System Interrupt
   oldval = 0x10; //BIT4=1
   WRITEREG (0x2B, oldval)
   WRITEREG (0xf7, irg)
 //end programming watchdog
 ENDPROG
 return 0;
//2. start Watchdog to count
short SIOWTD Enable (short time, short unit)
```

```
/*unit=0:second,=1:minutes */
 if(time<1 | time>255) return -1;
 if (unit<0 \mid | unit>1) return -1;
 //start programming watchdog
 STARTPROG
 SELEDEV(8) //logical device 8
 //select Watchdog Timer clock
 switch(unit)
 case 0:
 WRITEREG (0xf5, 0x00) //BIT3=0, secondes
 break:
 case 1:
 WRITEREG (0xf5, 0x08) //BIT3=1, minutes
 break;
 }
 WRITEREG(0xF6, time) //set timeout value
 //end programming watchdog
 ENDPROG
 return 0;
```

I/0 口地址映射表

系统 I/0 地址空间总共有 64K,每一外围设备都会占用一段 I/0 地址空间。下表给出了本主板部分设备的 I/0 地址分配(仅供参考)。

地址	设备描述
000FH	Direct memory access controller
001FH	Motherboard resources
0021H	Programmable interrupt controller
003FH	Motherboard resources
0043Н	System timer
005FH	Motherboard resources
0060Н	标准 101/102 键或 Microsoft PS/2 键盘
0061Н	System speaker
0063Н	Motherboard resources
0064Н	标准 101/102 键或 Microsoft PS/2 键盘
006FH	Motherboard resources
0071Н	System CMOS/real time clock
0080Н	Motherboard resources
0083Н	Direct memory access controller
0086Н	Motherboard resources
0087Н	Direct memory access controller
0088Н	Motherboard resources
008BH	Direct memory access controller
008EH	Motherboard resources
008FH	Direct memory access controller
009FH	Motherboard resources
00A1H	Direct memory access controller
00BFH	Motherboard resources
00DFH	Direct memory access controller

附录

00EFH	Motherboard resources
00FFH	Numeric data processor
0170Н-0177Н	次要 IDE 通道
01F7H	主要 IDE 通道
0274H-0279H	ISAPNP Read Data Port
02F8H-02FFH	通讯端口(COM2)
0376Н	次要 IDE 通道
03B0H-03BAH	Advanced Win 2K/XP Graphics Driver
03C0H-03DFH	Advanced Win 2K/XP Graphics Driver
03F6H-03F6H	主要 IDE 通道
0480H-048FH	Direct memory access controller
04D0H-04D1H	Motherboard resources
OAOOH-OAOFH	Motherboard resources
0А79Н-0А79Н	ISAPNP Read Data Port
EE80H-EEFFH	Realtek AC' 97 Audio
EF00H-EFFFH	RTL8139 Family PCI Fast Ethernet NIC
FFF0-FFFF	标准双通道 PCI IDE 控制器

IRQ 中断分配表

系统共有15个中断源,有些已被系统设备独占。只有未被独占的中断才可分配给其他设备使用。ISA设备要求独占使用中断;只有即插即用ISA设备才可由BIOS或操作系统分配中断。而多个PCI设备可共享同一中断,并由BIOS或操作系统分配。下表给出了本CPU卡部分设备的中断分配情况,但没有给出PCI设备所占用的中断资源。

级别	功能
IRQ0	系统计时器
IRQ1	标准 101/102 键或 Microsoft 键盘
IRQ3	串口#2
IRQ7	Standard Open HCD USB Host Controller
IRQ7	Standard PCI to USB Host Controller
IRQ8	系统 CMOS/实时时钟
IRQ9	Microsoft ACPI—Compliant System
IRQ10	Advanced Win 2K/XP Graphics Driver
IRQ10	Geode LX AES Crypto Driver
IRQ11	Realtek AC'97 Audio
IRQ11	RTL8139 Family PCI Fast Ethernet NIC
IRQ13	Numeric data processor
IRQ14	主要 IDE 通道

欲获更多信息请访问研祥网站: http://www.evoc.com。