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Abstract

In this paper we characterize the channel access delay and the end-to-end delay
experienced by a message in a wireless ad-hoc network. We show that the delay ex-
perienced is a function of four network parameters: 1) channel access probability, 2)
transmission power or radius, 3) network load and 4) density of nodes. We character-
ize the effect of each of these parameters on the delay and show that there exists an
optimal transmission radius and channel access probability for given load and node
density that delivers the best delay performance for the network.

1 Introduction

Ad hoc networks are autonomous systems of devices (nodes) that communicate with each
other using wireless links without a fixed infrastructure. In an ad-hoc network, the nodes
can be mobile or static. In this paper we consider static ad hoc networks in which nodes
are immobile. Ad hoc networks have a very diverse region of application from biological
spheres to ubiquitous computing. These systems can support some specific applications
including Personal communications like cell phones, laptops, PDA; Group communica-
tions such as communication set-up in exhibitions, conferences, presentations, meetings,
lectures; Military / emergency / discovery / civil communication. An ad hoc network
has several advantages over traditional wireless networks, including ease and speed of
deployment and a reduced dependence on a fixed infrastructure. It is attractive because
it provides an instant network formation without the presence of fixed base stations and
system administrators. At the same time, ad-hoc networks currently suffer from low
bandwidths (compared to wired networks) and inefficient channel access due to the dis-
tributed nature of the wireless medium. As a result, quality of service (QoS) metrics like
delay needs to be explicitly provisioned in ad-hoc networks. Sensor networks are prime
examples and form an important class of ad hoc networks. These types of networks are
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already being deployed in many projects such as environmental sensing, enemy intru-
sion detection in war zones and traffic monitoring. Sensor networks supporting hetero-
geneous applications need to support the diverse delay requirements of diverse data. For
example, consider a sensor network deployed to sense temperature in a forest. An abnor-
mally high temperature in a particular location may be an indication of a fire. As a result,
such messages have more stringent delay requirements than messages reporting temper-
atures in the normal range. A sensor network monitoring environmental conditions like
pressure, temperature and seismic activity is another example of an ad-hoc network sup-
porting heterogeneous data flows between the sources and sinks. Irregularities in the
seismic measurements have a stronger delivery constraints that require the network to
provide delay differentiation among sensed data. Similarly one can think of many situa-
tions where a delay differentiation mechanism must be in place. However, the first step in
providing delay differentiation is to understand the effect of various network parameters
on delay.

Delays incurred in a wireless network can be attributed to three main sources:

1. Multi-hop nature of the network: The multi-hop nature of ad-hoc networks forces a
message to traverse several hops to reach the destination. At each hop, the message
incurs channel access delay, processing and queuing delays, and aggregation delays.
As a result, the delay incurred by a message increases as the number of hops to
the destination increases. The design of ad-hoc networks advocates the use of low
power for transmissions to maximize throughput and lifetime of the nodes. As
a result, the number of hops between the source and destination can be quite large
leading to huge delays. The hop count between the source and destination is usually
a function of the transmission power at each node. One can typically use a higher
transmission power at each node to reach nodes farther away thereby reducing the
hop count from the source to the destination.

2. Channel access delay: The wireless channel is contention based. As a result, nodes
have to contend to gain access to the channel. A popular mode of channel access
is the CSMA/CA mode set by the IEEE 802.11 standard. Even though optimized
channel access can be designed for specific ad-hoc networks, it is believed that the
more common 802.11 access mechanism will be used to create a plug and play envi-
ronment. As a result each node in the network uses a CSMA/CA protocol to access
the channel. The CSMA/CA protocol by design introduces delays in channel ac-
cess. For example, the 802.11 standard specifies that a node should transmit only
when the channel has been idle for a specific amount of time. In the event of a col-
lision, the wait time of the node is increased exponentially. As a result, even if the
hop count of the path is low, the total delay experienced by the message might be
large due to the channel access delays. Channel access delays are usually functions
of load on each node, the node density or the number of nodes in the network and
the transmission power.

3. Aggregation and queuing delays at intermediate nodes: It is conceivable that nodes in
ad-hoc networks aggregate information before transmitting the data to the next hop.
This is especially true in sensor networks where data aggregation or compression
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(where nodes remove the redundancy in aggregated data) is put forward as a pos-
sible mechanism to conserve energy. In addition, data aggregation also helps in
improving the overall throughput of the network by reducing the node’s channel
access. As a result, aggregation and compression at intermediate nodes can lead to
large delays in the transmission of a message. Additionally, a message might in-
cur queuing delays at intermediate nodes. Aggregation and queuing delays are a
function of the load on the network and the routing protocols used.

The three sources of delay described above are tightly coupled and any one source of de-
lay cannot be optimized individually without impacting the other two. In this paper, we
look at the impact of network parameters on the end-to-end and the channel access delay
characteristics of an ad-hoc network. We assume that the network provides no aggrega-
tion and we ignore queuing delays in this paper. The multi-hop nature of the network
forces a message (or a packet) to travel several hops from the source to the destinations.
At each hop, the packet incurs MAC access delay. As a result, the end-to-end delay in-
curred by the packet increases as the number of hops to the destination increases. The
channel access delay for a packet arises from the channel contention mechanism of the
node. One can employ higher transmission powers to reduce the number of hops to the
sources to the destination. However such an increase in transmission power leads to a
commensurate increase in the number of neighbors and hence increased channel con-
tention. This therefore increases the channel access delay at each hop. The decrease in
the number of hops due to a higher transmission power may still lead to better overall
delay performance if the load on the network is not too large or if the number of of new
neighbors added is not too big. As a result, there exists a trade-off between the load on
each node, the density of nodes and the transmission power in determining the best delay
performance of the network. In this paper, we study this trade-off using simple models
to capture the delay experienced by a message in terms of the network load, node density
and transmission power.

A different type of ad-hoc network where delay plays a big role is in distributed coor-
dination and control of agents over ad-hoc networks. A prime example of such a system
is the coordination of groups of mobile autonomous agents using nearest neighbor com-
munications. In such a network, a group of autonomous agents (for example unmanned
fighter aircraft) move at the same speed but with different headings. Each agent updates
its heading based on its heading and the average of its neighbors’ headings. It can be
shown that the headings converge to common value under this scheme. However, the
speed of convergence depends upon the number of local neighbors and the delay taken
to exchange the headings. A small transmission power reduces the channel access delay
for the message exchange process while a higher transmission power propagates the in-
formation to a larger subset of nodes. As a result, there exists a tension between power
control and MAC layer control to provide small delays in the transmission of messages.
Such a trade-off is also seen in gossip and belief propagation based schemes for ad-hoc
and sensor networks. As a result, understanding the relationship between delay and the
network parameters is an important first step in providing delay differentiation.
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2 Related work

In the seminal paper of Gupta and Kumar [4] on the capacity of wireless networks, it has
been shown that throughput of a network of n nodes is asymptotically equal to Θ( λ

√

n
)

where λ is the rate of transmission of the nodes in bits/sec. A conclusion that can be
drawn from this result is that the optimal network throughput is obtained at the low-
est transmission power that allows connectivity. The intuition behind this is that with
smaller transmission ranges, the interference caused is very little. Thus more nodes are
able to communicate data more effectively. This however increases the delay as the num-
ber of hops required to reach the destination increases. While the above result constrains
the total throughput to scale as 1

√

n
, Grossglauser and Tse [3] show that a constant Θ(1)

throughput per source-destination pair can be achieved when nodes are mobile. How-
ever no delay guarantees are provided. The trade-off between the delay experienced and
the throughput possible in the network was shown by Sharma and Mazumdar in [11]
and by Gammal et al. in [2]. However, the channel access mechanism and the effect of
collisions on delay were not considered in both the analysis.

Many MAC layer protocols (cf. [10,12,13] to name a few) and power control protocols
(cf. [1,5–7,9] to name a few) has been proposed in the ad-hoc network literature to provide
better throughput and energy efficiency. However, the most common MAC layer protocol
is the CSMA/CA protocol proposed in the 802.11 standard of the IETF.

The 802.11 standard defines two different MAC access methods, the Distributed Co-
ordination Function (DCF) and the Point Coordination Function (PCF). The basic access
mechanism, called the Distributed Coordination Function, is basically a Carrier Sense
Multiple Access with Collision Avoidance mechanism (CSMA/CA). A station wanting to
transmit initializes a random countdown timer and senses the medium. If the medium is
busy it defers. If the medium is free for a specified time (called Distributed Inter Frame
Space (DIFS) in the standard), then the station decrements its timer and repeats this pro-
cess and transmits the packet when the value of the timer hits zero. A successful trans-
mission is indicated by an acknowledgment from the receiver. If the sender does not
receive an acknowledgment for the transmitted packet, it assumes a collision and backs
off. The packet is retransmitted till the sender receives an acknowledgment. The packet
is discarded after a given number of retransmissions.

3 System Model

In this paper, we will consider two models. In the first model, we will assume that nodes
are distributed in a plane using a Poisson distribution with intensity Λ. In the second
model, we assume that n nodes are distributed uniformly in a torus1 of unit area. The
first model will relate our results to the node density, while the second model relates our
result to the number of nodes.

Transmission model: Each node is able to transmit information to and receive informa-
tion from nodes within a distance r of it. We will refer to r as the transmission radius

1We consider a torus to remove the edge effects that make the analysis more complicated.
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or the communicating radius of the network. Known results in percolation theory and
spatial random graphs assert that there exists a threshold function for the transmission
radius at which network connectivity appears abruptly (cf. Gupta and Kumar [4] for
the result in the current framework; for modest tightening of the results and extensions
see Kunniyur and Venkatesh [8]). We are mainly concerned with the situation when the
network is connected.

Channel access model: The channel access mechanism in the network is assumed to
be a CSMA/CA access mechanism. We assume a simplified CSMA/CA channel access
mechanism as described below. Time is divided into slots and each node with a packet
for transmission contends for the channel at the beginning of a slot with probability p.

If a node successfully captures the channel, it transmits for the slot. In other words, we
assume that the maximum transmission opportunity (TXOP) is set to one slot2. If there is
a collision, the node retries the access in the next slot with the same probability p. That
is, a node always contends for the channel with probability p. The back-off feature of
the 802.11 protocol is not modeled to preserve simplicity3. We also consider a model in
which a node holds the channel for an exponential amount of time after gaining access to
it. However, contention for the channel occurs only at slot boundaries. The parameter p

will be referred to as the channel access probability throughout this paper.
Network Throughput: We assume that a throughput of λ is feasible if every node in the

network is able to transmit at a rate of λ bits per second [2–4]. We define λ to be the
network throughput.

Assume a feasible network throughput of λ with the source-destination pairs sepa-
rated by an average distance of D units. A typical session must then involve on an av-
erage D

r
hops from the source to the destination. Therefore, the total load on each node

can be approximated by λD
r
. As a result, the average throughput of λ per node can be

supported by the network only if λD
r
≤ P{Successful transmission}, i.e., the rate at which

data is generated at each node is smaller than the rate at which the node can transmit a
packet. In this paper we will constrain ourselves to the stable region. Note that a small
transmission radius increases the relaying load on each node due to the increased hop
count. Such a formulation captures the effect of the transmission radius on the load that
can be supported by the network.

Interference model: We assume a model similar to the Protocol model described in [4]
for a successful transmission. A transmission from node i to node j is successful if and
only if:

• Node i and j are within a distance r of each other, i.e., d(i, j) ≤ r

• For every other simultaneous transmission from Node k, d(i, k) ≥ (1+∆)r for some
∆ > 0.

The first condition requires node j to be within the transmission range of node i. The
second condition requires a (1 + ∆)r neighborhood of node i to be silent for a successful

2We implicitly assume that the acknowledgment for the transmitted packet is relayed in the same slot.
3The channel model considered here closely resembles the SEEDEX MAC protocol proposed by Ro-

zovsky and Kumar in [10].
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transmission. In the 802.11 access scheme, a one hop neighborhood of both the trans-
mitter and receiver is made silent. If ∆ = 0, this forces only a one hop neighbor of the
transmitter to be silent. This serves as a lower bound to the channel access delay experi-
enced. Similarly we can derive an upper bound to the channel access delay experienced
by letting ∆ = 1 in which we require all nodes in a two-hop neighborhood to be silent.
Deriving the exact expression for the access delay is a subject of future research.

4 Delay analysis: Poisson distribution of nodes

Assume that nodes are distributed using a Poisson distribution with intensity Λ. Let r be
the transmission radius of each node in the network. Before we derive an expression for
the expected channel access delay, we define the stable operation of the network.

Definition 1 A network is stable if the average rate at which data is generated at each node is
smaller than the node’s probability of successful transmission, i.e.,

λD

r
≤ P{Successful Transmission}.

Lemma 1 A network is stable for a given λ, p and r if:

λD

r
≤ p

[

e−Λπf2 pλD
r − e−Λπf2

]

,

where f = (1 + ∆)r.

Proof: See Appendix
The results presented in this paper assume a stable network operation. The channel

access delay (or the MAC delay)4 is a random variable due to the probabilistic nature of
the contention algorithm. However, we can define an expected channel access delay and
derive its expression. The following theorem describes the expected channel access delay.

Theorem 1 Assume that nodes are distributed using a Poisson distribution of intensity Λ. Given
a channel access probability p, network throughput λ, and transmission radius r the expected
channel access delay d̂c in slots is given by:

E[dc] =
e−Λπf2

p

[

e
Λπf2

1−
pλD

r − 1

]

, (1)

where f = (1 + ∆)r.

Proof: Consider an arbitrary node i with a packet to transmit. Let TX denote the event
that node i does not transmit in a slot. Let

Pk(TX) := P(TX| node i has k neighbors).

4In addition to channel access delay there might be a fixed delay overhead which is ignored in this
analysis
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¿From our channel access model node i does not transmit in a slot if it does not capture
the channel or if a collision occurs when it captures the channel. That is,

Pk(TX) = (1 − p) + p.Pk(collision). (2)

A collision occurs in a slot when two or more nodes transmit in the same slot. Using the
protocol model described in Section 3, a collision occurs when any node within a (1+∆)r

neighborhood of node i transmits a packet. Note that a node transmits in a slot with
probability p only when it has data to transmit. Let S be the number of nodes within a
(1 + ∆)r neighborhood of node i that have data to transmit at the beginning of the slot.
Conditioning on S = s,

Pk(collision|S = s) = (1 − (1 − p)s).

Taking expectation with respect to S to get rid of the conditioning we have

Pk(Collision) =

k∑

s=0

(1 − (1 − p)s)P(S = s).

We assume that data is generated at each node independently 5 with probability λD
r

. As a
result, S has a Binomial distribution with parameters λD

r
and k. Therefore,

Pk(Collision) =

k∑

j=0

(1 − (1 − p)j)

(

k

j

)(

λD

r

)j(

1 −
λ.D

r

)k−j

.

Simplifying the above equation, we get

Pk(collision) = 1 −

(

1 − p
λ.D

r

)k

. (3)

Substituting this in (2) we get the probability of unsuccessful transmission in a slot given
k neighbors to be

Pk(TX) = (1 − p) + p

[

1 −

(

1 − p
λ.D

r

)k
]

.

Simplifying the above equation yields

Pk(TX) = 1 − p

(

1 − p
λ.D

r

)k

. (4)

Now let q̂k = Pk(TX). The time it takes node i to access the channel given that node i

has k neighbors is a geometric random variable with success probability (1 − q̂k). There-
fore,

Ek[dc] =
1

1 − q̂k

.

5In general, data generated at each node is not independent since a collision in a previous slot indicates
that at least one node in the interference region has a packet to transmit. Similarly, when a packet is success-
fully relayed from node i to node k, node k has a packet to transmit in the next slot. However for analytical
tractability we make the assumption of independence in this paper.
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We then take expectations with respect to the number of neighbors to remove the condi-
tioning. By our protocol model, the number of neighbors is equal to the number of nodes
that fall within a interference radii of f = (1+∆)r. Taking expectations, we get the channel
access delay to be

E[dc] =

∞∑

k=1

1

p(1 − pλD

r
)k

.
e−Λπf2

(Λπf2)k

k!

=
e−Λπf2

p

∞∑

k=1

( Λπf2

(1− pλD
r

)
)k

k!

=
e−Λπf2

p

[

e
Λπf2

(1−
pλD

r ) − 1

]

.

Thus,

E[dc] =
e−Λπf2

p

[

e
Λπf2

1−
pλD

r − 1

]

.

Hence proved.
We note that as the channel access probability goes to one, i.e., p λD

r
→ 1 in (1), the

expected channel access delay E[dc] → ∞. Such a relationship is expected as increasing
the load increases the number of collisions which to a concomitant increase in the channel
access delay. Similarly, when the channel access probability given that the node has a
packet to transmit goes to zero (p → 0), the expected channel access delay, E[dc] → ∞.

The effect of load λ on the channel access delay can also be inferred from (1). As the
load on each node increases (conditioned on the fact that λD

r
≤ p,), the expected channel

access delay also increases. Similarly, when the load goes to zero, the channel access delay
E[dc] ≈ 1

p
i.e., the channel access delay is determined by the access probability p.

Remark: As mentioned in Section 3, in a 802.11 setting, a one hop neighborhood of the
transmitter and receiver is made silent by the RTS/CTS mechanism. Choosing ∆ = 0 and
∆ = 1 provides a lower and upper bound respectively to the delay experienced by the
message. However, one can approximate the delay experienced by the message where a
one hop neighborhood of both the transmitter and the receiver is made silent by letting
∆ =

√
2 − 1.

We now describe the total end-to-end delay incurred by a message from its source to
its destination L units away.

Lemma 2 Given a channel access probability p, network throughput λ, transmission radius r and
number of nodes n, the expected end-to-end delay (dt) in slots that a message experiences from the
source to the destination L units apart is given by:

E[dt] ≥
Le−Λπf2

pr

[

e
Λπf2

1−
pλD

r − 1

]

, (5)

where f = (1 + ∆)r.
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Proof: Let η be the number of hops taken by the message. The total end-to-end delay
dt incurred by the message from the source to the destination is given by

dt =

η∑

j=1

dc(j),

where dc(j) is the channel access delay experienced by the message at the jth hop. Since
the transmission radius of each node is r, we have η ≥ L

r
. Therefore,

dt ≥

L
r∑

j=1

dc(j).

We assume that the channel access delay experienced at each hop is independent. There-
fore,

E[dt] ≥
L

r
E[dc].

Using Theorem 1, we get

E[dt] ≥
Le−Λπf2

pr

[

e
Λπf2

1−
pλD

r − 1

]

.

Hence proved.
We now try to untangle the complex relationship between the channel access probabil-

ity p, the network throughput λ, the transmission radius r, and the intensity of the node
distribution in the next few sections. To study the relationship between these parameters
we fix all the parameters except one and study its effect on the delay characteristic of the
network.

4.1 Effect of p and r on total delay

In this section, we will look at the effect of the channel access probability p and the trans-
mission radius r on the delay incurred by the message as well as on the stable operation
of the network. If the data generation rate at each node is greater than the channel access
probability, i.e., if λD

r
≥ P{Successful Transmission}, then the system is unstable. There-

fore, in steady state each node always has a message to transmit and the queuing delays at
the node goes to infinity. As a result, we will assume that the delay incurred by a message
in the unstable region of operation is infinity (since this regime is not applicable).

We will divide the delay experienced by a message into two parts: the channel access
delay and the total delay incurred by the message to traverse a distance L = 1 unit. We
assume the intensity of the Poisson distribution Λ to be 100 and the network throughput λ

to be equal to 0.025. We set ∆ = 0 in all our results6. We fix the channel access probability
p and vary the transmission radius of the network. The effect of varying the transmission

6In essence, we look at the lower bound on the expected delay experienced by a message
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radius on the channel access delay for different values of the channel access probability
is shown in Figure 1. In all the figures, the high delay values on the left and right hand
side of the graph indicate unstable regions where the total load at each node λD

r
is greater

than the probability of successful transmission.
¿From Figure 1 we see that for small values of the channel access probability p, the

stable region of operation is limited to only high values of the transmission radius r. The
intuition behind this is that for small channel access probabilities, the message requires
higher number of attempts to successfully gain access to the channel. In order to keep the
network stable, the number of hops must be minimized. This is done by having a larger
transmission radius r. At the same time, an extremely large transmission radii reduces
the probability of successful transmission (due to a bigger neighbor set) and hence the
system becomes unstable. These two effects can clearly be seen in Figure 1.

Another conclusion that we can obtain from Figure 1 is that in the stable operating
regime the channel access delay increases monotonically as the transmission radius in-
creases. This is due to the fact that an increase in transmission radius adds more neigh-
bors and therefor more collisions. The decrease in the load ( λD

r
) on each node due to the

increased transmission radius is not enough to offset the interference brought by the new
neighbors.

The total expected end-to-end delay is shown in Figure 2. As seen in Figure 1 we can
see the instability region for the different values of p. However, a major difference is that
in the stable operating regime the total end-to-end delay is not a increasing function of
the transmission radius. To illustrate this more clearly, the left hand portion of the figure
is expanded in detail in Figure 3 for each value of p. From Figure 3, we can see that there
exists an optimal transmission radius that yields the optimal end-to-end delay. Note that
the optimal value of the transmission radius decreases as the channel access probability
increases. This is due to the fact that a higher channel access probability leads to more
collisions, so the optimal choice of the transmission radius tries to reduce the number of
neighbors to reduce the collisions. Too small a transmission radius increases the load on
each node which diminishes the effect of the reduced neighbor set. Therefore, the delay
exhibits a convex shaped curve as shown in Figure 3.

Similarly, for fixed transmission radii r, the relationship between the end-to-end delay
and the channel access probability is shown in Figure 4. Once again we see that there
exists an optimal channel access probability that leads to the optimal delay characteristic.
Therefore, given the network throughput λ, the intensity of node distribution Λ, the op-
timal channel access probability p can be computed for a given transmission radius r and
similarly an optimum transmission radius can be calculated for a given channel access
probability p.

A three dimensional graph showing the total end-to-end delay experienced as a func-
tion of both the channel access probability p and transmission radius r is shown in Fig-
ure 5. Note that the unstable region delays are set to a constant value of 50 slots. This is
done so as to clearly show the valleys where the operation of the network is desired. We
can see a narrow valley between two unstable regions where network is stable. The opti-
mal region of operation (smallest delay) also lies in the valley of the delay mesh as shown
in Figure 5. We can see that a high transmission radius usually results in a small chan-
nel access probability and a high channel access probability results in small transmission
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Figure 1: Expected channel access delay

radius.

4.2 Effect of node density Λ on the total delay

In the previous section we looked at the effect that the transmission radius and channel
access probability had on the channel access delay and the total delay. In this section we
look how the intensity of distribution affects the delay characteristics of the network. Fig-
ure 6 shows the total end-to-end delay experienced by a message for two different values
of the channel access probability when nodes are distributed with intensity Λ = 50. Here
again, the unstable regions are indicated by a flat constant high value. Figure 7 shows a
closer look at Figure 6. We can once again see that there exists an optimal transmission
radius for a given channel access probability that provides the best delay performance.
However, the optimal transmission radius does not lead to a significant delay improve-
ment. This is due to the fact that the intensity and the load on each node is small enough
that the delay is not sensitive to the choice of the transmission radius or the channel
access probability. Note that the optimal transmission radii is bigger than the optimal
transmission radii when Λ = 100. This is due to the fact that when the transmission radii
is increased, the increase in the number of neighbors is smaller in this case since the inten-
sity is smaller. As a result, using a higher power to reduce the number of hops make more
sense in this case. Similarly, Figure 8 shows the relationship between the end-to-end delay
and the channel access probability for a fixed transmission radius. Comparing this with
Figure 4 where Λ = 100 we can see that the optimal channel access probability occurs at
a higher value. Once again we can explain this by pointing to the fact that a smaller node
density leads to smaller number of neighbors thereby accommodating a higher channel
access probability. A three dimensional graph showing the total end-to-end delay experi-
enced as a function of both the channel access probability p and transmission radius r is
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Figure 4: Trade-off between channel access probability and total end-to-end delay
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Figure 6: Expected end-to-end delay when Λ = 50

shown in Figure 9. We can see that the stable region of operation (valley between the two
plateaus) is larger in this case. The intuition behind this is that as node density decreases,
the channel contention reduces thereby leading to an increased region of operation. The
relationship between the total end-to-end delay, the channel access probability and the
transmission radius when Λ = 150 and Λ = 200 is shown in Figures 10 and 11. We can
see that the stable operating region becomes more and more constrained as the inten-
sity of node distribution increases till there exist no stable region7 when the the intensity
Λ = 200.

4.3 Effect of λ on the total delay

In the previous sections we looked at the effect of transmission radius r, channel access
probability p and the intensity of node distribution on the total delay. In this section
we will look at the effect that the network throughput λ has on the total delay. We fix
Λ = 100 in all the simulations. Graphs showing the total end-to-end delay experienced as
a function of both the channel access probability p and transmission radius r are shown
in Figure 12 when λ = 0.01 and in Figure 13 when λ = 0.03. Comparing Figures 12, 5 and
13, we can see that the the stable region of operation for low delay (valley between the
two plateaus) decreases as the network throughput increases. The intuition behind this is
that with increasing network throughput, more nodes contend for the channel leading to
increased contention.

7This is shown by a flat surface with a high delay value of 70 units in Figure 11.
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Figure 7: Trade-off between transmission radius and total end-to-end delay when Λ = 50
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Figure 8: Trade-off between channel access probability and total end-to-end delay when Λ = 50
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Figure 9: End-to-end delay as a function of the transmission radius and the channel access prob-
ability when Λ = 50
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Figure 10: End-to-end delay as a function of the transmission radius and the channel access
probability when Λ = 150
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Figure 11: End-to-end delay as a function of the transmission radius and the channel access
probability when Λ = 200
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Figure 12: End-to-end delay as a function of the transmission radius and the channel access
probability when λ = 0.010
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Figure 13: End-to-end delay as a function of the transmission radius and the channel access
probability when λ = 0.030

4.4 Exponentially distributed packet sizes

In the last section we had assumed that the transmission time equals one slot. In this
section we generalize the previous result when transmission frames are exponentially
distributed. We assume that once a node gets access to the channel, it transmits for a
duration that is exponentially distributed with mean 1

µ
. However, nodes contend for the

channel only at the beginning of the next slot.

Lemma 3 Given a channel access probability p, network throughput λ, and an exponentially
distributed transmission times with mean 1

µ
, the probability that node i finds a slot busy given

that node i has k neighbors is given by:

q̂k =
kz(1 − z)k−1e−µ

1 − e−µ + kz(1 − z)k−1e−µ
, (6)

where z = pλD
r

.

Proof: Condition on k neighbors. Let qk(m) denote the probability that the channel is busy
at the start of slot m. Let T be an exponentially distributed r.v. with mean 1

µ
. We know

that slot m is busy if slot m − 1 has an ongoing transmission that continues in slot m or
if any of node i’s neighbor captures the channel in slot m − 1 and has a transmission that
continues in slot m. Simply put,

qk(m) =

{
qk(m − 1)P(T > 1) + (1 − qk(m − 1))

P{one successfulTX}P(T > 1)
. (7)
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Note that we exploit the memoryless property of the exponential distribution to arrive
at the above expression. We assume that the data is generated at each node independently
with probability λD

r
. Therefore, the probability that a node will contend for the channel in

any given slot is given by z = pλD
r

, where p is the channel access probability. Therefore
conditioned on the fact that node i has k neighbors, we have

P{one successful transmission} = kz(1 − z)k−1. (8)

Since the traffic generated at each slot and at each node is independent, the probability
that a slot is busy is independent and identically distributed across slots, i.e.,

qk(m) = q̂k for all m. (9)

Substituting (8) and (9) in (7), we have

q̂k = q̂kP(T > 1) + (1 − q̂k)kz(1 − z)k−1P(T > 1).

Noting that P(T > 1) = e−µ, we have

q̂k =
kz(1 − z)k−1e−µ

1 − e−µ + kz(1 − z)k−1e−µ
.

Hence proved.
Due to complex dependency on the number of neighbors, a closed form expression

for stability is not possible. The stability condition is now redefined to take into account
the exponential length of the packet as follows.

Lemma 4 Given a network throughput λ, transmission radius r, channel access probability p,

exponentially distributed packet length with mean µ, the condition for stability is given by

λD

r
< p

∞∑

k=1

(e−Λπr2 Λπr2

k!
)

(

q̂k + (1 − q̂k)(1 −
pλD

r
)k

)

(10)

where q̂k is given by (6)

Proof: Let TX denote the event of an unsuccessful transmission from a node. From (2) we
have that

bk = Pk(TX) = (1 − p) + pPk(collision).

In this case a collision can occur only when the channel is sensed to be idle and more than
one neighbor attempts to transmit simultaneously. So conditioned on the channel being
idle the probability of collision is given by (3). Thus the probability of a collision for a
node having k neighbors,

Pk(collision) = (1 − q̂k)(1 − (1 − p
λ.D

r
)k).

Substituting for Pk(collision), we get,

bk = (1 − p) + p(1 − q̂k)(1 − (1 − p
λ.D

r
)k). (11)
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The probability of successful transmission is (1−bk). Thus from our definition of stability,
we require that

λD

r
< p

∞∑

k=1

(e−Λπr2 Λπr2

k!
)

(

q̂k + (1 − q̂k)(1 −
pλD

r
)k

)

Hence proved.
Once we determine the probability that a slot is busy, we can write down the expected

delay experienced by a message. However, due to the complex dependency on the num-
ber of neighbors, a closed form is not possible.

Theorem 2 Given a network throughput λ, transmission radius r, channel access probability
p,and an exponentially distributed transmission times with mean 1

µ
, the expected channel access

delay is given by

E[dc] =

∞∑

k=1

1

bk

.
e−Λπf2

(Λπf2)k

k!
, (12)

where bk is the conditional probability of unsuccessful transmission given by (11), f = (1 + ∆)r

and z = pλD
r

.

5 Delay analysis: n nodes uniformly distributed

In this section we will assume that the nodes are uniformly distributed over an unit area.
The earlier condition on the stability of the system is modified to take into account the
uniform distribution of nodes.

Lemma 5 A network with n nodes distributed uniformly is stable for a given λ, p and r if:

λD

r
≤ p

(

1 −
f2pλD

r

)n

where f = (1 + ∆)r.

Proof: See Appendix.
We now state the relationship between the expected channel access delay, transmission

power, network throughput, number of nodes and channel access probability.

Theorem 3 Given a channel access probability p, network throughput λ, transmission radius r
and number of nodes n, the expected channel access delay (dc) in slots is given by:

E[dc] ≈
1

p





(

f2

1 − pλD
r

+ 1 − f2

)n−1

− (1 − f2)n−1



 , (13)

where f = (1 + ∆)r.
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Proof: From Theorem 3, we know that the expected channel access delay conditioned on
the number of neighbors is given by

E[d̂k
c ] =

1

p(1 − pλD

r
)k

Taking expectations to remove the conditioning on the number of neighbors k we get,

E[dc] =

n−1∑

k=1

1

1 − q̂k

.

(

n − 1

k

)

gk(1 − g)n−1−k, (14)

where g is the probability of finding a node within the interference region. Since nodes
are distributed uniformly, g is proportional to the area of a nodes interference range, i.e.,
g = ((1 + ∆)r)

2
= f2. Substituting the value of q̂k in (14) we have

E[dc] =

n−1∑

k=1

1
(

1 − pλD

r

)k
.

(

n − 1

k

)

gk(1 − g)n−1−k.

Simplifying the above expression yields

E[dc] ≈
1

p

[

(
f2

(1 − pλD

r
)

+ 1 − f2)n−1 − (1 − f2)n−1

]

.

Hence proved.

Lemma 6 Given a channel access probability p, network throughput λ, transmission radius r and
the Poisson parameter of the node distribution Λ, the expected delay (dt) in slots that a message
experiences from the source to the destination L units apart is given by:

E[dt] ≥
L

pr

[

(
f2

(1 − pλD

r
)

+ 1 − f2)n−1 − (1 − f2)n−1

]

. (15)

Using a similar argument as in the Poisson distribution case, the total delay when nodes
are uniformly distributed is lower bound by the number of hops η times the channel
access delay at each hop. Thus we get,

E[dt] ≥
L

r
E[d̂c]

E[dt] ≥
L

pr

[

(
f2

(1 − pλD

r
)

+ 1 − f2)n−1 − (1 − f2)n−1

]

.

Hence proved.
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Figure 14: End-to-end delay as a function of the transmission radius and the channel access
probability for 50 nodes uniformly distributed
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Figure 15: End-to-end delay as a function of the transmission radius and the channel access
probability for 100 nodes uniformly distributed
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Figure 16: End-to-end delay as a function of the transmission radius and the channel access
probability for 200 nodes uniformly distributed
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Figure 17: End-to-end delay as a function of the transmission radius and the channel access
probability for 500 nodes uniformly distributed
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6 Conclusions and Discussions

In this paper we look at the delay experienced by messages in an ad-hoc network. In par-
ticular we derive expressions for the channel access delay and the total end-to-end delay
experienced by a message. The derived expression is a function of four network parame-
ters: 1) channel access probability, 2) transmission radius, 3) network throughput and 4)
density of nodes. We analyze the effect of each of these parameters on the channel access
and the end-to-end delay. We show that there exists an optimal channel access probability
and transmission radius that delivers the best delay performance for the network while
guaranteeing stable operation. Finally, one can conclude that:

1. The stable regime of the network is a function of the transmission radius (r), channel
access probability (p), node density (Λ) and load on each node (λ). In particular, the
network may not be stable for a particular choice of r, p, Λ and λ.

2. There exists a transmission radius and channel access probability in the stable regime
that provides the best end-to-end delay in the network. Given a node density, load
and channel access probability, one can find the transmission radius that delivers
the best end-to-end delay. Similarly, given a node density, load and transmission
radius, one can find the channel access probability that delivers the best end-to-end
delay.

In this paper we have assumed the channel access probability p to be a non-adaptable
quantity per se. However, one can choose a node’s channel access probability as a func-
tion of the number of its neighbors and the network throughput. A choice of p = α

m+1
,

where m is the number of neighbors and α ≥ 0 was advocated by Rozovsky and Ku-
mar in [10]. Deriving an exact analytical expression for the case when the channel access
probability depends upon the number of neighbors is analytically cumbersome due to the
dependencies that arise when deriving the collision probability. Deriving a good bound
for the delay when the channel access probability is a function of the number of neighbors
is a subject of future research.

7 Appendix

7.1 Proof of Lemma 1

Proof: Consider an arbitrary node i. From Section 3 we know that the average rate at
which data is generated for transmission at node i is given by λD

r
. Let TX denote a suc-

cessful transmission from node i. Let

Pk(TX) = P(Successful transmission|kneighbors).

¿From (4) in Theorem 1 we have:

Pk(TX) = p

(

1 − p
λ.D

r

)k

. (16)
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Taking expectation with respect to the number of neighbors, we have:

P(TX) =

∞∑

k=1

p(1 −
pλD

r
)k e−Λπf2

(Λπf2)k

k!

= pe−Λπf2

∞∑

k=1

(Λπf2(1 − pλD

r
))k

k!

= p
[

e−Λπf2 pλD
r − e−Λπf2

]

.

Hence proved.

7.2 Proof of Lemma 5

Proof: With similar notation as in Lemma 1, from (4) , we have

Pk(TX) = p

(

1 − p
λ.D

r

)k

. (17)

Taking expectation with respect to the number of neighbors, we have :

P(TX) =

n∑

k=1

p(1 −
pλD

r
)k

(

n

k

)

f2k(1 − f2)n−k

= p

n∑

k=1

(

n

k

)(

f2(1 −
pλD

r
)

)k

(1 − f2)n−k

= p

(

1 −
f2pλD

r

)n

.

Hence proved.
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