

ancing technology		
IINED BY:		FILE NO . CAS-51554
Tung Chang Hu	EMERGING DISPLAY	ISSUE: MAR.13, 2007
OVED BY:	TECHNOLOGIES CORPORATION	TOTAL PAGE: 22
Pavid Chang		VERSION: 2
CUSTOMER	ACCEPTANCE SPEC	CIFICATIONS
MO FOR CUSTOMER'S APPROVA	DEL NO.: ET057003DM6 (RoHS) MESSRS:	
DATE:		
BY:		

MODEL NO. VERSION PAGE EMERGING DISPLAY TECHNOLOGIES CORPORATION ET057003DM6(RoHS) 2 0 - 1DOC . FIRST ISSUE FEB.16, 2007 RECORDS OF REVISION REVISED DATE **PAGE** SUMMARY NO. MAR.13, 2007 3.2 ENVIRONMENTAL ABSOLUTE MAXIMUM RATINGS OPERATING MIN. MAX. $I \quad T \quad E \quad M$ AMBIENT TEMPERATURE -10°C 60°C NOTE(2),(3) I T E M MIN. MAX. MIN. MAX. -20 °C 70 °C -30 °C 80 °C NOTE (2), (3) AMBIENT TEMPERATURE NOTE(2): Ta AT -20°C: 48HR MAX. \rightarrow Ta AT -30°C: 48HR MAX. $70^{\circ}\text{C}: 168\text{HR MAX.} \rightarrow 80^{\circ}\text{C}: 168\text{HR MAX.}$

 MODEL NO.
 VERSION
 PAGE

 E T 0 5 7 0 0 3 D M 6 (RoHS)
 2
 0-2

TABLE OF CONTENTS

NO.	ITEM	PAGE
1.	GENERAL SPECIFICATIONS	1
2.	MECHANICAL SPECIFICATIONS	1
3.	ABSOLUTE MAXIMUM RATINGS	2
4.	ELECTRICAL CHARACTERISTICS	3
5.	TIMING CHART	4
6.	OPTICAL CHARACTERISTICS	5 ~ 7
7.	OUTLINE DIMENSIONS	8
8.	BLOCK DIAGRAM	9
9.	DETAIL DRAWING OF DOT MATRIX	10
10.	INTERFACE SIGNAL	11
11.	POWER SUPPLY	12
12.	INSPECTION CRITERION	13 ~ 22

E M E R G I N G D I S P L A Y TECHNOLOGIES CORPORATION

MODEL NO.	VERSION	PAGE
E T 0 5 7 0 0 3 D M 6 (RoHS)	2	1

- 1. GENERAL SPECIFICATIONS
 - 1.1 APPLICATION NOTES FOR CONTROLLER/DRIVER PLEASE REFER TO :

HIMAX HX8218 HIMAX HX8615

1.2 MATERIAL SAFETY DESCRIPTION

ASSEMBLIES SHALL COMPLY WITH EUROPEAN ROHS REQUIREMENTS, INCLUDING PROHIBITED MATERIALS/COMPONENTS CONTAINING LEAD, MERCURY, CADMIUM, HEXAVALENT CHROMIUM, POLYBROMINATED BIPHENYLS (PBB) AND POLYBROMINATED DIPHENYL ETHERS (PBDE)

2. MECHANICAL SPECIFICATIONS

(1) DISPLAY SIZE (inch) 5.7"
(2) NUMBER OF DOTS 320W * (RGB) * 240H DOTS
(3) MODULE SIZE
(WITHOUT FPC)
(4) EFFECTIVE AREA 117.2W * 88.4H mm
(5) ACTIVE AREA
(6) DOT SIZE 0.12W * 0.36H mm
(7) PIXEL SIZE 0.36W * 0.36H mm
(8) LCD TYPE TFT, TRANSMISSIVE
(9) COLOR 16.7M (24BIT)
(10) VIEWING DIRECTION 6 O'CLOCK
(11) BACK LIGHT LED, COLOR: WHITE

MODEL NO.	VERSION	PAGE
E T 0 5 7 0 0 3 D M 6 (RoHS)	2	2

3. ABSOLUTE MAXIMUM RATINGS

3.1 ELECTRICAL ABSOLUTE MAXIMUM RATINGS.

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	REMARK
POWER VOLTAGE	VCC	-0.3	7.0	V	AVSS=0
INPUT SIGNAL VOLTAGE	VL	-0.3	VCC+0.3	V	
STATIC ELECTRICITY	_			V	NOTE (1)

NOTE (1): LCM SHOULD BE GROUNDED DURING HANDING LCM.

3.2 ENVIRONMENTAL ABSOLUTE MAXIMUM RATINGS.

ITEM	OPERATING		STORAGE		REMARK	
I I E IVI	MIN.	MAX.	MIN.	MAX.	KEWAKK	
AMBIENT TEMPERATURE	-20 °C	70 °C	-30 °C	80 °C	NOTE (2), (3)	
HUMIDITY	NOTE (4)		NOTI	E (1)	WITHOUT	
HOMBH I			NOT	D(4)	CONDENSATION	
VIBRATION	_	2.45 m/s ² (0.25 G)	_	11.76 m/s ² (1.2 G)	5~20Hz , 1HR 20~500Hz(20Hz) , 1HR 20~500Hz(500Hz) , 1HR X,Y,Z,TOTAL 3HR	
SHOCK		29.4 m/s ² (3 G)	_	490 m/s ² (5 0 G)	10 m SECONDS XYZ DIRECTIONS 1 TIME EACH	
CORROSIVE GAS	NOT ACC	EPTABLE	NOT ACCEPTABLE			

NOTE (2): Ta AT -30°C: 48HR MAX.

80°C:168HR MAX.

NOTE (3) : BACKGROUND COLOR CHANGES SLIGHTLY DEPENDING ON AMBIENT

TEMPERATURE THIS PHENOMENON IS REVERSIBLE.

NOTE (4) : $Ta \le 60$ °C : 90%RH MAX (96HRS MAX).

 $\mbox{Ta} > 60\mbox{°C}: \mbox{Absolute humidity must be lower than the humidity}$

OF 90%RH AT 60°C(96HRS MAX).

MODEL NO.	VERSION	PAGE
ET057003DM6(RoHS)	2	3

4. ELECTRICAL CHARACTERISTICS

 $Ta = 25 \, ^{\circ}C$

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT	REMARK					
POWER SUPPLY	VCC	_	3	3.3	3.6	V						
POWER SUPPLY CURRENT	ICC	VCC=3.3V	_	(300)	(400)	mA						
FOR LCM		LED B/L=ON										
LOW LEVEL INPUT	VIL	_	0		0.3*VCC	V						
VOLTAGE												
HIGH LEVEL INPUT	VIH		0.7*VCC		VCC	V						
VOLTAGE	V 111		0., , 00		, 66	•						
LOW LEVEL OUTPUT	VOL	$IOL = 400 \mu A$	0		0.2*VCC	V						
VOLTAGE	VOL	VOL	VOL	VOL	VOL	VOL I	ΙΟΣ – 400μΑ	U		0.2*VCC	V	
HIGH LEVEL OUTPUT	VOH	IOH = -400μA	0.0*V/CC		VCC	V						
VOLTAGE	νОП	10π – -400μΑ	0.81 VCC		VCC	V						
FRAME FREQUENCY	fFRAME			60	90	Hz						
DOT DATA CLOCK	DCLK			6.4		MHz						

MODEL NO.	VERSION	PAGE
ET 0 5 7 0 0 3 D M 6 (RoHS)	2.	4

5. TIMING CHART

5.1 DIGITAL PARALLEL RGB INTERFACE

SIGNAL	ITEM		SYMBOL	MIN.	TYP.	MAX.	UNIT
	FREQUENCY		TCLK		6.4		MHz
DCLK	HIGH TIME		TCH		78		ns
	LOW TIME		TCL		78		ns
DATA	SETUP TIME		TDS	12			ns
DATA	HOLD TIME		TDH	12			ns
	PERIOD		TH		408		DCLK
	PULSE WIDTH		THP		30		DCLK
HSYNC	BACK-PORCH		THB		38		DCLK
	DISPLAY PERIOD		THD	_	320	_	DCLK
	FRONT-PORCH		THF	_	20	_	DCLK
	PERIOD	NTSC	TV		262.5		TH
		PAL			312.5		
	PULSE WIDTH		TVP	1	3	5	TH
VSYNC	BACK-PORCH	NTSC	TVB		15		TH
VSTINC	BACK-PORCH	PAL	1 4 D		23		111
	DISPLAY PERIOD	•	TVD		240		TH
	FRONT-PORCH	NTSC PAL	TVF	_	4.5 46.5	_	TH

MODEL NO.	VERSION	PAGE
E T 0 5 7 0 0 3 D M 6 (RoHS)	2	5

6. OPTICAL CHARACTERISTICS (NOTE 1)

6.1 OPTICAL CHARACTERISTICS

 $Ta = 25 \pm 2$ °C

I T E	M	SYMBOL	COND	ITION	MIN.	TYP.	MAX.	UNIT	REMARK
				$\theta_x=0^{\circ}$	55	62			
VIEWING ANGI	E	$ heta_{ ext{y-}}$	CR ≥ 10	$O_X = O$	60	67		deg.	(5)
VIEWING ANGE	,E	θ_{x^+}	CK ≥ 10	$\theta_{\rm v}=0^{\circ}$	60	67		ueg.	(5)
		$\theta_{ ext{x-}}$]	0 _y -0	60	67			
CONTRAST RAT	IO	CR	θx=0°,	θy=0°	200	300			(3)
RESPONSE TIM	C	tr(rise)	0v-0°	0.7-00		15	30	msee	(2)
KESTUNSE TIME		t f (fall)	θx=0°, θy=0°		—	35	50	msec	(2)
THE BRIGHTNES OF MODULE	SS	В	θx=0°,	θy=0°	(350)	(400)	_	cd/m ₂	
	WHITE	Х		x=0°, θy=0°	(0.26)	(0.31)	(0.36)		(4)
	WILLE	у			(0.29)	(0.34)	(0.39)		
COLOR OF	RED	X			(0.58)	(0.63)	(0.68)		
CIE	KED	y	0v-00		(0.31)	(0.36)	(0.41)		
COORDINATE	GREEN	X	0x-0 ,		(0.26)	(0.31)	(0.36)		
COOKDINATE GREEN		y			(0.51)	(0.56)	(0.61)		
BLUE	X			(0.09)	(0.14)	(0.19)			
	BLUE	у			(0.08)	(0.13)	(0.18)		
THE UNIFORMITY OF MODULE		_	_	_	75	80	_	%	_

NOTE (1): TEST EQUIPMENT SETUP:

AFTER STABILIZING AND LEAVING THE PANEL ALONE AT A GIVEN TEMPERATURE FOR 30 MINUTES , THE MEASUREMENT SHOULD BE EXECUTED. MEASUREMENT SHOULD BE EXECUTED IN A STABLE , WINDLESS , AND DARK ROOM. OPTICAL SPECIFICATIONS ARE MEASURED BY TOPCON BM-7(FAST) WITH A VIEWING ANGLE OF 2° AT A DISTANCE OF 50cm AND NORMAL DIRECTION.

NOTE (2): DEFINITION OF RESPONSE TIME: TR AND TF
THE FIGURE BVELOW IS THE OUTPUT SIGNAL OF THE PHOTO DETECTOR.

EMERGING DISPLAY

TECHNOLOGIES CORPORATION

MODEL NO.	VERSION	PAGE
ET057003DM6(RoHS)	2.	6

NOTE (3): DEFINITION OF CONTRAST RATIO:

CONTRAST RATIO(CR) = $\frac{\text{BRIGHTNESS MEASURED WHEN LCD IS AT "WHITE STATE"}}{\text{BRIGHTNESS MEASURED WHEN LCD IS AT "BLACK STATE"}}$

WHITE Vi=Vi50%±1.5V BLACK Vi=Vi50% µ 2.0V

"±" MEANS THAT THE ANALOG INPUT SIGNAL SWINGS IN PHASE WITH VCOM SIGNAL.

" $\boldsymbol{\mu}$ " MEANS THAT THE ANALOG INPUT SIGNAL SWINGS OUT OF PHASE WITH VCOM SIGNAL.

Vi 50%: THE ANALOG INPUT VOLTAGE WHEN TRANSMISSION IS 50%

THE 100% TRANSMISSION IS DEFINED AS THE TRANSMISSION OF LCD PANEL WHEN ALL THE INPUT TERMINALS OF MODULE ARE ELECTRICALLY OPENED.

NOTE (4): MEASURED AT THE CENTER AREA OF THE PANEL WHEN ALL THE INPUT TERMINALS OF LCD PANEL ARE ELECTRICALLY OPENED.

Normal

NOTE (5): DEFINITION OF VIEWING ANGLE:

6.2 THE TEST METHOD OF BRIGHTNESS AND UNIFORMITY

IF=40mA

ADD POWER (+28V~32V) TO LED , A , K PIN TEST POINT ARE $\textcircled{\tiny{1}}\sim\textcircled{\tiny{9}}$

6.3 THE CALCULATING METHOD OF UNIFORMITY

UNIFORMITY: $1 - \frac{\text{MAXIMUN}}{\text{AVERAGE BRIGHTESS}} \times 100\%$

E M E R G I N G D I S P L A Y TECHNOLOGIES CORPORATION

MODEL NO.	VERSION	PAGE
ET 0 5 7 0 0 3 D M 6 (RoHS)	2	7

6.4 LED BACK-LIGHT UNIT

6.4.1 ELECTRICAL / OPTICAL CHARACTERISTICS AT Ta=25°C

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	REMARK
AVERAGE LUMINOUS INTENSITUY	Iv	(6000)	(6500)		cd/m ²	IF=40mA/BACK LIGHT
FORWARD VOLTAGE	V_{F}	(28)	(30)	(32)	V	I _F =40mA
LED LIFE TIME		30000	40000		hr	Ta=25°

6.4.2 ABSOLUTE MAXIMUM RATINGS AT Ta=25°C

PARAMETER	SYMBOL	SPECIFICATION	UNIT	REMARK
POWER DISSIPATION	PAD	(1.28)	W	(1)
FORWARD CURRENT	IAF	(0.06)	A	(1)
REVERSE VOLTAGE	VR	(45)	V	(1)

NOTE (1): INTERNAL CIRCUIT DIAGRAM

NOTE (2): TESTING CIRRCUIT

E M E R G I N G D I S P L A Y TECHNOLOGIES CORPORATION

 MODEL NO.
 VERSION
 PAGE

 ET057003DM6(RoHS)
 2
 8

EMERGING DISPLAY

MODEL NO. VERSION PAGE

 MODEL NO .
 VERSION
 PAGE

 E T 0 5 7 0 0 3 D M 6 (RoHS)
 2
 10

9. DETAIL DRAWING OF DOT MATRIX

UNIT : mm SCALE : NTS

NOT SPECIFIED TOLERANCE IS \pm 0.1 DOTS MATRIX TOLERANCE IS \pm 0.01

MODEL NO. VERSION PAGE E T 0 5 7 0 0 3 D M 6 (RoHS) 2 11

1	0. IN	ΓERFACE	SIGN	ALS	•			
	PIN NO	SYMBOL	I/O			FUNCTION		
	1	/RESET	I	HARDWA	HARDWARE RESET			
	2	В7	I	BLUE DAT	TA BIT 7			
	3	В6	I	BLUE DAT	CA BIT 6			
	4	B5	I	BLUE DAT	TA BIT 5			
	5	B4	I	BLUE DAT	CA BIT 4			
	6	В3	I	BLUE DAT	TA BIT 3			
	7	B2	I	BLUE DAT	CA BIT 2			
	8	B1	I	BLUE DAT	CA BIT 1			
	9	В0	I	BLUE DAT	TA BIT 0			
	10	G7	I	GREEN DA	ATA BIT 7			
	11	G6	I	GREEN DA	ATA BIT 6			
	12	G5	I	GREEN DA	ATA BIT 5			
	13	G4	I	GREEN DA	ATA BIT 4			
	14	G3	I	GREEN DATA BIT 3				
	15	G2	I	GREEN DATA BIT 2				
	16	G1	I	GREEN DA	GREEN DATA BIT 1			
	17	G0	I	GREEN DA	GREEN DATA BIT 0			
	18	R7	I	RED DATA	A BIT 7			
	19	R6	I	RED DATA	A BIT 6			
	20	R5	I	RED DATA	A BIT 5			
	21	R4	I	RED DATA	A BIT 4			
	22	R3	I	RED DATA	A BIT 3			
	23	R2	I	RED DATA	A BIT 2			
	24	R1	I	RED DATA	A BIT 1			
	25	R0	I	RED DATA	A BIT 0			
	26	DCLK	I	DOT DATA	A COLCK			
	27	HSYNC	I	HORIZON	ΓAL SYNC INI	PUT		
	28	VSYNC	I	VERTICAI	SYNC INPUT	,		
	29	ENB	I	DATA ENA	ABLE INPUT			
					DIVOTDI	LEDCERI	DEMARK	
	30	LEDCTRL	I	LOCIC	PWCTRL	LEDCTRL	REMARK	
_				LOGIC LEVEL	Н	Н	ILED = 40mA	
				H=3.3V	Н	L	ILED = 0mA	
	31	PWCTRL	I	L=0V	L	L	SHUTDOWN	
-								
-	32	VCC	P	POWER SUPPLY (3.3V)				
	33	VSS	P	GROUND	GROUND			

 MODEL NO.
 VERSION
 PAGE

 E T 0 5 7 0 0 3 D M 6 (RoHS)
 2
 12

11. POWER SUPPLY 11.1 POWER SUPPLY FOR LCM

EMERGING DISPLAY

TECHNOLOGIES CORPORATION E T 0 5 7 0 0 3 D M 6 (RoHS)

MODEL NO.	VERSION	PAGE
E T 0 5 7 0 0 3 D M 6 (RoHS)	2	13

12. INSPECTION CRITERION

12.1 APPLICATION

This inspection standard is to be applied to the LCD module delivered from EMERGING DISPLAY TECHNOLOGIES CORP.(E.D.T) to customers

12.2 INSPECTION CONDITIONS

12.2.1 (1)Observation Distance: 35cm±5cm

(2) View Angle:

Non-operation Condition : ±5°(perpendicular to LCD panel surface) Operation Condition : ±45° (perpendicular to LCD panel surface)

12.2.2 Environment Conditions:

Amb	ient Temperature	20°C~25°C
Am	bient Humidity	65±20%RH
Ambient	Cosmetic Inspection	More than 600Lux
Illumination Functional Inspection		300~500 Lux

12.2.3 Inspection lot

Quantity per delivery lot for each model

12.2.4 Inspection method

A sampling inspection shall be made according to the following provisions to judge The acceptability

(a)Applicable standard : MIL-STD-105E

Normal inspection, single sampling

Level Ⅱ

(b)AQL : Major defect : AQL 0.65% Minor defect : AQL 1.0%

MODEL NO.	VERSION	PAGE
E T 0 5 7 0 0 3 D M 6 (RoHS)	2	14

12.3 INSPECTION STANDARDS

12.3.1 VISUAL DEFECTS CLASSIFICATION

TYPE OF DEFECT	INSPECTION ITEM	DEFECT FEATURE	AQL
MAJOR DEFECT	1.DISPLAY ON	DEFECT TO MISS SPECIFIED DISPLAY FUNCTION, FOR ALL AND SPECIFIED DOTS EX: DISCONNECTION, SHORT CIRCUIT ETC	0.65
	2.BACKLIGHT	NO LIGHTFLICKERING AND OTHER ABNORMAL ILLUMINATION	0.65
	3.DIMENSIONS	• SUBJECT TO INDIVIDUAL ACCEPTANCE SPECIFICATIONS	
	1.DISPLAY ZONE	 BLACK/WHITE SPOT BUBBLES ON POLARIZER NEWTON RING BLACK/WHITE LINE SCRATCH CONTAMINATION LEVER COLOR SPREED 	
MINOR DEFECT	2.BEZEL ZONE	STAINSSCRATCHESFOREIGN MATTER	1.0
	3.SOLDERING	 INSUFFICIENT SOLDER SOLDERED IN INCORRECT POSITION CONVEX SOLDERING SPOT SOLDER BALLS SOLDER SCRAPS 	
	4.DISPLAY ON (ALL ON)	• LIGHT LINE	

EMERGING DISPLAY

MODEL NO. VERSION PAGE TECHNOLOGIES CORPORATION 2 E T 0 5 7 0 0 3 D M 6 (RoHS) 15

12 2 2	MODITIE	DEFECTS	CALSSIFICATION
12.3.2	コグロフししした	DEFECTS	CALOSIFICATION

		E DEFECTS CALSSIFICATION
NO.	ITEM	CRITERIA
1.	DISPLAY ON INSPECTION	(1)INCORRECT PATTERN (2)MISSING SEGMENT (3)DIM SEGMENT (4)OPERATING VOLTAGE BEYOND SPEC
2.	OVERALL DIMENSIONS	(1)OVERALL DIMENSION BEYOND SPEC
3.	BLACK SPOTS, FOREIGN MATTER, AND WHITE SPOTS (INCLUDING LIGHT LEAKAGE DUE TO POLARIZING PLATES PINHOLES, ETC.)	AVERAGE DIAMETER NUMBER OF PIECES MINIMUM (mm): D PERMITTED SPACE D≤0.2 IGNORE — 0.2 <d≤0.4 (2)="" (mm):="" (when="" 0="" 0.3<d≤0.75="" 0.4<d="" 0.75<d="" 10="" 2="" 5="" are="" as="" average="" be="" blurry="" concentrated.="" considered="" d="" diameter="" d≤0.3="" fully="" ignore="" is="" mm="" more,="" not="" note:="" number="" of="" or="" permitted="" pieces="" pieces.="" powered-on)="" set="" spots="" td="" that="" there="" they="" they<="" to="" total="" when="" within=""></d≤0.4>
4.	BLACK LINE WHITE LINE NON-DISPLAY	ARE NOT TO BE CONSIDERED AS CONCENTRATED. (1)THE BLACK LINE, WHITE LINE ARE WITHIN THE VIEWING AREA. IT IS NOT ALLOW.
5	BLACK LINE WHITE LINE ON-DISPLAY	$(1) \begin{tabular}{lllllllllllllllllllllllllllllllllll$
6.	SCRATCHES AND DENT ON GLASS POLARIZER	(1) PLS REFER TO THE ABOVE NO.3 AND 4 TO DETERMINE SCRATCHES AND DENT ON POLARIZER OR GLASS
7.	DOT DEFECT ON DISPLAY	Judgment Criteria Area Bright Dot Dark Dot Total A 3 3 4 B 5 5 5 (1) It is defined as Point Defect if defect area>0.5dot (2) It is ignored if defect area≤0.5dot (3) Weak point defect will be defined as Bright Dot if it can be observed through ND filter 6% (4) The distance between 2 dot defect≥5mm (5) Not Allowed Joint point defect

 MODEL NO .
 VERSION
 PAGE

 E T 0 5 7 0 0 3 D M 6 (RoHS)
 2
 16

NO.	ITEM	CRITERIA			
8	LINE DEFECT ON	OBVIOUS VERTICAL OR HORIZONTAL LINE DEFECT IS			
	DISPLAY	NOT ALLOW			
9	MURA ON DISPLAY	NOT ALLOWED IF IT CAN BE OBSERVED THROUGH ND FILTER 2%			
10	CF FAIL/SPOT ON DISPLAY	$(1) THE \ FOLLOWING \ CF \ FAIL \ , \ SPOT \ ARE \ WITHIN \ THE \ VIEWING \ AREA \\ \hline SIZE \ D \ PERMISSIBLE \ NO. \\ \hline D \le 0.15mm \ IGNORED \\ \hline 0.15mm < D \le 0.2mm \ NOT \ ALLOWED \\ \hline D > 0.2mm \ NOT \ ALLOWED$			
11	UNEVEN COLOR SPREAD , COLORATION	(1)TO BE DETERMINED BASED UPON THE STANDARD SAMPLE.			
12	BEZEL APPEARANCE	(1)BEZEL MAY NOT HAVE RUST, E DEFORMED OR HAVE FINGER PRINTS STAINS OF OTHER CONTAMINATION. (2)BEZEL MUST COMPLY WITH JOB SPECIFICATIONS.			
13	SOLDERING	(a)LSI, IC A POOR WETTING OF SOLDER IS BETWEEN LOWER BEND OR "HEEL" OF LEAD AND PAD SOLDER FILLET (b)CHIP COMPONENT • SOLDER IS LESS THAN 50% OF SIDES AND FRONT FACE WETTING SOLDER FILLET			

 MODEL NO.
 VERSION
 PAGE

 E T 0 5 7 0 0 3 D M 6 (RoHS)
 2
 17

NO.	ITEM	CRITERIA	
		SOLDER WETS 3 SIDES OF TERMINAL, BUT LESS THAN 25% OF SIDES AND FRONT SURFACE AREA ARE COVERED SOLDER SOLDER	
13. S	OLDERING	(3)PARTS ALIGMENT (a)LSI, IC LEAD WIDTH IS MORE THAN 50% BEYOND PAD OUTLINE	
		(b)CHIP COMPONENT	
		COMPONENT IS OFF CENTER, AND MORE THAN 50% OF THE LEADS IS OFF THE PAD OUTLINE	

 MODEL NO.
 VERSION
 PAGE

 E T 0 5 7 0 0 3 D M 6 (RoHS)
 2
 18

NO.	ITEM	CRITERIA	
13.	SOLDERING	(4)NO UNMELTED SOLDER PASTE MAY BE PRESENT ON THE PCB.(5)NO COLD SOLDER JOINTS, MISSING SOLDER CONNECTIONS, OXIDATION OR ICICLE.(6)NO RESIDUE OR SOLDER BALLS ON PCB.	
(1)NO LIGHT (2)FLICKERING AND OTHER ABNORMAL II (3)SPOTS OR SCRATCHES THAT APPEAR W MUST BE JUDGED USING LCD SPOT, LIN CONTAMINATION STANDARDS.		(2)FLICKERING AND OTHER ABNORMAL ILLUMINATION (3)SPOTS OR SCRATCHES THAT APPEAR WHEN LIT MUST BE JUDGED USING LCD SPOT, LINES AND CONTAMINATION STANDARDS. (4)BACKLIGHT DOESN'T LIGHT OR COLOR IS WRONG.	
15.	GENERAL APPEARANCE	 (1)NO OXIDATION,CONTAMINATION, URVES OR,BENDS ON INTERFACE PIN (OLB) OF TCP. (2)NO CRACKS ON INTERFACE PIN (OLB) OF TCP. (3)NO CONTAMINATION, SOLDER RESIDUE OR SOLDER BALLS ON PRODUCT. (4)THE IC ON THE TCP MAY NOT BE DAMAGED, CIRCUITS. (5)THE UPPERMOST EDGE OF THE PROTECTIVE STRIP ON THE INTERFACE PIN MUST BE PRESENT OR LOOK AS IF IT CAUSE THE INTERFACE PIN TO SEVER. (6)THE RESIDUAL ROSIN OR TIN OIL OF SOLDERING (COMPONENT OR CHIP COMPONENT) IS NOT BURNED INTO BROWN OR BLACK COLOR. (7)SEALANT ON TOP OF THE ITO CIRCUIT HAS NOT HARDENED. (8)PIN TYPE MUST MATCH TYPE IN SPECIFICATION SHEET. (9)LCD PIN LOOSE OR MISSING PINS. (10)PRODUCT PACKAGING MUST THE SAME AS SPECIFIED ON PACKAGING SPECIFICATION SHEET. (11)PRODUCT DIMENSION AND STRUCTURE MUST CONFORM TO PRODUCT SPECIFICATION SHEET. (12)THE APPEARANCE OF HEAT SEAL SHOULD NOT ADMIT ANY DIRT AND BREAK. 	

 MODEL NO .
 VERSION
 PAGE

 E T 0 5 7 0 0 3 D M 6 (RoHS)
 2
 19

NO.	ITEM	CRITERIA				
		THE LCD WITH EXTENSIVE CRACK IS NOT ACCEPTABLE				
		General glass chip:	a	b	c	
		b	≤ t/2	< VIEWING AREA	≤ 1/8X	
		£ 1/42.	$t/2 > , \le 2t$	≤ W/3	$\leq 1/8X$	
				ΓIVE SEAL WID		
		, ,		SIDE LENGTH	111	
				S THICKNESS		
			i – GLASS	5 ITICKNESS		
		"				
		a la				
		1				
		7b				
		·				
		No.				
		TO TO				
		3.				
		1				
		Corner part:	a	b	c	
16. C		\ b	≤ t/2	< VIEWING AREA	$\leq 1/8X$	
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$> t/2$, $\leq 2t$	≤ W/3	≤ 1/8X	
	CRACKED GLASS			TIVE SEAL WID		
10.	CIGICINED GERIOS		X=LCD SIDE LENGTH			
			Y=GLASS THICKNESS			
		CHIP ON ELECTRODE PAD	a	b	c	
		N 3	≤ t	≤ 0.5mm	$\leq 1/8X$	
		To the same of the	* X=LCD SI	DE WIDTH		
		To the state of th	t=GLASS	THICKNESS		
			a	b	c	
		A STANDARD	≤ t	≤ 1/8X	≤L	
		c	*X=LCD SII	DE WIDTH		
		b al		t = GLASS THICKNESS		
			L=ELECTR	RODE PAD LENG	TH	
			①IF GLASS CHIPPING THE ITO			
			TERMINAL, OVER 2/3 OF THE ITO MUST REMAIN AND BE, INSPECTED ACCORDING TO ELECTRODE TERMINAL			
					O	
			SPECIFICATIONS			
				ODUCT WILL BE		
				Y THE CUSTOME	-	
			ALIGNME	NT MARK MUST	NOT BE	
			DEMAGEI			

MODEL NO.	VERSION	PAGE
E T 0 5 7 0 0 3 D M 6 (RoHS)	2	20

12.4 RELIABILITY TEST

12.4.1 STANDARD SPECIFICATIONS FOR RELIABILITY OF LCD MODULE

NO	ITEM	DESCRIPTION
1	High temperature operation	The sample should be allowed to stand at +60°C for 240 hrs
2	Low temperature operation	The sample should be allowed to stand at -10°C for 240 hrs
3	High temperature storage	The sample should be allowed to stand at +70°c for 240 hrs
4	Low temperature storage	The sample should be allowed to stand at -20°C for 240 hrs
5	High temp / humidity test	The sample should be allowed to stand at 60°C, 90% RH 240 hrs
6	Thermal shock (not operated)	The sample should be allowed to stand the following 200 cycles of operation: -25°c for 30 minutes ~ +70°c for 30 minutes
7	ESD (Electrostatic Discharge)	AIR DISCHARGE ± 4KV CONTACT DISCHARGE ± 2KV

NOTE (1): THE TEST SAMPLES HAVE RECOVERY TIME FOR 2 HOURS AT ROOM TEMPERATURE BEFORE THE FUNCTION CHECK. IN THE STANDARD CONDITIONS, THERE IS NO DISPLAY FUNCTION NG ISSUE OCCURRED.

E M E R G I N G D I S P L A Y TECHNOLOGIES CORPORATION

MODEL NO.	VERSION	PAGE
E T 0 5 7 0 0 3 D M 6 (RoHS)	2	21

12.5 TESTING CONDITIONS AND INSPECTION CRITERIA

For the final test the testing sample must be stored at room temperature for 24 hours, after the tests listed in table 12.5, standard specifications for reliability have been executed in order to ensure stability.

NO	ITEM	TEST MODEL	INSPECTION CRITERIA
1	Current	Refer To Specification	The current consumption should
1	consumption	Kelei 10 Specification	conform to the product specification.
			After the tests have been executed,
2 Contrast		Refer TO Specification	the contrast must be larger than half
			of its initial value prior to the tests.
3	Appearance	Visual inspection	Defect free

MODEL NO.	VERSION	PAGE
E T 0 5 7 0 0 3 D M 6 (RoHS)	2	22

12.6 OPERATION

- 12.6.1 Do not connect or disconnect modules to or from the main system while power is being supplied .
- 12.6.2 Use the module within specified temperature; lower temperature causes the retardation of blinking speed of the display; higher temperature makes overall display discolor. When the temperature returns to normality, the display will operate normally.
- 12.6.3 Adjust the LC driving voltage to obtain the optimum contrast.
- 12.6.4 Power On Sequence input signals should not be supplied to LCD module before power supply voltage is applied and reaches the specified value . If above sequence is not followed, CMOS LSIs of LCD modules may be damaged due to latch up problem.

12.7 NOTICE

- 12.7.1 Use a grounded soldering iron when soldering connector I/O terminals. For soldering or repairing, take precaution against the temperature of the soldering iron and the soldering time to prevent peeling off the through-hole-pad.
- 12.7.2 Do not disassemble . EDT shall not be held responsible if the module is disassembled and upon the reassembly the module failed .
- 12.7.3 Do not charge static electricity, as the circuit of this module contains CMOS LSIs. A workman's body should always be static-protected by use of an ESD STRAP. Working clothes for such personnel should be of static-protected material.
- 12.7.4 Always ground the electrically-powered driver before using it to install the LCD module. While cleaning the work station by vacuum cleaner, do not bring the sucking mouth near the module; static electricity of the electrically-powered driver or the vacuum cleaner may destroy the module.
- 12.7.5 Don't give external shock.
- 12.7.6 Don't apply excessive force on the surface.
- 12.7.7 Liquid in LCD is hazardous substance. Must not lick and swallow. When the liquid is attach to your, skin, cloth etc. Wash it out thoroughly and immediately.
- 12.7.8 Don't operate it above the absolute maximum rating.
- 12.7.9 Storage in a clean environment, free from dust, active gas, and solvent.
- 12.7.10 Store without any physical load.
- 12.7.11 Rewiring: no more than 3 times.