EC3-1711CLDNA 3.5" 单板电脑带 CPU/ LVDS /CRT /LAN /SSD /Audio

版本: A0

非常感谢您购买"EVOC"产品

在打开包装箱后请首先依据物件清单检查配件, 若发现物件有所 损坏、或是有任何配件短缺的情况, 请尽快与您的经销商联络。

- **b** 1 块 EC3-1711CLDNA 主板
- **b** 1本用户手册
- **b** 1本《AMI BIOS 设置指南》
- **b** 1条并口转接电缆
- **b** 1条串口转接电缆
- **b** 1条 miniDIN 一转二 PS/2 键盘/鼠标转接电缆
- **b** 1条音频转接电缆
- **b** 1条 IDE 电缆
- **b** 1张 EVOC 软件与用户手册光盘

声明

除列明随产品配置的配件外,本手册包含的内容并不代表本公司的承诺,本公司保留对此手册更改的权利,且不另行通知。对于任何因安装、使用不当而导致的直接、间接、有意或无意的损坏及隐患概不负责。

订购产品前,请向经销商详细了解产品性能是否符合您的需求。

EVOC是研祥智能科技股份有限公司的注册商标。本手册所涉及到的其他商标,其所有权为相应的产品厂家所拥有。

本手册内容受版权保护,版权所有。未经许可,不得以机械的、 电子的或其它任何方式进行复制。

安全使用小常识

- 1. 产品使用前,务必仔细阅读产品说明书;
- 2. 对未准备安装的板卡,应将其保存在防静电保护袋中;
- 3. 在从防静电保护袋中拿出板卡前,应将手先置于接地金属物体上一会儿(比如 10 秒钟),以释放身体及手中的静电;
- 4. 在拿板卡时,需佩戴静电保护手套,并且应该养成只触及其边缘部分的习惯;
- 5. 为避免人体被电击或产品被损坏,在每次对主板、板卡进行拔插 或重新配置时,须先关闭交流电源或将交流电源线从电源插座中 拔掉:
- 在需对板卡或整机进行搬动前,务必先将交流电源线从电源插座 中拔掉;
- 7. 对整机产品,需增加/减少板卡时,务必先拔掉交流电源;
- 8. 当您需连接或拔除任何设备前,须确定所有的电源线事先已被拔掉:
- 9. 为避免频繁开关机对产品造成不必要的损伤,关机后,应至少等 待30秒后再开机。

目 录

第一章 产品介绍1
简介1
订购信息
环境与机械尺寸2
微处理器 (CPU)2
芯片组(Chipset)
系统存储器(System Memory)
IDE 功能
USB 功能
显示功能
网络功能(LAN)3
音频(Audio)功能3
扩展总线
CF 卡
Watchdog 功能
第二章 安装说明4
产品外形
接口位置示意图5
跳线功能设置6
系统内存安装7

USB	8
键盘与鼠标接口	8
IDE 接口	9
并口与串口	10
显示接口	12
网络接口	13
音频(Audio)功能	13
CF 卡	14
IrDA/红外接口	15
电源接口	15
PC104 PLUS 接口	16
状态指示接口	16
第三章 BIOS 功能简介	18
附录	19
Watchdog 编程指引	19
I/O 口地址映射表	23
IRO 中断分配表	24

第一章

产品介绍

简介

EC3-1711CLDNA是一款采用Intel 最新笔记本电脑芯片组852GM 在146mm×102mm尺寸上开发的全功能、高性能、低功耗嵌入式ULV Celeron-M单板电脑,在3.5″嵌入式单板上集成了讯驰核心的超低功耗Celeron-M处理器(用户可选主频)、支持一条DDR266的SO-DIMM内存条、同时支持CRT+LVDS的"双显示"、一个Intel 100Mbps网络接口、AC'97 Audio接口、一个PS/2键盘鼠标接口、一个44针标准ATA-100 IDE接口、CompactFlash电子盘接口、两串口、一个并口、两个USB2.0高速接口,使嵌入式单板的海量移动存储成为可能、IrDA红外接口、看门狗定时器:

EC3-1711CLDNA以其高性能、低功耗和丰富的扩展接口使用户无需增加任何部件即可使用,可广泛应用于网络安全、信息家电、仪器仪表、军事、多媒体查询、智能产品各种嵌入式领域。

订购信息

型号	描述	
EC3-1711CLDNA	3.5" 单板电脑带CPU/ LVDS /CRT /LAN /SSD /Audio	

环境与机械尺寸

■ 工作环境

温度: 0~60℃

湿度: 5%~95% (非凝结状态);

Ⅰ 贮存环境:

温度: -25°C~75°C;

湿度: 5%~95% (非凝结状态);

Ⅰ 尺寸: 146mm×102mm

微处理器 (CPU)

Celeron-M系列超低功耗CPU。

芯片组(Chipset)

Intel 852GM+ICH4芯片组。

系统存储器 (System Memory)

一条DDR266的SO-DIMM,可选256MB/512MC/1G

IDE 功能

一个40Pin ATA100通道,支持2个EIDE设备。

USB 功能

两个标准的USB2.0接口。

显示功能

Inter 852GM显示芯片,支持CRT+LVDS双显示,支持最大64MB的动态显示内存共享。

网络功能 (LAN)

本CPU卡集成了一个100Mb以太网控制器,为您提供高速稳定的网络平台选择。

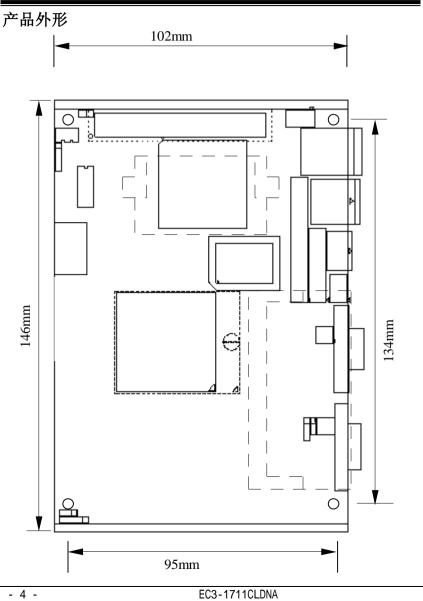
音频 (Audio) 功能

板上集成一个标准的AC′97音效芯片,提供优质的声音效果。

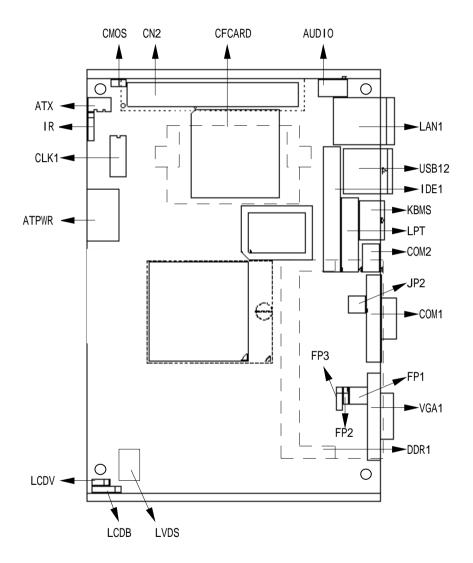
扩展总线

一个PC104-PULS

CF 卡


COMPACT FLASH卡是一种快速存储器,体积很小,使用方便,存储量随所用的卡变化,如1M,256M等。

Watchdog 功能


- 1~255级,可编程
- I/0 □ 0443H,看门狗有效
- I/0 □ 0441H,看门狗无效
- Ⅰ 超时事件复位系统
- ▮ 另增看门狗定时器:
 - u 1(秒/分)分辨率的8位向下计数器
 - u 可编程时间到中断
 - u 超时事件复位系统

第二章

安装说明

接口位置示意图

跳线功能设置

1) CMOS内容清除/保持设置

通过改变 CMOS 的短接帽所处状态来实现此项功能。

设置 CMOS

开路 [1-2](正常工作状态,默认设置)

短路 [1-2](清除 CMOS 内容, 所有 BIOS 设置恢复成出厂值)

如果由于BIOS设置不当而引起系统不能正常启动,则可尝试清除 CMOS内容以便恢复所有系统参数的默认值,再启动系统。通过改变 CMOS的短接帽所处状态来实现此项功能。

2) LCDV: LVDS电压选择

不同的LVDS屏电压可能不同,本板提供了3.3V和5V两种电压选择,当所选择的LVDS电压与所使用的LVDS屏的工作电压一致时,LVDS屏才能正常显示(图示标识为LCDV)。

3.3V 设置	5V 设置
3 2 1 (缺省值)	3 2 1 LCDV

3) LCDB: LVDS平板背光电压

管脚	信号名称		
1	+12V		
2	+12V		
3	BackLightCtl		
4	BackLightEnable		
5	GND		

4) JP2:COM1口RS-232/422/485 模式选择

通过设置JP2可使COM1口工作在RS-232或是RS-422/RS-485模式。缺省设值是RS-232。

JP2 选择	管 脚			
01 Z ZEJT	1-2 3-4 5-6			
RS-232	ON(默认)	0FF	0FF	
RS-422	OFF	ON	0FF	
RS-485	0FF	0FF	ON	

此时COM1口的管脚定义可见后续串口定义。

系统内存安装

本CPU卡配有一条DDR266 SO-DIMM(Dual Inline Memory Modules) 内存插槽(图示标识为DDR1)。

安装内存条时,要注意以下几点:

- Ø 安装时,先对准内存 DIMM 条的缺口和 DIMM 插槽的缺口后将 DIMM 条斜着插进 DIMM 插槽,再向下压到位。
- **Ø** 可使用符合 Intel 2.5V DDR266 规格的 DDR 内存,最大内存容量 达 1GB。
- Ø 最好选择带 SPD (内存自动识别功能)的 DIMM 内存条,以保证内存条工作稳定。

USB

本CPU卡提供一组USB设备(USB12)标准插座。

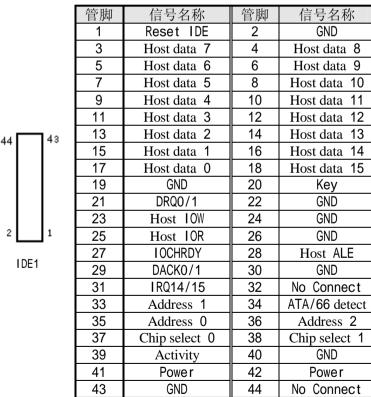
USB12

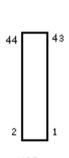
USB12	信号名称
1	+5V
2	USB Data-
3	USB Data+
4	GND

键盘与鼠标接口

KBMS 是一个键盘和鼠标合用的 6 脚 mini DIN 插座,可直接插 PS/2 键盘,但需要使用随单板电脑配置的 1 转 2 PS/2 键盘鼠标电缆才能同时连接键盘和鼠标。

如果您使用PS/2鼠标,系统会自动检测并且分配IRQ12给PS/2鼠标使用。如果系统并无检测到PS/2鼠标的使用,则IRQ12可以给扩展卡使用。

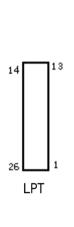

KBMS


管脚	信号名称
1	Keyboard data
2	Mouse data
3	GND
4	+ 5V
5	Keyboard clock
6	Mouse clock

IDE 接口

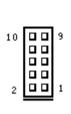
本单板电脑提供一组 44 针 IDE 接口 (IDE), 安装 IDE 设备时, 需注意以下二点:

- IDE 接口可以连接两台 IDE 设备:一个为主设备 (Master),一 Ø 个为从设备(Slave)。硬盘上提供相应的跳线来将其配置成主设 备还是从设备使用。设备的连接方法是:主设备接在电缆的末端, 从设备接在电缆的中间。
- Ø 连接使用 Ultra 66/100 的硬盘时,必须使用 80 线的专用扁平电缆。

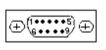


并口与串口

1) 并口:


标准的26-针并行接口,可依据您的需求用来连接并行接口外设。

管脚	信号名称	管脚	信号名称
1	Line printer strobe	14	AutoFeed
2	PD0, parallel data 0	15	Error
3	PD1, parallel data 1	16	Initialize
4	PD2, parallel data 2	17	Select
5	PD3, parallel data 3	18	Ground
6	PD4, parallel data 4	19	Ground
7	PD5, parallel data 5	20	Ground
8	PD6, parallel data 6	21	Ground
9	PD7, parallel data 7	22	Ground
10	ACK, acknowledge	23	Ground
11	Busy	24	Ground
12	Paper empty	25	Ground
13	Select	26	空

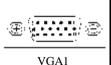

2) 串口:

本 CPU 卡提供两个串行通讯口: COM1 是一组标准的 D-Sub9 接口可直接与外部设备连接; COM2 是一组标准的 2×5 针盒式接口则需要用转换电缆(10 芯转 9 芯)固定到机箱上才能与外部设备连接。这些接口可以连接具有 RS-232 标准接口的鼠标、调制解调器、数码相机等设备。

COM2

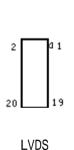
管脚	信号名称			
	RS-232	RS-422	RS485	
1	DCD,数据运载检测	TX-	RTX-	
2	RXD,接收数据	TX+	RTX+	
3	TXD,传输数据			
4	DTR,数据终端准备好			
5	GND,地			
6	DSR,数据设置准备好			
7	RTS,请求发送			
8	CTS,清发送	RX+	Х	
9	RI,响铃指示	RX-	Х	
10	N.C.			

COM1


管脚	信号名称
1	DCD,数据运载检测
2	RXD,接收数据
3	TXD,传输数据
4	DTR,数据终端准备好
5	GND,地
6	DSR,数据设置准备好
7	RTS,请求发送
8	CTS,清发送
9	RI,响铃指示

注: COM2第2、3脚功能可由BIOS设置项Serial Port B Mode配置成不同的功能。只有当该设置项设为Normal时,COM2第2、3脚才具有RS-232标准功能。

显示接口


1) VGA显示输出接口

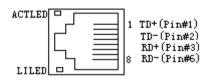
这是15芯D型VGA显示器插座,可以连接所有标准VGA接口的显示器。

_				
	管脚	信号名称	管脚	信号名称
	1	Red	2	Green
	3	Blue	4	N.C.
	5	GND	6	GND
	7	GND	8	GND
	9	+5V	10	GND
	11	N.C.	12	DDCDATA
	13	HSYNC	14	VSYNC
	15	DDCCLK		

2) LVDS: LVDS输出接口

管脚	信号名称	管脚	信号名称
1	LVDSD0+	2	LVDSD0-
3	GND	4	GND
5	LVDSD1+	6	LVDSD1-
7	GND	8	GND
9	LVDSD2+	10	LVDSD2-
11	GND	12	GND
13	LVDSCLK+	14	LVDSCLK-
15	GND	16	GND
17	LVDSD3+	18	LVDSD3-
19	VDD	20	VDD

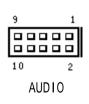
网络接口


此接口是主板上10/100Mbps以太网接口,LILED和ACTLED是以太网接口两边的绿色和黄色LED,它们显示着LAN的活动和传输状态。请参考以下每一个LED的状态描述:

TD+.TD-: 正/负发送数据信号。

RD+, RD-: 正/负接收数据信号。

ACTLED: 网络活动状态灯。


LILED: 网络链路状态灯。

LILED (绿色灯)	指示状态	ACTLED (黄色灯)	指示状态	
亮	网络链路有效	亮	正在收发数据	
灭	网络链路无效	灭	没有数据要收发	

音频 (Audio) 功能

利用附在主板上的电缆,Audio_Out可以连接到耳机或更适合的功率扬声器。Line In用于计算机对磁带机或其他声频源的录音或通过Audio_Out播放。Mic用于连接麦克风输入声音。

管脚	信号名称	管脚	信号名称
1	Audio_Out Right	2	Audio_Out Left
3	GND	4	GND
5	Line_in Right	6	Line_in Left
7	GND	8	GND
9	Mic Phone in	10	Mic Phone P

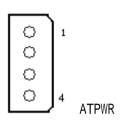
CF卡

COMPACT FLASH卡是一种快速存储器,体积很小,使用方便,存储量随所用的卡变化,如1M,256M等。CF卡插入时只能以一个方向插入(在板背面:用虚线表示CFCARD)。

管 脚	信号名称	管 脚	信号名称
1	GND	26	NC
2	IDESD3	27	IDESD11
3	IDESD4	28	IDESD12
4	IDESD5	29	IDESD13
5	IDESD6	30	IDESD14
6	IDESD7	31	IDESD15
7	IDESCS0X	32	IDESCS1X
8	GND	33	NC
9	GND	34	IDESIORX
10	GND	35	IDESIOWX
11	GND	36	VCC3V
12	GND	37	IDESINTR
13	VCC3V	38	VCC3V
14	GND	39	GND
15	GND	40	NC
16	GND	41	IDESRSTX
17	GND	42	IDESIORDY
18	IDESA2	43	NC
19	IDESA1	44	VCC3V
20	IDESA0	45	HDDLED
21	IDESD0	46	NC
22	IDESD1	47	IDESD8
23	IDESD2	48	IDESD9
24	IOCS16X	49	IDESD10
25	NC	50	GND

IrDA/红外接口

提供一组红外线模组插针(IR),支持IrDA 1.0版SIR协议或夏普ASK-IR协议红外线数据传输功能。



信号名称
+5V
N.C.
IrRx
GND
IrTx

电源接口

1) AT电源接口

本CPU卡方便的为用户提供了直接与AT电源相连的标准插座。您可直接通过切换电源自带开关通电来开启或关闭您的计算机。

管脚	信号名称
1	+12V
2	GND
3	GND
4	+ 5V

2) ATX电源接口

此接口连接到ATX电源,再将ATX电源上的4Pin电源插座连至 EC3-1711CLDNA的PWR位,即可以使用ATX电源供电。

管脚	信号名称
1	5V Standby
2	Power On
3	PWR TYPE SEL

EC3-1711CLDNA

PC104 PLUS 接口

CN2插头。下表给出了他们的管脚定义。

管脚	信号名称	管脚	信号名称	管脚	信号名称	管脚	信号名称
A1	KEY(悬空)	B1	REV(悬空)	C1	VCC	D1	AD0
A2	VIO(悬空)	B2	AD2	C2	AD1	D2	VCC
A3	AD05	В3	GND	C3	AD4	D3	AD3
A4	C_BEO	B4	AD7	C4	GND	D4	AD6
A5	GND	B5	AD9	C5	AD8	D5	GND
A6	AD11	B6	VIO(悬空)	C6	AD10	D6	悬空
A7	AD14	B7	AD13	C7	GND	D7	AD12
A8	+3.3V(悬空)	B8	C_BE1	C8	AD15	D8	+3.3V(悬空)
A9	SERR	В9	GND	C9	SB0(悬空)	D9	PAR
A10	GND	B10	PERR	C10	+3.3V(悬空)	D10	SDONE(悬空)
A11	STOP	B11	+3.3V(悬空)	C11	PLOCK	D11	GND
A12	+3.3V(悬空)	B12	TRDY	C12	GND	D12	DEVSEL
A13	FRAME	B13	GND	C13	IRDY	D13	+3.3V(悬空)
A14	GND	B14	AD16	C14	+3.3V(悬空)	D14	C_BE2
A15	AD18	B15	+3.3V(悬空)	C15	AD17	D15	GND
A16	AD21	B16	AD20	C16	GND	D16	AD19
A17	+3.3V	B17	AD23	C17	AD22	D17	+3.3V(悬空)
A18	IDSELO	B18	GND	C18	IDSEL1	D18	IDSEL2
A19	AD24	B19	C_BE3	C19	VIO(悬空)	D19	IDSEL3(悬空)
A20	GND	B20	AD26	C20	AD25	D20	GND
A21	AD29	B21	VCC	C21	AD28	D21	AD27
A22	+5V	B22	AD30	C22	GND	D22	AD31
A23	REQO(REQ2)	B23	GND	C23	REQ1(REQ3)	D23	VIO(悬空)
A24	GND	B24	REQ2(REQ4)	C24	VCC	D24	GNTO(GNT2)
A25	GNT1(GNT3)	B25	VIO(悬空)	C25	GNT2(GNT4)	D25	GND
A26	+5V	B26	PC I CLK1	C26	GND	D26	PC1CLK2
A27	CLK2(PCICLK3)	B27	VCC	C27	CLK3(悬空)	D27	GND
A28	GND	B28	INTR_D	C28	VCC	D28	PCIRST
A29	+12V	B29	INTR_A	C29	INTR_B	D29	INTR_C
A30	-12V(悬空)	B30	REV(悬空)	C30	REV(悬空)	D30	KEY(悬空)

状态指示接口

FP1, FP2, FP3用于连接至机箱前面板上所设的功能按钮或指示灯。

管脚	信号名称
1	Power Button-
2	Power Button+
3	GND
4	RESET
5	IDE LED -
6	IDE LED +

FP2

管脚	信号名称
1	Vcc
2	N.C.
3	ACPILED

管脚	信号名称
1	Speaker out
2	N.C.
3	GND
4	+5V

第三章

BIOS 功能简介

EC3-1711CLDNA主板BIOS相关功能简介请参照我公司的《AMI BIOS设置指南》。

附录

Watchdog 编程指引

EC3-1711CLDNA提供一个可按分或按秒计时的,最长达255级的可编程看门狗定时器(以下简称WDT)。通过编程,WDT超时事件可用来将系统复位或者产生一个可屏蔽中断。

以下用C语言形式描述了WDT的编程。必须注意:在对WDT进行操作之前,需先进入WDT编程模式;在结束对WDT的操作之后,退出WDT。 对WDT的编程需遵循以下步骤:

- Ø 进入WDT编程模式
- Ø 设置WDT工作方式/启动WDT/关闭WDT
- Ø 退出WDT编程模式

WDT的编程方法,请参看以下示范代码:

```
#define INDEXP 0x2e
#define DATAP 0x2f
//Super I/O Watchdog
#define STARTPROG { outportb(INDEXP,0x87);
outportb(INDEXP,0x87);}
#define ENDPROG outportb(INDEXP,0xaa);
#define SELEDEV(x) { outportb(INDEXP,7);
outportb(DATAP,x); }
#define WRITEREG(reg,val) { outportb(INDEXP,reg);
outportb(DATAP,val); }
//1.Initial Watchdog device
```

```
short SIOWTD_Setup(short irg)
 /* irq=3,4,5,6,7,9,12,0:disable interrupt,0xff:reset*/
 {
  //start programming Watchdog
  STARTPROG
  //Active Watchdog Device
  SELEDEV(8) //logical device 8
 WRITEREG(0x30,0x01)
  //read IC is 627HF or 627THF
 outportb(INDEXP, 0x20);
 unsigned char thfver = inportb(DATAP);
//\{0x52=HF,0x82=THF\}
 outportb(INDEXP,0x2b);
 unsigned char oldval=inportb(DATAP);
  if(irq==0xff) //WatchDog cause System Reset
  if(thfver == 0x82)
  { //is 627THF
 oldval &= 0xf3;
 oldval |= 0x04; //bit3, 2=01
  }
  else
  oldval &= 0xef; //BIT4=0
```

- 20 -

```
}
WRITEREG(0x2b, oldval);
 }
else //Watchdog cause System Interrupt
 {
 if(thfver == 0x82)
    //is 627THF
oldval &= 0xf3; //bit3,2=00
 }
else
 {
oldval = 0x10; //BIT4=1
 }
WRITEREG(0x2B,oldval)
WRITEREG(0xf7, irq)
 //end programming watchdog
 ENDPROG
 return 0;
}
//2.start Watchdog to count
short SIOWTD_Enable(short time, short unit)
/*unit=0:second,=1:minutes */
{
```

```
if(time<1 || time>255) return -1;
 if(unit<0 || unit>1) return -1;
 //start programming watchdog
STARTPROG
SELEDEV(8) //logical device 8
//select Watchdog Timer clock
switch(unit)
 {
case 0:
WRITEREG(0xf5,0x00) //BIT3=0, secondes
break:
case 1:
WRITEREG(0xf5,0x08) //BIT3=1,minutes
break:
}
WRITEREG(0xF6, time) //set timeout value
//end programming watchdog
ENDPROG
 return 0;
}
```

1/0 口地址映射表

系统I/O地址空间总共有64K,每一外围设备都会占用一段I/O地址空间。下表给出了本CPU卡部分设备的I/O地址分配,由于PCI设备(如PCI网卡)的地址是由软件配置的,表中没有列出。

地址	设备描述
000h - 00Fh	DMA 控制器#1
020h - 021h	可编程中断控制器#1
040h - 043h	系统计时器
060h - 064h	标准 101/102 键或 Microsoft 键盘
070h - 071h	系统 CMOS/实时钟
0A0h - 0A1h	可编程中断控制器#2
OCOh - ODEh	DMA 控制器#2
0F0h - 0FFh	数据数值处理器
170h - 177h	从IDE
1F0h - 1F7h	主IDE
295h - 296h	硬件监测器
2F8h - 2FFh	串行端口#2(COM2)
376h	从 IDE(dual FIFO)
378h - 37Fh	并行端口#1(LPT1)
3B0h - 3DFh	Intel(R) 82852/82855 GM/GME Graphics Controller
250h 250h	Intel(R) 82801DB Ultra ATA Storage
3F6h - 3F6h	Controller - 24CB
3F6h - 3F6h	主 IDE(dual FIFO)
3F8h - 3FFh	串行端口#1(COM1)

IRQ 中断分配表

系统共有15个中断源,有些已被系统设备独占。只有未被独占的中断才可分配给其他设备使用。ISA设备要求独占使用中断;只有即插即用ISA设备才可由BIOS或操作系统分配中断。而多个PCI设备可共享同一中断,并由BIOS或操作系统分配。下表给出了本CPU卡部分设备的中断分配情况,但没有给出PCI设备所占用的中断资源。

级别	功能
IRQ0	系统计时器
IRQ1	标准 101/102 键或 Microsoft 键盘
IRQ2	可编程的中断控制器
IRQ3	串口#2
IRQ4	串口#1
IRQ5	Intel(R) 82801DB/DBM USB Universal Host Controller -24C4
IRQ5	ACPI IRQ Holder for PCI IRQ Steering
IRQ6	保留
IRQ7	并口#1
IRQ8	系统 CMOS/实时时钟
IRQ9	SCI IRQ used by ACPI bus
IRQ10	Intel(R) 82801DB/DBM USB Universal Host Controller-24C2
IRQ10	Intel(R) 82852/82855 GM/GME Graphics Controller
IRQ10	ACPI IRQ Holder for PCI IRQ Steering
IRQ11	Realtek AC'97 Audio
IRQ12	PS/2 兼容型鼠标端口
IRQ13	数据数值处理器
IRQ14	Intel(R) 82801DB Ultra ATA Storage Controller-24CB
IRQ15	从IDE
IRQ15	Intel(R) 82801DB Ultra ATA Storage Controller-24CB