104-1544CLDN

PC/104 板带 CPU/内存和 CRT/LCD/LAN/SSD/2COM

版本: A0

非常感谢您购买"EVOC"产品

在打开包装箱后请首先依据物件清单检查配件, 若发现物件有所 损坏、或是有任何配件短缺的情况, 请尽快与您的经销商联络。

- **b** 1 块 104-1544CLDN 主板
- **b** 1本用户手册
- **b** 1本《AMI BIOS设置指南》
- **b** 1 条 IDE 转接线
- b 2条串口转接线
- **b** 1 条 VGA 转接线
- **b** 1 条 USB 转接线
- **b** 1 条网口转接线
- **b** 1 条并口转接线
- **b** 1 条多功能接口线
- **b** 1张 EVOC 软件与用户手册光盘
- **b** 备用跳线帽

声明

除列明随产品配置的配件外,本手册包含的内容并不代表本公司的承诺,本公司保留对此手册更改的权利,且不另行通知。对于任何因安装、使用不当而导致的直接、间接、有意或无意的损坏及隐患概不负责。

订购产品前,请向经销商详细了解产品性能是否符合您的需求。

EVOC是研祥智能科技股份有限公司的注册商标。本手册所涉及到的其他商标,其所有权为相应的产品厂家所拥有。

本手册内容受版权保护,版权所有。未经许可,不得以机械的、 电子的或其它任何方式进行复制。

安全使用小常识

- 1. 产品使用前,务必仔细阅读产品说明书;
- 2. 对未准备安装的板卡,应将其保存在防静电保护袋中;
- 3. 在从防静电保护袋中拿出板卡前,应将手先置于接地金属物体上一会儿(比如 10 秒钟),以释放身体及手中的静电:
- 4. 在拿板卡时,需佩戴静电保护手套,并且应该养成只触及其边缘部分的习惯;
- 5. 为避免人体被电击或产品被损坏,在每次对主板、板卡进行拔插 或重新配置时,须先关闭交流电源或将交流电源线从电源插座中 拔掉:
- 在需对板卡或整机进行搬动前,务必先将交流电源线从电源插座 中拔掉;
- 7. 对整机产品,需增加/减少板卡时,务必先拔掉交流电源;
- 8. 当您需连接或拔除任何设备前,须确定所有的电源线事先已被拔掉;
- 9. 为避免频繁开关机对产品造成不必要的损伤,关机后,应至少等 待30秒后再开机。

目 录

第 ^一 草 产品介绍	1
简介	1
订购信息	1
环境与机械尺寸	2
微处理器	2
系统芯片组	2
系统存储器	2
网络功能	2
视频功能	2
固态盘功能	2
IDE 功能	3
电源选择	3
BIOS	3
Watchdog 功能	3
1/0 功能	3
第二章 安装说明	4
产品外形	4
接口位置示意图	5
跳线功能设置	6
电源接口	7

显示接口7
USB 接口 9
网络接口9
多功能口9
IDE 接口 10
PC104 接口 11
并口与串口12
第三章 BIOS 功能简介14
附录15
Watchdog 编程指引
IRQ 中断分配表 19

第一章

产品介绍

简介

104-1544CLDN 是一款低功耗嵌入式586级PC/104结构的工控板, CPU采用GX1+CS5530 芯片组设计,结构紧凑、可靠性高,主要特点如下:

- u 采用GX1+CS5530 芯片组,集成NS GX1 300MHz CPU:
- **u** 在板64/128MB SDRAM内存:
- u 支持VGA、LCD(支持EL、STN、DSTN):
- u 1个10/100Mbps以太网控制器;
- u PC/104单板结构; 1个PC/104扩展总线;
- u 一个ATA100 IDE 接口,支持二个IDE设备;
- u AMI 最新内核BIOS;

此外,还提供2个USB接口,1个并口,2个串口(其中1个支持RS-232/422/485),一个PS/2 健盘/鼠标接口和看门狗定时器等功能。

订购信息

型号	描述
104-1544CLDN	PC/104板带CPU/内存和CRT/LCD/LAN/SSD/2COM

环境与机械尺寸

- Ⅰ 尺寸: 96mm×90mm;
- **Ⅰ** 工作温度: -40°C~+85°C;
- ▮ 湿度: 5%~90% (非凝结):

微处理器

AMD GX1 300MHz CPU.

系统芯片组

选用CS5530A。

系统存储器

在板64/128MB SDRAM内存。

网络功能

主板集成1个10/100Mbps以太网控制器,为您提供高速稳定的网络平台选择。

视频功能

支持VGA、LCD输出,LCD接口包括LVDS、TTL(支持EL、STN、DSTN 屏)。

固态盘功能

在板DOC 接口。

IDE 功能

一个 ATA100 IDE 接口,支持二个 IDE 设备。

电源选择

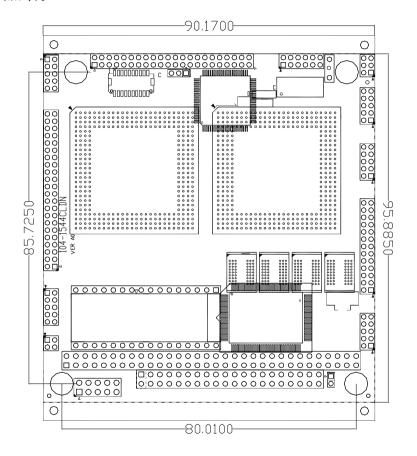
+5V 电源供电。

BIOS

AMI 最新内核BIOS。

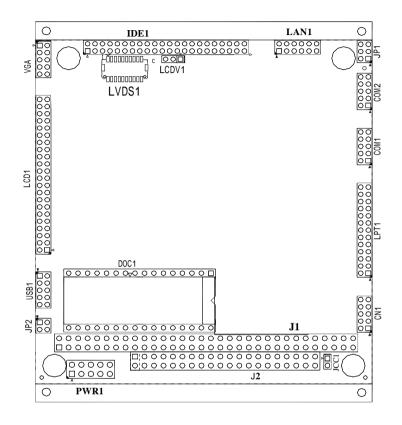
Watchdog 功能

- 1~255级,可编程时间到中断;
- 1~255 超时事件复位系统;
- Ⅰ 1分分辨率向下计数器。


1/0 功能

- 2 个 USB 接口:
- Ⅰ 1个并口,2个串口;
- Ⅰ 一个 PS/2 健盘/鼠标接口;

第二章


安装说明

产品外形

单位: mm

接口位置示意图

跳线功能设置

1) JCC1内容清除/保持设置

通过改变 CMOS 的短接帽所处状态来实现此项功能。

	设置	JCC
2	开路	[12] (正常工作状态,默认设置)
JCC1	瞬间 短路	[12] (清除 CMOS 内容, 所有 BIOS 设置恢复成出厂值)

2) LCDV1: LVDS电压选择

不同的LVDS屏电压可能不同,本板提供了3.3V和5V两种电压选择,当所选择的LVDS电压与所使用的LVDS屏的工作电压一致时,LVDS屏才能正常显示(图示标识为LCDV1)。

3.3V 设置	5V 设置
3 2 1 (缺省值))	3 2 1 LCDV1

3) JP1:COM2口RS-232/422/485 模式选择

通过设置JP1可使COM2口工作在RS-232或是RS-422/RS-485模式。缺省设值是RS-232。

	JP1 选择	謍	脚	
6 0 0 5	011 延押	1-2	3-4	5-6
2 🗖 🔳 1	RS-232	ON (默认)	0FF	OFF
 JP1	RS-422	0FF	ON	OFF
	RS-485	0FF	OFF	ON

此时COM2口的管脚定义可见后续串口定义。

4) JP2: DOC地址选择

	DOC 地址	管	脚
2 4	DOO 1611	1-2	3-4
88	DC00h	OFF	0FF
1 3	D800h	ON	0FF
JP2	D000h	ON	ON
	D400h	OFF	ON

电源接口

1) 电源接口(2X5插针)

1.0	管脚	信号名称	管脚	信号名称
1"	1	GND	2	+5V
	3	N. C.	4	+12V
2 0 0 1	5	-5V	6	-12V
PWR1	7	GND	8	+5V
1 WICT	9	GND	10	+5V

显示接口

1) LVDS1: LVDS输出接口

	管脚	信号名称	管脚	信号名称
	1	LVDSD0+	2	LVDSD0-
	3	GND	4	GND
2 8 - 1	5	LVDSD1+	6	LVDSD1-
20 8 8 19	7	GND	8	GND
0 00	9	LVDSD2+	10	LVDSD2-
20 8 9 19	11	GND	12	GND
LVDS1	13	LVDSCLK+	14	LVDSCLK-
	15	GND	16	GND
	17	LVDSD3+	18	LVDSD3-
	19	VDD	20	VDD

2) LCD1显示输出接口

	管脚	信号名称	管脚	信号名称
	1	+12V	2	+12V
44 0 0 43	3	GND	4	GND
00	5	VCC_LCD	6	VCC_LCD
	7	ENAVEE	8	GND
	9	В0	10	B1
00	11	B2	12	В3
	13	B4	14	B5
	15	В6	16	B7
00	17	G0	18	G1
	19	G2	20	G3
	21	G4	22	G5
	23	G6	24	G7
	25	R0	26	R1
00	27	R2	28	R3
	29	R4	30	R5
00	31	R6	32	R7
00	33	GND	34	GND
2 □ □ 1	35	SHFCLK	36	FLM
	37	М	38	LP
LCD1	39	GND	40	ENABKL
	41	GND	42	3.3V
	43	ENAVDD	44	VCC_LCD

3) VGA1显示输出接口

这是2*5针式VGA显示插座,可以连接所有标准VGA接口的显示器

100	管脚	信号名称	管脚	信号名称
10 0 0 9	1	VSYNC	2	HSYNC
	3	DDCDATA	4	RED
2 0 0 1	5	DDCCLK	6	GREEN
VGA1	7	+5V	8	BLUE
V 3/(1	9	GND	10	GND.

USB 接口

这是2*5针式USB设备接针,需使用转换电缆将USB接口信号接到标准USB插座。下表给出了USB接口的管脚定义。

	管脚	信号名称	管脚	信号名称
1 2 2	1	+5V	2	+ 5V
	3	USB Data-	4	USB Data-
9 0 0 10	5	USB Data+	6	USB Data+
USB1	7	GND	8	GND
0021	9	N.C.	10	SHIELD GND

网络接口

此接口是主板上10/100Mbps以太网接口,以下给出了它的管脚安排和相应的输入插座。

	管脚	信号名称	管脚	信号名称
12 0 0 11	1	TXD+	2	TXD-
	3	LAN_CON1	4	LAN_CON1
	5	RXD+	6	RXD-
2	7	LAN_CON2	8	LAN_CON2
LAN1	9	ACTLED	10	+3.3V
	11	LILED	12	+3.3V

多功能口

CN1 是一个多功能接口,用于连接键盘、鼠标、蜂鸣器和 RESET,需要使用随单板电脑配置的多功能接口线连接各接口。

	管脚	信号名称	管脚	信号名称				
1 0 2	1	SPEAK-	2	+5V				
	3	Reset	4	GND				
9 0 0 10	5	Keyboard Data	6	Keyboard Clock				
CN1	7	GND	8	Mouse Clock				
ONT	9	+5V	10	Mouse Data				

IDE 接口

本主板提供一组 44 针 IDE 接口,安装 IDE 设备时需注意。IDE 接口可以连接两台 IDE 设备:一个为主设备(Master),一个为从设备(Slave)。设备的连接方法是:主设备接在电缆的末端,从设备接在电缆的中间。(IDE 电缆有红色标示的为第一脚)。

	管脚	信号名称	管脚	信号名称
	1	Reset IDE	2	GND
	3	Host data 7	4	Host data 8
	5	Host data 6	6	Host data 9
	7	Host data 5	8	Host data 10
12	9	Host data 4	10	Host data 11
	11	Host data 3	12	Host data 12
	13	Host data 2	14	Host data 13
	15	Host data 1	16	Host data 14
	17	Host data 0	18	Host data 15
8.	19	GND	20	KEY
	21	DRQ0/1	22	GND
00	23	Host IOW	24	GND
0.0	25	Host IOR	26	GND
	27	IOCHRDY	28	GND
للثا	29	DACKO/1	30	GND
43 44	31	IRQ14/15	32	N.C.
IDE1	33	Address 1	34	ATA/66 detect
	35	Address 0	36	Address 2
	37	Chip select 0	38	Chip select 1
	39	Activity	40	GND
	41	+5V	42	+5V
	43	GND	44	GND

PC104 接口

PC104接口信号定义如下:

В1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	O B32	T1
A1		0	0	0	0	0	0																								0	A32	
																												\circ					
								D1	\cap	0	\cap	\cap	\cap	\cap	\cap	\cap	\circ	\cap	\cap	\circ	\cap	\cap	\cap	\circ	\cap	\cap	\cap	\cap	กวก			12.	

	J	1		J2					
管脚	信号名称	管脚	信号名称	管脚	信号名称	管脚	信号名称		
A1	IOCHK	B1	GND	C1	GND	D1	GND		
A2	D7	B2	REST	C2	SBHE	D2	MEMCS16		
А3	D6	В3	VCC	C3	LA23	D3	10CS16		
A4	D5	B4	IRQ9	C4	LA22	D4	IRQ10		
A5	D4	B5	-5V	C5	LA21	D5	IRQ11		
A6	D3	В6	DRQ2	C6	LA20	D6	IRQ12		
A7	D2	В7	-12V	C7	LA19	D7	IRQ15		
A8	D1	В8	OWS	C8	LA18	D8	IRQ14		
A9	DO	В9	+12V	C9	LA17	D9	DACKO		
A10	IOCHRDY	B10	GND	C10	MEMR	D10	DRQ0		
A11	AEN	B11	SMEMW	C11	MEMW	D11	DACK5		
A12	A19	B12	SMEMR	C12	D8	D12	DRQ5		
A13	A18	B13	IOW	C13	D9	D13	DACK6		
A14	A17	B14	IOR	C14	D10	D14	DRQ6		
ZA15	A16	B15	DACK3	C15	D11	D15	DACK7		
A16	A15	B16	DRQ3	C16	D12	D16	DRQ7		
A17	A14	B17	DACK1	C17	D13	D17	VCC		
A18	A13	B18	DRQ1	C18	D14	D18	MASTER		
A19	A12	B19	REFRESH	C19	D15	D19	GND		
A20	A11	B20	CLK	C20	KEY	D20	GND		
A21	A10	B21	IRQ7						

A22	A9	B22	IRQ6		
A23	A8	B23	IRQ5		
A24	A7	B24	IRQ4		
A25	A6	B25	IRQ3		
A26	A5	B26	DACK2		
A27	A4	B27	TC		
A28	A3	B28	BALE		
A29	A2	B29	VCC		
A30	A1	B30	OSC		
A31	AO	B31	GND		
A32	GND	B32	GND		

并口与串口

1) 并口:

标准的26针并行接口,可依据您的需求用来连接并行接口外

设。下表给出了此接口的管脚安排及信号定义

	管脚	信号名称	管脚	信号名称
	1	STROBE	14	AFD
26 13	2	PDO 0	15	Error
	3	PD1 1	16	INIT
	4	PD2 2	17	SLIN
	5	PD3 3	18	GND
	6	PD4 4	19	GND
	7	PD5 5	20	GND
	8	PD6 6	21	GND
	9	PD7 7	22	GND
14 -1	10	ACK	23	GND
LPT1	11	Busy	24	GND
	12	PE	25	GND
	13	SLCT	26	N.C.

2) 串口: COM1口RS-232:

提供2个串行通讯口: COM1和COM2是一组标准的2×5针盒式接口。这些接口可以连接具有RS-232标准接口的鼠标、调制解调器、数码相机等设备。

	管脚	信号名称	管脚	信号名称
10 0 9	1	数据运载检测	2	接收数据
	3	传输数据	4	数据终端准备好
2 0 0 1	5	地	6	数据设置准备好
COM1	7	请求发送	8	清发送
	9	响铃指示	10	N.C.

3) 串口: COM2口RS-232/RS-422/RS485:

	管脚	信号名	名称	
	日邓	RS-232	RS-422	RS485
	1	DCD,数据运载检测	TX-	RTX-
	2	RXD,接收数据	TX+	RTX+
10 0 9	3	TXD,传输数据		
	4	DTR,数据终端准备好		
2 0 0 1	5	GND,地		
COM2	6	DSR,数据设置准备好		
	7	RTS,请求发送		
	8	CTS,清发送	RX+	Χ
	9	RI, 响铃指示	RX-	Χ
	10	N.C.		

第三章

BIOS 功能简介

主板BIOS相关功能简介请参照我公司的《AMI BIOS设置指南》。

附录

Watchdog 编程指引

看门狗定时器是一个用于复位CPU或在系统因某种原因进入一个停顿状态时产生中断的定时器。它在CPU的独立应用中非常有帮助。104-1544CLDN有由super I/O芯片内置的看门狗定时器,可以提供灵活的超时中断和超时事件。

看门狗定时器包含了一个1~255级分辨率向下计数器。向下计数器可在1~255级范围内程序控制。对向下计数器写入任何非0值都将引起看门狗定时器重新装入新值并从新值开始向下计数。当计数器为0时,系统复位,根据超时事件的配置将产生一个中断。1级对应15秒,2级对应45秒,3级对应75秒……,每级间相差30秒,以此类推。

(1)将看门狗超时事件配置为系统复位

```
outportb(0x3f0,0x87); //Enter program mode outportb(0x3f0,0x87); outportb(0x3f0,0x07); //Select Logic Device 7 outportb(0x3f1,0x07); outportb(0x3f0,0x30); outportb(0x3f1,0x01); outportb(0x3f1,0x01); outportb(0x3f1,0x50); outportb(0x3f1,0x50); outportb(0x3f1,0x0A); (2)将看门狗超时事件配置为中断 outportb(0x3f0,0x87); //Enter program mode
```

```
outportb(0x3f0,0x87);
outportb(0x3f0,0x07);
                       //Select Logic Device 8
outportb(0x3f1,0x08):
outportb(0x3f0,0x30);
outportb(0x3f1,0x01);
outportb(0x3f0,0x72);
                       //Select IRQ Resource for the WDT
outportb(0x3f1, IRQ_RESOURCE);
where, IRQ_RESOURCE =0: No IRQ selected
                       =3: IRQ3
                       =4: IRQ4
                       =7: IRQ7
                       =9: IRQ9
                       =12: IRQ12
(3) 启动看门狗定时器
;Suppose already in program mode
outportb(0x3f0,0x07);
                       //Select Logic Device 8
outportb(0x3f1,0x08);
outportb(0x3f0,0x30);
outportb(0x3f1,0x01);
outportb(0x3f0,0xf2); //Write the down counter with
```

time-out value

outportb(0x3f1,TIME-OUT-VALUE);

(4) 禁止看门狗定时器

```
;Suppose already in program mode
outportb(0x3f0,0x07); //Select Logic Device 8
outportb(0x3f1,0x08);
outportb(0x3f0,0xf2); //Write the down counter with zero
outportb(0x3f1,0);
(5) 退出程序模式
outportb(0x3f0,0xaa);
```

I/0口地址映射表

系统的每一个外设都被分配了一套 I/O 口地址,也成为了设备的身份识别。总共有 1K 可用地址空间。下表给出了用于工业级主板的 I/O 口地址。

地址	功能
000h - 01Fh	DMA 控制器#1
020h - 03Fh	中断控制器#1
040h - 05Fh	定时器
060h - 06Fh	键盘控制器
070h - 07Fh	实时时钟,NMI
080h - 09Fh	DMA 页面寄存器
OAOh - OBFh	中断控制器#2
OCOh - ODFh	DMA 控制器#2
0F0h - 0F1h	数值数据处理器
1F0h - 1F7h	硬盘控制器
200h - 210h	游戏端口
278h - 27Fh	并口 #2
2F8h - 2FFh	串口#2(COM2)
DEOO - DEFF	PC网络
378h - 3FFh	并口#1
3B0 - 3DF	VGA控制器
3F0h - 3F7h	软磁盘控制器
3F8h - 3FFh	串口#1(COM1)

IRQ 中断分配表

主板上总共有 15 条可用的 IRQ 线。外设通过中断请求线向 CPU 申请所需的服务。下表给出了工业级主板上设备所用的 IRQ。

级别	功能
IRQ 0	系统定时器
IRQ 1	标准 101/102 键或 Microsoft 键盘
IRQ 2	可编程的中断控制器
IRQ 3	串口#2
IRQ 4	串口#1
IRQ 5	保留
IRQ 6	软盘控制器
IRQ 7	并口#1
IRQ 8	系统 CMOS/实时钟
IRQ 9	Realtek RTL8139D PCI 网卡
IRQ 10	显示适配器
IRQ 11	保留
IRQ 12	PS/2 鼠标
IRQ 13	数值数据处理器
IRQ 14	标准双通道PCI IDE控制器
IRQ 15	保留