USER MANUAL
PMAC

Programmable Multi-Axis Controller
3Ax-602264-xUxx

June 28, 2007

\

A DELTA TAU

\\—J—’ Data Systems, Inc.
\!

21314 Lassen Street Chatsworth, CA 91311 // Tel. (818) 998-2095 Fax. (818) 998-7807 // www.deltatau.com



Copyright Information
© 2007 Delta Tau Data Systems, Inc. All rights reserved.

This document is furnished for the customers of Delta Tau Data Systems, Inc. Other uses are
unauthorized without written permission of Delta Tau Data Systems, Inc. Information contained
in this manual may be updated from time-to-time due to product improvements, etc., and may not
conform in every respect to former issues.

To report errors or inconsistencies, call or email:

Delta Tau Data Systems, Inc. Technical Support
Phone: (818) 717-5656

Fax: (818) 998-7807

Email: support@deltatau.com

Website: http://www.deltatau.com

Operating Conditions

All Delta Tau Data Systems, Inc. motion controller products, accessories, and amplifiers contain
static sensitive components that can be damaged by incorrect handling. When installing or
handling Delta Tau Data Systems, Inc. products, avoid contact with highly insulated materials.
Only qualified personnel should be allowed to handle this equipment.

In the case of industrial applications, we expect our products to be protected from hazardous or
conductive materials and/or environments that could cause harm to the controller by damaging
components or causing electrical shorts. When our products are used in an industrial
environment, install them into an industrial electrical cabinet or industrial PC to protect them
from excessive or corrosive moisture, abnormal ambient temperatures, and conductive materials.
If Delta Tau Data Systems, Inc. products are exposed to hazardous or conductive materials and/or
environments, we cannot guarantee their operation.



REVISION HISTORY

REV.

DESCRIPTION

DATE

CHG

APPVD

CORRECTION TO PID EQUATION, P. 108

06/28/07

CP

S. MILICI







PMAC User Manual

Table of Contents

INTRODUCTION 1
FLOXTDIIILY ..o ettt et et ettt ettt e et Rttt h ettt e e eae e ke e bt e teenae e enean 1
CONFIGUPALION JOI @ TASK.......c..ooi ettt ettt ettt ne et e e e 1
PMAC IS @ COMPULET ..ottt ettt et e st e et e e sttt e st e e e tbeesabeesaseessbeessseessbaessseessseeassaessseensseessseensseees 1

IMANUAL LAYOUL ...ttt ettt ettt e et et e te et e et e e bt es e ebeeneemsens et e seeeeebeeneensensenseabesaeeseeneaneensenean 2
Conventions Used in this MANUGL.................c.ccccooiiiiiiiiiiiiet ettt ettt 2
SATELY SUIMIMATY ....eviiiieiieit ettt et e te st e s et e bt esbeesseesae e st e saesseessaessasssesssesseesseansesssesssesseassaenseessenssenssenssenses 2
Keep AWAY frOm LiVe CIFCUILS ...........c.coveeueeiiiiieeeeieeete ettt ettt ettt s et e et e eaeesseesseesseesteesseeseeseesbeesseanseenees 2
Live Circuit CONIACE PPOCEAUIES ..............cc.cceieeiaiiaiieeiieeeeeee ettt ettt ettt et e st e st eseenbeenaeenaeeneas 2
ElectroStatic SENSItive DEVICES ..............c.occuiiiiei ettt ettt ettt ettt e sae ettt e st e esteeseeteenbeenaeenaeeneas 3
MAGRELIC MEAIA ............oeeeeeeeee ettt ettt ettt ettt et e et e et et eme e et e eae e et et e enteenteeneeenean 3
Related Technical DOCUMENTALION ....c.eiiuiiiiiiieieieie ettt ettt ettt ettt e et e et eeseeeseesbeeseeneeeneeene 3
TECRNICAL SUPPOTT ...ttt ettt et ettt et e et ea e e see e st e bt e et emee et e enee st enteenseenteeneesseeseeseensesneesnee 3
BY TOLEPDRONE ...ttt ettt ettt et ettt e et et e e e bt e ebaeebeeenbaeenreeeates 3
BY Fax ARd E-MQil............ccccccoooiiiiiiiee ettt ettt ettt ettt ea ettt ne et nneens 3
Bulletin Board ServiCe (BBS) .........oo ottt ettt en 3
GETTING STARTED WITH PMAC 5
Preparing the Card..........ooiiiiieiiiiecieceeie ettt ettt e s te et e e b e esbessaesaeesseesseesseessesssesseesseasseessessaeseenseensenssenses 5
EmPOINE JUIPDEES ...ttt ettt ettt e et e e ettt e ettt e e e ettt e e ettt e e ntt e e e ent e e ennteeeenaes 5
Card NUMBET JUIPETS ..ottt ettt ettt ettt ettt et bttt ettt e e ne e 5
Communications Baud RAIE JUMPEFS ............c.cccccuecuiouioiiniiiiiit ettt ettt 6
PCBUS AAAIESS JUMPEFS ...ttt ettt sttt et ettt nae 6
STDDUS AAATESS JUMPEF'S ...ttt ettt ettt ettt e bt et see et e ebe e bt enaeeneeeneeeneenneens 6
PMAC VME INEEFACE S@IUP ..ottt ettt ettt ettt ettt ettt e et e te et e enteenaeaneeeneas 6
ENCOAET JUIMPEFS ...ttt ettt ettt et e bttt eat e et e eae et et e enteenaeaneeeneas 6
ANGIOG CIFCUIE JUMPDEES ...t ettt ettt ettt e e et e bt e me e et et et e e enteeneeanees 7
Re-TNIIALIZATION JUTNPEF ...ttt ettt ettt et e et e e s tbeestt e e s tbeetbeesabeesaeessbeessseessbeensseessseensseees 7
Standard and OPLION 5 PMACS ..........cccooouieeeeeiie et et et et e e aeeste e st eestte e s taeesateestaeasaesabaeesseesaseeenseesanes 7
PMAC with Options 44, 5A, QIA SB.............cccocueeeiiiiiie ettt sae e se s e etsebeesseessessaenseens 8
Connecting PMAC t0 the HOSt COMPULET.........cccuerieriieiieiieiesteeieeteetestee e eseeaeseeesseesseesseessesssesseesseesseessesssesseesses 8
BUS CONMPMOCTION. ...ttt et ettt e ettt e st e s et e st e s eb e e sat e e e et e e sabeesebeenabee e 8
SEFIAL POTE COMMECTION ...ttt et ettt et ettt et e et e et e e ebeenbeesaesseeeseeseenbeenseensaeseenseens 8
Installing the PMAC EXECULIVE PPOGFAM...............cccccccuiiiiiiiiiiiiiiiteeeee ettt 9
Establishing Host COMMURICALIONS ..............cccooueieeaieae ettt ettt ettt et e ettt ettt e ese e te e st enteenaeaneeenees 9
Terminal Mode COMMUNICATIONS..............cc.occueie ettt ettt et e ettt et e et et e et e bt eneeenaeeseeanees 9
Connecting PMAC t0 the SYSTEIML......eoouiiiiiieitieie ettt ettt ettt ettt e st et e e e e s e eseesbeenbeeseesseeaseeseenseeneeenee 9
MACHTNE CONMMOCIOTS ...t ettt ettt ettt e ettt et e ee et e e enteeneeenee e e naeene e 10
Connecting the Analog POWer SUDPLY .............cccooiiiiiiieie ettt 10
Incremental ENCOAer CONMMECIION ............c.ccueiieiieiieeiiee ettt ettt 10
AMPLIICE CONMMECLION.............oecve ettt ettt ettt ae b e e e tb e e taesbe e beesbeessesaaeeseeseesseenseenseessensaens 11
AUXIIIATY COMMECTIONS ..ottt ettt ettt et e bt e b e e sbeesseetaesaeesseesseesbesseesseesseenseensenssensaens 11
SOFtWATE SETUP FOI @ IMOTOT .....ieuvieiiieeiiciieciiece ettt ettt ettt et e et etaestaesbeesbeesbeesseessesseesseesseasseessessaeseesseessesssennns 12
ENCOAET I-VATIADIES.............oeeeeeee ettt ettt ettt ettt et na e s neesae e 13
MOTOF I-VAFIADIES ...ttt ettt ettt ettt et e et e et e et e enbeesaeeseeeneenseeneenes 13
MOTOT ACHVATION ...ttt ettt ettt et ettt at ettt e e et ettt e s et e e s et e e bbeeatteesbeeennteensaeenneean 13
For PMAC-Commutated MOTOFS ORIY.............ccoiiiiiiiiaieeeee ettt ettt sae e 13
For Motors Not Commutated By PMAC...............ccocouoiiiiiei ettt 14
FOF AII TYPES Of MOTOFS .......oeeeieeeee ettt ettt ettt et e ettt et et e nae e s e seeeneeeneeneenes 14
Testing the OQutput ANA POIAFTLY............cc.ccciiiiiiiiieee ettt ettt 16
Non-PMAC COMMUIALEA MOTOFS...............coooeiiieiiei ettt ettt ettt 16
OVertravel Limit POIAFTLY.............c.cccoiiiiiiii ettt ettt ettt e et ettt et e eneenneens 16
SHING UD tHE SEIVO LOOP ...ttt ettt et te bt eettesseebeesbeenseennes 17
CLOSING BRE LOOP ...ttt ettt ettt et e be e st eat e be e b e e beesbeesbeesseeneeeneeeseesne s 17
JOGGING MOVES ...ttt ettt ettt et et 17

Table of Contents i



PMAC User Manual

Power-Up Mode................ccccoovvvevieiiiiiaiiaiieiiacianene.
Homing Search Move
Setting up a Coordinate System
Defining an AXisS ..........ccccoceviiioiviiioieoininiiireee e
Scaling an AXIS ..........coceieieoiiniiiniiiiieeee
MUultiple AXeS ........ccoeeieieiiiieeee e
Writing a Motion Program
Using the Program Editor
Executing a Motion Program
Starting the Program
Stopping the Program
Refining the Program
Writing and Executing a PLC Program
Starting the PLC Program
Stopping the PLC Program

PMAC FEATURES

Executing Motion Programs
Executing PLC Programs
Servo Loop Update..........coeeereieiiriinieiiereee e
Commutation Update .......cecevveevveeriieiieeniiesieeeveecieeeveann
HOUSEKEEPING ...ttt

Communicating With the Host

TSk PFIOVILIES .....oeeiieiteeeee e

TALKING TO PMAC

Basic Aspects of Communicating with PMAC

Communications Ports

Active Response Port
Serial INterface .............coccoviveeioiiiniiiiiiiiieeee,
PC Bus Interface.............cccooooeiiieeeeoeieieieeiee e
STD Bus INterface. ............ccooevveieeeieeaeieseee e
VME Bus INterface..............ccuovevceaoeaeiiesieeeeeeee
Giving Commands to PMAC
PMAC Processing of Commands
Command Acknowledgement
Data ReSpONSe ............ccccceiiiiiiiiiiiieiii e,
Data INteGrity ........ccoeeeeviiiiiiieiieeee e
Data Response Format
On-Line (Immediate) Commands
Types of On-Line Commands
Motor-Specific Commands
Coordinate-System-Specific Commands
Global Commands .................ccocevveeioiivciiiiiiiiee
Buffered (Program) Commands
Rotary Motion Program Buffer
Multiple-Card Applications
Bus Communications
Simultaneous Commands
Serial Communications
Serial Card Addressing
Setting Up the Addresses
Multi-Card Mode Variable
Addressed-Card Actions
Simultaneous Addressing
Handling Data Response
Power-Up State............ccoceveviueesiieiiieieeeie e eive e

ii

Table of Contents



PMAC User Manual

Control-Character COMMANCS ................ccccocciiiiiieiiieeeee ettt ettt ettt ettt ettt ettt nne e 34
RESEHING PIMAC ...ttt ettt et sttt e be e bt e st e esseesbesse e baesseasbesssesseesseesseesseeseesseesssenseesseessanssesssensens 35
PMAC RESEE ACHIOMS ...ttt et ettt et ettt ettt bt e ettt ettt ettt et e ettt e st e enteennaeenaeeas 35
PMAC Re-initialization Actions: Standard CPU................ccccvueioieiiiiieiieiieet ettt 35
PMAC Re-initialization Actions: FIAsh CPU ..............cccocoouiiiieiieie ettt 36
Re-initialize COMMANG ..............coooouiiiii ittt ettt ettt ettt eseeeaeenneene e 37
TROUBLESHOOTING 39
PMAC Card TroubIESNOOTING ........oeueeiiieieieiieie ettt ettt et ettt e e eeseee s st e st e e aeeeneeeneeeaeeseeenseenseenseeneesseensean 39
GONMEFQAL ...ttt et ettt e ettt ne et nee et enes 39
BUS COMMUNICALIONS ........eeeeeeeeee ettt ettt ekttt et et e et e et e et et e me e et e et e et e teenteeneeanees 39
SFIAl COMMURICALIONS ..ottt ettt ettt ettt et et et e e et et et ee e et e et e teeneeeneeanees 39
Commutation TrOUDIESNOOTING . .......cc.eiieirieiieieeie ettt ettt et et e e e ebesaesteesseeseessesssesseesseenseesseessaessesseessens 39
Servo Loop and Jogging TroubleShOOtING...........cccuerieriieiiieieiiesieese ettt teesteesteebeessesseesseesseesseesnennns 39
Homing Search TroubleShOOtING.........ccuvioiiiieiieii ettt et e st e s ese e e seeent et e enseenseenseennessaenseas 40
INO MOVEMERE At AlL ...ttt ettt ettt ettt ettt e eenae s eneeeae e 40
Movement, But SIUGGISH. ..........cccccueouimiiiiiiiiie et 40
RURAWAY CONILION ...ttt ettt ettt s e e e eaeenae e 40
Brief MOvement, TREIM STOP. ...........coccu ittt ettt ettt et e e sneenne e e enes 40
Motion Program TroubIESHOOtING .........coiuiiiiiiiieie ettt ettt e e e te et eateeneeeneesneas 40
INPUT/OUTPUT: CONNECTING PMAC TO THE MACHINE 41
Capabilities ANd FEATUIES.........cc.ccieiiieiieiieieee ettt ete ettt e steeteebe et eetsesteebeesseesbeessesseesssesseeseesseesseesseessesssenseas 41
Quadrature Encoder INputs (JMACH POTt) ....cc.ooouiiiiiiiciiiieieeieet ettt ettt sttt ebe e ettt beenseenseessessseseeas 41
Single-Ended vS. DIfferential................c..ccooovieuiiiiiiieiiiecieeieeit ettt ettt se et steesbeebeenseenees 41
DUFErentiQl ERCOAEFS.............coocuveceieieiiieie ettt ettt ae ettt e b e esseeneeeneesaeesne e 42
ANGLOG ERCOCES. ..ot ettt ettt ettt ete ettt e s e et e e aeeeaeebeesseeaaesseebeesseenbeenseessenseens 42
Power SUpPIYy And ISOLALION ...............cc.cccoiiiiiiiiiiiiiieeee ettt 43
WiFING TECHIIGUES ...ttt bttt ettt ettt b e sttt et e et e nnenae s 43
Encoder SiRal SAMPIING............c..c.coiiiiiiiiiiiiiieiiee ettt 43
DiGItA] DIAY FiltEF ..ottt ettt ettt ettt ettt n e ae e 44
EFFOF D@ICCIION. ...ttt ettt ettt et ettt e bt e ettt e bt et bb e s 44
Optically Isolated Dedicated Digital Input Flags (JMACH POIT).....cc.cooiriiiriiiieiieiee et 45
W e L - USSP 45
OVEFITAVEL LTI IHPULS........oeceieeeeee et ettt ettt e ettt e et e et eeeabe e e sbaesabeessbeensseessbeeasseessseensseensseensseas 45
HOME FIAG INPUL ...ttt ettt ettt be b e et et e et e be et e e b e e b e esseeseeenaeeseene e 45
AMPLIEEr FQUIE INPUL ...ttt ettt ettt et e e te e be e b e e b e s abessaeeseeseesseenseenseessenseens 45
FLAG ISOIALION ...ttt et b ettt e bt e sb e e et e etseeteenseesbeenseenses 45
Dedicated Digital Output Flags (JMACH, JEQU POITS) ....cc.ceoueriimiiriniinieiieietceneestesie sttt 45
Amplifier-Enable/Direction OQUIDUL ...............cccuciioieuiriiiiiie ettt sttt ettt eb ettt 45
Amplifier Enable/DiSADIE USe .............c.cccoiiiiiiiiiiiiiiiieiesieet ettt sttt ettt 46
THARSTIIOMN. ..ottt ettt ettt ettt ettt e h e bbbt e bt ettt e bt ettt ettt ettt e bb e ettt e nbbeenanees 46
SIAKITG DFIVEFS ...ttt ettt ettt a ettt e e e et e e e e et e e bt e bt e et eme e et e eaeeeteenbeenseenseenees 46
SOUFCING DIFEVOTS ...ttt ettt ettt ettt et e e ekt e ekt e teemaeem e e et e ea e e et eme e e et e eaeeeteenteenseenseanees 46
POLATIEY CORIOL. ... ettt ettt ettt et nae e 46
DFOCHION Bt USC ...ttt ettt ettt ettt et ettt et e bt e ettt et e en 47
GENETAI-PUTPOSE USE ...ttt et ettt et e ettt e et e et e e st e e tb e e sbeetbeestaeentseensbeesseensseesseas 47
ComPAare-EQUALS QUIDULS .............cc.ccviiueiiieieeeit ettt et et ete ettt ettt teesaeesbeeabeetseetsesseebeesseessesseesseesseenseenns 47
Optically Isolated Analog Outputs (JMACH POIt) .......ooiiiiiiiieiieiecieseeeee ettt snees 48
COMMOCLIONS ...ttt ettt ettt ettt et e h ettt et ettt et et et st st e et e e e 48
TSOIATION ... e ettt ettt et e at et b et nt ettt et na e ne e b eaeene e 48
DIFIVE CAPADILILY ...ttt bttt ettt 48
GENEFAI-PUFPOSE USE ...ttt ettt sttt nne e 48
General-Purpose Digital Inputs and Outputs (JOPTO POIt)......c..ooiiiieiiiiieeie et 48
SOFEWATE ACCESS ..ot ettt ettt et a ettt et e et e e e e et e e bt et e et ene e et e et e e teenteenseenaeenees 48
Standard SinKingG OQUIDULS ............cc.occoioiiiiiiee ettt ettt ettt ettt 48
OPLION OV SOUTCIIG OUIDUES. ...ttt ettt ettt et st et s et e e e ete e et es e ese e s e abeeeeeteeeeaneeseeeeaneanea 49
Table of Contents iii



PMAC User Manual

Input SOUrce/SINE CONIIOL ............ccooooviiiiiiiiieiee ettt ettt ettt et be e b e sseeneeenaeeaeene e 49
Thumbwheel Multiplexer Port I/O (JTHW POTt) ......ooiiriiiiieiieiieiesieieeieete sttt e e ssaesnees 49
MULEPIEXEA USES ...ttt ettt et ettt ettt 49
INON-MUILIPIEXEA USES ...ttt ettt ettt ettt e nne e 50
Control-Panel Port I/O (JPAN POIT).......ociiiiiiieiie ettt ettt ettt et e e tesaesneesseese e s eenseenseensesssessnenseas 50
DISCHOIE INPULS ... ettt et e at et ae e e e e e et e bttt n e et ettt et e n e eneeeneeeneene e 50
ATEEFRALE US@ ...ttt et ettt ettt etk ekt b e ehe e ene e et e he ettt e eneeeneenneen 50
RESEI TAPUL ... ettt ettt ettt et at e ekt b e et a et ettt et e n e eneeeneeeneene e 50
HANAWREEL IHPULS ...ttt et ettt et e ettt et e e tb e et e e tb e e tbeensbeensbaensbeessseesseensseensseas 50
ARGLOG TAPUL ...ttt ettt et e e ettt ettt e e e et e e a ettt e nneen 51
Display Port Outputs (JDISP POTt).....c..ooiiiiiieiieiee ettt st st ne ettt et ebee bt enbean 52
SETTING UP A MOTOR 53
WHAL IS @ IMOTOT? ...ttt ettt b et b et e e et b e s bt e bt ebees b en b et et e ebeeb e emten b et et e ebesbeebeeneensenaens 53
DEfINING the IMOTOT ... .euieiieiieie ettt te st et et e ettt e estesteeseen s eesseessesssesseesseenseansesseesseenseenseenseensennsenssensens 53
MOTOF I-VAFTIADIES ...ttt ettt ettt ettt ettt e ab e et e eae et e enbeesseeneeeneeeaeeneenes 53
ACIVALNG the IMOTOT ...euieiiieiieeie ettt ettt et e st e et et et e e nbeestesaeesseesseenseanseeaseessesseenseenseanseessessaesseenseensesnsesnsesnns 53
Does PMAC Commutate thisS MOTOT? ...........c.cccoieeiiee ettt ettt ettt ettt e eeaeeee e 53
AdAress I-VAPIADIES ..........ccooouiiiieieeeeee ettt ettt ekttt et ettt et ettt et eneenneen 53
Hext vS. DeCIimaALl REPOTIING ..........ccueeieii ettt ettt ettt e ekt e bt e na e e s e eneesneenaeeneenes 54
SLECHING 1NE OUIDUL(S). ...ttt ettt ettt ettt e et e et ettt ee e et e bt e teenteenneanees 54
Selecting the Position LOOD FE@ADACK .................ccccoviiioiiiiiiieiieeeeeeee ettt 54
Selecting the Velocity LOOP FeeABACK .................coccooviioiiiiiieiieeeeeeeee et 54
DUGL Fe@ADACK SYSEEMLS ..ottt ettt ettt ettt ettt e etaesbe e b e esseeneeeneeeaeene e 54
ACCUIACY VS, STADILIEY.....ieitieiieiieiieieciese ettt sttt et et e et e teeste e beesseesbessaesseesseesseessesseesseenseenseessenssanssenssessens 55
Selecting the Master POSItION SOUFCE ..................c.c.ccoeieeeeiieeieeeesieeeieeee et eae et saeeseebe st e sseesseesbeesseenees 56
SeleCting the FIAZ REGISIET ............cc.ociiiiiiiiiieiieeeee ettt ettt sttt ettt 56
Selecting the POWEr-Up MOde ................cccociiiiiiioiiiiiiiiiiii ittt 56
TYPES OFf POSILION SEISOTS ... .vivieeieiieniieiieteetestesteestt et et et e sete st e st e tesssesssessaesseesseenseanseensesseesseenseenseensesssenseensens 56
Quadrature ENcoder FEedDACK ..................ccoccoooiiiiiiiiieei ettt 56
HArAWATE CRANGES .........ceeeeeeeeee ettt ettt ettt ettt e et e et e e e naeese e s e st e naeeeeenes 58
SOFIWATE CHANGES ...ttt ettt ettt ettt et e s e e e e e et e et e e bt e me e e et e et e eteeteenseenaeenees 58
Parallel PoSition FEEADACK ...............c..ccoooiioiiiiiii ittt ettt 58
Parallel ADSOIULE FEE@ADACK..................cccooiiiiiiei ettt e 60
Linear Displacement TranSducer FEedDACK .....................c.ccccciivuiiiiiiiiiiiiiiiieeit et 60
ANGLOG POSILION FEEADACK .............c..ocuveiieiieieeiieeieeeie ettt ettt et se e easeensenseen 61
RESOIVEF FEADACK ...ttt ettt 62
ADSOIULE POWET-UP POSILION ....ueiiiiiiieiieiieit ettt sttt et et e st e st e st enseenseensesssessaesseenseenseensesnsennns 62
ADBSOIULE POSILION RANGE. ..ottt ettt ettt te e 62
Parallel-Data POSITION. ..............c.cccueieiiiiee ettt ettt ettt ettt ettt e et e e et et e st ebeenbeesseeseeeneenneeneenes 63
RESOIVEF POSITION ...ttt ettt ettt et et e e et et e bttt e e e et e bt et e enbeeseeeneeeneeeneeneenes 63
DR R 0 T SRS PSSR 64
ENCOAET OffSEL ... ettt ettt ettt a ettt ettt ne e neeeae e 65
Encoder Conversion TabBLE ............ooiiiiiieee ettt ettt ettt e e bt e st ese et e nte e bestesbesaeeseeneansennens 65
Incremental ENCOAET ENIFIES ...........c.ccoociiviiiieiieieeeee ettt ettt 68
L/T IRECHDOLALION ...ttt ettt ettt ettt et be b et e e et e eaeeae e 68
Parallel-Bit INtErPOIALION .............c..cc.ccoveeviiiiiiiiieecie ettt ettt ettt ettt e staesaeebeenseenees 68
INO IREEEDOIALION. ...ttt ettt ettt e b e e e et e e ts et e e b e esbeessesseesneeeaeeneenns 68
Acc-28 Analog-to-Digital Conversion REGISIEr ENITIES ...............cccceiveiieiieeieiieeieesieeie e esesseesseesesnsesssesseens 68
Parallel Position Feedback CONVEFSION ...............c..cccoicueiieiiiieieeee ettt ettt saeeae s 70
Time-Base CONVEFSION ERIFIES ..........ccccuiiouieiie ittt ettt ettt ettt e et e sttt e sate e it e e stteetteennaeennneas 73
Triggered Time-Base CONVErSION ENIFIES ............cccocciiiiiiiiiiiiiiieieee sttt ettt 74
EXPONENIIQI-FIItEF ERIFIES .......ocueiieee ettt ettt ettt ettt ettt e et s eseeeneenaeeneenes 75
Setting up the Encoder Conversion TaDIe..................ccoociiiiiiiiieiiiie ettt 76
FUrther POSTHON PrOCESSINE ... c.eiuiitiiiieiieieiteee ettt sttt ettt et et e et e e et e et e sbeeae e st eneentebenseabeeaeeseeneansennens 78
SOfIWATE POSIEION EXTEISION .......c.eeee ettt et b e ettt et at e st e e ettt eee et ene e e neeaeenes 78

iv

Table of Contents



PMAC User Manual

AXES POSITION SCALIING ...ttt et ettt e bt et e e sbeess e s aa e eaaeeseebeesseenseenseessensaens 79
Leadscrew COMPENSALION ..............c..ccuoevieiiiiieieeiieeie ettt ettt ettt eaeese et eeteeebe e b e esbeesseesaeeneesseene e 79
Backlash COMPENSALION...............cccccuiiiiiiiiiii ettt ettt ettt sttt 82
Torque CompenSation TADIES ..............ccccociiiiiiiiiiieeee ettt ettt ettt 84
SETTING UP PMAC COMMUTATION 87
B3 La e Lo L (o0 4 PSSR 87
Incremental Encoder Feedback REqUITEMENL .........cc.eeiiiuiiiiiiiieiieieeie ettt et neees 87
Phase RETEICICING ... .ceouiiiieiieieee ettt ettt ettt e e bt et e e e teeatesatesaeeseeenbesmeesaee et enteenteenseeneeeneennean 87
Two-Analog-Output REGUITEIMENL. ......eiuiitiiiieiieietite ettt ettt ettt et e et et e sbeeeees e et ensesesseebesaeeseeneansennens 87
Basic Parameter SPECITICATION ... .....cviiieiiiitieie ettt ettt ettt ettt eebeeaestaesreesbeebeesseerseeseesseesseesseesseessesssessees 88
Counts per COMMULALION CYCLO............cccooiiiiiieiiee ettt ettt 88
ANGLE BEIWEEN PRASES ...ttt ettt ettt ettt ettt e e e e sb e saaesaaesseebeesseenseenseessenseens 88
Permanent Magnet Brushless Motor COMMUEALION ..........ccuvervieeiieierienieenieesieetesteseeesseesseeseesseesseessesssesssesssesseessees 89
Getting the POLATILEY RIGAL...........cccoooiiiiiiiiiiii ettt ettt ettt 89
POWeEr-0m PRASING SEATCH ...ttt ettt 89
Phasing Referenced t0 ADSOIULE SENSOF ..............cccooiiiiiiiiiiiiiieiieeee ettt e 92
Phasing Referenced t0 HAll-Effect SENSOT ............c.ccciiiiiiii ettt 94
PRASE AGVANCE..........coeeeieeee ettt ettt ettt ettt ettt et n et eae e 95
Switched Reluctance Motor COMMUELATION. ........eeruieiuieiieieetcestierte ettt ettt e et et e bt e e e tesseesseanseeneeeneeene 96
AC Induction MotOr COMIMUEATION «.....ouvitiitietieteetieieteste ettt ete et est et etetestesteebeeseeseeseensesesseasesseaseaseeseeseeneansennens 96
N2l 17T T TN 7 € [ PSPPSR 96
Setting the MagnetizZAtion CUFFENL...............ccciouiioeiiieee ettt ettt ettt ettt ettt eteenne e anees 97
Experimental Setting of Induction MOtOr PATAMELETS ................c.ccoueveeiuieieeieeiieeeieeeeeeeeie e ese e 98
Open-Loop Microstepping COMMULALION .............c...cccueicuieiiueerieeeeeeeieeeeieeeiteette st e sseesebeesbeesaseessseensseessseesnseas 99
SUING thE I-VAVIADIES .............cooeeoeeieiiecii ettt ettt ettt b e e et s tae e teeseesseeabeenseeteeseens 100
USING 1hE MOTOF ...ttt h ettt ettt b ettt ettt ae e 101
User-Written Commutation AIGOTItRIM .....c..couiiiiiiiiniiiee ettt 101
Memory Space, Software Interface, and Program ReSIFICHIONS...............cccccueicieeiecieieeiieeeeeie e 101
CLOSING THE SERVO LOOP 103
The Purpose 0f the SEIVO LOOP -....eeiuiiiieieee ettt sttt et et e et e bt e b e e eneeeneeseee 103
SEIVO UPAAte RALE......eiiiieiiietieetie ettt ettt ettt et e e st e bt et e et e emteeseeeseeemeeeaeenseenteenseeneesseenseensean 103
ReaSONS 10 INCFOASE RALC.............ccueeieeiiei ettt e ettt ettt ettt neees 103
ReaSONS 10 DECTEASE RATE. ..ottt ettt ettt 103
Ramifications of CRANGING the RALE ................cc.cceeveiiieiieieiieeee ettt ettt se et sseetaesseens 103
AMPITIET TYPES .oovvitieiieiietieteet ettt et te st e st e bt e ste et e eteesteesbeesseessesssesseesseesseasseessesssenseesseessesssensaenseessesnsesssenses 104
VeloCity-Mode AMPIIfIES .............c.occeiueiieiieie ettt ettt ettt be e et eetaeebeebeesbeenseenees 104
TOrque-Mode AMPIIFIEFS...........cccocceiiiiiieeee ettt ettt 104
VOItage-Mode AMPILIfIETS ..........ccoociiiiiiiiieieee ettt sttt 105
Sinusoidal-INPut AMPIIfIETS ...........cccoooiiiiiiiii ettt ettt 105
Pulse-and-Direction AMPLIfIEFS .............coicueii ettt ettt ettt ettt e e enae e eeeas 106
Hydraulic Servo AMPIIfIEFS ...........coiviiiiiieee ettt ettt ettt a et et enee e neeas 106

Lo 1D TS 0 b 1L < SRS 106
HOW the PID Filter WOFKS ..........oooiiiiiee ettt ettt ettt 106
TUNTAG THE PID FIIEOF ......ooviiiieieee ettt ettt et ettt ettt et e et et ettt enees 107
ACtUAT PID AIGOFIIRIN ...ttt ettt ettt e s e ne e et 108
INOECR FIIEETS ...ttt et b e e bt b e st et et e e s bt e bt eb e e bt eb e e st ene et e st e e b e sbeebeeneensenee 108
Automatic NOICH SPECIfICALION.................ccoeoueeieiiieeiieeieeie ettt ettt ettt ettt e ebeebesreesaeesaeeseenseenes 109
Manual NOICH SPECIfICALION. ..............c..ccueeieeiiiii ettt ettt ettt ettt be s et e et e e seebeesbeenseenseenees 109
Other Uses Of the NOICH Filter..............coccociioiiiiiiiiiiiiiiiee ettt ettt 110
Extended (Pole-Placement) SErvo FIlter .........coociiviiriieiiieiieieciesieee ettt se e enne e ens 111
USEI-WITHEN SEIVO FIIEET ... .eouiiiiiiiiiiiiiieieee ettt sttt ettt e b e s bbbttt esaene 111
What is needed t0 Write the FIller...............ccoociiiiiieiiee ettt 112
Download and Enable PrOCedUTe. ....................ccoiouiiiiiiaiieeeeeeieee ettt 112
Memory Space, Software Interface, and Program RestriCtions...........coceiieriiiiiiiiiiiiienieiceeeeseeceeee e 112
USGDIE DATA SPACES ...ttt ettt e e ettt e et e et e et e et e e tbeette e sbeensteesseesseesseenseean 112
Table of Contents v



PMAC User Manual

INLErfACE [0 OUREE FIFMIWAFE...........c.occuv ettt ettt ae ettt se et e sbeesbeeseebeenbeessesnseenees 112
RESIFICHIONS ... ettt ettt ettt et ettt ettt et et e it e 113
Alternative Uses for USer-WFitten SErVO ..............ccccoiiiiiiiiiiiiiiiieieeieiie sttt 113
Simple User-Written Servo EXAMPIE ................cccccoiiiiiiiiiiiiiiiiteieeeeee sttt 113

C Program to Convert .LOD File t0 PMAC FOVMQL ............ccccooiviiiiiiiiiiiieiiicee sttt 114
MAKING THE APPLICATION SAFE 117
Responsibility for the Safety of @ Control SYSTEM .......cocuieiiriiiiiei ettt 117
Hardware Overtravel Limit SWItCRES ........cooiiiiiiieiiee ettt s 117
Software OVErtravel LIMItS ..........cciiiiiiiiiiiieiiei ettt sttt et st st e sbee st e et eateestesbeenbeenaeas 118
FOIOWING EITOT LAMIIES ...ttt ettt ettt ettt be et b e st e st et e e be st e ebeeseeaeeneenseaseateebeeneeneeneensenes 118
Fatal FOIIOWInG EFFOF LITNIT..........c.cocoiiiiiiee ittt ettt ettt et neees 118
Warning FOUOWING EFFOF LIMIE ............cc..cccocueviiiiiiiiiiieeeeett ettt ettt ettt ae et sseebeenbeenaeenees 118
Integrated FOLIOWING EFror PrOtECIION ................ccoccueeieiiieiiieieeee ettt se et eseeba e esseenseenees 118
V52 (o Tea 1 20 5151V 119
ACCEIETAtION LIMIES ....eutiiiiiitiitiet ettt ettt et ettt b e e bt bt et et e s et et st e e b e s bt ebe e st enaenee 119
Command OULPUL LIMILS .....c.vieieeeieiieieeie ettt ettt et et este st essee st e esseessesseesseenseenseensesssesseenseensennsesnsesees 120
Integrated Current (IzT) PrOTECHION ...ttt ettt ettt e s e st et et eensessaesnaesseeneenseennennes 120
Amplifier Enable and Fault LIiNes .........ccccveciieiirieiieieeeee ettt sttt et e et e ensesnsesseesseenseenseannenns 121
L1 T Lol T TS TSR 122
Hardware Stop Command TNPULS .......cc.eeuiiiiiieiee ettt ettt ettt et et e st e b e beenaesneeene 122
Host-Generated Stop COMMANGS ........c.oeiiiiiiieiiee ettt ettt et e st et e s e e e ensesseesbeeseeneesneeene 122
Program CRECKSUINIS. ......eeiieiieieet ettt et ettt et et et e e ate s st e ss e e et e et eaeeese e st e st eneeeseesseenneenseensesneesnee 123
FIPMWATE CRECKSUML ...ttt ettt et et ettt et e neees 123
USEr-Program CRECKSUN .............c.cccueiiiiieieeeeeie ettt ettt ettt e ettt ettt et en e neenneens 123
Communications Data INtegrity FEAtUIES ........c.cccviviiiriieiieieciceeie ettt sttt ea e eesbeebeesaesnneses 123
BASIC MOTOR MOVES 125
Commanding Some Basic MOVes fOr the IMOtOT ........c.eevuieiiiieiieiieieeie ettt beeaeseee e ensesseeses 125
JOGEING MOVE CONLIOL..... .ottt ettt ettt et et et e et e saeessee st enseenseesseeseeseenseessesssesseenseensennsesnsesnes 125
JOG ACCEICTALION ...ttt ettt ettt ettt 125
JOG SPEOU ...ttt ettt 125
JOG COMMUARAS...........oi ittt ettt et et e e e e et e e et e bt e et ene e em e eae e e st et e enteenaeeeeeeneas 125
Homing Search MOVE CONLIOL........ccuiiiiiiieie ettt ettt ettt ste ettt e et e e s e s e e beesee s st esbeenneeneesneeene 128
HOMING ACCELOFALION ...ttt ettt ettt ettt et e bt enteeneeeeeeeneas 128
HOMING SPEEOUL..........oooeieeee ettt ettt ettt ettt et ettt 128
HOme TrigQer COMAILION. ...........c.coeiieiiieet ettt ettt et ettt ettt neees 128
SPECIY FIAG SEF ... ettt ettt e ettt ettt e ke ettt et e at e st e e et e b e et e eneentene et ene e 128
SOfIWATe CAPIUTE OPLION ...........oocuveveeeeeieeiieeee ettt ettt te e eetbeets e s seesbeesbeeseesseesseesseeteeseens 128
Trigger SigNals and Ed@ES.......cveiiiiiieiiiiiiiieieese ettt ettt et e st et e e b e esbesseesseesseesseesseesseessessaenseesseensesneenees 129
TOrqUE-MOdE TIIGQETING ..........cc.coeeeieeieeeii ettt ettt ettt be ettt e e aeeeae s e esbeetseesseessebeesbeenseenseenees 129
HOME COMMANA ...ttt ettt b et ettt et be bt e bt et et e b e st e s b e sbeebe e st ennenee 130
ON-LINE COMMUANC. ..ottt ettt ettt et et e st e et e ebe e bt e s e nteeateeseeeseebeenbeenaenneas 130
MORTLOVING JOF FIMESH ..ottt ettt bttt 130
Homing from @ PLC PIOGIAM .......cccuiiiiiiiiieiieit ettt ettt ettt et e et et e s st e sbe e seenseeneeene 131
Motion vs. PLC Program HOMING. ........ccoiiiiiiieiieieie ettt ettt ettt et e st e b e e emeesneesee 131
ZTO-MOVE HOMUIRNG. ...ttt ettt et ettt et e s et et e et e et aneeeneeeneeneens 131
Homing into @ Limit SWITCH ...........coooiiiiiiiee ettt ettt 132
Multi-Step HOMING PPOCEAUTES ...........cccoooiiiiiiiiieet ettt ettt ettt 133
StOVING the HOME POSTIION............c..ocveeieeeiiiieeie ettt ettt ettt be b e s ta e te e seesseenseenseeseeseens 135
OPEN-L00D IMOVES.....uiiiiiieiiiieeieeiitterte sttt st e sttt e s bt estteestbeesabe e st e eateesteesbeesaeenseesnsseenseesnsaesnseesnsaesnseesnseennseens 136
SETTING UP A COORDINATE SYSTEM 137
Coordinating MUItIPIE MOTIONS ... ..ecvieiieieiieeieeitesie et ettt et et e e esaesaesseesseeseensesseesseanseenseensenssesseenseensennsesnsesees 137
What is @ COOrdiNate SYSEM?........cccieiuieriieieeieeierteeie et eteettesteeteetessaesstesseeseensesseesseenseanseessesssesseensesnsennsesnsesses 137
WREE IS A1 AXIS? 1ottt ettt h et eb ettt e st bt s bt e bt e bt e a et e e e bbbt e bt e bt bt e st et et bbbt bt et enaenee 137
ONE-10-ONE MAICHING ..o ettt ettt ettt e et e te et ene e s re e st e e st e nteenteenseeneeeneas 137

vi

Table of Contents



PMAC User Manual

MUIEIDIE-MOTOT AXCS ..ottt ettt ettt e e e at et e e beesbeesseesbeesseeseesbeesbeenseesseenees 137
PRANEON AXES ...ttt ettt h et ettt ettt et n ettt 138
AX1S DefiNition STALBIMEINLS .....cc.eruiriiiiieiiiiitertetert ettt sttt ettt et et be bbbt bt et et e st st e e be s bt bt e st esnenee 138
MAICTHING MOTOF 10 AXIS ...ttt ettt ettt sae et 138
SCALING ANA OfffSEL ...ttt ettt b e bttt ettt 138
€ 0 17401 139
(@ A 1o 70 b K OSSR 139
ROIATY AXES ..ottt ettt ekttt et a e ae e ettt ettt ne e ae et e ettt ena e e enean 139
FOOANAIE AXIS ... ettt ettt ettt enees 139
AXis-Motor Position RE-MatCRING ..........ccoooiiiiiiiiiii ettt st nes 139
What Is Coordinate System Time-BaSe? ...............cccociiiiiiiiiieeeee ettt ettt 141
COMPUTATIONAL FEATURES 143
Advanced Computational FEAtUIES..........ccccueiieiiiriiiiieiietesteete ettt e et eaesee e e saeesseesseesaesseessaesseessesssessnenens 143
COmMPULAtIONAL PIIOTITIES. ... eeuvieiieeeieitietieieecie ettt ettt e e et e et e s etesseeseeseeeseeeseeseenseesseessesseenseensennsesnnenees 143
NUMETICAL VAIUES ...ttt ettt sttt b e bt et ettt et e st st b s bt ebe e st ennenee 145
TRECHRAL FOFMUALS ...ttt ettt ettt e bt et e e nb e e st e eateeste st enbeenseenseenaeneeas 145
RECEIVIIG VAIUES ...ttt ettt ettt ettt et et e bttt eneeenean 145
EXQIMPIOS ...ttt ettt ettt ettt ene e neean 146
REPOFHING VAIUES ...ttt ettt a ettt e e e et et e bt enteenaeeneeaneas 146
ALATESSES ..ttt ettt ettt ettt he ekt bt h e ea e et e ke ehe ekt he e Rt Rt e aten s e be ke ebe e st eheentent e beeteebeeaeeneeneennenes 147
BV 4 1o (OO SRS P USRS 147
T-VAFIADIES ...ttt ettt ettt nnees 147
VAIUE ASSIGIIENL............c..ocuveeeieieeie ettt ettt ettt et b e e s e e s e eae e e seebeeaseenseesseessebeenseesseenseeneas 148
PoVATIADIES ...ttt et bbbt h et b et bbbt et et et st b e ae bt et et enee 149
AFFAY CAPADIIILICS ...ttt ettt e e e e st e e at e e se e be e b e e b e ensesnaesaeesseenseenseenns 149
SPECIQI-USE P-VATIADIE ...........c..coiiiiiiiiiiiiiiiiiieee ettt 150
Q-VATIADIES ...ttt ettt e e e b e e te e e e tb e e tae e tb e e aee e ta e e bae e baeebee e baeebaeetaeebeeebeeearaeebaannreaas 150
ATIOHING O-VAFIADBIES. ...ttt ettt ettt sttt et 150
Addressing @ Q-Variable Set ...ttt 151
AFFAY CAPADIITIIOS ...ttt ettt ettt ettt et e bt et et e eneesneeeaeeneeeteeneeenes 152
Special-Use Q-VATIADIES ..............coooueiieiiieee ettt ettt et e ettt e e eneeneens 153
IMEVATTADIES ...ttt ettt he et at st e et e ke e he bt eh e e n e ea e et et e ebe ekt eheeheeaeen e et e abeateebeeneeneeneeneenes 153
MVAFIADLE DEINITIONS. ...ttt ettt ettt et et e bt e te et ene e st e enseeeenes 153
LIMEEEA RANZE............ocuooeveeeee ettt ettt ettt ettt e e e s e s e e ae e e st e beenseenseenbeesseessenbeenbeenseensennees 154
USING M-VAFIADIES............cc.ooooeeieeiieeieeie ettt ettt ettt ettt et e beebe e b e e se e seesseasseenseesseesaenseens 154
(0015 1102 & OO USSP 154
AVIIMELIC OPETALOTS ...ttt ettt b ettt ettt a bbbttt et e 154
MOAUIO OPETALOT ...ttt et b ettt ettt ettt 154
LOGICAI OP@FALOTS........c.ceieiieitee ettt ettt ettt ettt ettt 155
FUNCLIONS ...ttt sttt ettt e at e e e et e e bt em e em e e eaeeeaeesse e st e st enseeneeesee st enbeenseensesneesns 155
STIN ettt ettt h e eh et bt ek ek ekt es e a b e b e b e ke eh ekt es e eateat et e beebeeneene st enb et ebeaaea 155
COS..c.ooeeeeeee ettt ettt et a ettt h e eh ekt eh e st b e h e b ekt n e en e st et e b et e b e teeae st ent et e eeeanas 155
TAN ..ottt ettt etk Rt ARt R sttt h e Rt Rt en s et e bttt bttt ene st nt et e eees 155
ASIN ...ttt ettt a e a etttk eR e Rt ARtttk R e Rt Rt R s ea s et e bt eae et e et e ntene e e e ae e 156
ACOS ...ttt ettt ettt Rttt a et bRt R £t e n e n e e a b et b e eae et e et e ntent et e e 156
ATAN ..otk e etttk Rtttk R et R e n e st ettt ettt n e en e ne e 156
ATANZ ..ottt ettt bkttt he et h et h Rt R ettt bttt ettt n et 156
LN et h AR bt e et h e Atk R Rt a et h e bttt ene st ne et eenes 157
EXP....ooooooeeee ettt ettt ettt bttt aten et beeh et et ete st et nbere s 157
SORT ... ettt ettt ettt et a e a ettt et h e b ae et s st at et beeheeteene st enb et et eseas 157
ABS ..ottt h et h ettt b et bt ettt nt bt beeaeete et ens st et ne s 157
IINT .ottt ettt ekt a stttk ek o4t ekt es e st b e b e bt ke n e st e st en b e b e b e beeneene st entenbeeneanas 157
2403 (3 ) 1SR 158
DIALA ...ttt h bt et a e h e b e bt e e bt e et e e he e bt e bt e ehe et ea et eh e e eb e e bt e b e e beeetesaeenaee 158
Variable Value ASSIZNMENt StALEIMENT. .........ccuiiuiiieiieieieiee sttt ettt sttt ese st et et e eeseesteebeeaeeseeneeneenes 158

Table of Contents vii



PMAC User Manual

I-Variable Default Value ASSIGNIMENL ...................c.ccveeieeiieieeeeeieseesieeeie et ereese e estesaseeseesseebeesseesseeeees 158
Synchronous M-Variable Value ASSIGNIMENL................c..cccoccvevieiuieieieieeiiesieeeie ettt eae e sreesbeeseeteesseens 158
SPREAX ...t ettt et ettt ettt et ettt ettt eas 160
EXCCULION ...ttt e e et e e ettt e e et e e e ettt e e et bbeeeetbeeeeareas 160
SPECiQl BOOICAN F@AIUTC. ............c.ooeeeiiiiiiiiiiii ettt ettt sttt 160
LIPTEQETOS ..ottt ettt ettt ettt ettt ettt et ettt ettt et e e 160
(0703501 T2 110 ¢SSR 161
(0707574 15 o3 s SRS 161
STPLE CONAIEIONS ....o..oeeeeei ettt ettt ettt et e et e et e et e e b e e eabeeeabaeesbeeesseessbeessbeesseessbeesseensseenseees 161
COMPOUNA CONAILIONS .......oeoeeeee ettt ettt e et e et e et e et e et e eabeeeatbeaaseeeataeassaesnsaeenseesnseeanseennss 162
Single-Line CONIION ACHIONS ..........c.cccoiouiiieie ettt ettt ettt et ettt et e e eneeneens 162
MUIEIPIE-LiNE CORAILIONS ...ttt ettt be st et e et e be e b e esbeetseeseebeesbeenseesseenees 162
THIMIETS -ttt ettt b et b et e e bt e bt e bt e bt eh e e st em s e bt eb e e bt e bt eh e em e em b et e eb e e bt e bt eh e en e ent e be et e benheebeeneeneenee 162
Computational CONSIACTALIONS .......cc.veriierieiiieiieriesie ettt e et et et eteesaesteesseeseessesseesseesseenseasseesaesssesseensennsennsesnsesses 163
WRITING PROGRAMS FOR PMAC 165
Writing @ MOtION PrOZIAIMN .....cc.iiiiiiieieciecie ettt ettt e b e et e et e st e s st enseenseensensaesseenseensesnsesnsesees 165
FLOW CORIFOL.......ooeieeeee ettt ettt ettt e et e bt e et e ne e e et e st ebeenteeneeeeeeneeas 165
GmCOAES ... ettt h ekttt a e et Rt R e ae ettt eae e et ne et e bt e e e naeeneeanean 165
MOAAL COMMUARCS ...t ettt ettt ettt et et et e bt enteenaeeneeeneas 165
MOVE COMMUANGS ...ttt ettt ettt a ettt e et eee e e et e et e et e e e enneeneennees 165
MOtion Program TIAJECLOTIES .....ccueeuieuieuieeieieieite st ettt et et et et e stestesaeeteeaeesteneesseteaseebeeseeseensensanseasesseabesseeneeneensenes 166
Linear BIENAEd IMOVES ......c..oiuiiiieieeieieee ettt ettt ettt et et e st e e bt bt es e eme e s e e b e e eneeabeeteebeeeeeneeneeneenes 166
ACCELETALION PAFATNEIEFS ...ttt ettt ettt ettt ettt ettt ettt e e 166
ACCELETAIION LIMTL ...ttt ettt ettt et et ettt ettt ettt et et e e ae e 166
Feedrate or Move-Time SPeCIfICAtION........cc.iiciiiiiriieiieiieieetestesie e eeeste st e steebeesaeeseessaeseesseessessaesseesseessesssenens 168
STOTE MOVES ... ettt ettt e e et e e e et e e et e e et e et e e abe et e e eareeeane s 169
LOTNG MOVES.......c.ooiiiiiiieii et e 169
FOOAPALE AXCS ... ettt ettt ettt et re e 174
2 o el T B 77 7 USSP 174
The BIeNding FURCHION ..........c.cccueiiiieeeeeee ettt ettt ettt et e ettt et et st e st e bt enteenaeeneeeneas 174
RAPIA-MOAE MOVES ..o ettt ettt et et e eae e et et e b e ente e eeeeeneas 175
Motion Program MoOVe-Until-TIIZEET ........cceeiiiieieiieieeee sttt ettt ettt st ettt et e e et e eeseeebeebeeaeeseeneeneenes 175
Circular BIENAEd MOVES. ......c.couiiiiieiee ettt ettt ettt e e e bttt ebeen e ems e e enseabeeteebeeaeeneeneeneenes 176
Specifying the INterpolation PIANE...................c..ccccccveviieiiiieiiieei ettt ere s ese s eseeteesseens 176
CIPCLE MOMES. ...ttt ettt ettt ettt bttt ea ettt 177
CORLEY VECHOF ...ttt ettt ettt ettt ettt ettt et et 177
Radius Size SPECIfICALION ..........c.coeeiiiiiiiiiii ettt 178
INO CERIEF SPECIIICALION ...ttt ettt ettt 178
FOOAPALE AXCS ... ettt ettt ettt e et ae e 179
CIPCLE RAAIUS ETFOTS.c...c..oieee ettt ettt e ettt ettt et e st et e bt enteenaeeneeeneas 179
MOVE S@GIMEIIALION........c..oeeeeee ettt ettt ettt et a et e et e e ae e bt et ene e eneeeaeeeseeteenteeneeeneeaneas 179
PVTIMOGE MOVES .....eeeniieiiteeeeet ettt ettt ettt et et e st e et e et e eetesaeeeseess e e et eneeeaeeeme e st enseenseeseeeseenseenseensesneesne 179
MOGE STAIEIMENL ...ttt ettt ettt ettt ettt e ettt et nneas 179

W o N 1 e e PSP 179
PMAC CAICUIALIONS ...ttt e ettt et ettt ettt e eeeeneees 180
Problems il SIEPPING ............ccoccuvieieeieiieeee ettt ettt ettt b e b et e et s te e beebe e b e te e beenbeenb e st e eteebeen 180
Use t0 Create ArBitrary PrOJIIES...........cc.cccoooviiiiiiiiiiieeie ettt eae b e era s ens 180
USE T1 COMEOUFTIG......ee ettt e st e et e et e e et e e et e sab e e eab e e sabeessbeeesbeensseasseenseeensaeenseeanseesnseean 180
SPINEA MOVES.....eeetieeieie ettt eiteet ettt e tesetestte st e st esseesseesseese e seesseenseanseassesssesseesseenseensesneesseenseenseanseansenseesennsenn 181
HOW TREY WOFK ...ttt ettt ettt 182
AGAEA PIOCES.............c.oocceeeeeeeee ettt ettt ettt et e et et e e e e e te e easeeeate e eareeeaneeees 183
Quantifying the POSition AAJUSTIMENT .................cccccueiiiiiiai ettt ettt 183
5-POiNt SPIINE COFFOCHION ..ottt ettt ettt et et e bt e sae s e s e eneeneeeneeenes 183
NON-UNITOIM SPIINE...tiiiiiiiiiiiiieieece ettt ettt ettt teebe et e eteeste e beesseesseessasssessaeseessesssesssesssesseesseensenns 183
Cutter Radius COMPENSALION.......cuiiieriietieieiteetesteeteeteesteeteesteesseesseassesseesseesseasseessesssesseesseessesssesssesseessesssesssesses 184

viii

Table of Contents



PMAC User Manual

Defining the Plane of COMPERSALION ................c...coecveeiesieiieeieeeieeeesieeeie ettt eseeseeseessesssesseebeessessseseees 184
Defining the Magnitude of COMPENSALION ................cc.ccoevueiieiiiiieieeeeeeeeeie ettt et esaessaesbeesseesseenees 184
Turning 01 COMPEISALION ...........c.cccoeiruiiiiiiiiiiiiii ettt ettt ettt et ettt ettt et 185
Turning Off COMPERSALION ..............ccueoueiuiriiiiiii ettt ekttt ettt b ettt 185
How PMAC Introduces COMPENSALION.................c.ccueviiiriiiieiieieieeesee sttt sttt sttt 185
Treatment of Compensated iNSIAE COFMETS. ...........c...c.oiuiii ettt ettt ettt ettt ae e eeees 186
Treatment Of QULSIAE COFIEES ...........c.cccueii ettt ettt ettt e et e eae ettt e e et eete e bt enteenaeeneeeneas 187
Treatment Of FUII REVEFSAL ............c.cccooiiiiiie ettt ettt ettt e ettt teenaeeeeeeeeas 189
INOE ON UL CIFCLES. ... ettt ettt et ettt et enae e neees 189
Speed Of COMPENSALEA MOVES...........c.cceoeiieiieieee ettt ettt ettt et e e e ese e 190
Changes i COMPENSALION ...............cocuereeei e ettt ettt ettt et et e et eat ettt e ee e e et e et e e et e e sneenneas 190
How PMAC Removes COMPENSALION............cccveicueeeieesiieseeesetesiteesiteesiteestaeansaeestseassteenteeaseeeseeaseesnseesnseesnnes 191
Failures in Cutter COMPENSALION ................ccoecueeiueiieiieeie et et ettt ese et e eaaessa e seessesssestaesaeesseesseesseesseeseesseens 193
Single-Stepping While in COMPERSALION..............cc.ccciriiiiiiiiieiiiieeeteee ettt sttt 194
LOOKGREA ...t ettt ettt ettt ettt et eenaeenees 195
AXiS Transformation MAtTICES.........c.erueuiriiriiiriinieiietereet ettt sttt ettt s e s een e s nesaeneene s 195
SEUING UP 1hE MAIFICES ...ttt ettt ettt e et e e ae e bt e neeeneeeneeeneeneens 195
USING tHE MAIFICES ...ttt ettt ekttt et e e e et e e bt et ees e e bt e et eneeeneeeneenneans 195
Calculation IMPIICATIONS. ... eeuieiieeie ettt ettt ettt e bt et e e st esa e e sae et e eneeeneeeseeeeenteeneeeseenseenseensesneesne 196
EXQIMPIES ...ttt ettt et ettt b e ettt e tb e ettt e tbeette e tbeetteetaeenre s 196
Entering a MOtION PrOZIAM .. .cc.uiiiiiieiieiee ettt sttt ettt e a e b e b e e s bt e s bt e beenbeemaesaeesae 198
Learning @ MOtON PrOZIAIMN .......couiiuiiieiieieiee ettt sttt ettt et ettt beebeese e s e et et et e sbesbeebeeseeneeneensenes 198
MOtION PrO@ram SEIUCLUIC. ......c.eectieiieieeieiiesitett e ete et este e bt et e esbestaeste e seessesssesseesseesseesseesseessesssesssesseessesssesssesses 199
Basic MOVE SPECIfICALIONS ...........cc.cccveeiieiiiiiieiieieeeeeee ettt ettt beebe e et e et eeseesbeenseenseeteebeens 199
DICFQUILS ...ttt ettt b et et ae e he e b e nb ettt et be e eabeenaeeraes 199
CONTOILING PAFAMEICES ...ttt ettt ettt ettt 199
Simultaneous Moves on MUltIDIe AXES ..............ccccoiriiiiiiiiiiiteieee ettt sttt 199
SCGUENTIAL MOVES ...ttt ettt ettt ettt b e bttt ettt et 200
AAING LOGUC ..o ettt ettt et et e e et e bttt e et e et e et e ekt et e enteeneesneentee et enneeneeenes 200
LiR@ LADBELS ...ttt ettt ettt ettt e et enean 200
GOTO COMMANG.......c...oeeeeeeeeeeee ettt ettt ettt e e e e e bt et e et st e et e e st e bt et e enteenaesneeaneas 200
Adding Variables and CalCUIALIONS .........cc.eiuiiuiiuiiieieiete ettt ettt ettt ae bt esee st ese s e stesbesteebeseeeseeneeneenes 200
Subroutines and SUDPIOGIAIMS ........cc.ueiiiiitirteite ettt ettt ettt e eteese et este st e teebesaeebeeaeeseeneenseasesteabesseeseeneeneennans 201
Passing ArGUmEnts 10 SUDFOULITIES ...............c..ccuoveeeuiiieeieeii et et ete ettt se e etae e sseesessbeeasesseeseenseesseeseeseens 201
What Has Been PaSSEA? .............ccccuiiiiiieieieeeee ettt ettt ettt 201
PRELUDE Subprogram CalLS .................cc.ccoueiueiiieiieiiiiie ettt ettt ettt etaesnaessaesseassessseesseesseeseesseens 202
RUNNING @ MOtION PTOZIAIM .....uviiiiiieieiieiieie ettt ettt ettt et e e st e ssee st esseenseeneeesaenseensenssesseenseensennsesnnesnns 202
POINIING 10 THE PrOZIAM ...ttt ettt bttt 203
RUNNING THE PFOZIAM ...ttt ettt ettt sttt 203
SEPPING HHE PPOZFANML ...ttt ettt ettt ettt e sa e e e seeeeae e bt e et eneeeneeeteeneens 203
WHAt PMAC CRECKS FOF........oiueiiiiie ettt ettt et ettt ettt et e e sneeeeeeneeenee e 203
Implementing a Machine-Tool Style Program ...........ccoocoiiiiieiieiieeeee et s e 203
G, M, T, QRA D-COAES..........ooeveeeeeeeee 204
SEANAAFA G-COUES ...ttt ettt ettt ettt ens 204
SPINALE PFOZFAMNS ..ot ettt ettt ettt et et es e ae e et et et e eneenneenneens 208
SEANAATA M-COUES ...ttt ettt ettt ettt ee e 209
DefQult CONITIONS ............cooeeeeiieiiieeie ettt ettt ettt ettt et e ae e b e e sseess e e st e etseeseebeesseenseesseenees 211
Rotary Motion Program BUffers..........cocciiiiiiiiiiiiiee ettt sttt e ssa e aaesbe e e ensesnneses 211
Defining A ROIAFY BUIFOF........cocoviiiiiiiiiii ettt ettt ettt 211
Preparing 10 RUR ............cccccooiiiiiiiiiiiie e e e 212
OPERING OF ERMIFY ...ttt ettt ettt bttt ettt b e bttt 212
Staying Ahead of EX@CUTITIG LIRe ..............ccccoiiiiii ittt ne et eneeeneeeeens 212
Closing and Deleting BUFFEFS.............coooi oottt ettt ettt eeeas 213
How PMAC Executes @ MOtION PrOZIAM .....cc.coiuiiiiiiiiiiiiieitieieeeee ettt s 213
CalCUlAtiNg AREAU ...............coeiieiiieieeee ettt ettt ettt 213
StATEING CAICUIATIONS ...ttt ettt ettt e et eneens 214

Table of Contents ix



PMAC User Manual

Calculation of SUBSEGUENT MOVES ............cccociiiiieieieee ettt ettt 214
Implications of Calculating AREAQ .....................cccooiiiiiiiiiiiiiiieee ettt 216
SYNCHRONIZING PMAC TO EXTERNAL EVENTS 219
Features to Help SYNChIOnizZe MOtION .........cueiieriieriieiieieeieseeeeie ettt et ettt e st enseesseesaesseenseensesnsesnnenees 219
Position Following (EIECtronic GEATING)........ccueruieruierueeieriiertieieeteetestesseesseessesssesseesseesseessesssesssesseessesssesssessesses 219
Position FOIHOWING I-VAFIADIES ..............cccoieiiieiieee ettt ettt 219
Changing RAtios ON the FIY ...........ccoooiiiiiiiie ettt ettt ettt 220
Superimposing Following on Programmed MOVES.................ccccceiieiieiieiiieeeeeee et 220
Time-Base Control (E1eCtronic CaAIMS) .......ccvevvieiieieiiiesieeteeteseesteesteeteeaeeseesseesseessesssesssesseesseessesssesseessesssesssesses 220
What Is Time-Base COMIFOI? . .............cccooiiiiiieii ettt ettt ettt ettt 220
Real-Time INDUE FFOGUEIICY .........c.c.coeeeiiiiie ettt ettt ettt ettt et e e neees 221
Constraints on SeleCtion Of RTIF ...........c..ccccccoiiiiieiiieieeie ettt ettt ettt be b e eeteebeebeenseenseenees 221
HOW I WOFKS ...ttt ettt h bbb ettt e e eb e st e 222
Instructions for Using an External Time-Base Signal .................cccccccvoiiiiiiiiiiiioiiiiiiniiiiceeiteeeeee e 222
TIME-BASE EXAMPIE ...ttt ettt ettt ettt ettt 224
TrigEEred TIME BASE ......ieiieieeiieiietiee ettt ettt ettt ettt et e et e st e e st esseeasesaeesseesseenseenseesseessenseeseensennsesnnesnes 225
Instructions for the Trig@ered TiMe-BaSe...............ccouciaiiiiieieieeeeeee ettt ettt 226
Triggered Time-Base EXAMPIE ..............cccccoooiioiiiieii ettt ettt ettt et ae e eeees 226
SEEUD ANA DEFINTIIONS ..ottt ettt ettt e ettt e s e e e eteeete e bt enteeneeeneeeneeneans 227
MOTION PFOZFAIMN ...ttt ettt et h et e et et et e me e em e eee e et et e enteeneesneeanees 227
PLC PPOGFAM ...ttt et ettt et et e e et e bt et et e et et et e e e eneeeneennees 227
Synchronizing PMAC t0 Other PIMACS .......oiiiiiiiieeeee ettt ettt ettt see bt et eeeeens 228
CLOCK TUMUIRG. ..ottt ettt ettt e b e e b e e b e e ss e e st e eae e ae e b e enbeeabeesseseesbeesseenseansesneas 228
SRAVING CLOCK SIGRALS...........ccooooieiieiieciiecie ettt ettt be ettt te e seesseenseenseeteeseens 228
COMMOCHIONS ...ttt ettt bttt et ettt ae ettt ettt et ettt e e s naees 228
EXEPNAL T BASE..........ooieeeieeee ettt ettt ettt b ettt e st e st e beenbeenneenaeenees 229
MOotion Prog@ram TR ............c.cocouiiiiiiiiiiiiiit ettt ettt et e 229
Minimizing INGEQL OffSEL..........ccoooiiiiiiiiiiiii ettt ettt ettt 229
POSition-Capture FUNCHIONS .......coiuieitieieeiieiie ettt ettt ettt et et e st e bt et e et e et e eae e st et e enteeseesseenseenseensesneesne 230
Setting the TrigQer CONIION ...........c..ccoiiiiiie ittt ettt ettt ettt et eeae e teete et e eneeeneenneens 230
USING OV HOMUIRG ...ttt ettt et a ettt et e et e e e e s et e e bt e ee e e bt et eneeeneeeneenneens 230
USING i1 USET PPOGFAN ..ottt et ettt ettt ettt et seeesaeete et eneeeneenneens 230
OffSet frOM MOTOT POSITION ...ttt ettt ettt a ekt e et s e st e e e e be ettt eseaneeneeeene e 230
PoSition-CompPare FUNCHIONS ..........ccieiiieiiiieiiereeste ettt ettt et eseaeseesteesseebeesseessesssessaesseessesssesseesseessenssesssesses 231
ReQUIFEA M-VAFiADIES ..............c..ccooeceieiiiiiiiieei ettt be bt teeese b easeenseeteeseens 231
Preloading the COMPATe POSITION ...............c.c.cccoooueiiieiiieiieieeee ettt ettt seese s sae e sseebeesseenseeteesseens 231
Offset from MOTOF POSIHION ...........ccccueuiiiiiiiiaii ettt ettt ettt sttt 232
Synchronous M-Variable ASSIZNIMENL ..........ceevueiierieriieieeteeieeteeeeteetesaessaesseesseeseessesseesseesseanseanseessesssesseessees 232
WRITING A PLC PROGRAM 233
o B O oo 4o 1 TSRS 233
TWREI £0 USE........eoeeeeeee ettt ekttt e et a ekttt a ettt ettt enb e ne e eaeeeae et enes 233
COMIMON USES ...ttt ettt ettt etk et e e et ee e e et e eh e e et et e e me e eme e e et e eae e st et e enseenseeneeaneas 233
32 PLC PIOZIAIIS ...cuvtetientieieeie ettt sttt ettt ettt ettt e e et eebt e s bt e s bt et e et e eatesateebe e bt emteemtees e e ebeenb e e bt enbeembesmaesaeenae 233
Entering @ PLC PFPOZFAM............cccooiieiiiei ettt ettt ettt ettt et e ettt et e e e nneeneens 233
OPERING TIE BUJFET ........o.iieiee ettt ettt e ettt e b et e b bttt se st e s e e ne e 234
DoWwnloading the PrOQFAM .............c..cc.cccueciiiiiiiiiieee ettt ettt se ettt e st e beesbeenseesseenees 234
CLOSING TR BUJET ...ttt ettt b e bbb ettt e st e be e s e enseesbeess e seesbeesbeensesnseeneas 234
ETPQASING the PrOGEAML ............c..oooeeiieiieiieeeeet ettt ettt ettt et et e aaesba e te e beesseenseenseeteeseens 234
PLC PrO@ram STIUCLUTE .........eiriiiiiiieiieeiteerte ettt ettt ettt ettt e si et e e bt e ettt e bt e ebeesbteebeeenbaeenbeesabeesaseesabeesaseess 235
CAICULALION SHALEMEILS ............oceeeeeeeieeee ettt ettt ettt ettt e et s e s bt ebeenseeateeateesteeseebeenseensesnaeeneas 235
CONAIIONAL STATEIMENLS .............ocoeeeeeiie ettt ettt ettt et e b e bt e bt e s e e nt e st e eat e st e b e enseenseenaeeneas 235
Level-Triggered CONAIIONS. ............ccoivuiiiii ettt ettt et ae e s e teenbeeneeeeeeneeas 235
Edge-Triggered CONITIONS ...............ccooouiiiiiiii ettt ettt ettt eeees 235
WWHILE LOOPS .......ooecuveeieeaeeeeeiie et eiteetee et et et e e e s st e e st e e s sbeeaaseesebeeasseessbeesaseessbeeaseetbeassseessbeansseessseensseees 236
PreciSe TIMING ......c..ooeieeeeeeeee ettt ettt ettt ettt et a e ettt ettt ettt neees 237

X Table of Contents



PMAC User Manual

COoMPIlEd PLC PIOGIAMS. .......ccuveitieiieiieieiiesieesteeteete st esteesteesseessesteesseesseessesssesseesseesseenseasssessenssesseesseessesssesssenses 237
Execution 0f COMPILEd PLCS............c..ccoccvecueiiieiieiieeeee et ettt ettt et sbe et e staesseasseesseesseessesseeseens 238
Preparing COMPIIEA PLECS............ccccuoouiiiiiiiiiit ettt ettt ettt ettt 238
Variable Value ASSIGNMENt SIAIETNENLS ............cccceeieiiiiiiiiieit ettt 240

INtE@rating PLC FILES .....ooviiiieiieeiieiieie ettt et ettt et et e st e st e s see s e esseeneesseesseenseenseesseessessaenseensennsesnnenees 243
Link AQAress File..........cc.oocuoiiiiieeeeeeeee e ettt et ettt ettt et et e et ettt e e eneas 243
Executing the COMPILEr .............ccococoiouiiiiiiee ettt ettt ettt ettt et e e nteeaae e eneas 243
COMPILEE ETFOFS ... ettt ettt ekttt ettt oot e e et e eae e bt et e e ne e e st et e et e eneeenaeeneeaneas 244
COMPILEE PPOCESSING ...ttt ettt ettt ettt et oot e e e et et e ettt e st et e bt et e e sneenneas 244

Downloading the Compiled Code to PMAC .........coociiiriiiniiriienenceeeree ettt st 245
Running the COMPILEd PLCS.............ccoocuiiiii ittt ettt ettt ettt nnees 245

WRITING A HOST COMMUNICATIONS PROGRAM 247

Communicating From @ HOSt COMPULET .........c.ecieriieriieiieiesieieeieeteseesteesteeaesseesseesseesseessesssesseesseesseessesssesssesees 247
Polled vs. Interrupt-Based COMMUNICALIONS ..............ccccocureieeieeiniieest sttt ettt 247
Serial Port COMMUIICALIONS ............ccueeeesiieeeeeie et eeee et e et ettt e e et eete e bt esbeeaaessaesseesseenseenseeaeeessenseenseensesseeseans 247
SCHNG UP THE INIETUCE ...ttt ettt et 247

Host Port Bus (PC/STDDUS) COMMUNICALIONS.....cccvviirtieerieeirreeiteeiteeeteesseessseesseessseessseessesessseessesessessssessssessssesns 249
HOSE POFE STFUCIUF@ ...ttt ettt ettt et et e et e a e et e bt ene e en e eae e st et e enteenaeeneeaneas 249
Base AdAress SELOCHiON .................ccoiouiiiiiiee ettt 249
REGISIEE FUNCHIONS ...ttt ettt ettt ettt et et e et et e b e et e eneeseeennees 249
Registers for Simple Polled COMMUNICATIONS................cc.ccocuiieieieee sttt 249
SOUIIG UP TN POTE ... ettt et e ettt et ettt ettt et e et ettt ent e ne et reens 249
SENAING @ CRATACLEE ...ttt ettt et ebe e be e s e esbeete e seesseenseenseeteeseens 250
ReQAING @ CRAVACLET ...ttt ettt be s et eete e seesseenseesseeteebe e 250

Using the PMAC PC/STD to Interrupt the HOSt COMPULET........c.cccvevierieriieiieieeieeiesieereeie e sre e eae e e 250
What Signals Can Be USEd................cccociiiiiiiiiiiiiiit ettt 250
Selecting a Host Interrupt Line (PMAC PC OF Lit@)..........ccccccoevueiiniiiiiiiiiiiiieeeese sttt 252
Selecting a Host Interrupt Line (PMAC STD) ........cccoociiiiiiiiiiiiiieieeeeeet ettt 252
TRECFFUDE FURCHIONS ...ttt ettt et et ee e et e bt et e e ne e eneeeae e et e et e enteenaeeeeeeneas 252
N Y2177 0 PSSP UPTUSPRP 255
Finding an Open INerrupt LiRe.................coociiiiaiiaiie ettt ettt enae e eeeas 255
Hardware CORSIAEFALIONS. .................ccoiuiiiaiiee ettt ettt ettt ettt neees 255
TNitiQIIZING 1hE PC’S PIC ..ottt ettt ettt ettt ettt neeas 255
Tl 0 7 SO SRS 256
Setting up the Host ReGUESE FUNCIION ..............c..ccueeeeiiiieeeeieeeie ettt ettt staesreasseenseenseesseeseesseens 256
Initializing the PMAC PIC............ccccovoiieiiiiiee ettt ettt ettt se e et estseeseebeesbeenseensesnees 256
UNMASKING INLEFTUDES ...ttt ettt et et ettt ettt et et e e nae 256
USING ThE TNICETUPDES ...ttt ettt ettt et b e ettt ettt et e e e 257
ReStOFING PreviOUS VECIOFS .........cccocoiiiiiiiiiiiiii ittt 257

VMEDUS COMMUNICALIONS «..covvuieirentirentintenteeteeeteitentententeste st eteeueessestessensesteabesaeebeeaeensemsensesesaeebesbesteebesueeseeneennenne 257
Setting up The Base Address for PMAC VIME ...........cccoooi oottt nieens 257
AAFeSS MOGIfIEF ...........ooueiieiiee ettt et a ettt et e et e ekt e bt et e eseeeenee et ete e enes 258
Address Modifier DO NOt CAFE BILS............cccciiuiiiieeeee ettt ettt 259
PMAC BASE AAATESS BILS.........coiiieiieeeee ettt e ettt ettt ettt 259
TREEFTUPDE LEVEL ...ttt et ettt et et e et e et e et e bt e et e eaba e et e e et e e enneeeabeeenbeeenres 259
TRECFIUPE VECIOT INUIDET ...ttt ettt ettt seebeesbeenseenaeenees 259
Dual-Ported RAM BaSE AQAIESS ..........ccccccueiiiiieieeee ettt 259
DPRAM ERGDIE ...ttt ettt ettt 260
AAreSs BUS WAL .............cccooiiiiieie ettt ettt ettt ettt ettt e st e bt e bt e b e nae e neeeteeeaeene e enes 260
SAVING TRESE SCHUD VAIUES ..ottt bttt sttt 260

Setting up VME Dual-Ported RAM (OPtion 2V).....c.coeieiiieiieiieieeiesiiesie et ste sttt sae e e sseesseeseensesnsessaesseensens 261
SEAVEIG AGAFOSS ..ot ettt ettt ettt ettt et e e e et e bt ettt et et eene et ens 261
Talking to PMAC VME through the MailDoX REQISIEFS...........c.cccueiiuiiiiiiee ettt 262
Sending Commands to PMAC VME through Mailbox ReGISIErsS............ccccouvviioiiriianiiiieiieeieeee e 263
Reading Data from PMAC VME through MailboXx REZISIETS .............ccocuiceiiaieieeie et 264

Table of Contents xi



PMAC User Manual

EXQIPLE ...ttt ettt ta e te e be bt e ateete b ens 266
Dual-Ported RAM COMMUINICALIONS .....o.erveuieuirienieiinieteienteteieneeterent ettt seereste sttt sre e vt sre e euesre e ebesaeseerensenene 267
USES Of DPRAM ..ottt et ettt ekttt et b ettt sttt ne st 267
Using Multiple PMAC VME Cards on the VIME DUS ............ccccccevuiiiiiiiiiiiiteeeeeseee et 268
Data INLEGIItY CRECKS ........cc.oiuiiiiiiiiiiieeee ettt ettt ettt eae et 270
DATA GAIREFING ...ttt ettt ettt ettt ettt e ae e et e et e bt et e enteenaeeneeeeean 272
Real-Time Data Gathering through Dual-Ported RAM................c.cccooociioiiioiiiiaiieeeeeeeee e 273
Table of Contents

xii



PMAC User Manual

Table of Figures
Figure 1 PMAC Motion Controller Custom Gate AITay IC .........cccooieriiiiiieiieierieieeteeteeee e eie e saeseeesreesaeesseenseens 41
Figure 2 PMAC Encoder INPUL CITCUILIY .....ievieiieiieiieiieieeieseeseesteeteeetesetesseesteesseessesssesseessesssaessesssesssesseesssessesssenns 42
Figure 3 Encoder Digital Delay FIlter .........coocieiiieiiiieiieiee ettt et s seeaessaesneesseenseenseens 44
Figure 4 Using the PMAC Control Panel Analog (Wiper) INPUL.........cceeoiiiierieniieieieeieeee et 52
Figure 5 Address I-Variables. .........ccuieiieiirieiieiiee ettt sttt ettt et s et et enteesaessaessaensaenseensesnnesseenseanseanseans 55
Figure 6 PMAC Pulse and Direction OULPUL .........ccueeiuiiiiiieiieie ettt ettt eee e s eeeseeeeesneesseesneeneeeneeans 55
Figure 7 PMAC 1/T EXEEISION -...uveuieiietieie et etteet et et et eetesetesteesteenbeemeeeseeesee st aneeemseensesseeaseenseenseensesneesseesneanseanseans 57
Figure 8 Interpolated Encoder FEedback ..........ccuiiiiiiiiiieeeeee ettt s 59
Figure 9 Encoder Conversion Table PrOCESS .........couiiiiiiieieieieieierie sttt sttt ettt ettt see bt e e e neeneas 65
Figure 10 Configure Encoder Conversion Table Editing SCreemn...........ccueoiiiiiriniiiiieieiee e 66
Figure 11 Conversion Table Example for Time-Base ENtry .........cccoceviiviieiiiiinieieiccieceeseeeeie e 74
Figure 12 PMAC POSItION PrOCESSING ......eccvieiiieiieiieiiesiieieeiestestesteesteesesstesseesseesseessesssesssessesssesssesssesssesssesseessesssenns 79
Figure 14 Two Dimensional Compensation Table ............cccovieriiiiiiiiiiiieiieiceeestesie ettt ae e seee s esse e s e 82
Figure 15 PMAC COMMUEAtION. .......ceiuietierieeteeientieieeteeeteseaesseesseesseessesssesseesseesseasseanseassesseensesssesssesssesssesseesseessesnsenns 88
Figure 16 Hall Effect Waveform DIagram ............ccecieriieiiiiieiie ettt etesae e ssaesseensessnesseesseenseensenns 94
Figure 17 PMAC/PMAC?2 Direct MicroStepping SYSTEM ........ccuvevuirierieriieiieieetestenteensesssesaesaesseesseesesseesseessessseens 99
Figure 18 PMAC PID and NOTCH Servo Filter........c.oeiiiiiiiiiiieieee ettt 107
Figure 19 PMAC PID Servo Loop MOGIfIETS. ... ..ccuieiiriieiieieeie ettt ettt e 107
Figure 20 Extended Control Alogorithm Block Diagram............ccccoeieiieiiiiiiiiiieceeee et 111
Figure 21 Motor X Motion VariabIes .........c.oiiiiiieieieieiesiese ettt sttt st ettt et e e saesbeebeseeeneeneeneennens 127
Figure 22 Homing Search MOVE TTa@CIOTY ....cc.eiueruieuieieieieriesie sttt et ettete e te st e ste ettt ese et eseenteteseesbesaeeseeneeneenneeens 128
Figure 23 PMAC Coordinate DefINition ...........ccoieieieieieieieie ettt st ebe e e eens 140
Figure 24 PMAC Multitasking EXAMPIE ........c.cccviiiiiiiiieiiciicieeiesteseee ettt staestaeseesseessesnnenes 146
Figure 25 PMAC MEMOTY MAPPING .....ocvviriierrieiietieieeiesieesteeteesessesstesseesseessesssesssesssessessseessesssesssessessseessesssesssesses 149
Figure 26 Coordinate System Variables ..........c.cccveriieriieiiiiiiieieerie ettt ettt et e s e esbeesbeesseesaessaesseessesssessnenes 167
Figure 27 Automatic S CUrve ACCEIETAtION........c.eeiuieieeieeiieieeie e st stesee st et et e et e ete st esseenseeseesseessaenseensesnsesnnenees 168
Figure 28 Linear Mode Trajectories (SREet 1 0F 4) ....cuiviiiiiiieieeee et 170
Figure 29 Linear Mode Trajectories (SREet 2 O 4) ....eiviiiieieiiee ettt s 171
Figure 30 Linear Mode Trajectories (ShEet 3 0F4) ......ooiiiiiieeee e s e 172
Figure 31 Linear Mode Trajectories (SREet 4 0 4) ......ooii i e e 173
Figure 32 PMAC Circular INterPOlation ..........coueiuiiieieiieeieieiesie ettt st ettt ese et e e seesteebeseeebeeneeneeneans 178
Figure 33 PVT Mode Contouring (Hermite SPINE) ........cceririiiriiieieieieieie ettt 180
Figure 34 PVT SeZMENt SHAPES ....ccviiuiiiiiiitiiiieie ettt sttt ettt st sh e ettt et ea e s bt e eb e e b e enbeentessaeseeeneee 181
Figure 35 Splined Moves (All Segments at SAME TIME).......cccerieriiiriiicieiieriee ettt ere e ee e seesaeeseesaeseneeeas 181
Figure 36 CubiC SPlINE TIaJECLOTICS .. ..viivviiuiertieriietietestesteesteesteesesaesseesseesseessesseesseesseesseesseassesssesssessesssesssesssesseenses 182
Figure 37 PMAC Transition Point Moves (PVT Mode, Parabolic VeloCity).......ccccvecveriereeniieniieie e 182
Figure 38 Compensation — INSIAE COIMET ..........ccuieiuieiieieeiieieeie e seeste st ete et essee st e teesseessesseensaessaenseensesnsesnnenees 185
Figure 39 Compensation OULSIAE COIMET ..........ccuieierierieiieieeieeteseeseesseesteesesseesseesseeseesseassesssessaessaesseensesnsesssesses 186
Figure 40 Inside Corner Cutter COMPENSALION .........eecvreierrreriierieesiereeestestesteeseeseesseesseesseesseensesssesssessaessesssesssesssesses 187
Figure 41 Outside Corner Cutter Compensation Sharp ANGLE ........cc.ooiieiiiiiiiiiiereeee e e 188
Figure 42 Outside Corner Cutter Compensation — Shallow ANgle..........cccevieiiiiiiiinineeeeeeeeee e 188
Figure 43 Reversal in Cutter COMPENSALION .........eeitieitirieeeieiiieiteerteeteeee e steeste et eneeeneesseesteenteeneesseesseenseensesneesneesns 189
Figure 44 Failure When Compensation Extends Full Circle .........oooiiiiiiiiiiiiieeie s 190
Figure 45 Cutter Compensation Change of DIT€CHION .........eiuiiiiriiniiieiieriieeeie ettt e s 191
Figure 46 Cutter Compensation Change of Direction — NO INtersection...........ccevueeuerienieneiieniienienienceceee e 191
Figure 47 Removing Compensation — INSIde COIMET ...........ccvveevirieiiierieniieie e eeeeeeesteeteeseeesesaesseessaesseessesssessnesens 192
Figure 48 Removing Compensation — OUtSIAE COIMET .........ccveruierieieieiieiierieeieeeteeeeesteesseeseesesssesseessaesseesseessesssesees 193
Figure 49 Failures in Cutter COMPENSALION ........ceerveeriieieeieiiesteesteeteetestesseesseesseesseessesseessesssesssesssesseessesssesssesssesses 194
Figure 50 PMAC Motion Program RecalCulation .............ccuevieriierieiiiesie ettt ees 214
Figure 51 PMAC Motion Program RecalCulation .............cuevieriierieiiiesie ettt sne e eae e ees 219
Figure 52 Position FOIlOWING Parameters. ..........coeiiiiirieiieieeie ettt se e b et et see 220
Figure 53 PMAC PC/VME Custom Gate Array (DSPGATE) Encoder Functions ...........cccceeeeeveeiincencenceeee 231

Table of Contents xiii



PMAC User Manual

Figure 54 PMAC PC/PMAC Lite INtEITUPt SEIUCIUTE ....eveeviiuieiieieienie sttt sttt ettt s vt e e 253
Figure 55 PMAC STD INEITUPt STIUCLUTE .....eovetiiietiriieiieiieieie sttt sttt ettt sttt et ettt st be st ebeeneeneeeens 254
Figure 56 PMAC VME Communications FIOW DIiagram ........c..cccceceeveeieniinieninineneeieeeteentese et seeeeeens 269
Figure 57 Dual-ported RAM Data Gathering FOrmMaLt............cccecieiieiieiienieieeie et e 274

xiv Table of Contents



PMAC User Manual

Table of Contents

Xy






PMAC User Manual

INTRODUCTION

The Delta Tau Data Systems, Inc. Programmable Multi-Axis Controller (PMAC) is a family of high-
performance servo motion controllers capable of commanding up to eight axes of motion simultaneously
with a high level of sophistication. Through the power of a Digital Signal Processor (DSP), PMAC offers a
price-performance ratio for multi-axis control that was not previously available. Motorola’s DSP56001 is
the CPU for PMAC, and it handles all the calculations for all eight axes.

There are four hardware versions of PMAC: the PMAC PC, the PMAC Lite, the PMAC VME, and the
PMAC STD. These cards differ from each other in their form factor, the nature of the bus interface, and in
the availability of certain I/O ports. All versions of the card have identical on-board firmware, so PMAC
programs written for one version will run on any other version. The PMAC STD has a different memory
mapping of some 1/O.

Any version of PMAC may run as a standalone controller, or it may be commanded by a host computer,
either over a serial port or over a bus port.

Flexibility

As a general purpose controller, PMAC can serve in a wide variety of applications, from those requiring
sub-micro inch precision to those needing hundreds of kilowatts or horsepower. Its diverse uses include
robotics, machine tools, paper and lumber processing, assembly lines, food processing, printing, packaging,
material handling, camera control, automatic welding, silicon wafer processing, laser cutting, and many
others.

Configuration for a Task

PMAC is configured for a particular application by choice of the hardware set (through options and
accessories), configuration of parameters, and the writing of motion and PLC programs. Each PMAC
possesses firmware capable of controlling eight axes. The eight axes can be associated all together for
completely coordinated motion; each axis can be put in its own coordinate system for eight completely
independent operations; any intermediate arrangement of axes into coordinate systems is also possible.

The PMAC CPU communicates with the axes through specially designed custom gate array ICs, referred to
as DSPGATES. Each of these ICs can handle four analog output channels, four encoders as input, and four
analog-derived inputs from accessory boards. One PMAC can utilize from one to four of these gate array
ICs, so specifying the hardware configuration amounts to counting the numbers and types of inputs and
outputs. Up to 16 PMAC may be ganged together with complete synchronization, for a total of 128 axes.

PMAC is a Computer

It is important to realize that PMAC is a full computer in its own right, capable of standalone operation
with its own stored programs. Furthermore, it is a real-time, multitasking computer that can prioritize tasks
and have the higher priority tasks pre-empt those of lower priority (most personal computers are not
capable of this). Even when used with a host computer, the communications should be thought of as those
from one computer to another, not as computer to peripheral. In these applications, the ability of to run
multiple tasks simultaneously, properly prioritized, can take a tremendous burden off the host computer
(and its programmer), both in terms of processor time, and of task-switching complexity.

Introduction 1



PMAC User Manual

Manual Layout

This manual provides a quick step-by-step guide for the beginner setting up a typical system, as well as
explaining how to use the various features available on PMAC. It is organized by subject (safety, 1/O,
servos, trajectories, etc.) to allow quick access by the area of concern. The subjects are ordered by the
typical sequence of events to go through to set up a system.

The commands are organized in alphabetical order, and the variables, registers, jumpers and connectors are
in numerical order. There is extensive cross-referencing between the chapters. Any variable, command,
register, jumper, or connector mentioned in chapter 2 is covered in more detail in the appropriate reference
chapters.

Reading the chapters, there may be topics or depth of coverage not needed at the time. Simply skip these
chapters and proceed to a chapter that is of more immediate use.

This manual assumes the system integrator who is responsible for this installation knows the basics of
working in a Microsoft® Windows environment and has more than a basic understanding of electronics,
machine tool technology, and the PMAC motion control board. If any questions about a particular aspect
of the installation arise, do not attempt the task until a thorough understanding is gained. Feel free to
contact Technical Support at any time during installation. Refer to the Technical Support section below for
information on contacting our technical support department.

Conventions Used in this Manual
The following conventions are used throughout the manual:

<ENTER> Text inside arrows is used to represent keyboard keys or key
<CTRL+F4> combinations.
OPEN PROGRAM Mono-spaced is used for code listings.
Warning Information that, if not observed, may cause serious injury or death.
Caution Information that, if not observed, may cause damage to equipment or
software.
Note A note concerning special functions or information of special interest.
Safety Summary

The following are general safety precautions not related to any specific procedures and therefore may not
appear elsewhere in this publication. These are recommended precautions that personnel must understand
and apply during many phases of operation and maintenance.

Keep Away from Live Circuits

Do not replace components or make adjustments inside equipment with power applied. Under certain
conditions, dangerous potentials may exist when power has been turned off due to charges retained by
capacitors. To avoid casualties, always remove power, discharge, and ground a circuit before touching it.

Live Circuit Contact Procedures
Never attempt to remove a person from a live circuit with bare hands. To do so is to risk sure and sudden
death. If a person is connected to a live circuit, the following steps should be taken:

Call for help immediately.

De-energize the circuit, if possible.

Use a wood or fiberglass hot stick to pull the person free of the circuit.

Apply cardiopulmonary resuscitation (CPR) if the person has stopped breathing or is in cardiac arrest.
Obtain immediate medical assistance.

2 Introduction



PMAC User Manual

Electrostatic Sensitive Devices

Various circuit card assemblies and electronic components may be classified as Electrostatic Discharge
(ESD) sensitive devices. Equipment manufacturers recommend handling all such components in
accordance with the procedures described in Appendix A. Failure to do so may void THE warranty.

Magnetic Media

Do not place or store magnetic media (tapes, discs, etc.) within ten feet of any magnetic field.

Related Technical Documentation

Manual Number Manual Title

3A0-602204-363 PMAC and PMAC?2 Software Reference
3A0-602191-363 PMAC PC Hardware Reference Manual
3A0-602274-363 PMAC Lite Hardware Reference Manual
3A0-602244-363 PMAC STD Hardware Reference Manual
3A0-602199-363 PMAC VME Hardware Reference Manual
3A0-602812-363 PMAC Mini Hardware Reference Manual

Technical Support

Delta Tau is happy to respond to any questions or concerns regarding PMAC. Contact the Delta Tau
Technical Support Staff by the following methods:

By Telephone
For immediate service, contact the Delta Tau Technical Support Staff by telephone Monday through
Friday. Our support line hours and telephone numbers are listed below.

By Fax and E-Mail

Fax or E-Mail a request or problem to us overnight and we will deal with it the following business day.
Our Fax numbers and E-Mail addresses are listed below. Supply all pertinent equipment set-up
information.

Bulletin Board Service (BBS)

In addition, messages can be left on one of the Bulletin Board Services (BBSs). The BBSs are provided for
customers, distributors, representatives, and integrators, et al. Download and upload files and read posted
bulletins and Delta Tau newsletters. Messages may be left for anyone who is a member/user of the Bulletin
Board System(s). A modem and Procomm-Plus or similar communications program is all that is needed to
use this service. Many download-upload protocols such as Z-Modem are supported.

Delta Tau Data Systems, Inc. Technical Support
Phone: (818) 717-5656
Fax: (818) 998-7807
Email: support@deltatau.com
Website: http://www.deltatau.com

Delta Tau Europa AG
Rheinweg 4
CH-8200 Schaffhausen
Switzerland
PH: 41 (0) 52 625 20 88
FX: 41 (0) 52 625 44 82
Email: dteuropa@deltatau.com

Introduction 3



PMAC User Manual

PMAC Japan
3-6-7, Nihonbashi Ningyocho
Chuo-Ku
Tokyo 103
Japan
PH: 011-81-3-3665-6421
FX:011-81-3-3665-6888
Email: info@pmac-japan.co.jp
Website: www.Pmac-japan.co.jp

Introduction



PMAC User Manual

GETTING STARTED WITH PMAC

PMAC is a very flexible controller, suitable for many different types of applications, with different types of
hosts, amplifiers, motors, and sensors. As such, the card must be configured for a specific application,
using both hardware and software features, in order to run that application properly. (PMAC is shipped
from the factory with defaults set in hardware and software setup to be satisfactory for the most common
application types.) This section explains this configuration process for the inexperienced user.

Note:

The PMAC Setup (PS) program that is provided on the Executive program diskette
walks you through each of these steps in an interactive fashion. Use of that program
may enable some to skip this part of the manual.

By following this procedure, those unfamiliar with PMAC should be able to get the
card going quickly and reliably. Once more acquainted with the card, these tasks
may be performed in a different order and some of the checking steps may be
skipped to perform the installation more quickly.

The Getting Started section is a quick introduction to exercise the basic functionality
of the card. Each of the areas dealt with in this section is also covered in later
chapters in more detail.

Preparing the Card

First, inspect the card for any signs of damage. PMAC was thoroughly tested, burned in, and tested again
(including actually running motors), before it left the factory, but there always exists the (remote)
possibility of shipping damage. If any visible damage is seen, report this to Delta Tau immediately.

E-Point Jumpers

On the PMAC, there are many jumpers (pairs of metal prongs) called E-points (on the bottom board of the
PMAC STD they are called W-points). Some have been shorted together; others have been left open.
These jumpers customize the hardware features of the board for a given application. The PMAC was
shipped with jumpers configured for the needs of a typical user, so it can be started initially without
changing any jumpers. However, we will check a few jumpers here to make sure they are correct before
we start.

In the Hardware Reference manual for the specific version of the board is a map of the jumper locations
and a detailed description of each jumper’s function. Check the jumpers according to the instructions and
refer to the map. For more detailed instructions on changing a setting, refer to the detailed jumper
descriptions.

Card Number Jumpers

The PMAC was preset in the factory at card number (software address) 0 by the jumper configuration of
E40 - E43 on the PMAC PC, -Lite, and -VME which should all be ON (for the PMAC STD this is
controlled by DIP switches SW1-1 to SW1-4 which should all be OFF).

The card number is important for two reasons. First, if several cards are daisy-chained together on the
serial interface, it is the software addressing that determines which card should send data and receive
commands. Second, card 0 creates its own servo clock signal; all the other cards receive the servo clock
signal from the outside as a synchronizing signal. If they do not receive it, they will shut down.

Each set of synchronized PMAC cards must have one, and only one, card 0. For the initial setup with
PMAC, it is advised that the card be set at software address 0. If this must be changed, refer to the detailed
E-point description.

Getting Started with PMAC 5



PMAC User Manual

Communications Baud Rate Jumpers

The PMAC was shipped configured to be able to communicate either over the bus interface, or over the
serial interface at 9600 baud. The communications setting is controlled by jumpers E44-E47 on the PMAC
PC, Lite, and VME, and by DIP switches SW1-5 to SW1-8 on the PMAC STD.

If communicating over the bus port for the initial setup of the board, the settings of these jumpers is not
important. However, if the initial communications is over the serial port, make sure these jumpers enable
the serial port and provide the baud rate desired. (The Setup program and Executive program do have
automatic baud rate search algorithms.

As sent from the factory, E44 and E47 should be OFF, while E45 and E46 should be ON (on PMAC STD,
SW1-5 and SW1-8 should be ON; SW1-6 and SW1-8 should be OFF). PMAC can receive commands
from both the bus and serial ports. (Keep commands on the two ports from overlapping.) PMAC powers
up or resets in a mode to respond over the serial interface, but any character received over the bus interface
changes the mode so it will respond over the bus interface instead. A <CTRL-2> character received over
the serial port changes PMAC back to responding over the serial port. If the default jumper setting must be
changed, refer to the detailed E-point description.

PCbus Address Jumpers

PMAC PC and PMAC Lite are shipped from the factory set to communicate over the PC-bus at I/O address
528 decimal (210 hex). This setting is controlled by jumpers E91-E92 and E66-E71 located on the
rightmost of the lower-edge bank of jumpers (for this default address, E91-E92 are ON, E66 is OFF, E67-
E70 are ON, and E71 is off). Unless there is a conflict at this address, start using the first card at this
address. If the address must be changed, change the jumpers as shown in the detailed E-point descriptions
in the Hardware Reference manual.

STDbus Address Jumpers

PMAC STD is shipped from the factory set to communicate over the STD-bus at I/O address 61,584
decimal (F090 hex). This setting is controlled by jumpers W11 to W22 on the bottom circuit board (for
this default address, W11-W14 are OFF, W15-W18 are ON, W19 is OFF, W20-W21 are ON, and W22 is
OFF). Unless there is a conflict at this address, start using the first card at this address. If the address must
be changed, change the jumpers as shown in the detailed E-and W-point descriptions in the Hardware
Reference manual.

PMAC VME Interface Setup

The VMEDbus interface is set up by writing to PMAC registers through the serial port. If using the PMAC
VME, the initial development is done by communicating to the PMAC over the serial port from an IBM-
PC or compatible host. Follow the directions for using the serial port. Information for setting up the VME
bus interface is provided in the Writing a Host Communications Program section of this manual.

Encoder Jumpers

PMAC can take either non-differential (single-ended A, B, C) or differential inputs (A, A/, B, B/, C, C/)
from encoders. As shipped from the factory, the card is set up for non-differential encoders, individually
selectable by jumpers E18-E21 (not available on PMAC Lite or PMAC STD) and E24-E27. In this setup
with pins 1 and 2 of each E-point connected, the main signal line is pulled up to +5V with a 470 ohm
resistor, and the complementary lines are held at +2.5V with 1 kohm pull-up and pull-down resistors,
allowing them to be a steady comparison point for the signal lines. If using single-ended encoders, leave
the complementary lines (A/, B/, and C/) floating, so PMAC can hold them at 2.5V. Do not ground these
inputs.

6 Getting Started with PMAC



PMAC User Manual

If using single-ended encoders, have the jumpers set up for non-differential. If using differential encoders
with open-collector drivers on each channel (this is rare), have the jumpers set up for differential (pins 2
and 3 connected, providing an effective 500 ohm pull-up on the complementary line). If using encoders
with differential line drivers, the jumpers can be set either way, although it is preferable to have them set
for differential to balance the lines.

Note:

If not using a certain encoder input, it is better to leave it jumpered for single-ended
input; otherwise it is much more likely to pick up extraneous noise as count
information.

Analog Circuit Jumpers

On PMAC, the analog output circuitry can be optically isolated from the digital logic circuitry for noise
reduction purposes. PMAC is shipped from the factory with the circuits optically isolated (E85, E87, and
E88 OFF). It is recommended that the card be used in this configuration, but it is possible to jumper the
bus supply voltage (+/- 12V) over to the analog circuitry by putting these jumpers ON, defeating the optical
isolation, but eliminating the need for an separate power source.

Isolated Setup

With the optical isolation in effect, it is necessary to provide separate power supply to the analog output
circuitry. On the JMACH connectors, the A+15V analog supply should be brought in on pin 59, the A-15V
analog supply on pin 60, and the analog ground (AGND) on pin 58. (Jumper E89 should be ON, and
Jumper E90 should connect Pins 1 and 2 to permit this +15V to pull up the limit-switch and other optically
isolated inputs, which is required for PMAC to command motion. PMAC is shipped with E89 and E90 in
this configuration.) Most amplifiers provide supply outputs for this purpose. Alternatively, an external
supply may be used.

Non-Isolated Setup

The +12V and -12V bus supplies may be used to power the analog output circuitry by jumpering them
across to the analog side with E85 (+12V), E87 (Analog GND), and E88 (-12V); however, this defeats the
isolation and connects the whole computer electrically to the amplifier. This is not recommended and
should only be done for low power systems. To power the flags from the bus +12V supply as well, Jumper
E90 must be moved to connect Pins 2 and 3, so the +12V can pull up the limit-switch and other optically
isolated inputs.

Re-initialization Jumper

If the card powers up or resets with jumper E51 in its default state (OFF for PMAC PC, Lite, and VME;
ON for PMAC STD), PMAC will go through its normal reset cycle, utilizing the setup parameters (such as
I-variables that were previously saved in EAROM.

Standard and Option 5 PMACs

If a PMAC with the Standard or Option 5 CPU powers up or resets with E51 in the non-default state (ON
for PMAC PC, Lite, and VME; OFF for PMAC STD), PMAC will re-initialize as it resets, utilizing the
factory default parameters. Usually, this setting will be used only if the card software and parameters are
so confused that even basic communications is impossible. For startup, make sure this jumper is in its
default state.

Getting Started with PMAC 7



PMAC User Manual

PMAC with Options 4A, 5A, and 5B

If the jumper E51 is ON when a PMAC with the Option CPU executes its reset cycle, PMAC enters a
special re-initialization mode that permits the downloading of new firmware. In this mode, the PMAC can
communicate over the serial port only at a baud rate of 38,400, regardless of the setting of the baud rate
jumpers. Bus communications is also possible on PMAC with bootstrap version 1.01 and newer (most
PMAC have one of these versions). To verify the bootstrap version, type the command VER while
communicating to PMAC in bootstrap mode.

To bypass the download operation in this mode, send a <CONTROL-R> character to PMAC. This puts
PMAC in the normal operational mode with the existing firmware. Factory default values for I-variables,
conversion table settings, and bus addresses for DPRAM and VME are copied from the firmware section of
flash memory into active memory. The saved values of these values are not used, but they are kept in the
user section of flash memory.

For more information on PMAC bootstrap mode and downloading new firmware, refer to the PROM
Update Specification sheet included with the PROM.

Connecting PMAC to the Host Computer

Bus Connection

Caution:

With the board plugged into the bus, it will pull +5V power from the bus
automatically. In this case, there must be no external +5V supply, or the two
supplies will fight each other, possibly causing damage.

With computer power off, plug the PMAC into an open bus slot. The PMAC Lite requires one slot on the
bus, the PMAC PC requires 1-1/2 slots (permitting a half-size board in the next slot), the PMAC VME
requires two slots (one double slot), and the PMAC STD requires two slots for the 4-channel version, and
three slots for the 8-channel version.

Serial Port Connection

For serial communications, use a serial cable to connect the PC’s COM port to the PMAC serial port
connector (J4 on PMAC PC, -Lite, and -VME; J1 on PMAC STD’s bottom board). Delta Tau provides
cables for this purpose: Acc-3D connects PMAC PC or VME to a DB-25 connector; Acc-3L connects
PMAC Lite to a DB-9 connector; and Acc-3S connects PMAC STD to a DB-25 connector. Standard DB-
9-to-DB-25 or DB-25-t0-DB-9 adapters may be needed for a particular setup.

If using the Acc-26 Serial Communications converter, connect from the PC COM port to Acc-26 with a
standard DB-9 or DB-25 cable, and from Acc-26 to PMAC using the cable provided with Acc-26. Since
the serial ports on PMAC PC and PMAC VME are RS-422, this accessory can provide the level conversion
between RS-232 and RS-422 (communications is possible without this conversion, but at reduced noise
margin). Because the conversion is optically isolated, the accessory also helps prevent noise and ground
loop problems.

Note:

If the PMAC is not plugged into a bus, it will need an external 5V supply to power
its digital circuits. The +5V line from the supply should be connected to pin 1 or 2
of the JIMACH connector (usually through the terminal block), and the digital
ground to pin 3 or 4.

8 Getting Started with PMAC



PMAC User Manual

Installing the PMAC Executive Program

The initial communications to the card will be done with Delta Tau’s PMAC Executive program (PE) or
the accompanying PMAC Setup (PS) program, which are provided on a diskette (Acc-9D or 9W). The
diskette contains an Install utility to make this easy. Refer to the Executive Program section in the Pewin
User’s Manual, 3A0-0PEWIN-363, for details.

Establishing Host Communications

Either the Executive or Setup program can be used to establish initial communications with the card. Both
programs have menus that tell the PC where to expect to find the PMAC and how to communicate with it at
that location. If it is told to look for PMAC on the bus, also tell it the PMAC base address on the bus (this
was set up with jumpers on PMAC). If it is told to look for PMAC on a COM port, tell it that the baud rate
(this was set up with jumpers or switches on the PMAC). The Executive program (Acc-9W) does have an
automatic baud rate search to find out how the card is set up.

Instructions for setting up the communications are given in detail in the PMAC Executive for Windows
User’s manual, 3A0-O0PEWIN-363, p1 Setup Manual, 3A0-1SETUP-363, and P2 Setup Manual, 3A0-
2SETUP-363. Refer to those manuals for more explanation.

Once the program has been told where and how to communicate with PMAC, it will attempt to find PMAC
at that address by sending a query command and waiting for the response. If it gets the expected type of
response, it will report that it has found PMAC.

If it does not get the expected type of response after several attempts, it will report that it has not found
PMAC.

Terminal Mode Communications

Once the program reports that it has found PMAC, and a key has been pressed to escape the Found/Not-
Found window, the program should be in terminal emulation mode, so that the PC is acting as a dumb
terminal to PMAC. Check to see if a response is received by typing I10<CR> (KCR> means carriage
return, the Enter or Return key). PMAC should respond with a six or seven digit number. Now type
III<CR>. PMAC should respond with a beep, signifying an unrecognized command and the error-code
ERRO003 if the I-variable 16 is set to its default value of three. For more information on the error-codes,
refer to the explanation of [-Variable 16 in PMAC and PMAC2 Software Reference Manual.

Next, if satisfied that communications with the card is at a basic level, type a P <CR> (case does not
matter). This command requests a position. PMAC should respond with a number, probably a 0. Now
type a <CONTROL-F. Eight numbers (one for each axis) should appear since <CONTROL-F> requests
following error from all eight motors; some or all may be 0.

Note:

Even with encoder counts as read-out (no scaling) PMAC position is displayed with
fractional counts.

Connecting PMAC to the System

Once the basic operation of the card and the host communications have been established, it is time to
connect PMAC to the amplifier, motor, and feedback device.

Of course, most PMAC systems will have more than one motor attached. The process described here can
be repeated for multiple motors. As our example here, we will discuss the setup of motor #1. The
procedure is parallel for any other motors.

Getting Started with PMAC 9



PMAC User Manual

There are many combinations of amplifier types, motor types and feedback device types that can be
connected to PMAC, each requiring a somewhat different procedure. The easiest connection is that of a
DC motor and amplifier with an incremental encoder. That is what is described first here. Other options
will be discussed later, or in other sections.

Typically, connections are made to a terminal block that is attached to the JMACH connector by a flat
cable (Acc- 8D or 8P). The pinout numbers on the terminal block are the same as those on the JIMACH
connector for PMAC PC. Make sure PMAC is un-powered while the connections are being made. Leave
any loads disconnected from the motor at this point.

Machine Connectors

The primary machine interface connector is JIMACH1 (J8 on PMAC PC, J11 on PMAC Lite, P2 on PMAC
VME, J4 on PMAC STD top board). It contains the pins for four channels of machine I/O: analog outputs,
incremental encoder inputs, and associated input and output flags, plus power-supply connections. These
four channels can be used for two to four motors, depending on the configuration. Our example will use
this connector.

The next machine interface connector is IMACH2 (J7 on PMAC PC, P2A on PMAC VME, J4 on the
middle board of an 8-channel PMAC STD, not available on a PMAC Lite). It is essentially identical to the
JMACHI1 connector for two to four more axes. It is present only if the PMAC card has been fully
populated to handle eight axes (Option 1), because it interfaces the optional extra components.

Note:

While the numbering scheme for the pins on machine connectors on PMAC VME is
different from that for PMAC PC, the physical arrangement is the same, and PMAC
VME can use the same terminal numbers on the terminal block board.

Connecting the Analog Power Supply

The analog output circuitry on PMAC is optically isolated from the digital computation circuitry, and so
requires a separate power supply. This is brought in on the JMACH connector. The positive supply (+12
to +15 volts) should be brought in on the A+15V line on pin 59. The negative supply (-12 to -15V) should
be brought in on the A-15V line on pin 60. The analog common should be brought in on the AGND line on
pin 58.

Typically, this supply can come from the servo amplifier. Many commercial amplifiers provide such a
supply. If this is not the case, an external supply may be used. Even with an external supply, the AGND
line should be tied to the amplifier common.

As mentioned before, it is possible to get the power for the analog circuits from the bus, but doing so
defeats optical isolation. In this case, no new connections need to be made. However, be sure jumpers
E85, E87, E88, E89, and E90 are set up for this circumstance as explained previously in the Preparing the
Card section. (The card is not shipped from the factory in this configuration.)

Incremental Encoder Connection

Each JMACH connector provides two +5V outputs and two logic grounds for powering encoders and other
devices. The +5V outputs are on pins 1 and 2; the grounds are on pins 3 and 4. The encoder signal pins are
grouped by number: all those numbered 1 (CHA1, CHA1/, CHB1, CHCI, etc.) belong to encoder #1. The
encoder number does not have to match the motor number, but usually does. If the PMAC is not plugged
into a bus and drawing its +5V and GND from the bus, use these pins to bring in +5V and GND from the
power supply.

10 Getting Started with PMAC



PMAC User Manual

Connect the A and B (quadrature) encoder channels to the appropriate terminal block pins. For encoder 1,
the CHA1 is pin 25, CHB1 is pin 21. If using a single-ended signal, leave the complementary signal pins
floating. Do not ground them. For a differential encoder, connect the complementary signal lines (CHA1/
is pin 27, and CHB1/ is pin 23). The third channel (index pulse) is optional; for encoder 1, CHCI is pin 17,
and CHC1/ is pin 19.

Amplifier Connection

If PMAC is not performing the commutation for the motor, only one analog output channel is required to
command the motor. This output channel can be either single-ended or differential, depending on what the
amplifier is expecting.

Single-Ended Command Signal

For a single-ended command using PMAC channel 1, connect DAC1 (pin 43) to the command input on the
amplifier. Connect the amplifier’s command signal return line to PMAC AGND line (pin 58). In this
setup, leave the DAC1/ pin floating. Do not ground it.

Differential Command Signal

For a differential command using PMAC channel 1, connect DACI1 (pin 43) to the plus-command input on
the amplifier. Connect DAC1/ (pin 45) to the minus-command input on the amplifier. PMAC AGND
should still be connected to the amplifier common.

Sign and Magnitude Command Signal

If the amplifier is expecting separate sign and magnitude signals, connect DAC1 (pin 43) to the magnitude
input. Connect AENA1/DIR1 (pin 47) to the sign (direction input). Amplifier signal returns should be
connected to AGND (pin 58). This format requires some parameter changes on PMAC; refer to variable
Ix02 and Ix25 below. Jumper E17 controls the polarity of the direction output; this may have to be
changed during the polarity test.

Motor Commutated by PMAC

If using PMAC to commutate the motor, use two analog output channels for the motor. Each output may
be single-ended or differential, just as for the DC motor. The two channels must be consecutively
numbered, with the lower-numbered channel having an odd number (e.g., use DAC1 and DAC2 for a
motor, or DAC3 and DAC4, but not DAC2 and DAC3, or DAC2 and DAC4).

For motor #1 example, connect DACI1 (pin 43) and DAC2 (pin 45) to the analog inputs of the amplifier.
Do not worry about the phasing polarity yet; it will be checked later. If using the complements as well,
connect DAC1/ (pin 45) and DAC2/ (pin 46) the minus-command inputs; otherwise leave the
complementary signal outputs floating. To limit the range of each signal to +/- 5V, do so with parameter
1169, as discussed below.

Auxiliary Connections
There are several other lines for each motor that are important. These are:

Limit Signals (+LIMn and -LIMn)

PMAC has two inputs for each motor intended for the hardware overtravel limit switches. These lines must
actively be held low (to draw current through the LED in the optoisolator) in order for the motor to able to
move. This requires the use of normally closed (or normally conducting, if solid state) limit switches.
These inputs are direction sensitive; they only stop movement in one direction.

To implement limit switches, wire the -LIM1 input (pin 53) to one side (positive-voltage end if there is a
polarity) of the limit switch expected to be on the positive end of travel; wire the +LIM1 input (pin 51) to
the equivalent side of the limit switch expected to be on the negative end of travel. Wire the other side of
the limit switches (negative-voltage end if there is a polarity) to PMAC AGND (pin 58), unless keeping the
flags on the digital circuit side, isolated from the analog circuitry, in which case, wire the other side to
PMAC GND line (pins 3 and 4).

Getting Started with PMAC 11



PMAC User Manual

If not using limit switches (e.g., for a rotary axis, or for a preliminary test set-up), either tie the limits (pins
51 and 53) to analog ground (pin 58), or disable the limit function in software (refer to variable 1x25,
below).

Note:

The direction polarity of the limit pins is the opposite of what many would consider
intuitive. That is, the limit switch at the positive end of travel should be wired into
the -LIM input, and the limit switch at the negative end of travel should be wired
into the +LIM input. If the direction input of the encoder is ever changed, the wiring
of the limit switches must be changed as well. It is important to check and re-check
the direction sense of the limit inputs.

Amplifier Enable Signal (AENAx/DIRn)

Most amplifiers have an enable/disable input that permits complete shutdown of the amplifier regardless of
the voltage of the command signal. PMAC AENA line is meant for this purpose. If not using a direction
and magnitude amplifier or voltage-to-frequency converter, use this pin to enable and disable the amplifier
(wired to the enable line). AENA1/DIR1 is pin 47. This signal is an open-collector output and requires a
pull up resistor to A+15V. For early tests, this amplifier signal may be under manual control. The polarity
of the signal is controlled by jumper(s) E17. The default is low-true (conducting) enable.

Home Flag Signal (HMFLn)

A home switch can be wired between this pin (HMFLI is pin 55) and analog ground (AGND), or if
powered from the bus, to digital ground (GND). The switch may be normally open or normally closed;
open is high (1), and closed is low (0). The polarity of the edge that causes the home position capture is
programmable with Encoder I-Variables 2 and 3 (1902 and 1903 for HMFL1).

Amplifier fault signal (FAULTn)

This input can take a signal from the amplifier so PMAC knows when the amplifier is having problems,
and can shut down action. The polarity is programmable with I-variable Ix25 (1125 for motor #1) and the
return signal is analog ground (AGND). FAULTI is pin 49. With the default setup, this signal must be
actively pulled low for a fault condition. In this setup, if nothing is wired into this input, PMAC will
consider the motor not to be in a fault condition.

Software Setup for a Motor

PMAC has a large set of Initialization parameters (I-variables) that determine the personality of the card for
a specific application. Many of these are used to configure a motor properly. Once set up, these variables
may be stored in non-volatile EAROM memory (using the SAVE command) so the card is always
configured properly (PMAC loads the EAROM I-variable values into RAM on power-up).

Run the PMAC Executive Program on the PC. The value of an I- variable may be queried simply by typing
in the name of the I- variable. For instance, typing I900 <CR> causes the value of the 1900 to be returned.
The value may be changed by typing in the name, an equals sign, and the new value (e.g. I900=3<CR>).

Note:

Remember that if any I-variables are changed during this setup, use the SAVE
command before powering down or resetting the card, or the changes that were
made will be lost.

Alternatively, use the [-variable pages (under the Configuration menu) to view and change these variables
in a more user-friendly fashion.

12 Getting Started with PMAC



PMAC User Manual

Encoder |-Variables

Several I-variables are linked to particular encoder inputs, regardless of which motor the encoder is
assigned to. These control how the encoder signal is interpreted. They are numbered in the 900s: 1900-
1904 belong to Encoder 1, 1905-1909 belong to Encoder 2, and so on, to 1975-1979 belonging to Encoder
16. Initially we will only concern ourselves with the first encoder I-variable.

1900, 1905, 1910, Etc.

These control the decoding of the encoder signal into counts. Quadrature x1, x2, and x4, plus pulse and
direction decode, are all possible. PMAC is shipped with counterclockwise x4 decode set up (1900, 1905,
... = 7). Check this value for Encoder 1 (1900), and change it to 7, if it is different.

1901, 1906, 1911, etc.
Encoder digital filter disable — This controls whether the digital delay filter for noise spike elimination is
turned on. PMAC is shipped with the filters on (1901, 1906, ... = 0).

1902, 1907, 1912, etc.

Encoder position capture control — This controls which transitions of those associated encoder signals
trigger a position capture for that encoder. This must be used for homing moves. It can also be used for
other purposes. It specifies an edge of the encoder third channel, the edge of one of the encoder flags, or
the edge of a logically combined signal from both. If it uses a flag, also set the next variable. The default
value for this variable is 1 specifying the rising edge of the third channel.

1903, 1908, 1913, etc.

Encoder flag select control — This controls which of the encoder flags is used to trigger a position capture
if the previous I-variable has specified that a flag be to be used. Usually, this is set to 0 to specify the home
flag (HMFLn).

Motor I-Variables

PMAC can be attached to up to eight motors, called 1 to 8. A motor is defined in PMAC by setting up I-
variables that tell the I/O addresses of the input and output data (where to look for the feedback position,
and where to send the output command).

The I-variables for motor 1 are in the 100s (I1100-1184); for motor 2 in the 200s, and so on, to the 800s for
motor 8. As a shorthand to refer to a particular variable independent of a particular motor, the hundreds
digit is replaced with the letter x. For instance, Ix20 refers to 1120 for motor 1, or 1220 for motor 2, and so
on.

In this example, set up motor 1. In preparation, disable motor 1 by cutting power to the amplifier.

Motor Activation
The first thing to do in the software setup of a motor is to activate the software algorithms for the motor by
setting Ix00 to 1. For Motor #1, set 1100 to 1.

For PMAC-Commutated Motors Only

If using PMAC to commutate this motor, set up the commutation algorithm I-variables at this point. First,
set [101 to 1 to tell PMAC that motor 1 is to be commutated by PMAC.

Analog Outputs

Tell PMAC which pair of analog outputs are being used to command the amplifier. Do this by setting [x02
to the lower address of the pair of outputs that have been wired to the amplifier. To tell motor 1 to use
DACI1 and DAC?2 in the example, set 1102 to $C002 (49154).

Getting Started with PMAC 13



PMAC User Manual

Commutation Encoder

The encoder register used for commutation feedback must be specified with [x83. The default value of
Ix83 specifies Encoder 2x-1; e.g. ENCI for Motor 1, ENC3 for Motor 2, and ENC15 for Motor 8. The
actual value of I1x83 is the address of the phase position register for that encoder. For ENC1 (Motor 1), this
value is 49153 ($C001). If setting up a PMAC-commutated Motor 1 using ENC1, make sure 1183 is set
equal to 49153 ($C001).

Counts per Commutation Cycle

Next, determine the number of encoder counts per commutation cycle (per pole pair). 1900 defines an
encoder count here (1, 2, or 4 counts per line). For instance, if using a 2500 line per revolution encoder
with x4 decode and a 4-pole motor, the calculation would be: (2500 lines/rev) * (4 counts/line) / (2 pole-
pairs/rev) = 5000 counts/pole-pair.

If this value is an integer, set [170 to 1, and set [171 to the value. If the value is not an integer (for
example, a 6-pole motor and a 1024-line encoder), figure out the integer multiplier required to make it an
integer (usually 3). In this case, set 1170 to the multiplier, and 1171 to the multiplied integer value.

Angle Between Phases

If it is a 3-phase motor, set [172 to 85. This tells PMAC that the two phases are 85/256 (1/3) cycle apart.
This may be changed later to 171 if the polarity of the signals are wrong. If it is a 4-phase motor, set 1172
to 64 (64/256 = 1/4); the may be changed later to 192.

Phase Search Parameters

Now, if using a brushless DC (synchronous AC) motor, establish the parameters for the power-up phase-
finding search. Initially, set 1173 (the magnitude of the phase-finding output) to 8192 which is one-quarter
of full output. Next, set 1174 (the time for each half of the phase-finding routine) to five servo cycles.
These can be optimized later. Now make sure the induction motor parameters 1177 and 1178 are set to 0, so
PMAC will not think this is an induction motor.

Slip Gain and Magnetization Current

If using an AC induction motor, do not worry about power-up phase finding. Set 1173 and 1174 to 0. Also,
set [177 (magnetization current) and 1178 (slip gain). Initially, set 1177 to 3200 (1/10 full current) and 1178
to 2500 (for a low-slip motor) or 5000 (for a high-slip motor). These can be optimized later. The fact that

1178 is greater than zero prevents a phasing search, so [173 and 1174 are irrelevant.

For Motors Not Commutated By PMAC

If PMAC is not performing the commutation for the motor, set Ix01 to 0 so that the commutation routines
are disabled and only one analog output is used. In the example using motor 1, set 1101 to 0. This is the
default.

DAC Output Address

If not commutating from PMAC, Ix02 must be set to the register address of the single analog output used to
command the amplifier. Define the output register address for motor #1 using 1102. In order to send the
motor 1 output command to the DAC1 pin connected, set 1102 address $C003 (49155 decimal). This is the
default value. If the amplifier is expecting sign and magnitude input, set 1102 to $1C003 instead.

For All Types of Motors
Regardless of whether PMAC is commutating the motor or not, several variable values must be established
to tell PMAC where to get its servo loop information.

Position-Loop (Load) Feedback Address

Variable Ix03 defines the register to be used for the position-loop servo feedback. Typically, this reads a
processed encoder value from what is known as the encoder conversion table. To have motor 1 read the
processed input from Encoder 1, 1103 must be set to 1824 ($720). This should be the value preset at the
factory.

14 Getting Started with PMAC



PMAC User Manual

Velocity-Loop (Motor) Feedback Address

It is possible to have separate motor and load feedback encoders (this can allow good control even with
poor coupling). In this case, the sensor on the load is used to close the position loop; it is addressed by
Ix03 above. The sensor on the motor is used to close the velocity loop; it is addressed by 1x04. The vast
majority uses only one feedback encoder, whether it is on the motor, or on the load. For these, Ix04 will be
set to the same value as 1x03, addressing the same encoder. If only using one feedback encoder (ENC1) for
the Motor #1 in the example, make sure 1104 is set to 1824, just as 1103 is (this is the default).

Flag Address

Now, make sure the card knows where to look for its limit and home flag inputs, which is controlled by
1125 (remember that this is essential to command a move). To use +LIM1, -LIM1, and HMFL1, 1125
should be set to ($C000) 49152. This should be the value set at the factory. If not using overtravel limit
switches and the limit pins have not been wired to ground, set 1125 to $2C000 instead.

If the amplifier is expecting sign (direction) and magnitude command, disable the use of AENAn/DIRn as
an amplifier-enable line so it can be used for direction. For motor 1, set [125 to $1C000. If the limits
should be disabled, set 1125 to $3C000.

Reading Position

Now start checking on some basic motor functions. First, try to read motor position. With the Executive
program in terminal mode, type #1<CR> to address motor 1. Next, type PXCR>, and PMAC should return
a position value to the terminal screen. Now turn the motor shaft by hand and type P<KCR> again. The
reported position should have changed. (Alternately, use the F7 position reporting window of the PMAC
Executive program, which automatically polls position repeatedly.)

Repeat this as often as needed to verify that the position counting is working properly in both directions. If
it is not, check the following:

Is the encoder receiving power (+5V and GND)?

Are both quadrature channels connected properly?

If single-ended, are the complementary lines floating?
If single-ended, is E27 (or equiv.) in default setting?
If differential, has E27 been changed?

Is the motor activated (1100=1)?

Is 1103 set to the proper encoder input?

Is 1900 set for proper decode of the signal?

Can a signal be detected with a scope or voltmeter?

Changing Position Direction

If getting position feedback, but want to change the positive and negative directions, use 1900 (for ENC 1)
to change the direction sense (or exchange the Channel A and Channel B inputs). For example, if 1900 is 7,
changing it to 3 will change the direction sense.

Setting DAC Output Range

Check the output range by looking at 1169. This is the maximum value that can be written to the DAC,
whose full range is -32,768 to +32,767 (16 bits for +/- 10V). The default value of 1169 is 20,480, which is
about +/-6.25V. If the amplifier is expecting +/-10V and the full range is being used, set [169 to 32,767. If
the amplifier is expecting a differential signal with up to +/- 10V between the lines (each line is +/-5V), set
1169 to 16,384 or less.

Getting Started with PMAC 15



PMAC User Manual

Testing the Output and Polarity

Next, check the outputs and whether the output polarity matches the feedback polarity. To do this, provide
power to the amplifier. First, have PMAC disable its own outputs for the motor by typing K<CR> (kill).
Make sure that the motor has no load at this point so that uncontrolled motion cannot damage anything.
Now provide power to the amplifier.

PMAC-Commutated Motors

If PMAC is commutating this motor, get the polarity of the commutation feedback and the phased
commutation outputs to match. If the feedback polarity direction has been set to get it to count up when
moving in the proper direction, test whether the phasing polarity of the outputs as set by 1172 is correct.
(There is a 50% chance of having this correct.)

Permanent-Magnet Brushless Motors

If using a permanent-magnet brushless motor, check the polarity match by a technique that drives the motor
like a stepper motor. First, type O0<CR> (open-loop output of zero magnitude). Then type
I129=2000<CR>, which puts an offset on one of the phases, forcing current through it. Note the position
of the motor in this state. Next type I179=2000<CR>, which puts the same offset in the next phase.

Note the position again, and determine whether it counted up or counted down since the first check.

If the position counted down, 1172 should be set to 85 for a 3-phase motor, or 64 for a 4-phase motor. If
the position counted up, [172 should be set to 171 for a 3-phase motor or 192 for a 4-phase motor. Before
continuing, make sure to set the offset parameters 1129 and 1179 back to 0.

Induction Motors

If this motor is an induction motor, check the polarity by trying to run the motor with both polarities
(settings of [172), and seeing which produces satisfactory results. Type $<CR> to initiate the phasing of
the motor. Now type O10<CR> (open-loop output 10%) and see if the motor spins well (even if it does not
accelerate quickly). The position should be counting up. Next, kill the output temporarily with K<CR> and
change the output polarity by giving 1172 a new value (e.g. if it was 85, change it to 171). Now type
010<CR> again and observe the response. Kill the motor again and set 1172 to the value that gave decent
response. If there is no movement with either setting, check the troubleshooting guide immediately above.

Non-PMAC Commutated Motors

If PMAC is not doing the commutation for a motor, make sure that the servo feedback and output polarities
match. Do this by giving the motor an open-loop output command and seeing which way the position
counts. Type O10<CR> (open-loop output 10%). The position counter should count up. If it counts down,
there is a polarity mismatch. Now type O-10<CR>. The position counter should count down. If it counts
up, there is a polarity mismatch. If the counter does not count in opposite directions for the two tests, there
is an encoder and/or amplifier problem.

If there is a polarity mismatch, there will be a potentially dangerous runaway condition when trying to
close the loop. To fix this, change 1900 (e.g. from 7 to 3, or 3 to 7) to reverse the counting sense. This will
change the positive direction of the axis. Alternatively, exchange the motor leads instead.

If there is no movement, check the voltage on the output pin. It should be approximately 1V relative to
AGND. If it has not changed, recheck 1102, the analog power supply, and the limit-input configuration. If
the voltage has changed but there is still no movement, recheck the amplifier and motor connections.

Overtravel Limit Polarity

Make sure as the direction sense of the motor is verified the hardware position limit switches are wired into
the proper inputs. That is, the limit switch on the positive (counting up) end of travel must be wired into
the -LIMn input, and the switch on the negative end must be wired into the +LIMn input. If these are
reversed, the hardware limit functions will not work.

16 Getting Started with PMAC



PMAC User Manual

Setting up the Servo Loop

Warning:

Make sure the motor is in open-loop mode before restoring the proportional gain.
Otherwise, it may lurch to an old commanded position.

This is enough to see if the motor is working. Make sure the motor can run free (preferably no plant
attached at this point) and that things can be stopped quickly so that no damage can be caused. Type
K<CR> to disable the output(s), then restore the proportional gain by setting 1130 (try 2000 initially for
very fine resolution systems, 50,000 for very coarse systems, or somewhere in between for medium
resolution).

Closing the Loop

Now close the motor’s servo loop by typing JKCR> (the jog-stop command, which brings the motor into
zero-velocity position control). It should hold position at this point, resisting attempts to move it away, at
least gently. If it runs away, there is a mismatched polarity; re-run the above polarity tests. If there is loss
of control or the motor starts behaving wildly, type K<CR> to disable the motor.

Weak Loop

If it does not resist being turned, or does so very weakly, try increasing proportional gain (I1130). Try
doubling it until there is some reasonable stiffness, but do not try yet to get the maximum possible stiffness.
The tests described below will help do that.

Oscillations
If the motor has a tendency to oscillate at low to moderate frequency, there is inadequate derivative gain.
Try doubling 1131 and see if the oscillation goes away.

Buzzing
If the motor has a tendency to oscillate at high frequency (a "buzz"), there is too much proportional gain, or
maybe too much derivative gain. Try lowering 1130 (or I131) until the buzz disappears.

Extensive Servo Loop Tuning

The PMAC Executive Program for PC-compatibles has a large section devoted to assisting the user in
optimizing the servo loop parameters for a motor. It allows performance of step moves and profiled moves
and the response is plotted to the screen with key statistics calculated, so that easy choices may be made
about changing gains. This process is documented in detail with examples in the manual for the PMAC
Executive Program.

In addition, there is an auto-tuning feature that lets the Executive program make the decisions about what
the gains should be. The program excites the system, evaluates the response, and calculates the gains
necessary to achieve the desired response. Remember that precise tuning cannot be done until the load has
been connected to the motor. Our goal at this point is simply to get the motor moving reasonably well
without a load.

Jogging Moves

With these two parameters (1130 and 1131) at reasonable levels, good performance in moves should be
achieved. Try a jog move first. Before doing the move, set up the jog speed (1122, in counts/msec)
acceleration time (1120, in milliseconds), and S-curve time (1121, in msec) to desired values (to be safe, use
low speed and high acceleration times at first). Now type JXCR>— the motor should turn in the positive
direction.

Getting Started with PMAC 17



PMAC User Manual

Type J<CR> and the motor should stop. If it takes a while to stop, either slow down the move next time or
increase 1130 to reduce the error. J-<CR> should cause the motor to turn in the negative direction, and
J<CR> should stop it again. J=<CR> should cause the motor to jog to the last pre-jog position and stop
there automatically.

Optimizing Jog Performance
If your jog speed seems slower than desired, one or more of PMAC automatic safety limit parameters may
have been used, particularly if there is a fine-resolution system. The first of these is [119, which is the

maximum permitted motor jog acceleration, expressed in counts/msec . The default value is quite low for
most systems. Increase it several orders of magnitude for now to get it out of the way.

Velocity Feedforward Gain

When jogging at constant speed, monitor following error and increase velocity feedforward gain (1132) to
minimize the following error. If there is a current-loop amplifier, set 1132 equal to 1131 or just slightly
greater.

Integral Gain

To eliminate steady-state error, bring in some integral gain. Set 1133 to 10,000. This should provide weak
integral action, but enough to eliminate steady-state error over a few seconds. Now try increasing 1133
some more to get quicker action. It should be safe to raise it in increments of 10,000 to get the performance
needed (quick restoration of commanded position without introducing oscillation). If there is oscillation,
reduce the integral gain until the oscillation is eliminated.

If there is no effect from adding integral gain, check the integration limit parameter 1163. If this is low
(100,000 or less), it will limit what integral gain can do. If this is the problem, set this parameter to its
default value by typing I163=*<CR>.

Power-Up Mode

For future power-up/reset cycles, set 1180 so power up is done in the mode wanted. If [180 is zero, Motor
#1 will power up "killed" (OV output, AENA signal false). It will not attempt to control until a servo
command is given (usually J, A, or <CTRL-A) for a non-PMAC-commutated motor, or a § command for a
PMAC-commutated motor. This I-variable must be stored in non-volatile memory (with the SAVE
command) to be effective at the next power-up/reset cycle.

Homing Search Move

To do a homing search move, first check the position-capture [-variables (1902 and 1903 in the example).
Make sure they are set up to capture the position where the home position should be. With a bare motor,
only use the third channel of the encoder. Set 1902 to 1 to force a capture on the rising edge of the third
channel.

Next, set the homing speed with 1123 (in units of counts/millisecond). Changing the sign of 1123 changes
the direction of the homing move. Homing accel/decel is controlled by 1120 and 1121 (which also affect
jog moves). Now command a homing move with the HM command, and the motor will move as specified
until the proper signal edges is found, then decelerate to a stop and come back to the position of the trigger,
plus or minus an offset amount determined by 1126.

18 Getting Started with PMAC



PMAC User Manual

Setting up a Coordinate System

In order to run a program on PMAC, first define a coordinate system. These motors execute a program.
For this example, set up coordinate system 1.

Defining an Axis

Type &1<CR>. This will address coordinate system 1. (Confirm which coordinate system is addressed by
typing &<CR> and PMAC will return the number of the currently addressed coordinate system.) Next, type
#1->X<CR> (the arrow between 1 and X is comprised of the minus sign and the greater- than symbol,
there should be no space before the arrow). This matches the X axis of coordinate system 1 (&1) to motor
1. As itis here, one unit in X is one encoder count.

Scaling an Axis

To scale the X units, place a scale factor before the X in the definition statement. (i.e., this axis definition
statement is what defines the scale of the user position units.) For instance, if using a 500-line encoder on
the motor, with 4X decoding (refer to [900), and a 5-pitch (five turns per inch) screw converting to linear
motion, yielding 10,000 counts/inch, use the command #1->10000X to define the X axis in inches.

Multiple Axes

Caution:

Every motor in the coordinate system must have its limit inputs held low in order for
any program to run in that coordinate system, even if the program does not use that
motor.

If another motor is set up, include it in this same coordinate system. For instance #2->10000Y matches
the second motor to the Y-axis in this coordinate system at 10,000 counts per user unit. This is about all
there is to defining a coordinate system. If a motor is assigned to a coordinate system, make sure that both
its limits are held low, either through switches or directly to AGND (nothing else for that motor needs to be
connected).

Define the time units to work in (1190 for coordinate system 1). This parameter holds the number of
milliseconds in the time units being used. For instance, to specify the velocity in user position units per
second (e.g., inches/sec), set 1190 to 1000 (this should be the default). To work in minutes (e.g. rpm), set
1190 to 60,000.

Writing a Motion Program

With the coordinate system(s) defined, begin to write a program. Open a program buffer for entry by
typing OPEN PROG 1<CR>. and CLEAR<CR> to erase anything that might exist in the buffer. Now the
program lines entered will be held in program buffer 1. A program to do a simple back-and-forth
trapezoidal move will look like this (with comments):

LINEAR ; Linear interpolation mode
ABS ; Absolute move mode

F2.00 ; 2 inches/sec

X10.0 ; move to X = 10 inches
X0.0 ; move back to X = 0 inches

If the X-axis is defined with a 1-to-1 scaling {#1->X}, this program would only cause a 10 count move
over 5 seconds {and back}, which might not be noticeable.

The acceleration time for the moves is controlled by 1x87, and the S-curve portion of that acceleration time
is controlled by Ix88 (for the coordinate system x that is running the program).

Getting Started with PMAC 19



PMAC User Manual

When finished entering the program, type CLOSE <CR> to exit the program buffer. To enter a new
program in the place of the one in the buffer, open the buffer, type CLEAR, and enter the new program. An
example follows:

OPEN PROG 1

CLEAR ; erase old program
F2.36 ; 2.36 in/sec

X5.346 YO ; first side of square
X5.346 Y5.346 ; second side

X0 Y5.346 ; third side

X0 YO ; fourth side

CLOSE

Using the Program Editor

It is easiest to type programs using the program editor in the PC Executive (terminal) Program. Here the
program can be changed at will, and then it can be downloaded to the card by selecting the Download
Editor to PMAC menu option, or by hitting <ALT-D> when the editor screen is displayed. Include in each
program space the lines to open the buffer, to clear out the old program, and to close the buffer at the end.

Executing a Motion Program

Starting the Program

With a program held in PMAC buffer, it is easy to run. To run program 1, make sure the coordinate system
to run the program is addressed (&1 in this case), type BL<KCR> (point to beginning of program 1), then
type RKCR>. The B command with a number makes the specified program the working (operative)
program for the coordinate system. The R command will start execution of the program.

Stopping the Program

There are several ways to stop a running program. Q<CR> (Quit) stops the program at the end of the
presently executing move. A<KCR> (Abort) causes the motors in the coordinate system to start decelerating
immediately. Both of these commands leave the program ready to execute (run or step) the next line in the
program. To re-start the program at the beginning, type BKCR> (the B command without a number operates
on the current working program). This resets the program counter to the top (completion of a program
automatically resets the counter to the top).

Remember that the motor velocity and acceleration limits (Ix16 and Ix17) are in effect for all motors in the
coordinate system. If a motor is asked to exceed one of these limits, all motors in the coordinate system are
slowed to honor the limit. If the programmed moves seem slower than what as expected, this could be the
cause.

Refining the Program

Few times will the program work exactly right the first time. Go through an iterative process of editing,
downloading, executing, and evaluating. This is one of the key reasons for using the program editor. The
required changes can be made in the editor without re-typing the entire program. Then, the entire revised
program can be downloaded to PMAC. This process is why it is a good idea to have the CLEAR command
immediately after the OPEN command: it erases the old version in PMAC so the new version can replace it.

There is no reason in this process to upload the program from PMAC. The program editor maintains its
copy even after the download, and it keeps comments with it. The only reasons to upload a program are to
confirm that it is downloaded properly, and to restore a program that was lost by the host computer.

20 Getting Started with PMAC



PMAC User Manual

Writing and Executing a PLC Program

PLC programs are useful for doing monitoring and calculations in background, asynchronously to any
motion programs. They are written much like motion programs, and have much of the same language
(although no motion commands). There can be up to 32 PLC programs, which can be enabled and disabled
individually. The enabled programs cycle through continually in background, as time allows.

Start by writing a simple PLC program that increments a variable each time through. Using either
Terminal mode or (preferably) the Program Editor in the Executive Program, type the following:

CLOSE

OPEN PIC 1

CLEAR

P1=P1l+1

CLOSE

If using the Editor, download what has been written to PMAC by selecting the Download Editor to PMAC
menu option, or by typing <ALT-D>.

Now, see if the program got to PMAC properly. From the Terminal mode, type LIST PLC 1<CR>. The
following response should appear:

P1=P1+1

RETURN

PMAC adds a RETURN statement {short form: RET} automatically to the end of a program when it gets a
CLOSE command. The OPEN, CLOSE, and CLEAR commands are not actually part of the program; they
are on-line commands to control the program buffer operation.

Starting the PLC Program

Now type I5=2<CR>. This permits PLCs 1 to 31 to be enabled. Next, type ENABLE PLC 1. This
should actually start operation of the PLC program. The variable P1 should be incrementing steadily.
Verify this by repeatedly typing P1<CR>. The reported value should be greater each time. If it is not,
recheck the value of I5, the listing of the program, and try re-enabling the PLC.

Other things can be happening in between cycles of the PLC program. Reset the value of P1 by typing
P1=0<CR>. PMAC will execute this command, and then PLC 1 will start incrementing the value again
from that point.

Motion programs can be run simultaneously. Re-run the motion program and notice that P1 keeps
incrementing during the operation of the motion program.

Stopping the PLC Program
To halt operation of the PLC program, type DISABLE PLC 1. Note that repeated queries of P1’s value
yield the same answer. ENABLE PLC 1 will re-enable operation of the program.

Each time a PLC program bufter is opened for editing, the program is automatically disabled. Closing the
buffer does not automatically re-enable the program. When working on a PLC program with the program
editor, follow the CLOSE command with an ENABLE PLC 1 command, so that this command does not
need to be re-typed every time the edited PLC program is downloaded to PMAC.

Getting Started with PMAC 21



PMAC User Manual

22

Getting Started with PMAC



PMAC User Manual

PMAC FEATURES

Executing Motion Programs

The most obvious task of PMAC is executing sequences of motions given to it in a motion program.
When told to execute a motion program, PMAC works through the program one move at a time,
performing all the calculations up to that move command (including non-motion tasks) to prepare for
actual execution of the move. PMAC is always working ahead of the actual move in progress, so it can
blend properly into the upcoming move, if required. Refer to the Writing Programs for PMAC section of
this manual for more details.

Executing PLC Programs

The sequential nature of motion program suits it well for commanding a series of moves and other
coordinated actions; however these programs are not good at performing actions that are not directly
coordinated with the sequence of motions. For these types of tasks, PMAC provides the capability for
users to write PLC programs. These are named after Programmable Logic Controllers because they
operate in a similar manner, continually scanning through their operations as fast as processor time
allows. These programs are very useful for any task that is asynchronous to the motion sequences. Refer
to the Writing Programs for PMAC section of this manual for more details.

Servo Loop Update

In an automatic task that is essentially invisible to the PMAC user, PMAC performs a servo update for
each motor at a fixed frequency (usually around 2 kHz). The servo update for a motor consists of
incrementing the commanded position (if necessary) according the equations generated by the motion
program or other motion command, comparing this to the actual position as read from the feedback
sensor, and computing a command output based on the difference. This task occurs automatically without
the need for any explicit commands. Refer to the Closing the Servo Loop section of this manual for more
details.

Commutation Update

If PMAC is requested to perform the commutation for a multiphase motor, it will perform commutation
updates automatically at a fixed frequency (usually around 9 kHz). The commutation, or phasing, update
for a motor consists of measuring and/or estimating the rotor magnetic field orientation, then apportioning
the command that was calculated by the servo update among the different phases of the motor. This task
occurs automatically without the need for any explicit commands. Refer to the Setting up PMAC
Commutation section of this manual for more details.

Housekeeping

PMAC regularly and automatically performs housekeeping tasks that make sure the system is in good
working order. These tasks include the safety checks, such as following error limits, hardware overtravel
limits, software overtravel limits, and amplifier faults. They also include the update of the watchdog
timer.

If any problem in hardware or software keeps these tasks from executing, the watchdog timer will trip,
and the card will shut down. Refer to the Making Your Application Safe section of this manual for more
details.

Communicating With the Host

PMAC can communicate with the host at any time, even in the middle of a sequence of motions. PMAC
will accept a command, and take the appropriate action (putting the command in a program buffer for
later execution), providing a data response to the host, starting a motor move, etc. If the command is
illegal, it will report an error to the host.

PMAC Features 23



PMAC User Manual

Task Priorities

These tasks are ordered in a priority scheme that was optimized to keep applications running efficiently
and safely. While the priority levels are fixed, the frequency at which various tasks are performed is
under user control. Refer to the Setting up PMAC Commutation and Closing the Servo Loop sections of
this manual for more details.

24 PMAC Features



PMAC User Manual

TALKING TO PMAC
Basic Aspects of Communicating with PMAC

This section covers basic aspects of communicating with PMAC from a host computer. At this level,
there is a program for the host computer that processes these communications. The PMAC Executive
Program (Accessory 9D) is the most common of these programs.

If there will be a host computer in the final application, communications routines must be written for the
host computer as part of the front-end software for the application. That is a more advanced topic, and it
is covered in the Writing a Host Communications Program section of this manual. This section
concentrates on the actual communications.

At a basic level, PMAC can communicate to a host dumb terminal, either over the serial (RS-422) or the
parallel (bus) interface. The communications mostly consists of lines of ASCII characters sent back and
forth. Of course, most of the time the host will be a computer with considerably more intelligence, but at
root it will talk to the card as if it were a terminal. The PMAC Executive PC program has a terminal
emulator mode to do this directly.

Communications Ports

Each version of PMAC can communicate either over its serial port or its parallel (bus) port. The main
difference between the different hardware versions of PMAC is the type of bus interface: PC, STD, or
VME.

Note:

It is important not to command PMAC simultaneously from both ports; the
characters can be intermixed and the commands garbled.

Active Response Port

Either the serial port or the bus port is the active response port, where PMAC will send its responses to
the commands. PMAC powers up/resets with the serial port as the active response port. However, any
command received over the bus port makes the bus port the active response port (this happens
immediately in most bus-host applications, so is transparent to the user). Further responses are returned
to the bus port.

A subsequent command from the serial port does not automatically make the serial port the active
response port again, so it is possible that PMAC will respond to a command over the serial port by
sending data to the bus port. This will probably confuse both host computers. To make the serial port the
active response port again, you must send a <CTRL-Z character to PMAC.

Caution:

If using a bus-based system with an auxiliary computer over the serial port to do
some diagnostic work, such as data gathering or tuning with the PMAC Executive
Program, it is important to stop bus communications.

Serial Interface
The hardware configuration for the PMAC serial interface port is slightly different on different versions
of PMAC.

Talking to PMAC 25



PMAC User Manual

Hardware Configuration PMAC PC, -VME

PMAC PC and -VME have an RS-422 interface on a 26-pin IDC connector (J4). This port connects
directly to a standard DB-25 connector on a host computer with a straight-across 26-strand flat-cable
connector. For a DB-9 host connector, a standard 9-to-25-pin adapter should be used on the other end of
the cable.

PMAC Lite

PMAC Lite has an RS-232 interface on a 10-pin IDC connector (J4). This port can connect directly with
a standard DB-9 connector on a host computer with a straight 10-strand flat-cable connector. For a DB-
25 host connector, a standard 25-to-9-pin adapter should be used on the other end of the cable. For an
RS-422 interface, the Option 9L piggyback board can be added. This provides a DB-25 connector for the
RS-422 port. The RS-232 port is disabled.

PMAC STD

PMAC STD has both an RS-232 interface on a 5-pin SIP connector (bottom board J1) and an RS-422
interface on a 20-pin mini-IDC connector (bottom board J3). Only one of these interfaces should be
connected at any one time.

PMAC 1.5 STD

PMAC 1.5 STD has an RS-232 interface on a 5-pin SIP and a 10-pin IDC connector; the 10-pin connector
can connect directly with a standard DB-9 connector on a host computer with a straight-across 10-strand
flat cable. It also has an RS-422 interface on a 26-pin IDC connector, which can connect directly with a
standard DB-25 connector on a host computer with a straight-across 26-strand flat cable.

RS-422 vs. RS-232

The PMAC RS-422 serial interface is very similar to the RS-232 interface that most PCs have. RS-422
has differential 0 to +5V signals, whereas RS-232 has single-ended -10 to +10V signals. The PMAC RS-
422 receivers accept inputs from RS-232 well, with significant noise margin. Most PCs’ RS-232
receivers can read the PMAC RS-422 signals quite well, but noise margin tends to be minimal, and
communications in this direction can be garbled, especially in the presence of PWM amplifiers. For
robust communications to an RS-232 host, PMAC Acc-26 provides conversion capabilities and optical
isolation. Of course, direct connection to a host RS-422 port can be made.

Baud Rate

The serial-port baud rate is determined at power-up by jumpers E44-E47 (PMAC PC, Lite, 1.5 STD,
VME) or switches SW1-1 to SW1-4 (PMAC STD), and the PMAC master clock rate. Serial baud rate
can be set up to 76,800 baud on a 20 or 40 MHz board, up to 115,200 baud on a 30 or 60 MHz board. If
E44- E47 are all ON (SW1-1 to SW1-4 all OFF), the serial port is disabled.

Signal Lines

Since serial interfaces vary from system to system, PMAC provides a simple but flexible interface. In
addition to the signal ground, only four lines are required (eight counting the complements): data-
transmit, data-receive, clear-to- send, and ready-to-send. These pairs of lines may be exchanged through
jumpers (E9-E16), if necessary, to match the host configuration. PMAC simply shorts together the DSR
and DTR lines to provide an automatic return signal on this strobe for those systems that require it.

Data Format

The serial communications data format is eight bits, one start bit, one stop bit, with no parity if jumper
E49 is ON, or odd parity if jumper E49 is OFF (opposite for PMAC STD). PMAC can echo back to the
host each character it receives from the host; the <CTRL-T command toggles this function on and off.
No XON/XOFF handshaking is supported. Line-by-line checksums can be computed. Variable 14
controls this function.

26 Talking to PMAC



PMAC User Manual

PC Bus Interface

The PC bus interface for the PMAC PC and the PMAC Lite can work with just the PC-XT bus (eight bits
wide). The additional AT-bus connecter is provided, but it can only be used to access the additional AT
interrupt lines. One PMAC occupies 16 addresses in the PC’s port I/O space. The base address of this
space is determined by jumpers E91-E92 and E66-E71. Of course, the address should be chosen so as not
to conflict with anything else in the PC. The factory default setting is for address 528 (210 hex). The
Jumper Description section contains a thorough mapping of a typical PC’s I/O mapping and likely empty
addresses.

Characters are passed one at a time through one of these addresses. The software to support this interface
is very similar to that for the serial port. Of course, characters can be sent much faster over the bus port.
The Option 2 dual-ported RAM board provides 8k x 16 bits of shared memory for passing data back and
forth between PMAC and the host computer. The data path for this memory is 16 bits wide, and so
supports the AT bus directly.

STD Bus Interface

The bus interface for the PMAC STD works virtually identically to the PC bus interface on the PMAC PC
or Lite. The interface can work with either the original 8-bit STD bus, or the new 32-bit STD 32 bus. It
occupies 16 words in the I/O space of the host computer. The base address of these 16 words is
determined using jumpers W11-W22 on the baseboard of the PMAC STD. The factory default setting is
for address 61,584 (F090 hex). The Jumper Description section contains a thorough mapping of a typical
STD bus computer's I/O mapping and likely empty addresses.

The new PMACI1.5 STD does not support the 32-bit features of STD 32, although it will work in either
STD 80 or STD 32 buses with 16-bit addressing. On the PMAC 1.5 STD, the DIP switch bank S1-1 to
S1-12 controls the address of the board on the STD bus.

VME Bus Interface

The PMAC VME interfaces to the VME bus as a slave device. Commands and responses are sent
through a set of 16 8-bit mailbox registers. Binary data can be passed through the on-board Option 2V
dual-ported RAM (8k x 16 bits). The data bus is eight bits wide for the mailbox, and 16 bits wide for the
DPRAM. The address bus can be configured for 16, 24, or 32 bits. The address and nature of this
interface must be set up through the serial port by writing to registers in PMAC, saving the values to non-
volatile memory, and resetting the card. Typically, for this model of board, the initial setup and
development is done through the serial port with an IBM-PC or compatible, using the supplied PMAC
Executive program. Instructions for setting up the VME bus interface are given in the Writing a Host
Communications Program section of this manual.

Giving Commands to PMAC

PMAC is fundamentally a command-driven device, unlike other controllers that are register driven.
PMAC will do things if it is issued ASCII command text strings. Generally, PMAC provides information
to the host in ASCII text strings.

PMAC Processing of Commands

When PMAC receives an alphanumeric text character over one of its ports, it does nothing but place the
character in its command queue. It requires a control character (ASCII value 1 to 31) to cause it to take
some actual action. The most common control character used is the carriage return (KCR>; ASCII value
13), which tells PMAC to interpret the preceding set of alphanumeric characters as a command and to
take the appropriate action.

Talking to PMAC 27



PMAC User Manual

Note:

If using the Option 2 dual-ported RAM, command PMAC by writing values to
specific registers in the DPRAM. PMAC can provide information by placing
binary values in these registers, but the ASCII commands must have been sent
already to PMAC that cause it to take the proper action when these values are
received, and to place the values in these registers.

Control Characters

Other control characters cause PMAC to take an action independent of the alphanumeric characters sent
before it. These control characters can be sent in the middle of a line of alphanumeric command
characters without disturbing the flow of the command. PMAC will respond first to the control-character
command, storing the text string until the <CR> character is received.

Command Acknowledgement

The exact nature of the PMAC acknowledgement of commands and its data response is controlled by I-
variables 13, 14, and 19, with 13 as the most important. IfI3 is 1, PMAC acknowledges a valid
alphanumeric command by sending the line-feed (KLF>; ASCII value 10) character back to the host. If
I3 is 2 or 3, it uses the <ACK> character (ASCII value 6) instead. If I3 is 0, it does not provide any
acknowledging character. Regardless of the setting of I3, PMAC responds to an invalid command by
returning the <BELL> character (ASCII value 7).

When working interactively with PMAC in terminal mode, it is often nice to use the <LF> as
acknowledgement because it spaces commands and responses automatically on the terminal screen.

Data Response

When the command received requires a data response, PMAC will precede each line of the data response
with a line feed character if I3 is set to 1 or 3. It will not do so if I3 is set to 0 or 2. PMAC will terminate
each line of the data response with a carriage return character regardless of the setting of 13. For these
commands, the command acknowledgement character — <LF> or <ACK> — is sent after the data
response, serving as an end-of-transmission character. For computer parsing of the response, the <ACK>
should serve as a unique EOT character.

Data Integrity

Variable 14 determines some of the data integrity checks PMAC performs on the communications, the
most important of which is a line-by-line checksum. The Writing a Host Communications Program
section covers this feature in detail.

Data Response Format

Variable 19 controls some aspects of how PMAC sends data to the host. Its setting determines whether
PMAC lists program lines back to the host in long or short form, whether it reports I-variable values and
M-variable definitions as full command statements or not, and whether address I-variable values are
reported in decimal or hexadecimal form.

28 Talking to PMAC



PMAC User Manual

On-Line (Immediate) Commands

Many of the commands given to PMAC are on-line commands; that is, they are executed immediately by
PMAC to cause some action, change some variable, or report some information back to the host. The
command itself is thrown away after executing (so cannot be listed back), although its effects may stay in
PMAC.

Some commands, such as P1=1, are executed immediately if there is no open program buffer, but are
stored in the buffer if one is open. Other commands, such as X1000 Y1000, cannot be on-line
commands; there must be an open buffer, even if it is a special buffer for immediate execution. These
commands will be rejected by PMAC (reporting an ERR00S if 16 is set to 1 or 3) if there is no buffer
open. Still other commands, such as J+, are on-line commands only, and cannot be entered into a
program buffer (unless in the form of CMD" J+", for instance).

Types of On-Line Commands

There are three basic classes of on-line commands:

e  Motor-specific commands, which affect only the motor that is currently addressed by the host.

e Coordinate-system-specific commands, which affect only the coordinate system that is currently
addressed by the host

e Global commands, which affect the card regardless of any addressing modes.

In the reference chapter, each command is classified into one of these types under the Scope descriptor.
Motor-Specific Commands
Motor Addressing

A motor is addressed by a #n command, where n is the number of the motor, with a range of 1 to 8,
inclusive. This motor stays the one addressed until another #n is received by the card. For instance, the
command line #1J+#2J- tells Motor 1 to jog in the positive direction, and Motor 2 to jog in the
negative direction (like most commands, the jog command does not take effect until the carriage return
character is received, so both axes start acting on the command at roughly the same time in this case).

Note:

Each program that can use the COMMAND statement to issue on-line commands
from within the card has its own motor and coordinate system addressing,
independent of which motor and coordinate system the host is addressing.
Changing the host’s addressing modes does not affect the program’s, or vice versa.
Also independent of the host addressing, the control panel selects a motor and
coordinate system for its hardwired inputs to affect with its BCD-coded (low-true)
FDPn/ lines (determined by a rotary switch on Delta Tau’s Acc-16 Control Panel).

Motor Commands
There are only a few types of motor-specific commands. These include the jogging commands, a homing
command, an open loop command, and requests for motor position, velocity, following error, and status.

Coordinate-System-Specific Commands

Coordinate System Addressing

A coordinate system is addressed by a &n command, where n is the number of the coordinate system,
with a range of 1 to 8, inclusive. This coordinate system remains the one addressed until another &n
command is received by the card. For instance, the command line 81B6R&2B8R tells Coordinate
System 1 to run Motion Program 6 and Coordinate System 2 to run Motion Program 8.

Talking to PMAC 29



PMAC User Manual

Coordinate System Commands

There are a variety of types of coordinate-system-specific commands. Axis definition statements act on
the addressed coordinate system, because motors are matched to an axis in a particular coordinate system.
Since it is a coordinate system that runs a motion control program, all program control commands act on
the addressed coordinate system. Q-variable assignment and query commands are also coordinate system
commands, because the Q-variables themselves belong to a coordinate system.

Note:

A command to a coordinate system can affect several motors if more than one
motor is assigned to that coordinate system. For instance, if motor 4 is assigned to
coordinate system 1, a command to coordinate system 1 to run a motion program
can start motor 4 moving.

Global Commands

Some on-line commands do not depend on which motor or coordinate system is addressed. For instance,
the command P1=1 sets the value of P1 to 1 regardless of what is addressed. Among these global on-line
commands are the buffer management commands. PMAC has multiple buffers, one of which can be open
at a time. When a buffer is open, commands can be entered into the buffer for later execution.

Control character commands (those with ASCII values 0 - 31D) are always global commands. Those that
do not require a data response act on all cards on a serial daisychain. These characters include carriage
return <CR>, backspace <BS>, and several special-purpose characters. This allows, for instance,
commands to be given to several locations on the card in a single line, and have them take effect
simultaneously at the <CR> at the end of the line (§1R&2R<CR> causes both Coordinate Systems 1 and 2
to run).

Buffered (Program) Commands

As their name implies, buffered commands are not acted on immediately, but held for later execution.
PMAC has many program buffers — 256 regular motion program buffers, 8 rotary motion program
buffers (1 for each coordinate system), and 32 PLC program buffers. Before commands can be entered
into a buffer, that buffer must be opened (e.g., OPEN PROG 3, OPEN PLC 7).

Each program command is added onto the end of the list of commands in the open buffer; to replace the
existing buffer, use the CLEAR command immediately after opening to erase the existing contents before
entering the new ones. After finishing entering the program statements, use the CLOSE command to
close the opened buffer.

Rotary Motion Program Buffer

The rotary motion program buffer is a special program buffer that can execute motion programs at the
same time it is open for entry of program commands from the host computer. If an open rotary program
buffer is executing, but has already executed every command sent to it, it will execute the next buffered
program command sent to it almost immediately.

30 Talking to PMAC



PMAC User Manual

Multiple-Card Applications

If there are several cards communicating with the host, there must be a way for the host to distinguish
between the different cards. The host computer must be able to talk to each of the cards individually, and
sometimes to talk to the cards collectively. Therefore, the host must have a means of addressing the
cards.

This section covers the basic concepts of communications issues dealing with multiple cards. For more
detailed information, refer to the Writing a Host Communications and Synchronizing PMACs to Other
PMAC:s sections of this manual.

Bus Communications

When the interface is a bus-type interface (e.g., PC-bus, STD-bus or VME-bus), the distinction between
cards is taken care of by hardware addressing. This means that the different cards respond to different
bus address locations as selected by the bus address lines. The setup of the hardware addressing of
multiple cards is done just as it is for single cards (above); one simply cannot put two different cards at
the same hardware address on the bus.

Simultaneous Commands

A little trickier task is to initiate simultaneous action on all boards, because commands must be issued
sequentially to the different boards. However, characters can be sent to all of the boards in sequence so
quickly that this delay will not be the major limitation in keeping action simultaneous between the boards.

The commands should be sent so that everything except the carriage return character is sent to all of the
boards; then the <CR> command is sent to each board in rapid succession. (If checking for the write-
ready bits, make sure they are true on all boards before sending the character to any board.) On a typical
bus system, send these characters one microsecond apart. This is much faster than the approximately one
millisecond software scan time of the command interpreters on PMAC, so the commands are effectively
issued simultaneously.

Serial Communications
However, if serial communication is being used (RS-232 or RS-422), the daisychaining of PMAC does
not permit separate hardware addressing, so there must be a software addressing scheme.

PMAC cards equipped with PROM version 1.13 and higher are capable of daisychained communication
using the RS-422 port. PMAC Lites and PMAC STDs cannot use daisychained communication with the
RS-232 port; the RS-422 port is required (Option 9L for PMAC Lite). Up to 16 PMAC cards can be
connected and synchronized using serial port communications. To do this however, a few hardware and
software set up procedures must be followed.

Connections

When using serial communications to multiple PMACs from a single host serial port, the connection is
made through a single multi-drop daisy chained cable. At one end is the connector for the host computer
(usually a DB-25 connector). At the other end of the cable is one connector (drop) for each PMAC on the
chain. Each strand of the cable is brought out on the same pin of each connector.

Multi-Drop Cable

The PMAC STD has both a RS-232 port and a RS-422 port. If daisy chaining is desired, the RS-422 port
must be used. Delta Tau does not provide this cable. The Acc-3D cable provides serial connection to the
RS-422 port of a single PMAC PC or PMAC VME, and each Acc-3E ordered with it provides an extra
drop for an additional PMAC PC or PMAC VME. If connected to an RS-232 port of a host computer, it
is strongly recommended that an Acc-26 or similar converter be used, especially in multi-drop
applications.

Talking to PMAC 31



PMAC User Manual

Note:

The Option 9L RS-422 interface is required on a PMAC Lite to tie it to another
PMAC. In this case, the Acc-3D 26-pin serial cable should be used, not the Acc-
3L 10-pin serial cable.

Serial Card Addressing

This software addressing is done by the @n command, where n is a hexadecimal digit from 0 to F (15
decimal). Up to sixteen cards may be chained together under one host. The command addresses all cards
simultaneously, but it is not legal to send a querying command for response over the serial port when the
system is in this mode (which card would respond?).

Setting Up the Addresses

The software address command issued by the host must match the card number of the particular PMAC as
determined by jumpers E40-E43 on PMAC PC, PMAC Lite, PMAC 1.5 STD, and PMAC VME, or by
switches SW1-1 to SW1-4 on PMAC STD. See Table 4-1 for the proper jumper configurations. One
card on the chain must be set up as card @0. It is recommended that the other cards be numbered
sequentially from zero (@1, @2, etc.).

Card Address Control E Points for PMAC PC, Lite, 1.5 STD and VME

E40 E41 E42 E43 Card Address Default
ON ON ON ON @0 @0
OFF ON ON ON @l

ON OFF ON ON @2

OFF OFF ON ON @3

ON ON OFF ON @4

OFF ON OFF ON @5

ON OFF OFF ON @6

OFF OFF OFF ON @7

ON ON ON OFF @8

OFF ON ON OFF @9

ON OFF ON OFF @A

OFF OFF ON OFF @B

ON ON OFF OFF @C

OFF ON OFF OFF @D

ON OFF OFF OFF @E

OFF OFF OFF OFF @F

32 Talking to PMAC



PMAC User Manual

Switch Address Control For PMAC STD
SWi1-1 SW1-2 SW1-3 SW1-4 Card Address Default
OFF OFF OFF OFF @0 @0
ON OFF OFF OFF @1
OFF ON OFF OFF @2
ON ON OFF OFF @3
OFF OFF ON OFF @4
ON OFF ON OFF @5
OFF ON ON OFF @6
ON ON ON OFF @7
OFF OFF OFF ON @3
ON OFF OFF ON @9
OFF ON OFF ON @A
ON ON OFF ON @B
OFF OFF ON ON @C
ON OFF ON ON @D
OFF ON ON ON @E
ON ON ON ON @F

Multi-Card Mode Variable

When talking to multiple cards over a single daisy-chained connector, variable 11 should be set to 2 or 3
(usually 2) on every PMAC on the chain for proper communications (usually, I1 is set to 0, sometimes 1,
if it is the only card on the connecting cable). If this setting has not been made already, as would be the
case on the initial connection, simply set I1 to 2 as the first command to the cards, then immediately
address one of the cards. For example, the command string I1=2@0<CR> could be used to set up all the
cards for daisy chained communications, and then address card 0.

Once this setting has been made (and stored with the SAVE command), it is not necessary to issue this
command, but it will not hurt to do so. Setting I1 to 3 rather than 2 disables the CTS handshaking, so the
host cannot hold off characters from a PMAC; typically this is undesirable.

Addressed-Card Actions

The addressed card at any time can accept alphanumeric commands and respond to them. Only it tries to
control the communications and handshake lines back to the host computer. The cards not addressed at a
given time ignore alphanumeric characters sent over the serial port, and their communications and
handshake outputs are tri-stated so as not to interfere with those of the addressed card. The cards not
addressed still can respond to certain control characters (not those querying a card, below), and, of course,
are listening to see if the addressed card number changes.

Simultaneous Addressing

It is possible to address all cards simultaneously for alphanumeric commands with @@ software
addressing. In this case, all cards will accept alphanumeric characters. Card @0 will provide the
handshake response characters. Query commands are not permitted in addressing. If the host sends such
a command in this mode, card @0 will respond with the <BELL> character.

Handling Data Response

When sending commands that require a data response, it is important to ask for data from only one card
per command line (a command line is terminated by the <CR> character), and to accept the response
before querying another card. Otherwise, more than one card may try to control the lines at once when
responding. For example, the command string @1P@2P<CR> could lead to contention as both cards try
to send position data (neither card starts to process the command until it sees the <CR> character).

Talking to PMAC 33



PMAC User Manual

Power-Up State

With the cards set up for daisy chained communications (i.e., I1 =2 or 3 saved in EAROM), card @0
comes out of the power-up/reset cycle as the addressed card, ready to respond to commands; all other
cards come out of the power-up/reset cycle not addressed, so they will ignore alphanumeric commands
until they are addressed.

Control-Character Commands
Control-character commands that do not require a data response are always addressed to all cards on the
chain. The commands in this class are:

<CTRL-A> Abort all programs and moves

<CTRL-D> Disable all PLC programs

<CTRL-I> Repeat last command line (tab)

<CTRL-K> Kill all motors

<CTRL-M>  Feed hold all coordinate systems

<CTRL-Q> Quit all motion programs

<CTRL-R> Run all coordinate systems

<CTRL-S> Step all coordinate systems

<CTRL-W>  Take command line from (bus port) dual-ported RAM

<CTRL-X> Erase command and response queues

<CTRL-Z> Make serial port the active response port
<CTRL-M>

The carriage return character causes the command line just transmitted to every card in the chain to be
accepted by that card and processed. This allows separate command lines to be sent to each card, but
processed simultaneously. If a particular card in the chain has not been sent a command when it sees the
carriage return command, it will process a "no-operation" command.

Example:
The command string @0&1B4R@1 &3B25R<CR> will cause card @0’s coordinate system 1 to start
executing motion program 4, and card @]1’s coordinate system 3 to start executing motion program 25.

Control-character commands that require a data response are accepted and processed by the currently
addressed card, and ignored by the other cards. They will be rejected in the addressing mode.
Commands in this category are:

<CTRL-B> Report all motor status words

<CTRL-C> Report all coordinate system status words
<CTRL-E> Report data-gathering address contents in binary
<CTRL-F> Report all following errors

<CTRL-G> Report global status words

<CTRL-P> Report all motor positions

<CTRL-V>  Report all motor velocities

<CTRL-Y> Report and repeat last command line

A control-character command requiring a data response will be acted on by the card addressed by the
most recently processed addressing command. Since an addressing command is not processed until the
next carriage return character, but a control-character command is acted on before a carriage return, it is
important to send a carriage return character between the addressing and the control-character command.

Other control character commands and their properties in multiple-card applications are:

34 Talking to PMAC



PMAC User Manual

<CTRL-H>

<CTRL-H> (backspace to erase last character sent) actually acts on the entire data stream as it is sent to
the cards. It erases the last alphanumeric character sent in the stream. Repeated <CTRL-H> characters
can erase all the alphanumeric characters sent since the latest carriage return character. If this includes
addressing characters, these are erased as well.

<CTRL-T>
Full duplex communication (echoing of characters) is not permitted in daisy-chained serial mode.
Therefore, the <CTRL-T> command (full/half-duplex toggle) will be rejected in this mode.

Resetting PMAC

There are several ways that PMAC can be reset. The first way is by cycling the 5V power off, then on.
The second way is by taking the INIT/ line on the JPAN connector low, then high. The third way is to
use the backplane-bus reset line. This method depends on the setting of jumper E39, and in PC-bus
versions, E93 and E94. The fourth method is to send the command to PMAC over either port.

PMAC Reset Actions

When PMAC receives the reset signal or command from any of these sources, it immediately stops all
active computations and starts its reset cycle. At the beginning of the reset cycle, it disables all outputs
and loads the firmware into active memory. It then proceeds to load active memory in a manner
dependent on the hardware configuration and the setting of re-initialization jumper E51. The PMAC
memory can be retained through a power-down or reset cycle with either EEPROM or battery-backed
RAM (the standard CPU section, which comes with the default configuration, Options 4 and 5), or
completely with flash memory (the Option CPU section, which comes with Options 4A, 5A, and 5B).
With the standard CPU section, the basic user card setup information (I-variables, conversion table
settings, VME and DPRAM address settings) are held in non-volatile EEPROM after being written there
with the SAVE command. User programs, tables, buffers, and definitions are simply retained in RAM by
the battery. No command or action is required to keep these items through a power-down or reset cycle.

With the Option CPU section, all user card information is held in non-volatile flash memory after being
written there with the SAVE command. No information is held in RAM through a power-down or reset
cycle, so the SAVE command must be used to keep any information in the card through a reset.

If jumper E51 is in its default state (OFF for PMAC PC, Lite, VME, and 1.5 STD; ON for PMAC STD),
PMAC copies the contents that were last saved into its non-volatile memory into active memory. For
PMACs with the standard CPU section, this involves just the items stored in the little EEPROM. Other
items are kept just as they were before the reset. For PMACs with the Option CPU section, this involves
all user settings: variables, definitions, programs, buffers, and tables.

All incremental encoder counters are set to zero during the reset cycle. At the end of the reset cycle, all
activated motors that have [x80 set to 1 are enabled, with the commanded position set to the actual
position. Other motors are left in the killed state; these require a command to enable them at a future
time.

PMAC Re-initialization Actions: Standard CPU

If Jumper ES51 is in its non-default state on a PMAC with the standard CPU section (ON for PMAC PC,
Lite, and VME; OFF for PMAC STD), PMAC performs a re-initialization during the reset cycle. Instead
of copying saved values of parameters from EEPROM into active memory, it copies the factory default
values from the firmware PROM into active memory.

Talking to PMAC 35



PMAC User Manual

Typically, this re-initialization procedure is necessary only if the card has been locked up due to errant
software or parameter settings, and communications are impossible to establish. The most common
instances of this type are PLC programs with accidentally repeating SEND or CMD statements (try
sending a <CTRL-D> before re-initializing), or a fast servo time with too many motors activated.

PMAC Re-initialization Actions: Flash CPU

If the jumper E51 is ON when a PMAC with the Flash CPU executes its reset cycle, PMAC enters a
special re-initialization mode that permits the downloading of new firmware. In this mode, the PMAC
can communicate only over the PC/STD bus port, or over the serial port at a baud rate of 38,400,
regardless of the setting of the baud rate jumpers. Only a very basic bootstrap firmware is executing in
this mode.

In this bootstrap mode, there are very few command options. PMAC will respond to any of the status-bit
query commands (?, ??, or ???) with the response BOOTSTRAP PROM. This permits the host to know
whether PMAC is in this mode or not. PMAC will respond to the VERSION query command with the
number of the bootstrap firmware (e.g. 1. 01) which will probably be different than the operational
firmware version.

Normal Re-initialization

To bypass the download operation in this mode, send a <CONTROL-R> character to PMAC. This puts
PMAC in the normal operational mode with the existing firmware. Factory default values for I-variables,
conversion table settings, and bus addresses for DPRAM and VME are copied from the firmware section
of flash memory into active memory. The saved values of these values are not used, but they are still kept
in the user section of flash memory.

For any change in the operational firmware, the compiled PLCs will have to be re-compiled with the
LIST LINK file for the new firmware version. It is important to delete all compiled PLCs (DELETE
PLCC n) before attempting to change the operational firmware version. Compiled PLC programs
running under a firmware version other than that which they were compiled for can have unpredictable
consequences.

To download new operational firmware to the PMAC, send a <CONTROL-O> character to PMAC over
the serial port. The bootstrap firmware interprets this as a signal to prepare for downloading of new
operational firmware. All subsequent bytes received over the serial port will be considered as binary-
coded bytes of machine-code firmware, and will be written into the flash memory.

Note:

Before attempting to upgrade PMAC operational firmware, make sure all of
PMAC configuration has been stored to disk. If the new firmware provides a
different user memory map, PMAC will clear memory on power-up after new
firmware has been loaded. Even if this is not the case, the easiest way to establish
a new firmware checksum reference value is to send the $$$*** command,
which clears the buffers.

The host computer should wait at least five seconds after the <CONTROL-0> command before starting to
download the operational firmware. This delay ensures that the flash memory is ready to be written to.
After downloading, the PMAC should be powered down. No other communications should be attempted
with PMAC at this time.

After turning off power to PMAC, the E51 jumper should be removed. When power is re-applied to
PMAC, it should operate normally with the new firmware. The user settings stored in other segments of
the flash memory with the SAVE command are not affected by the downloading of new firmware (unless
the new firmware has a different user memory map).

36 Talking to PMAC



PMAC User Manual

The PMAC Executive program V3.x and newer, when it establishes communications with a PMAC in
this re-initialization mode, will notice automatically that PMAC is in this mode. In this mode, the menu
selection Download binary firmware file in the File menu can be selected to take a binary file from disk
and copy over the serial port to PMAC. The program then forces an exit to the operating system. At this
point, turn off power to PMAC and remove the E5S1 jumper.

With older versions of the PMAC Executive program, or with a terminal emulator program running on a
PC, the procedure for downloading new firmware is as follows (remember to back up the PMAC software
and delete any compiled PLC programs first):

Establish communications to PMAC over the serial port at 38400 baud. Confirm that PMAC is in
this re-initialization mode by seeing that it responds to the ? command with BOOTSTRAP PROM. If
using the Executive program, make sure that all windows other than the Terminal window (such as
the position window) are closed, so no other commands are being sent to PMAC.

Type a <CONTROL-O> character in the terminal window and immediately exit to DOS. Do not send
any other characters to PMAC here.

Use the binary version (/B) of the DOS COPY command to download the file containing the new
firmware to PMAC. The command typed at the DOS prompt will look something like:
COPY/B B:V115A.BIN COM1:

Where B:V115A.BIN is the directory and name of the file containing the operational firmware in
binary machine code format, and COM1 : is the serial port being used for communications.

Shut off power to PMAC and remove the E51 jumper.

Restore power to PMAC and resume normal operation with the new firmware.

To update the firmware checksum reference value so PMAC does not report a firmware checksum
error, the easiest method is to send the $$$*** command, which causes PMAC to compute the new
reference value automatically (but it also clears all of your programs and buffers from active
memory). As an alternative method, send the command RHX : $0794 several times. If the same
value is received each time, PMAC has stopped its checksum calculations on an error, and the
reported value is the value it calculated for the firmware checksum. Write this value into reference
register X:$07B1. For example, if RHX : $0794 returns 9A3B12 several times, send the command
WX:$07B1,$9A3B12 to PMAC. Remember that for either method, store this reference value to
flash memory with the SAVE command.

To re-compile PLC programs, either use the LISTLINK.TXT file that corresponds to the new
firmware version, or create this file by sending the LIST LINK command to the PMAC with the
new firmware and storing the response in a text file of this name.

Re-initialize Command

The $$$*** command causes a reset and full re-initialization of PMAC. In addition to loading default
parameter values, it also clears out all of the buffers in battery-backed RAM: motion program, PLC
program, tables, etc.

Some users will always have the card set up to re-initialize during the reset cycle; they then download all
parameter settings and programs immediately after each cycle. The logic behind this strategy is that the
same startup sequence of operations is used even if a new replacement board has just been put in. It is
also useful for those applications that do not wish to rely in any way on the PMAC own non-volatile
storage (EEPROM and battery-backed RAM or flash).

Talking to PMAC 37



PMAC User Manual

For a complete re-initialization of PMAC to known state, the following commands can be added:
P0..1023=0

Q0..1023=0

MO..1023->*

UNDEFINE ALL

Remember that these commands directly affect only active memory (RAM). To copy new settings into
non-volatile memory (EEPROM or Flash), use the SAVE command.

38 Talking to PMAC



PMAC User Manual

TROUBLESHOOTING
PMAC Card Troubleshooting

General
Is the green LED (power indicator) on PMAC CPU board ON, as it should be? If it is not, find out why
PMAC is not getting a +5V voltage supply.

Is the red LED (watchdog timer indicator) on PMAC CPU board OFF, as it should be? If it is ON, make
sure PMAC is getting close to 5V supply (at less than 4.75V), the watchdog timer will trip, shutting down
the card. The voltage can be probed at pins 1 and 3 of the J8 connector (Al and A2 on the PMAC VME).
If the voltage is satisfactory, inspect PMAC to see that all inter-board connections and all socketed ICs
are well seated. If the card will not run with the red LED off, contact the factory.

Bus Communications
Do the bus address jumpers (E91-E92, E66-E71) set an address that matches the bus address that the
Executive program is trying to communicate with?

Is there something else on the bus at the same address? Try changing the bus address to see if
communications can be established at a new address. Address 768 (300 hex) is usually open.

Serial Communications
Is the proper port being used on the PC? If the Executive program is addressing the COM1 port, make
sure that it is cabled out of the COM1 connector.

Does the baud rate specified in the Executive program match the baud rate setting of the E44-E47
jumpers on PMAC?

With a breakout box or oscilloscope, make sure there is action on the transmit lines from the PC as you
type into the Executive program. If there is not, there is a problem on the PC end.

Probe the return communication line while giving PMAC a command that requires a response (e.g.
<CONTROL-F>). If there is no action, change jumpers E9-E16 on PMAC to exchange the send and
receive lines. If there is action, but the host program does not receive characters, RS-232 may be
receiving circuitry that does not respond at all to PMAC RS-422 levels. If using another model of PC, try
using it as a test (most models accept RS-422 levels quite well). If the computer will not accept the
signals, a level-conversion device, such as Delta Tau's Accessory-26, may be needed.

Commutation Troubleshooting

If there was no movement, check to make sure that output voltages were received on DAC1 and DAC2.

A value of 2000 should put 0.6V on the DAC lines. If voltage outputs were received from PMAC, but no
movement, check the amplifier and motor setups. If voltage outputs were not received, check the analog
supply to PMAC; make sure that the limits are held low or disabled; and make sure that the amplifier fault
signal is not indicating to PMAC that it has faulted.

Servo Loop and Jogging Troubleshooting

If holding position well, but cannot move the motor, make sure that the hardware limits are held low.
Check which limits 1125 is addressed to (usually +/-LIM1), then make sure those points are held low (to
AGND), and sourcing current (unscrew the wire from the terminal block and put the ammeter in series
with this circuit to confirm this). If this is not right, refer to the Connecting PMAC to the System section
previously, and the PMAC Opto-Isolation drawing to re-check the connections.

Troubleshooting 39



PMAC User Manual

If the motor dies after it is given a jog command, the fatal following error limit has been exceeded. If this
has happened, it is either because a move that is more than the system can physically do has been
requested (if so, reduce [122), or because it is badly tuned (if this is the case, increase proportional gain
1130). To restore closed-loop control, issue the J command.

Homing Search Troubleshooting

No Movement at All
Check the following:

Are both limits held low to AGND and sourcing current out of the pins?

Is there a proper supply to A+15V, A-15V, and AGND?

Is the proportional gain (Ix30) greater than zero?

Can any output be measured at the DAC pin when an O command has been given?

Is the following error limit being tripped? Disable the fatal following error limit (Ix11) by setting it
to zero, and try to move again.

Movement, But Sluggish.
Check the following:

e s proportional gain (Ix30) too low? Try increasing it (as long as stability is kept).

e Is the big step limit (Ix67) too low? Try increasing it to 8,000,000 (near the maximum) to eliminate
any effect.

e Is the output limit (Ix69) too low? Try increasing it to 32,767 (the maximum) to make sure PMAC
can output adequate voltage.

e Can an integrator help? Try increasing integral gain (Ix33) to 10,000 or more, and the integration
limit (Ix63) to 8,000,000.

Runaway Condition

Check the following:

e Is there feedback? Check that position changes can be read in both directions.

e Does the feedback polarity match output polarity? Recheck the polarity match as explained above.

Brief Movement, Then Stop

Check the following:

e s this following error limit being tripped? Disable fatal following error limit (Ix11) by setting it to
zero, then try to move again.

Motion Program Troubleshooting

If the program does not run at all, there are several possibilities:

e Can the program be listed? In terminal mode, type LIST PROG 1 (or whichever program), and see
if it is there. If not, try to download it to the card again.

o s the program buffer closed? Type A just in case the program is running; type CLOSE to close any
open buffer; type B1 (or the program #) to point to the top of the program; and type R to try to run it
again.

e (Can each motor in the coordinate system be jogged in both directions? If not, review that motor's
setup.

e Have any motors been assigned to the coordinate system that are not really set up yet? Every motor
in the coordinate system must have its limits held low, even if there is no real motor attached.

40 Troubleshooting



PMAC User Manual

INPUT/OUTPUT: CONNECTING PMAC TO THE MACHINE

Capabilities and Features

PMAC has extensive input and output capabilities, analog and digital, special-purpose and general-
purpose. The I/O has many features to ensure the integrity of the signals; as the different types of I/O are
introduced, the steps taken to improve the integrity of each type of I/O is explained.

Quadrature Encoder Inputs (JMACH Port)

PMAC is equipped to take digital quadrature encoder signals at 0 to 5V levels as a standard feature. For
each DSPGATE IC in a PMAC configuration, four encoders can be attached.

Single-Ended vs. Differential

PMAC has differential line receivers for each encoder channel, but can accept either single-ended (one
signal line per channel) or differential (two signal lines, main and complementary, per channel). A
jumper for each encoder (E18-E21 and E24-E27) permits customized configurations, as described below.

The differential line receivers can accept up to +/-12V between main and complementary inputs, and +/-
12V between either input the GND reference voltage. Typically, 0 and +5V levels are used.

Single-Ended Encoders

With the jumper for an encoder set for single-ended, the differential input lines for that encoder are tied to
2.5V; the single signal line for each channel is then compared to this reference as it changes between 0
and 5V.

z
Iy 0w ] 8o
- - ok EE ke
a2 =] <z D
<Y 23 +3z o3 sg
= =z
1333 ag 5 3 ! 3z
WEE Y I
= =
ggga ‘ P 2R 2 2
IF- ! x a
TR | 2 g
1
i 2
1 >
1 l °°5
! 7]
vogsE || &
1 < © (%]
1 - 2
[y e L=
H
ol
e
4
&3
co
]
[ =
= -
58|28 23 22 5 |2
o 4 4 =
zq Eémﬁ 0 S gz
o wg (2=} o 8
< 5
Py 2
£ 8 B L
2 w 3 @ 2 4
(] [} o
z 2 gm o w 9L
z Ok ] © £
< 2 [ iz
8 8 £ w | E 23 8
3 | 5|3 H
> | < |3 Eo
o o o a o3
4 9 d $w
s < o < ©
2 g 8 o
gl o J Q 2
] = <
4
u
o (NN |
0% w
<8z
6los— 4
Hes Ea
i - ~ - v 0«
n— @ © 4 Lo I
& & & wo
8.8 §lLsE | °
¢ ¢ e 28
w w w wo

49 4

A

99 949

4
ENCODER
INPUTS

Figure 1 PMAC Motion Controller Custom Gate Array IC

Input/Output: Connecting PMAC to the Machine 41



PMAC User Manual

* Connect pin 1 to 2 to tie differential line to

+2.5V
+5V - . Connect pin 2 to 3 to tie differential line to
+5V
R 2R +  (Reversible socketed SIP on PMAC2)
A + . Tie to +2.5V when no connection
\ . Tie to +2.5V for single-ended encoders
3 . Don't care for differential line driver
encoders
—WWW— 2
2R 1 . Tie to +5V for complementary open-
J7 collector encoders (obsolete)
GND ¢+  Tieto +5V to support external XOR loss of

encoder circuitry
Figure 2 PMAC Encoder Input Circuitry

When using single-ended TTL-level digital encoders, the differential line input should be left open, not
grounded or tied high; this is required for the PMAC differential line receivers to work properly.

Differential Encoders

Differential encoder signals can enhance noise immunity by providing common-mode noise rejection.
Modern design standards virtually mandate their use for industrial systems, especially in the presence of
PWM power amplifiers, which generate a great deal of electromagnetic interference.

Open-Collector Differential

There are two types of differential encoder signals. The first has simple open-collector drivers (or
equivalent) on both the main and complementary channels. For this type of encoder, the jumper must be
set up for differential mode to provide pull-up resistors on both inputs.

Differential Line Drivers

The second type of differential encoder format (and the one that is strongly recommended) is the
differential line driver on both signals. For this type of encoder, it does not matter what the jumper
setting is; most will leave the jumper in the default setting.

Termination Resistors

When driving the encoder signals over a long cable (10 meters or more), to reduce the ringing on
transitions, add termination resistors between the main and complementary lines. PMAC provides
sockets for resistor packs for this purpose. The optimum value of the termination resistor is system
dependent, but 330 ohms is a good starting point.

Analog Encoders

PMAC can take analog voltage-source encoder inputs into its differential line receivers if the drivers have
enough capability to work against a 470 ohm pull-up resistor and the maximum differential voltage the
line receiver sees is between 2 and 12V. For a single-ended analog signal, the complementary channel
should be tied to GND to provide proper transitions as the voltage signal goes positive and negative. It is
better, but not required, to jumper the input for single-ended.

For a differential analog encoder, the two signals for each channel are wired in just as for a digital
differential encoder. It is better, but not required, to jumper the input for differential. In this case, the
12V input limit is a peak-to-peak measurement.

42 Input/Output: Connecting PMAC to the Machine



PMAC User Manual

Power Supply and Isolation

In the basic configuration of PMAC, the encoder circuitry is not isolated from the PMAC digital circuitry
and the signals are referenced to the PMAC digital common level GND. Typically, the encoders in this
case are powered from the PMAC +5V lines with a return on GND. The total encoder current draw must
be considered in sizing the PMAC power supply.

It is also possible to use a separate supply for the encoders with non-isolated signals connected to PMAC.
In this case, the return of the supply should be connected to the digital common GND on PMAC to give
the signals a common reference. The +5V lines of separate supplies should never be tied together, as they
will fight each other to control the exact voltage level.

Isolated Encoder Signals

In many systems, the encoder circuitry is optically isolated from the PMAC digital circuitry. This is
common in systems with long distances from the encoder to the controller (> 10m or 30 ft) and/or
systems with very high levels of electrical noise. Isolation can be achieved using the Acc-8D Opt 6 4-
channel encoder isolator board. With an isolated encoder, a separate power supply is required for the
encoders to maintain isolation, and the return on the supply must not be connected to the digital common
GND, or the isolation will be defeated.

Simulated Encoder Signals

Special consideration must be given to systems that have a simulated encoder signal provided from a
resolver-to-digital converter in a brushless motor amplifier. Usually in these systems, the encoder signals
are referenced to the amplifier’s signal return, which in turn is connected to the PMAC analog common
AGND. The best setup in these cases is to isolate the simulated encoder signal from the PMAC digital
circuitry with the Acc-8D Opt 6 isolator board or similar module. This will keep full isolation between
the PMAC digital circuitry and the amplifier.

If isolation of the simulated encoder signals is not feasible, the PMAC digital circuitry and the amplifier
signal circuitry (including the PMAC analog circuitry) must be well tied together to provide a common
reference voltage. Do this by putting jumpers on PMAC E-Points E85, E87, and E8S, tying the digital
and analog circuits on PMAC together, and therefore the analog signal circuits. Avoid having the
simulated encoder cables providing the only connection between the circuits. This can result in lost
signals from bad referencing, or even component damage from ground loops.

Wiring Techniques

There are several important techniques in the wiring of the encoders that are important for noise
mitigation. First, the encoder cable should be kept physically separate from the motor power cable if
possible. Second, both of these cables should be shielded, the motor cable to prevent noise from getting
out, and the encoder cable to prevent noise from getting in. These shields should be grounded at the
inward end only, that is, to the device that is itself tied to a ground.

Twisted Pairs

A third important noise mitigation technique is to twist the leads of the complementary pairs around each
other. With these twisted pairs, what noise does get in tends to cancel itself out in opposite halves of the
twist.

Encoder Signal Sampling

After the front-end processing through the differential line receivers, the encoder signals are sampled
digitally at a rate determined by the SCLK (encoder sampling clock) frequency. SCLK is divided down
from the master clock frequency by an amount determined by jumpers E34 to E38. The default setting is
E34 ON, which gives SLCK half the frequency of the master clock, which on the standard board is about
10 MHz.

Input/Output: Connecting PMAC to the Machine 43



PMAC User Manual

E35 ON gives it one-fourth the frequency; E36 one-eighth; and E37 one-sixteenth. Setting E38 ON
provides an external SCLK signal (on CHC4 and CHC4/ inputs). The SCLK frequency used sets the
upper limit on the possible count rate; in actual use, the maximum count rate should be considered about
20% lower, allowing for imperfections in the input signals.

Digital Delay Filter

Each encoder has a digital delay filter consisting of three cascaded D-flip-flops on each line, with a best
two-of-three voting scheme on the outputs of the flip-flops. The flip-flops are clocked by the SCLK
signal. This filter does not pass through a state change that only lasts for one SCLK cycle; any change
this narrow should be a noise spike. In doing this, the filter delays actual transitions by two SCLK.

YYYYYYYY

N i
) ‘ VEg v vvryyyy
o qJ

243
‘ j Vg 1y yyyyyyy

I i I |

Figure 3 Encoder Digital Delay Filter

Frequency Tradeoffs

The lower the SCLK frequency, the wider the noise spike that can be rejected, but the lower the
maximum count frequency. These aspects must be balanced in the system. In general, SCLK should be
set to the lowest frequency that permits PMAC to keep up the maximum possible count frequency from
the encoder.

Bypassing the Filter

This delay filter may be bypassed by setting the Encoder [-Variable 1 (1901, 1906, etc.) to 1. Bypassing
this filter will probably be done only by those with parallel sub-count interpolation for which the delay
could cause transition errors. Refer to the Feedback Features section of this manual.

Error Detection

Count-Error Flag

If an illegal encoder transition (both channels changing on the same SCLK cycle) does get through (or
around, if bypassed) the delay filter, and to the decoder, a count-error flag is set, noting a loss of position
information. This flag is bit 18 of the encoder status/control word (X:$C000 for Encoder 1, X:$C004 for
Encoder 2, etc.). Suggested M-variable definitions M118, M218, etc., can be used to access these bits.

Once-per-Rev Check

In addition, it is possible to use the third channel of the encoder to do a once-around position check using
the PMAC position-capture feature to detect any loss of count. Refer to the Position-Capture description
in the Synchronizing PMAC to External Events section of this manual, and program example
PLCMOD.PMC for more details.

44 Input/Output: Connecting PMAC to the Machine



PMAC User Manual

Optically Isolated Dedicated Digital Input Flags (JMACH Port)

Each channel of PMAC has four dedicated digital inputs on the machine connector: +LIMn, -LIMn
(overtravel limits), HMFLn (home flag), and FAULTn (amplifier fault). These inputs are typically
assigned to a motor as a set for dedicated use as flags by addressing them with the motor I-variable Ix25.
Those flags not used for the dedicated purposes may be used as general-purpose inputs with the
assignment of an M-variable.

Flag Wiring

All of these flag inputs must be shorted to the zero-volt reference voltage for the circuit (usually AGND),
allowing current to flow through the LEDs in the opto-isolator, in order to be considered in a zero state.
The current flow to OV just needs to be broken to put the flag in its 1 state; no external pull-up is required,
although it will not hurt. For an electronic switch, an open-collector output is usually used. For a
mechanical switch, an open/closed contact between the flag pin and 0V is usually used.

Overtravel Limit Inputs

When assigned for the dedicated uses, these signals provide important safety and accuracy functions.
+LIMn and -LIMn are direction-sensitive overtravel limits that must be actively held low (sourcing
current from the pins to ground) to permit motion in their direction.

The direction sense of +LIMn and -LIMn is the opposite of what many people would consider intuitive.
That is, +LIMn should be placed at the negative end of travel, and -LIMn should be placed at the positive
end of travel.

Home Flag Input

Typically, the HMFLn input is used for homing or other registration functions through use of the PMAC
hardware position-capture feature. Encoder/flag I-variables 2 and 3 determine which signals and which
edges cause a capture.

Amplifier Fault Input
Typically, the FAULTn input is used as a signal from the amplifier that something is wrong. 1x25
controls whether a high signal or a low signal means fault.

For more details on the actions taken on these flags, refer to the Making Your Application Safe and
Synchronizing PMAC to External Events sections of this manual.

Flag Isolation

These inputs can be kept isolated from other circuits. If supplied from the analog supply voltage (A+15V)
and tied to analog ground (AGND), they will be isolated from the PMAC digital circuitry. If supplied from
a digital supply voltage (+12V) and tied to digital ground (GND), they will be isolated from the PMAC
analog circuitry. If supplied from a separate supply (OPTO+V; 12 to 24V) and tied back to the supply’s
own ground, they will be isolated from both the digital and analog circuitry. The setting of jumpers E89 and
E90 controls which power the flag circuitry, and therefore, which circuits it is isolated from.

Dedicated Digital Output Flags (JMACH, JEQU Ports)

PMAC has two dedicated digital outputs for each channel in the hardware configuration: the Amplifier-
Enable/Direction line (AENA/DIRn) and the Compare-Equals line (EQUn).

Amplifier-Enable/Direction Output

The AENA/DIRn output is an optically-isolated output tied to the same circuit as the dedicated digital
inputs. It can be kept isolated from the PMAC digital computation circuitry, from the PMAC analog
circuitry, or both.

Input/Output: Connecting PMAC to the Machine 45



PMAC User Manual

Amplifier Enable/Disable Use

These outputs are typically used as enable/disable lines for the amplifiers commanded by PMAC. This
control function is very important for safety reasons to make sure the amplifier can be completely shut
down when needed. (It is not a good idea to rely on a zero analog output voltage; offsets can easily build
up so that a zero command does not cause a stop. Analog output offset will manifest itself as creep in a
velocity-mode drive; on a lightly-loaded torque-mode drive, it can show up as high-speed runaway.)

Transition

When PMAC sees a fault signal from the amplifier, it will kill the motor automatically, taking the
amplifier-enable signal to the disabled state. Many amplifiers, when they are disabled for any reason, will
indicate a fault signal to the controller. PMAC permits an amplifier (changing the amplifier enable line
from disabled to enabled) to be enabled even when the amplifier shows a fault. However, in the PMAC
next error scan, which occurs in the background housekeeping task every few milliseconds, if the
amplifier still shows a fault, PMAC will disable that axis again. Refer to the Synchronizing PMAC to
External Events section of this manual.

Sinking Drivers

The default drivers for these outputs are open-collector (sinking) circuits, requiring external pull-up
resistors. Typically, they can be connected directly to the cathode (negative end) of an opto-isolator input
on an amplifier. The ULN2803A ICs used are rated to 100 mA and 24V; internal diode protection
circuits in the IC limit the high voltage of the output to the analog positive supply voltage, usually +15V.
To defeat this protection and allow the outputs to be pulled above 15V, pin 10 of the driver IC must be
removed from the socket.

Sourcing Drivers

On newer hardware versions of PMAC, those with jumpers E101 and E102, a UDN2981A open-emitter
(sourcing) driver can be substituted for the standard sinking driver. This is done by exchanging the IC in
the socket and changing the placement of jumpers E101 and E102.

Polarity Control

Jumper E17 controls the polarity of these outputs. For PMAC PC, a jumper ON means low true enable
(default); a jumper OFF means high true enable. PMAC PC has a single jumper E17 for all four or eight
lines; PMAC Lite, -VME, and -STD have separate jumpers E17A to E17H for each channel. For PMAC
Lite, -VME, and —STD, a jumper OFF means low true enable (default for PMAC Lite and -VME); a
jumper ON means high-true enable (default for PMAC STD). The reason that the polarity is under
hardware, not software control is that it is important to make sure the amplifiers are properly disabled
even if the software fails.

Failsafe Polarity

With the default sinking drivers for the amplifier enable signals, using the low-true enable polarity (low
voltage — conducting — is enable; high voltage — non-conducting — is disabled) provides better
failsafe protection against loss of power supply. If either the +5V supply for the PMAC computational
section, or the +15V analog supply is lost, the amplifier will be disabled automatically, because the output
transistor will go into its non-conducting state. To use this failsafe protection without connecting a signal
of this polarity directly to the amplifier, use intermediate circuitry to change the signal format. With the
alternate sourcing drivers, the high-true enable polarity provides better failsafe protection.

46 Input/Output: Connecting PMAC to the Machine



PMAC User Manual

Direction Bit Use

An alternate use for these outputs is as the direction (sign) bits for drive systems expecting sign-and-
magnitude commands. Some servo amplifiers expect this command format, and if the signal needs to be
run through a voltage-to-frequency converter such as the Acc-8D Opt 2 to create a pulse train for a
stepper drive, this format should be used. To use the output in this manner, bit 16 of [x25 for the motor
using this line must be set to 1. This disables its use as an amplifier-enable line. In addition, bit 16 of
Ix02 for the motor must be set to 1. This makes the analog output an absolute value, and places the sign
bit on this output.

General-Purpose Use
If no dedicated use is made of this output, it may be used as a general-purpose output by assigning an M-
variable to the bit (M114, M214, etc., in the suggested M-variable definitions).

Compare-Equals Outputs

The compare-equals (EQU) outputs have a dedicated use of providing a signal edge when an encoder
position reaches a pre-loaded value. This is very useful for scanning and measurement applications.
Instructions for use of these outputs are covered in detail in the Synchronizing PMAC to External Events
section of this manual.

PMAC PC

On the PMAC PC, there is not a framed connector for the EQU outputs. However, these signals may be
brought out by placing a 26-pin IDC connector over the 13 E-point pairs E53 to E65, which include the
eight EQU lines. These outputs are TTL-level with very low drive capability; they must be buffered
externally before they can drive any real devices. Acc-27, normally used as an 1/O buffer for the
thumbwheel multiplexer port, can be used to drive several of these EQU lines. The 26-pin cable provided
with the Acc-27 fits over the 13 jumper pairs ES3-E65.

PMAC VME

On PMAC VME, these signals are brought out on connector J7 (JEQU), referenced to digital ground
(GND). As shipped from the factory, they are open-collector (sinking) outputs, with a ULN2803A driver
IC, rated to 24V and 100mA each. They may be changed to open-emitter (sourcing) drivers by replacing
this chip in U28 with a UDN2981A driver IC and changing jumpers E93 and E94.

PMAC Lite

On PMAC Lite, these signals are brought out on connector J8 (JEQU), optically isolated from the digital
circuitry, referenced either to analog ground (AGND) or an external flag supply ground. As shipped from
the factory, they are open-collector (sinking) outputs, with a ULN2803A driver IC, rated to 24V and
100mA each. They may be changed to open-emitter (sourcing) drivers by replacing this chip in U54 with
a UDN2981A driver IC and changing jumpers E101 and E102.

PMAC STD
On PMAC STD, these signals are brought out on connector J6 (JEQU) on each of the piggyback boards.
They are open-collector (sinking) outputs with internal 1 kQ pull-up resistors, rated to 5V.

On PMAC STD1.5, these signals are brought out on connector J8 (JEQU), optically isolated from the
digital circuitry, referenced either to analog ground (AGND) or an external flag supply ground. As
shipped from the factory, they are open-collector (sinking) outputs, with a ULN2803A driver IC, rated to
24V and 100mA each. They may be changed to open-emitter (sourcing) drivers by replacing this chip in
US54 with a UDN2981A driver IC and changing jumpers E101 and E102.

Input/Output: Connecting PMAC to the Machine 47



PMAC User Manual

Optically Isolated Analog Outputs (JMACH Port)

PMAC provides high-precision analog outputs on the JMACH machine connectors that are used to
command servo amplifiers as a velocity command, a torque command, or phase current commands (in
pairs). Each channel of PMAC provides complementary DAC and DAC/ outputs, operating from 16-bit
digital-to-analog converters. Each output has a range of -10V to +10V, providing a resolution of
300uV/bit.

Connections

If the amplifier has a single-ended input, DACn should be used as the command line, and AGND as the
return. If the amplifier has a differential input, DACn should be used as the command line and DACn/ as
the return. The common of the amplifier input should still be tied to the PMAC AGND in this case.

Isolation

The analog command output circuitry is optically isolated from the digital logic circuitry on PMAC.
Usually the analog circuitry will get its power from the amplifier (most amplifiers provide +/- 15V for
this purpose). Use Jumpers E85, E87, E88, and E90 to jumper the power supply for the analog circuitry
from the digital side of the board, but this defeats the optical isolation; it is not recommended for any
high-power or high-noise environment, especially when PMAC is electrically connected to a host
computer, either by backplane bus or by non-isolated serial cable.

Drive Capability

The analog outputs are intended to drive high-impedance inputs with no significant current draw. The
220Q output resistors will keep the current draw lower than 50mA in all cases and prevent damage to the
output circuitry, but any current draw above 10mA can result in noticeable signal distortion.

General-Purpose Use

Any analog output not used for dedicated servo purposes may be utilized as a general-purpose analog
output. Usually, this is done by defining an M-variable to the digital-to-analog-converter register
(suggested M-variable definitions M102, M202, etc.), then writing values to the M-variable.

General-Purpose Digital Inputs and Outputs (JOPTO Port)

The PMAC JOPTO connector (J5 on PMAC PC, Lite, and VME) provides eight general-purpose digital
inputs and eight general-purpose digital outputs. Each input and each output has its own corresponding
ground pin in the opposite row. The 34-pin connector was designed for easy interface to OPTO-22 or
equivalent optically isolated I/O modules. Delta Tau's Accessory 21F is a six-foot cable for this purpose.

The PMAC STD has a different form of this connector from the other versions of PMAC. Its JOPT
connector (J4 on the base board) has 24 I/O, individually selectable in software as inputs or outputs. The
rest of this discussion does not pertain to the PMAC STD port, unless specifically mentioned. Refer to
the PMAC STD Hardware Reference Manual for details on its JOPT port.

Software Access

These inputs and outputs are typically accessed in software through the use of M-variables. In the
suggested set of M-variable definitions, variables M1 through M8 are used to access outputs 1 through §,
respectively, and M11 through M18 to access inputs 1 through 8, respectively. This port maps into the
PMAC memory space at Y address SFFC2.

Standard Sinking Outputs

CAUTION:

Having Jumpers E1 and E2 set wrong can damage the IC.

48 Input/Output: Connecting PMAC to the Machine



PMAC User Manual

PMAC is shipped standard with a ULN2803A sinking (open-collector) output IC for the eight outputs.
These outputs can sink up to 100mA, but must have a pull-up resistor to go high.

CAUTION:

Do not connect these outputs directly to the supply voltage, or damage to the
PMAC will result from excessive current draw.

Provide a high-side voltage (+5 to +24V) into Pin 33 of the JOPTO connector and allow this to pull up
the outputs by connecting pins 1 and 2 of Jumper E1. Jumper E2 must also connect pins 1 and 2 for a
ULN2803A sinking output.

Option for Sourcing Outputs

CAUTION:

Having Jumpers E1 and E2 set wrong can damage the IC.

It is possible for these outputs to be sourcing drivers by substituting a UDN2981A IC for the ULN2803A.
This IC (U3 on the PMAC PC, U26 on the PMAC Lite, U33 on the PMAC VME) is socketed, and so
may be replaced easily. For this driver, use pull-down resistors. With a UDN2981A driver IC, Jumper
E1 must connect pins 2 and 3, and Jumper E2 must connect pins 2 and 3.

Input Source/Sink Control

Jumper E7 controls the configuration of the eight inputs. If it connects pins 1 and 2 (the default setting),
the inputs are biased to +5V for the OFF state, and they must be pulled low for the ON state. If E7
connects pins 2 and 3, the inputs are biased to ground for the OFF state, and must be pulled high for the
ON state. In either case, a high voltage is interpreted as a 0 by the PMAC software, and a low voltage is
interpreted as a 1.

Thumbwheel Multiplexer Port I/O (JTHW Port)

Multiplexed Uses

The Thumbwheel Multiplexer Port, or Multiplexer Port, on the JTHW (J3) connector has eight input lines
and eight output lines. The output lines can be used to multiplex large numbers of inputs and outputs on
the port, and Delta Tau provides accessory boards and software structures (special M-variable definitions)
to capitalize on this feature. Up to 32 of the multiplexed I/O boards may be daisy-chained on the port, in
any combination.

Port Accessories
The Acc-18 Thumbwheel Multiplexer board provides up to 16 BCD thumbwheel digits or 64 discrete
TTL inputs per board. The TWD and TWB forms of M-variables are used for this board.

The Acc-34, -34A, and -34B Serial I/O Multiplexer boards provides 64 1/O point per board, optically
isolated from PMAC. The TWS form of M-variables is used for these boards.

The Acc-8D Option 7 Resolver-to-Digital Converter board provides up to four resolver channels whose
absolute positions can be read through the thumbwheel port. The TWR form of M-variables is used for
this board.

The Acc-8D Option 9 Yaskawa™ Absolute Encoder Interface board can connect to up to four of these
encoders. The absolute position is read serially through the multiplexer port on power up.

Input/Output: Connecting PMAC to the Machine 49



PMAC User Manual

Non-Multiplexed Uses

If none of these accessory boards is used, the inputs and outputs on this port may be used as discrete, non-
multiplexed I/0. They map into the PMAC processor space at Y address SFFC1. The suggested M-
variable definitions for this use are M40 to M47 for the eight outputs and M50 to M57 for the eight
inputs. The Acc-27 Optically Isolated I/O board buffers the I/O in this non-multiplexed form, with each
point rated to 24V and 100mA.

Control-Panel Port I1/0 (JPAN Port)

The JPAN connector (J2 on PMAC PC, Lite, VME, and top board of PMAC STD) is a 26-pin connector
with dedicated control inputs, dedicated indicator outputs, a quadrature encoder input, and an analog
input. The control inputs are low true with internal pull-up resistors. They have predefined functions
unless the control-panel-disable I-variable (I12) has been set to 1. If this is the case, they may be used as
general-purpose inputs by assigning M-variables to their corresponding memory-map locations (bits of Y
address $FFCO).

Discrete Inputs

Command Inputs

JOG-/, JOG+/, PREJ/ (return to pre-jog position), and HOME/ affect the motor selected by the FDPn/
lines (see below). STRT/ (run), STEP/, STOP/ (abort), and HOLD/ (feed hold) affect the coordinate
system selected by the FDPn/ lines.

Selector Inputs

CAUTION:

Do not change the selector inputs while holding one of the jog inputs low.
Releasing the jog input then will not stop the previously selected motor. This can
lead to a dangerous situation.

The four low-true BCD-coded input lines FDP0/ (LSBit), FDP1/, FDP2/, and FDP3/ (MSBit) form a low-
true BCD-coded nibble that selects the active motor and coordinate system (simultaneously). These are
usually controlled from a single 4-bit motor/coordinate-system selector switch. The motor selected with
these input lines will respond to the motor-specific inputs. It will also have its position following
function turned on (Ix06 is set automatically to 1.); the motor just de-selected has its position following
function turned off (Ix06 is set automatically to 0.).

Alternate Use

The discrete inputs can be used for parallel-data servo feedback or master position if 12 has been set to 1.
The Acc-39 Handwheel Encoder Interface board provides 8-bit parallel counter data from a quadrature
encoder to these inputs. Refer to the Acc-39 manual and the Parallel Position Feedback Conversion
sections under Setting up a Motor in this manual for more details on processing this data.

Reset Input
Input INIT/ (reset) affects the entire card. It has the same effect as cycling power or a host $$$
command. It is hard-wired, so it retains its function even if I2 is set to 1.

Handwheel Inputs

The handwheel inputs HWCA and HWCB can be connected to the second encoder counter on PMAC
with jumpers E22 and E23. If these jumpers are on, nothing else should be connected to the Encoder 2
inputs. The signal can be interpreted either as quadrature or as pulse (HWCA) and direction (HWCB),
depending on the value of 1905. 1905 also controls the direction sense of this input. Make sure that the
Encoder 2 jumper E26 is set for single ended signals, connecting pins 1 and 2.

50 Input/Output: Connecting PMAC to the Machine



PMAC User Manual

Analog Input

The Wiper analog input (0 to +10V on PMAC PC, -VME, and -STD; -10V to +10V on PMAC Lite,
referenced to digital ground) provides an input to a voltage-to-frequency converter (V/F) with a gain of 25
kHz/Volt, providing a range of 0-250 kHz. The output of the V/F can be connected to the Encoder 4
counter using jumpers E72 and E73. If these jumpers are on, nothing else should be connected to the
Encoder 4 inputs. Make sure that the Encoder 4 jumper E24 is set for single-ended signals, connecting
pins 1 and 2.

Frequency Decode

When used in this fashion, Encoder 4 must be set up for pulse-and-direction decode by setting 1915 to 0
or 4. Usually a value of 4 is used, because with CHB4 (direction) unconnected, a positive voltage causes
the counter to count up.

Power Supply

For the V/F converter to work, PMAC must have +/-12V supply referenced to digital ground. If PMAC
is in a bus configuration, this usually comes through the bus connector from the bus power supply. In a
standalone configuration, still this supply must be brought through the bus connector (or the supply
terminal block on the PMAC Lite), or it must be jumpered over from the analog side with E85, E87, and
E88, defeating the optical isolation on the board.

PMAC Lite Special Considerations

Since the PMAC Lite’s Wiper input has bipolar capability, it has a few special considerations. If used in
bipolar fashion, the offset potentiometer (R18) should be adjusted for minimum deadband in the zero
crossing (monitor on CHA4 on the JMACHI1 connector). If used in unipolar fashion, R18 should be
adjusted for some deadband to assure that 0V in creates no frequency; also jumper E73 should be left
OFF to make sure no glitches get into the sign bit of the counter.

On PMAC Lite, the pulse and direction signals may be output on the CHA4 and CHB4 pins, respectively,
of the IMACHI1 connector. These can be used to command a stepper-motor driver. The DAC4 output
can be wired into the WIPER input, which provides both the feedback that the servo loop requires, and
the command signals to the driver. This permits the PMAC Lite to drive one stepper motor without a
special accessory board.

Software Processing

The encoder conversion table can then take the difference in the counter each servo cycle and scale it,
providing a value proportional to frequency, and therefore to the input voltage. Usually this is used for
feedrate override (time base control), but the resulting value can be used for any purpose. Refer to the
Time-Base Control section in this manual.

Status Outputs

There are five dedicated low-true outputs on the JPAN connector, usually used to light LEDs. They are
BRLD/ (buffer-request LED), IPLD/ (in-position LED), EROR/ (Error condition LED), FILD/ (1st
warning following error LED), and F2LD/ (which goes true when the watchdog timer trips). BRLD/,
ERLD/, and F2LD/ are global status lines. IPLD/ and F1LD/ are coordinate-system specific status lines.
If 12=0, they refer to the panel-selected coordinate system (by FDPn/). If 12=1, they refer to the host-
selected coordinate system (&n).

If 12=0 but no coordinate system is selected (all FPDn/ inputs are floating or pulled high), these lines can
be used as general purpose outputs, addressed as bits 20-23 of Y:$FFC2 (Y:$FFFD bits 0-3 on PMAC
STD).

Input/Output: Connecting PMAC to the Machine 51



PMAC User Manual

Display Port Outputs (JDISP Port)

The JDISP connector (J1) allows connection of the Acc-12 or Acc-12A liquid crystal displays, or of the
Acc-12C vacuum fluorescent display. Both text and variable values may be shown on these displays

using the DISPLAY command, executing in either motion or PLC programs.

NOILVILN3¥34d1a

62.$°X

=

144

!

FAVMLA0S

v

ONITVOS=62.$°A

€2L00V$=8ZL$°A

ANIL.

NOILVI1Od¥3LNI

FAVMLI0S

!

000000$=€2.$:A

NOISHIANOD |/
.asva H

JOVLTIOA OL
IVNOLLYOdO¥d

aNIVA

€2L$'X
NOISY3IANOD
AN ¥3IAOON3
vz iT
1NNOD
Q3LVIOdY3LNI

103443 3HL ONILON ANV
FOVITOA LNdNI FHL ONIAYVA A9 ATIAILOVEILNI GININYELIA 39 NV INTVA SIHL
*(379VL NOISHIANOD LINV43A IHL ¥O4) 622$:A NI ANTVA FHL A9 13S SI ONITVIS

(N‘p2'0‘62L$:X<-09N "B°3) ¥ILSIODIY SIHL
OL I79VINVA-IN NV NOISSV A1dIIS ‘IS0d¥Nd ¥3HLO JNOS ¥O4 INTVA SIHL 3ISN OL

(6229) £€81 OL (X'S™D YO4 €6XI) IT1GVINVA-1 SSIUAAY IOUNOS ISVE JWIL THL
13S A1dINIS ‘INFLSAS FLVNIQYOOD V HOd FAIMYIAO0 I1vHd33d4 304 INTVA SIHL ISN OL

¥ILYIANOD
¥ILNNOD THVMANVYH AON3NOIYA-OL-IDVLION |
Q3UNOIANOD-TUVMLIOS JAVMANVYH
k F % ano
=516l (e-v:v23) NZHY 52
. €3 wyoys~
+0000%$:X
¥aiNnoo | YO~ o _
% /43a0923a >
vz $ON3 YWHO ET/N d3dim
z.3 H
INNOD ZHY 052 OL 0 SZ—o
¥IADIALNI NIv¥L 3sInd m@d%% || As+
r H
AOL+
(aaainoud
¥3asn
7VNOILJO)

Figure 4 Using the PMAC Control Panel Analog (Wiper) Input

Input/Output: Connecting PMAC to the Machine

52



PMAC User Manual

SETTING UP A MOTOR
What is a Motor?

A motor, to PMAC, is a unit that has feedback, output, flags, and potentially a master. A motor is set up
by assigning it these attributes and activating it. This is done through the use of I (initialization)
variables. Position information is typically pre-processed through a structure known as the Encoder
Conversion Table, explained below.

Defining the Motor

The settings of a few I-variables define the motor for PMAC. That is, they tell it where to get its inputs,
and where to put its outputs (which is as much as PMAC can really know). By making all of these
locations set up by variable values, PMAC provides incredible flexibility in setting up a system.

Motor I-Variables

Each motor has an identical set of [-variables. The hundreds digit of the I-variable number corresponds to
the number of the motor. To refer to a motor I-variable generically, we replace the hundreds digit with
the letter x, where x represents the number of whichever motor we are dealing with at the time (for
example Ix03 could represent 1103, 1203, 1303, and so on, to 1803).

The default values of the variables provide the settings that most will want to use, so they will not need to
change these settings. However, if a different setup from the default is desired, it is a simple matter of
changing a variable or two.

Activating the Motor

Variable Ix00 for Motor x controls whether PMAC does calculations for this motor or not. If using Motor
x at all, set Ix00 to 1 (activated). If not using the motor at all, set [x00 to 0 (de-activated), so PMAC does
not waste processor time doing calculations for the non-existent motor. An activated motor can be either
enabled or disabled; activation simply means that PMAC is paying attention to what happens on the
motor.

Does PMAC Commutate this Motor?

Virtually all motors need to be commutated somehow — the only significant exception is the voice-coil
motor. The important question here is whether PMAC does the commutation. If the commutation is done
inside the motor (as in brush motors) or in the amplifier, PMAC does not need to do the commutation,
and Ix01 must be set to 0. If this is the case, only one analog output is required for the motor, and it does
not matter what the settings of the commutation I-variables (Ix70-1x83) are.

If PMAC is to perform the commutation for the motor, Ix01 must be set to 1. In this case, two analog
outputs are required for the motor, and [x70-Ix83 must be set up to commutate the motor properly. Refer
to the Setting Up PMAC Commutation section in this manual.

Address I-Variables

Each motor has several address I-variables. These pointer variables contain the address in the PMAC
memory and I/O space of a register where PMAC will read or write data automatically. These variables
include 1x02, Ix03, Ix04, Ix05, Ix10, Ix25, Ix81, and Ix83. Because PMAC has a 16-bit address bus, it
takes 16 bits (four hexadecimal digits) to specify an address. However, the address I-variables are 24-bit
values, and the upper eight bits can be used to specify alternate modes for using the designated register.
If all of the upper bits are zero, the register is used in the default fashion. Refer to the individual I-
variable descriptions in the PMAC and PMAC2 Software Reference Manual, for details on the alternate
usage modes for each of these [-variables.

Setting Up a Motor 53



PMAC User Manual

To the beginner, the need to specify addresses for input and output may seem cumbersome. However, for
basic applications, most can use the sensible default values (Motor n uses DACn, Encoder n, and Flags n),
and the ability to assign inputs and outputs at will provides unprecedented flexibility in more
sophisticated applications.

Hex vs. Decimal Reporting

If19is 0 or 1, PMAC will report address I-variable values as decimal numbers. If 19 is 2 (default) or 3, it
will report these values as hexadecimal numbers. Usually, it is much easier to interpret these values as
hexadecimal numbers, especially when alternate modes are used, because the address digits themselves
can be seen. For example, setting 1102 to $C003 (49155) specifies the use of DACI1 for Motor #1
command output in the normal bipolar mode.

Setting bit 16 to 1 tells PMAC to use the register in unipolar (magnitude and direction) mode. In
hexadecimal form, PMAC would report this value back as $1C003, so the address is still obvious, but in
decimal form, PMAC would report 114691, completely obscuring the address.

Selecting the Output(s)

Variable [x02 determines in which register (or pair of registers, if PMAC-commutated) motor x places its
command output every cycle. The value of Ix02 is the address of the register. Usually, this is a digital-
to-analog-converter (DAC) register. The default value of Ix02 is the register address of DACx (e.g.,
Motor 1 uses DAC1 by default).

Pulse and Direction Output

PMAC can command drives that accept pulse-and-direction inputs — stepper drives and stepper-
replacement servo drives. The analog output from PMAC is converted to a pulse train through a voltage-
to-frequency converter on the Acc-8D Opt 2 board. The PMAC output must be set in sign-and-magnitude
mode by setting bit 16 of Ix02 to 1. The pulse train can be fed back to PMAC for a simulated servo loop,
or an actual encoder can be used.

Selecting the Position Loop Feedback

Variable Ix03 determines from which register Motor x gets its actual position information to close its
position loop every servo cycle. The value of 1x03 is the address of the register. Usually, this register is
the Encoder Conversion Table and contains processed information from a feedback device. With the
default setup of the Encoder Conversion Table, the default value of Ix03 is the register address of
processed data from Encoder x (e.g., Motor 3 uses Encoder 3 by default).

Selecting the Velocity Loop Feedback

Variable Ix04 determines from which register Motor x gets actual position information to close its
velocity loop every servo cycle. The value of 1x04 is the address of the register. Usually, this register is
in the Encoder Conversion Table and contains processed information from a feedback device. With the
default setup of the Encoder Conversion Table, the default value of Ix04 is the register address of
processed data from Encoder x (e.g. Motor 3 uses Encoder 3 by default).

Dual Feedback Systems

In most systems, this register is the same register that is used for closing the position loop, which means
that Ix03 equals [x04. However, the concept of dual feedback is becoming increasingly popular in motion
systems today. In such a system, there are position sensors on both the motor and the load.

54 Setting Up a Motor



PMAC User Manual

. LOW 16 BITS (4 HEX DIGITS) SPECIFY THE ADDRESS

. WHEN HIGH 8 BITS ARE ZERO, ADDRESS IS USED IN NORMAL
MODE

. 19=2 OR 3: PMAC REPORTS VARIABLE VALUE IN HEX

MODES ADDRESS
ex) 00 1/C 0 0 3

BINARY 0/0/0/00/0|0/1| 1/1/00/0/0,0/0 00/0/0[0,0 11
Figure 5 Address I-Variables

Ix02 DAC output address
Ix03 POSITION loop feedback address
Ix04 VELOCITY loop feedback address

DAC Locations
1x02 .

L]
cp FE “ cv 7 VE DACn H
e—|__ DACn+1
°

AP .

D [ ) - >
Y: $C002-$C03B [ |LOAD
AV ENC MOT ‘
Encoder Table

Ix04
x04 3 LIN _ENC

[
ENCn
ENCn+1

X: $0720-$0739

1x03
Figure 6 PMAC Pulse and Direction Output

Accuracy vs. Stability

A sensor on the load (often a linear scale) provides a more accurate measure of position than a sensor on
the motor, because its accuracy is not affected by imperfections in the motor-load coupling. However, it
can also make the axis less stable, because these coupling imperfections (typically compliance and
backlash) are now inside the loop. A sensor on the motor, while less accurate provides better stability
because these imperfections are not inside the loop.

In many cases, it is possible to get both accuracy and stability by using sensors on both the motor and the
load. In a PMAC system, simply use the load encoder to close the position loop (for accuracy), using
Ix03 to point to this encoder; and use the motor encoder to close the velocity loop (for stability), using
Ix04 to point to this encoder.

Setting Up a Motor 55



PMAC User Manual

Note:

When using dual feedback, the motor flags specified by [x25 (see below) should
have the same number as the position-loop encoder. Otherwise, the hardware
position-capture function for homing will not work, and the less accurate software
position-capture function must be used. For example, if the velocity-loop encoder
is ENC1 (Ix04=$0720) and the position-loop encoder is ENC2 (Ix03=$0721), the
motor flags must be Flags 2 (Ix25=$C004) in order to use the hardware position
capture. If the flags are of a different number, the software position capture
function must be specified for homing by setting bit 16 of Ix03 to 1 (e.g.,
1x03=$10721).

Selecting the Master Position Source

Variable Ix05 determines from which register Motor x gets its master position information. The value of
Ix05 is the address of the register. Usually, this is a register in the Encoder Conversion Table that
contains processed information from a position sensor. With the default setup of the Encoder Conversion
Table, the default value of Ix05 is the register address of processed data from Encoder 2 (i.e., all motors
use Encoder 2 as a master). This setting permits a single master encoder to be brought in on the control-
panel port (J2), and have any motor follow it if that motor’s following function is enabled.

The master position is the source of data for the PMAC position following function (often called
electronic gearing). This topic is covered in detail in the Synchronizing PMAC to External Events section
of this manual.

Selecting the Flag Register

Variable [x25 determines which register Motor x uses for its flag inputs (limits, home flag, amplifier
fault, and index channel) and output (amplifier-enable/direction). The value of Ix25 is the address of the
register. Usually, this is a control/status register in the DSPGATE IC. The default value of Ix25 is the
register address of the control/status register for Encoder x (e.g. Motor 4 uses +LIM4, -LIM4, HMFL4,
FAULT4, CHC4, and AENA4/DIR4). In order to use the accurate hardware position capture function for
homing, the number of the flag set must match the number of the position-loop encoder specified by Ix03.

Selecting the Power-Up Mode

Variable Ix80 determines whether the motor will be enabled or disabled at the end of the power-up/reset
cycle. If Ix80 is 1, the motor will be enabled automatically at the end of the power-up/reset cycle, in a
closed-loop, zero velocity state, with the commanded position set equal to the actual position at the time.
If a phasing search is required for a PMAC-commutated motor, it will be done automatically. If Ix80 is 0,
the motor will be left disabled (killed). A command will be required to enable the motor: for a PMAC-
commutated motor, the $ command must be used; for a motor not commutated by PMAC, either the $ or
J/ command may be used, or the A command for all the motors in a coordinate system, or the <CTRL~
A> command for all PMAC motors.

Types of Position Sensors

PMAC is designed to take incremental encoder feedback without any accessories. With the appropriate
accessories, it can also take resolver, absolute encoder, analog, or magnetostrictive linear displacement
transducer feedback. These features are explained in further detail below.

Quadrature Encoder Feedback

PMAC can take quadrature encoder signals as position feedback with software programmable decode
selection of x1, x2, or x4 decode (pulse and direction decode is also possible). Encoder I- variable 0
(1900, 1905, etc.) determines the decode method and direction sense for each encoder. The 24-bit
hardware counter is software-extended to over 36 bits (64 billion counts). A software parameter (Ix27)
allows position rollover at a user-specified value: this is especially useful for rotary axes. Any unused
encoder counter in a DSPGATE IC may be utilized as a hardware timer (refer to 1900 description).

56 Setting Up a Motor



PMAC User Manual

1/T Sub-count Interpolation

There are two optional methods on PMAC for achieving sub-count resolution with incremental feedback.
The first is called 1/T decoding. Each encoder channel has two timer registers associated with it. The
first register holds the time between the last two encoder transitions. Velocity is estimated as being
inversely proportional to this time — a very accurate estimation, particularly at low speeds.

The second timer holds the time since the last transition. Fractional distance traveled since the last
transition is estimated as the value of the second timer divided by the value of the first timer (see figure 7-
3). This interpolation provides added smoothness to low speed moves, but it does not provide accurate
interpolation at rest. 1/T decoding requires the $00 conversion format (see below).

Parallel Sub-count Interpolation

The second method of interpolation allows PMAC to read up to five bits of parallel fractional information
to supplement the integer quadrature count. Usually this information is derived from analog sine/cosine
quadrature signals of encoders or interferometers through analog-to-digital converter circuitry. This
circuitry, which creates digital quadrature and the parallel fractional bits, must be external to PMAC,
either on Delta Tau’s Acc-8D Option 8, Analog Encoder Interpolator board, or on user-provided circuitry.
PMAC provides simultaneous latching of the quadrature counter and the parallel inputs to ensure
synchronicity of the data.

This interpolation method, unlike the 1/T method, provides accurate interpolation at rest as well as during
movement. Ifthe A/D conversion circuitry does not provide accurate interpolation at high speeds, it is
possible to change on the fly between 1/T and parallel interpolation.

This type of sub-count extension may be done only on odd-numbered encoders. The five bits are the five
inputs associated with the next higher-numbered encoder: FAULT (MSBit), +LIM, -LIM, HMFL, and
CHC (LSBit). Parallel sub-count extension requires the $80 conversion format (see below).

Servo
Interrupts .

T T T T
. . . K
Velocity Estimation : V,, = 71_
1
Ty
Position Estimation : Pn = Counter +/- T

1
Figure 7 PMAC 1/T Extension

Setting Up a Motor 57



PMAC User Manual

Hardware Changes

To implement this type of feedback properly, several settings in hardware and software must be changed
from the default. First, the socketed opto-isolators for the flag bits being used as interpolated bits must be
removed and replaced with hard-wired shunts so the signals are not delayed. This will tie the flag
circuitry to the digital circuitry. In this case, it is desirable to supply the remaining true flags from the
digital +12V circuitry (by moving the E90 jumper) and to tie the low ends to digital ground (GND); this
will retain the isolation between digital and analog circuitry.

Software Changes

In software, it is important to disable the digital delay filters on the encoder inputs of both the main
encoder, and the encoder matching the flag bits (even though that encoder is not actually used for this
function). This is done by setting Encoder I-Variable 1 (1901, 1906, 1911, etc.) to 1 for both of these
encoders.

Parallel Position Feedback

PMAC can take parallel position feedback (e.g., from an absolute encoder, laser interferometer, or an
already converted analog signal) through its I/O expansion board (Accessory 14D/V). Each Acc-14D/V
board has 48 bits of input, so it may be connected to two parallel feedback devices of up to 24 bits each,
or one of over 24 bits. Up to six Acc-14D boards may be connected to a single PMAC. The parallel
feedback devices must provide straight binary data, not gray code. The PMAC internal registers will
extend the count automatically if the parallel device rolls over (unless the PMAC register is set up to roll
over as well).

58 Setting Up a Motor



PMAC User Manual

Parallel position feedback requires one of the conversion formats $20, $30, $60, or $70 (see below).

v
sndaviva

a3¥IS3A SV I2UNOS 0 <— ¥3dIAIQ o<_>_n_
el
AONINOIY4 ¥O01D L2373S mmmm

oz

<]

avno anv
Ol L¥3ANOD

A
A

sjuawaloul

¥3AOON3
a31VI0dA3LNI
- [e]
YILIWOUIIHILNI
d3asvi

SY0.LI373S LNIOd 3., 9€3 ZHIN 02
108, zm_H I
8¢d| ”
y Ye— uxa
A4
L8 ve -
¥3INNOD ¥IAOONI 8
v D —
HOLVTIOJYILNI L
anvy
UIZINONHONAS
"XVIN ZHIN 01
avno av
HO1vV1Vvlvad
u8S7u uOu
IH 39019 40 3903
ONISI NO G3HOLV1
T3ANNVHD O T
ov14 INOH wi 39 0L SLNd1NO 1TV
NI+
«8SIL.. 1NV sligas
SLNIWIHONI Z€ OLNI 3LVIOdHILNI
31vO-dsda [ s |
"S119 ¥3AOONI <

NOILISOd A31VvI10dy3LNI
S, TINNVHD .ado.. ¥04
T3ANNVHO .N3A3. S.OVINd
NO SL1NdNI 3S3HL 3sn

06

"43AO0ON3 ¥0d NOILVIOdYALNI 1Ig ONISN NIHM
TOYLNOD 40 SIXV ¢ ATNO ITANVH NVO JIVIAd SIXV ¥ V :31LON

v

Figure 8 Interpolated Encoder Feedback

59

Setting Up a Motor



PMAC User Manual

Parallel Absolute Feedback

When using an absolute encoder as the feedback device, the data is presented to PMAC in parallel form.
All lines must be presented together; no high-word low-word select schemes are permitted. With the
absolute nature of the device, the power-on/reset position is not automatically zero. For this type of
device, PMAC can use the Ix10 parameter to read the absolute power-on/reset position up to a width of
48 bits. If Ix10 is set to 0, the absolute power-on/reset position read function is disabled, and the power-
on/reset position is set to zero, regardless of the setting of the sensor, and subsequent position readings are
incrementally referenced to this zero position. For more information, refer to the Absolute Power-Up
Position section in this manual and to the Ix10 description in the Software Reference manual.

Sensor Rollover

If the overall travel for the axis is more than the range of the absolute device, PMAC will automatically
extend the position in software to handle rollover. In this case, however, the device should be considered
a parallel incremental device (see next section). A device can be considered absolute for commutation
purposes, so no power-on phasing search is required (set [x81=0 if PMAC is doing the commutation), but
still incremental for overall machine positioning functions. In most systems, single-turn resolvers and
absolute encoders have this functionality. Refer to the Phasing Referenced to an Absolute Sensor in
Setting Up PMAC Commutation section in this manual for more information on this type of setup.

It is important with this type of feedback device to perform a PMATCH (position-match) function before
the first programmed move after power-up/reset. Usually this is done automatically by having 114 equal
to 1. If this is not done, PMAC will calculate the first move for the motor assuming a starting point of
zero, instead of the true position, leading to unexpected performance on the first move.

Parallel Incremental Feedback

A device such as a laser interferometer often provides parallel feedback data, but the device is
fundamentally incremental, so it does not know where it is on power-on/reset. The PMAC setup to accept
this type of feedback is the same as for an absolute parallel device, but recognize that a homing procedure
is necessary. For this type of device, leave Ix10 equal to zero, so that PMAC does not perform an
absolute power-on/reset position read.

However, since the position information is not absolute, and since PMAC has the ability to extend
position range in software, it is not necessary to bring all the lines of a device to PMAC. This can save
money on interfacing costs. All that is needed is enough lines (starting from the LSB) so that half the
range of those lines will not be covered in a single servo cycle. For instance, a typical interferometer
interface has 32 bits of parallel data. Even with a servo cycle of 1 msec, which is slow for PMAC, wiring

only the low 16 lines to PMAC is sufficient as long as the maximum speed is less than 32,768 (215)
counts/msec, or 32,768,000 counts/sec.

Software Capture on Homing

The motor using this device for position feedback must be programmed to do a software position capture
on a homing search move, instead of the hardware position capture performed with incremental encoders.
This is done by setting bit 16 of variable Ix03 for the motor to 1 (if Ix03 were $0720, it would become
$10720). The delay in software capture can be a few milliseconds; the speed of the homing search move
may need to be limited for high homing accuracy.

Linear Displacement Transducer Feedback

PMAC can accept feedback from a linear displacement transducer (LDT) through its Acc-29 interface
board. (The best-known brand name for this type of device is Temposonics from MTS Corp.) This type
of device operates much like sonar, and what is being measured is the time before the echo is returned.
Acc-29 uses the timer registers of its on-board DSPGATE ICs to record this information, therefore, the
larger the time, the longer the distance.

60 Setting Up a Motor



PMAC User Manual

To PMAC itself, this type of feedback looks like an absolute encoder. The source of the data is the
appropriate timer register, not the Acc-14D 1/O register. The $20 or $30 conversion format would be
used, and the data would be found in the Encoder 9 through Encoder 16 timers that measure the time
between the last two pulses (Y:$C020, Y:$C024, ... Y:$C03C). See below under Parallel Position
Feedback Entries for instructions on the software setup for this type of feedback.

For this type of device, PMAC can use the Ix10 parameter to read the absolute power-on/reset position up
to a width of 24 bits. If Ix10 is set to 0, the absolute power-on/reset position read function is disabled,
and the power-on/reset position is set to zero, regardless of the setting of the sensor, and subsequent
position readings are incrementally referenced to this zero position. For more information, refer to the
Absolute Power-Up Position section in this manual, the Ix10 description in the Software Reference
manual, and the Acc-29 MLDT Interface manual.

It is important with this type of feedback device to perform a PMATCH (position-match) function before
the first programmed move after power-up/reset. Usually this is done automatically by having 114 equal
to 1. If this is not done, PMAC will calculate the first move for the motor assuming a starting point of
zero, instead of the true position, leading to unexpected performance on the first move.

Analog Position Feedback

If analog feedback is desired from a potentiometer or an LVDT, PMAC can accept high-band width
analog feedback through one of its analog-to-digital converter boards (Acc-23 or Acc-28). Any
modulated analog position signal must be demodulated before it is presented to the PMAC system so that
a fixed position is represented by a DC voltage. PMAC does not support the software extension of analog
position feedback through its accessory cards, so no rollover should be permitted. Analog feedback
through Acc-23 or Acc-28 requires conversion format $10 (see below).

If the analog data is converted to digital form external to PMAC or its accessory boards, then it will be
fed into PMAC as a parallel data word, and PMAC will treat it like an absolute encoder (see above).

For this type of device, PMAC can use the Ix10 parameter to read the absolute power-on/reset position up
to a width of 16 bits. IfIx10 is set to 0, the absolute power-on/reset position read function is disabled,
and the power-on/reset position is set to zero, regardless of the setting of the sensor, and subsequent
position readings are incrementally referenced to this zero position. For more information, refer to the
Absolute Power-Up Position section in this manual, the Ix10 description in the Software Reference
manual, and the Acc-28 or Acc-36 A/D Converter manual.

With the V1.15 firmware, it is also possible to use the A/D converters on a single Acc-36 for servo-loop
feedback. 160 and 161 are used to specify the address and number of Acc-36 ADC registers to be copied
into RAM automatically during phasing interrupts. The servo loop feedback functions read the data from
these RAM registers, and should treat the data as 12-bit parallel position feedback (see above section).

For this type of device, PMAC can use the Ix10 parameter to read the absolute power-on/reset position up
to a width of 12 bits. IfIx10 is set to 0, the absolute power-on/reset position read function is disabled,
and the power-on/reset position is set to zero, regardless of the setting of the sensor, and subsequent
position readings are incrementally referenced to this zero position.

It is important with this type of feedback device to perform a PMATCH (position-match) function before
the first programmed move after power-up/reset. Usually this is done automatically by having 114 equal
to 1. If this is not done, PMAC will calculate the first move for the motor assuming a starting point of
zero, instead of the true position, leading to unexpected performance on the first move.

Setting Up a Motor 61



PMAC User Manual

Resolver Feedback

PMAC can accept resolver feedback through its Acc-8D Option 7 resolver-to-digital converter board.
This board, which can be purchased in two-channel and four-channel configurations, processes the
resolver data two ways: first into an absolute word (within one revolution of the resolver), and second,
into a quadrature signal. Both have 4096 counts per electrical cycle of the resolver. An electrical cycle is
a pole-pair, so a 4-pole resolver has two electrical cycles per mechanical revolution, or 8192 counts.

The reading of the absolute word is too slow to perform every servo cycle, so in typical use, this is only
done at power-up/reset, if at all. The ongoing position is received from the quadrature encoder counter to
which the converted quadrature signal has been connected. To the PMAC software, this then looks
exactly like a real quadrature encoder.

For this type of device, PMAC can use the Ix10, 19x, and I8x parameters to read the absolute power-
on/reset position of a single resolver, or of a system of 2 or 3-geared resolvers. If Ix10 is set to 0, the
absolute power-on/reset position read function is disabled, and the power-on/reset position is set to zero,
regardless of the setting of the sensor, and subsequent position readings are incrementally referenced to
this zero position. If the absolute position of a single-turn resolver will be used only to prevent the need
for a power-on phasing search, Ix81 is used to specify the absolute power-on phase position read. For
more information, refer to the Absolute Power-Up Position section in this manual, the Ix10 description in
the Software Reference manual and the Acc-8D Opt 7 R/D Converter manual.

Absolute Power-Up Position

In some applications, it is not permissible or desirable to do a homing search move after power-up or
reset. In these applications, an absolute position sensor can be used so that the true position is known
immediately on power-up/reset and there is no need to move to a known home position. The typical
sensors used for this purpose are absolute encoders and resolvers. PMAC can support absolute power-on
position reading from both of these sensors.

Absolute Position Range

To get absolute power-on position sufficient that no homing search move is required, the position sensor
must be absolute over the entire range of travel of the axis. If the travel covers multiple revolutions of the
motor and the sensor is absolute over only a single turn of the motor, a homing search will still be
required. Although such a sensor can be used for power-on phasing of a brushless motor, for these
purposes, the sensor should be treated as an incremental sensor. See Phasing Referenced to Absolute
Sensor in the Commutation section of this manual, and the descriptions of Ix75 and Ix81 for information
on power-on phasing.

If power-on absolute position of a system is desired without any rollover of the position, the rollover
point(s) of the absolute sensor must be outside the range of travel. If treating the absolute position
information as an unsigned quantity, the rollover points are the zero positions of the sensor. If treating the
absolute position information as a signed quantity, the rollover points are half way in between the zero
positions.

Each Motor x on PMAC has the variables Ix10, I9%, and 18x to support the absolute power-up position
read. Ix10 specifies the register address in PMAC of the absolute sensor, and the method for reading it.
19x and I8x are used to specify second and third resolvers if a geared resolver system is used to determine
power-on position.

62 Setting Up a Motor



PMAC User Manual

Parallel-Data Position

Ix10 can specify two types of feedback. If the absolute position data is presented to PMAC as a parallel
word, usually through an Acc-14 1/O board, then the address specified in the low 16 bits of Ix10 is the
address of the 'Y' PMAC register that holds this data (e.g., SFFD1). The high eight bits of Ix10 specify
the number of bits to use at this register (and potentially the next higher register as well). The most
significant bit specifies whether the quantity is to be treated as a signed or unsigned value and the second
most significant bit (bit 22) specifies whether the data comes from an X-register or a Y-register.

Valid values for the number of bits in this mode are 8 to 48 ($08 to $30). If the most significant bit (value
$80) is set to 1, giving a range for the high eight bits of $88 to $B0, the number read from the sensor is

treated a signed quantity, with a range of -(2N -1 ) to +2NV- -1_1, where N is the number of bits. If the

MSBit of [x10 is zero, the sensor value is treated as an unsigned quantity, with a range of 0 to 2Ny,
Virtually all parallel I/O sources map into Y-registers in PMAC, so usually bit 22 (X/Y specification) is
set to 0 to specify a Y data source.

Example:

For a 22-bit absolute encoder on Port B of the first Acc-14 (Y:$FFD1) to be read as an unsigned quantity,
Ix10 would be set to $16FFD1 (16 hex is 22 decimal); to be read as a signed quantity, Ix10 would be set
to $96FFDI1. For a 32-bit absolute sensor with the low 24 bits at Port A of the first Acc-14 (Y:$FFDO0)
and the high eight bits at Port B (Y:$FFD1) to be read as an unsigned quantity, Ix10 would be set to
$20FFDO (20 hex is 32 decimal); to be read as a signed quantity, Ix10 would be set to SAOFFDO.

Note:

A sensor with parallel data output is not necessarily an absolute sensor. Laser
interferometers often present their position data in parallel form, but they are
incremental sensors and a motor using one for position feedback still must be
homed. Ix10 should be left at 0 (no absolute power-on read) for any incremental
Sensors.

Resolver Position

The other type of power-on position data that can be specified with Ix10 is serial data from an Acc-8D
Option 7 resolver-to-digital (R/D) converter board brought in through the thumbwheel multiplexer port.
In this format, the low 16 bits of Ix10 specify the multiplexed address on this port, a value from 0 to 256
decimal matching the address set on the board with DIP switches. (Multiplexer addresses are even
numbers ranging from 0 to 254; a value of 256 ($0100) should be used to specify multiplexer address 0,
because PMAC interprets a value of 0 to mean no absolute power-on position read).

The high eight bits of Ix10 contain a value from 0 to 7 specifying the location of the particular R/D
converter at that multiplexer address — there are potentially eight at each multiplexer address. In
addition, the most significant bit (value $80) specifies whether the position is to be treated as a signed or
unsigned quantity. If the MSBit is set to 0, the value read from the resolver is treated as an unsigned
quantity, with a range of 0 to 4095; if the MSBit is set to 1, the value is treated as a signed quantity, with
a range of -2048 to 2047.

For example, to use an R/D at location 3 of multiplexer address 2, treating the value as an unsigned
quantity, Ix10 would be set to $030002; treating the value as a signed quantity, Ix10 would be set to
$830002. To use an R/D at location 0 of multiplexer address 0, treating the value as an unsigned
quantity, Ix10 would be set to $000100; treating the value as a signed quantity, Ix10 would be set to
$800100.

Setting Up a Motor 63



PMAC User Manual

Geared Resolvers

Typically, a single resolver on the back of the motor is not sufficient to determine power-on position. If
true power-on position information is required, a set of geared resolvers is used, each one geared down to
a slower speed, and therefore a coarser resolution, than the resolver before it was in the chain. The first
resolver, usually on the back of the motor and rotating with the motor, turns the fastest and has the highest
resolution. It is called the fine resolver or the first resolver. The last resolver in the gear chain turns the
slowest and has the lowest resolution. It should never turn more than one revolution — one electrical
cycle, really — and it is called the coarse resolver.

Theoretically, any number of geared resolvers can be used to establish power-on position. In practice,
most systems use two or three resolvers. In a two-resolver system, these are called the fine and coarse
resolvers. In a three-resolver system, they are called the fine, medium, and coarse resolvers. Since
PMAC can interface to both two- and three-resolver systems, the terminology first resolver or primary
resolver will be used for the fine resolver connected directly to the motor shaft. The resolver geared
down from the first resolver — coarse in a two-resolver system, medium in a three-resolver system —
will be called the second or secondary resolver. The next resolver will be called the third resolver.

If a set of geared resolvers is to be used to determine power-on position with PMAC, variables 19x, and
possibly I8x must be changed from their default values of zero as well. The second resolver must be
connected to the R/D converter at the next higher location at the same multiplexer address than the
primary resolver. 19x represents the gear ratio between the primary and secondary resolvers. It must be
an integer number. If the second resolver were geared down from the primary resolver by a 16:1 ratio,
19x would be set to 16. A value of 0 for 19x tells PMAC that there is no secondary resolver.

If there is a third resolver geared down from the second resolver, I8x is used to specify the gear ratio
between the second and third resolvers. The third resolver must be connected to the R/D converter at the
next higher location at the same multiplexer address than the second resolver. It must be an integer
number. If the ratio between the two were 36:1, 18x would be set to 36. A value of 0 for I8x tells PMAC
that there is no third resolver.

Even in a geared-resolver system, the most significant bit of Ix10 determines whether the combined
quantity will be treated as a signed or unsigned value. Ifit is to be treated as unsigned, the zero position
should be set up past the negative end of travel, so power-up position cannot be to the negative side of
zero. If it is to be treated as signed, the zero position should be in the normal range of travel; setting it in
the middle of travel maximizes the usable range of the axis.

On any motor using a resolver or resolvers for position feedback, all position information used in the
servo loop after the initial power-on read comes through the quadrature signals generated by the R/D
converter for the primary resolver, counted in one of the PMAC encoder counters. The software setup to
support this (Ix03, Ix04, conversion table) is the same as for a real quadrature encoder. There is no need
to use the quadrature signals generated from the second or third resolvers for the motor.

Axis Offset

What if the absolute sensor’s zero position is not where the axis’ zero position for programming purposes
should be? This is a very common occurrence, both because it is difficult to line up the sensor exactly,
and because the zero position of the sensor typically must be outside the range of travel if the position
information is treated as an unsigned value.

The difference between sensor (motor) zero and axis zero can be set by the axis offset parameter of the
axis definition statement for the axis. This parameter, with units of counts, should contain the axis
position when the sensor position is zero. It is independent of the axis scale factor (counts per
engineering unit) in the same axis definition statement.

64 Setting Up a Motor



PMAC User Manual

For instance, to assign Motor #1 to the X-axis with 10,000 counts per unit, if the axis zero position should
be at the point where the absolute sensor reads 50,247 counts, then the axis position would be -50,247
counts when the sensor reads zero, so the axis definition statement would be: #1->10000X-50247.

Encoder Offset

If using resolvers for absolute power-on position information, subsequent position information comes
through the encoder counters, which are set to zero on power-on. For most purposes, this is transparent to
the user, but to use encoder registers directly, usually for position capture and compare functions, then
know the difference between the encoder-counter zero position, and the motor (resolver) zero position.

This value is kept in the Motor Encoder Position Offset Register [Y:$0815 (Motor 1), Y:$08D5 (Motor
2), etc.]. For an example of the use of this register, see the Storing the Home Position under Basic Motor
Moves section of this manual.

Encoder Conversion Table

The PMAC Executive Program for PC compatible computers has a special editing screen for the
conversion table that makes viewing it and changing it very easy. The detailed instructions here show
how to view and change the table even without the help of the executive program screens.

PMAC uses a multiple-step process to work with its feedback and master position information, and with
external time-base sources, to provide maximum power and flexibility. For most PMACs with quadrature
encoders, this process can be virtually transparent, with no need to worry about the details. However,
some basic understanding is needed of this conversion process to make the changes necessary to use other
types of feedback, to optimize the system, or to perform special functions.

The first step in the position and time-base conversion process is the hardware encoder counters with
associated timers, A/D registers, or accessory cards for parallel input. These work continually without
direct software intervention (although they can be configured through software). Beyond this point, the
process is software-controlled. At the start of each servo cycle, a servo interrupt signal is sent out to latch
all of the registers.

At this point, PMAC uses a software structure called the Encoder Conversion Table to process the
information in the latched registers. This table tells PMAC what registers to process, and how to process
them; it also holds the intermediate processed data.

Ix03: Position Loop Feedback Address
Servo Address ) Ix04: Velocity Loop Feedback Address
I-Variables Ix05: Master Position Address

Ix93: Time Base Source Address
To Servo Address
Algorithms Encoder Conversion PMAC Hardware
Table Registers
Data - -
Conversion Instructions:| Address Feedback
Process & Address g Raw Data Signals
Feedback D —
» Processed Data Data
Feedback Data
RAM Encoder Counters

& Timers, Latches, ADC's
Figure 9 Encoder Conversion Table Process

Setting Up a Motor 65



PMAC User Manual

Conversion Table Structure

The Encoder Conversion Table has two columns, one in the X memory space of the processor, and one in
the Y memory space. The X-column holds the converted data, while the Y-column holds the addresses of
the source registers, and the conversion methods used on the data in each of those source registers.
Basically, set up the table by writing to the Y-column, and PMAC uses the Y-column data to fill up the
X-column each servo cycle.

PMAC Executive 3.2
File Edit Configure Status Hindow Plot Options Backup Help
PMAC Terminal (PC Bus) - PROM 1.15F [=] Position -

Configure Encoder Conversion Table

You
I6 h

Entry: B | Download Entry to PHAC I

Entry Processed data
address: | Y:5728 address: | X:5728

(Viewing)

Conuersion tfype: |1/T extension of incremental encoder

Source address: |$[ZBBB (Encoder 1)

Q)Nu_rmal I:I
._/Add with previous entry I:I

‘@ Uiew all encoder table entries | JDD not shift parallel data

[1e]1e

Conversion Summin

|F'ress <Pgllp> or <PgDn> to change encoder entries | |

Figure 10 Configure Encoder Conversion Table Editing Screen

Conversion Methods

The chart below lists the possible conversion formats. To do a conversion, the 8-bit format is matched
with a 16-bit address to fill the 24-bit Y-word in the conversion table. If there is more than one row for a
given conversion type, the other Y-words are further setup parameters for the conversion. The conversion
result is placed in the last (highest address) X-word, and the other X-words hold intermediate data.

Adding Entries

For many conversion table entries — those with a second digit of x or y in the above table — setting bit 16
of the setup word to 1 means that the result of the conversion is not just from the specified source.
Instead, it is the sum of this entry and the entry above in the table. This permits the servo feedback to use
the sum of two sensors. (If the polarity of the sensors or their counters is opposite, this provides the
difference of the sensors. This can be useful for Doppler-type sensors, where the reference wave and the
shifted-frequency wave are fed into different counters, one counting up, the other counting down;
summing the two counters provides position.)

Example Setup Words:
WY:$720,$00C000 ;/T entry for encoder channel 1
WY:$721,$01C004 ;/T entry for encoder channel 2 summed with channel 1
WY:$722,$680721, S$FFFFFF ;Intermediary entry for sum of encoder
;channel 1 and 2
WY:$724,00C008 ;/T entry for encoder channel 3 summed with
;Intermediary entry

66 Setting Up a Motor



PMAC User Manual

Each type of conversion is discussed below.

Note:

If the conversion table has two or more summing entries in a row, only the first
entry will perform summing. The other entries will only process their source data
with no summing. This means that it is not possible to directly sum three or more
sources. To sum three or more sources, an intermediary non-summing entry must
be used between the second and third source entries. This is accomplished by
reading the output of the second entry (the first summed entry) with an entry using
the $68 format. This entry can then be summed into a third source entry using the
standard technique.

PMAC Encoder Conversion Table
X-Memory (Results) Y-Memory (Set-up)
1. Single Line Entry
Bits Bits Bits Bits
5-23 0-4 16-23 0-15
Result:Integer Fraction Method Source Address
2. Multi-Line Entry
Bits Bits Bits
Bits
5-23 0-4 16-23 0-15
(Intermediate Result) Method Source Address
eoe (Conversion Factors)
Result:Integer | Fraction coe

Possible Conversion Formulas
Y-Word Conversion Type No. of
Bits 16-23 Rows

$0x 1/T extension of incremental encoder 1
$1x A/D register — no rollover 1
$2y Parallel position from Y data word no filtering — with rollover 2
$3y Parallel position from Y data word with filtering — with rollover 3
$4x Time base conversion scaled digital differentiation 2
$50 Integrated analog 2
$o6y Parallel position from X data word no filtering — with rollover 2
$7y Parallel position from X data word with filtering — with rollover 3
$8x Incremental encoder with parallel sub-count extension 1
$90 Triggered time base (frozen) 2
$A0 Triggered time base (running) 2
$B0 Triggered time base (armed) 2
$Cx Incremental encoder without extension 1
$D0 Exponential Filter 1
$Ex (Reserved for future use) 1
$Fx High-resolution sinusoidal encoder 2

x=0 for normal conversion, no summing

x=1 for conversion that sums this entry with one above it

y=0 for normal conversion, no summing

y=1 for conversion that sums this entry with one above it

y=8 for an unshifted conversion, no summing

y=9 for an unshifted conversion that sums this entry with one above it

Setting Up a Motor

67



PMAC User Manual

Incremental Encoder Entries

Incremental encoders are converted with one of the conversion formats $0x, $8x, or $Cx. The low sixteen
bits of the setup word specify the address of the source on the X data bus. For incremental encoders, the
source address must be one of the DSPGATE encoder counters, selected from the following list:

ENCI1: $C000 ENC9: $C020
ENC2: $C004 ENC10: $C024
ENC3: $C008 ENC11: $C028
ENC4: $C00C ENC12: $C02C
ENCS: $C010 ENC13: $C030
ENC6: $C014 ENC14: $C034
ENC7: $C018 ENC15: $CO038
ENCS8: $C01C ENC16: $C03C

Use the addresses from this list even though the actual encoder counter register has an address two higher.

Incremental Encoder Conversion

X-Word: Y-word:
Converted Position Data Source and Processing of Data
Bits 0-4: Fractional Bits Bits 0-15: Word address of source data
Bits 5-23: Integer Bits Bits 16-23: Conversion format

$00 = 1/T interpolation
$80 = parallel-bit interpolation
$CO0 = no interpolation

The source counter already reflects the method of decoding the incoming quadrature or pulse-and-
direction waveform — whether there are one, two, or four counts per cycle. The decode method is
determined by Encoder I-variable 0 (1900, 1905, etc.) for that encoder. One bit in the counter is a count,
whether it represents a full, half, or quarter wave cycle.

1/T Interpolation

Most people will use the 1/T-extension conversion method ($0x), which uses timers associated with each
counter to estimate fractional resolution (see previous illustration). A typical setup word for this would
be $00C008, which provides 1/T-extension conversion of the encoder 3 counter.

Parallel-Bit Interpolation

If the set up uses the parallel sub-count interpolation for incremental feedback, use the $8x conversion
format. In this case, the source address must be one of the odd-numbered encoders. A typical setup word
in this case would be $80C010, which provides parallel extension of the encoder 5 counter using
encoder 6’s flags.

No Interpolation

For conversion without any sub-count interpolation, the $Cx conversion format should be used. A typical
setup word in this case would be $C0C00C, which provides a non-interpolated conversion of the encoder
4 counter.

Acc-28 Analog-to-Digital Conversion Register Entries

The $1x conversion format picks up data from the top 16 bits of a 24-bit word. It is intended for use with
the A/D converter registers in the DSPGATESs, which are fed by Accessory 23 (obsolete) or Accessory
28. (When using the Acc-36 A/D converter board, treat the data as 12-bit parallel-format data.) The
source address specifies a word in the Y memory space, and should be one of the following:

68 Setting Up a Motor



PMAC User Manual

ADC1: $C006 ADC9: $C026
ADC2: $C007 ADCI10: $C027
ADC3: $COOE ADCI11: $CO2E
ADC4: $COOF ADC12: $CO2F
ADCS5: $C016 ADC13: $C036
ADC6: $C017 ADC14: $C037
ADC7: $CO1E ADC15: $CO3E
ADCS8: $CO1F ADC16: $CO3F

A typical setup word for an A/D register would be $10C006, which provides the conversion of the
ADCI register. With A/D conversion, there is no software extension performed, so rollover should not be
permitted.

The result is placed in the X-register of the entry, scaled so that there are 19 bits of integer (the highest
three bits are simply sign-extended), and five bits of fraction (the fraction is always zero).

Integrated Analog

It is possible to use the conversion table to integrate an analog input or equivalent. This is done with
conversion format $50, instead of the $10 used for normal (un-integrated) analog conversion. The
address of the A/D source register is specified just as for the $10 format. An entry to integrate the input
of ADC1 would be $50C006.

Bias Term

The integrated analog format requires a second entry to specify the bias of the A/D. This is a signed
quantity, with units of 1/256 of the LSBit of the 16-bit A/D converter. For example, if there were an
offset in 16-bit ADC of five LSBits, this term would be set to 1280. If no bias is desired, a zero value
should be entered here. This term permits reasonable integration, even with an analog offset.

Result Format

The integrated result is placed in the X-register of the second line of the entry, with 19 bits of integer and
five bits of fraction (the fraction is always zero). Because the input data has 16 bits (this high 16 bits of a
24-bit word), at the maximum range of the input, there is only a 3-bit (8-times) extension of the input into
this integrated register, with the integration performed every servo cycle. Therefore, whatever task uses
this information must look at the integrated register at least once every eight servo cycles to handle
potential rollover situations. This is no problem for the automatic servo-loop uses of the information
(master or feedback), but it could be a problem in a background task.

The integrated result is set to zero automatically on power-up/reset, and the integration function starts
immediately afterward. Any value may be written to the result register at any time (usually through an
M-variable); make sure that nothing using the register at the time could be adversely affected by changing
the value of this register.

Integrated Analog Feedback
X-Words Y-Words
1. Intermediate data 1. Source and process:
Bits 0-15: Y-Address of source data
Bits 16-23: = $50
2. Converted data: 2. Bias Term: 1/256 bit of 16-bit ADC
Bits 0-4: Fractional Bits
Bits 5-23: Integer Bits

Uses of Integrated Analog

There are several possible uses of this format. First, an analog velocity sensor such as a tachometer could
be used to provide position-like information to the PMAC servo loop (remember that the velocity loop
expects position information). For example, consider an axis that has a motor with a tachometer, a linear
encoder on the load for accuracy, and a current-loop amplifier for high responsiveness. It is difficult to

Setting Up a Motor 69



PMAC User Manual

get stability using just the linear scale for both position and velocity loop because there is no direct
information about what the motor is doing. The tachometer can be connected to an A/D converter on an
Acc-28 (e.g. ADCI).

Then this conversion table entry can integrate the A/D value into what is effectively position information
for the servo loop to use. The source and process word would be $50C006; the bias term would be set
empirically to hold the integrated value constant when the motor is still. Ix04 for the motor would point
to the second line of the entry to use the integrated value.

Second, this makes it possible to do cascaded loops inside PMAC. The outer loop, which could be a
force or tension loop acting around a normal position loop, would put out a command value that is a
velocity correction to the inner position loop. The position loop can take a correction as position
information from its master position register. This conversion table entry makes it possible to convert the
velocity output of the outer loop to the position input of the inner loop. The outer loop would direct its
command output to an unused internal memory register (e.g. Y:$07F0) by setting 1x02 to that register
(Ix02=$07F0). The integrated analog entry in the conversion table uses this register as its source
($5007F0). Probably no bias is needed. 1x05 for the inner loop points to the second line of the entry,
where the integrated value is, giving the position loop its correction.

Unsigned Analog

If bit 19 of the analog conversion setup word is set to 1 ($18xxxx for normal analog, $58xxxx for
integrated analog), then PMAC treats the A/D number in the high 16 bits of the source word as an
unsigned number with a range of 0 to 65,535 instead of a signed number with a range of -32,768 to
32,767. The unsigned conversion is required for use of the newer Acc-28B. The usual signed conversion
(bit 19 = 0) is required for use of the older Acc-28 and Acc-28A.

Parallel Position Feedback Conversion

If providing position information to PMAC as a parallel data word — as from an absolute encoder or
processed from a laser interferometer — use one of the conversion formats $2x, $3x, $6x, or $7x.
Formats $2x and $3x get data from the specified source in Y-memory space; $6x and $7x get it from
X-memory space. Usually this data is brought in on an Accessory-14 board, which is in the Y-memory
space, so the $6x and $7x formats are rarely used.

If the x value in the conversion format is 0 or 1 (format word bit 19 = 0), the resulting data is shifted left
five bits so that the least significant bit of the source data appears as one count to the servo algorithms,
which expect five bits of fraction. If the x value is 8 or 9 (format word bit 19 = 1), the resulting data is
not shifted and the LSB appears as 1/32 count to the servo algorithms (see the Unshifted Conversion
section in this manual). Ifx is 1 or 9 (format word bit 16 = 1), the resulting data is summed with the
result of the previous table entry. If x is 0 or 8 (format word bit 16 = 0), no summing is performed.

Acc-14 Source Registers
When using Acc-14 to bring in the data, the following source addresses would be used:

First Acc-14 Port A (J7): $FFDO
First Acc-14 Port B (J15): $FFDI
Second Acc-14 Port A (J7): $FFD8
Second Acc-14 Port B (J15): $FFD9
Third Acc-14 Port A (17): $FFEQ
Third Acc-14 Port B (J15): $FFE1
Fourth Acc-14 Port A (J7): $FFES
Fourth Acc-14 Port B (J15): $FFE9
Fifth Acc-14 Port A (J7): SFFFO
Fifth Acc-14 Port B (J15): SFFF1
Sixth Acc-14 Port A (J7): $FFF8

70 Setting Up a Motor



PMAC User Manual

| Sixth Acc-14 Port B (J15): | $FFF9 |

A typical setup word for this type of feedback is $20FFDO, which provides for non-filtered conversion of
the parallel data word fed into Port A of the first Acc-14 connected to PMAC.

Bit-Enable Mask Word

Parallel-feedback conversion requires a double (for non-filtered) or triple (for filtered) entry in the
conversion table. The second entry — filtered or non-filtered — specifies the size of the feedback word
used. The entry is a 24-bit word in which each bit actually used for the parallel feedback is a one; the
unused bits above are zeros (parallel feedback is typically connected starting at bit 0 of the data word).

For a 12-bit absolute encoder, this entry would be $000FFF; for 14 bits, it would be $003FFF. For the
standard shifted conversion, the maximum effective mask word is $07FFFF, unmasking the low 19 bits;
any data in the high five bits is shifted out of the word. For the unshifted conversion, up to 24 bits of real
data can be used with a mask word of $SFFFFFF. The mask word allows PMAC to detect rollover in the
source data, so it can extend the count properly in software.

Filter Word

If the conversion format is $3x or $7x, the parallel data word is filtered. The filter simply sets a
maximum amount the data word is permitted to change in a single servo cycle. If PMAC sees a change
larger than this in the source data word, the converted data only changes by the maximum amount. There
is no permanent loss of position information if the filter kicks in.

Purpose of Filtering

This filtering permits protection against spurious changes on high-order data lines, while not delaying
legitimate changes at all. This maximum amount is the third setup entry for the encoder in the Y-column
of the conversion table. It should be set slightly greater than the maximum actual velocity expected on
the sensor, expressed in counts (bits) per servo cycle.

Converted Data

The converted data from the parallel word is put in the X data word matching the last (second or third)
setup word for the entry. This is the address that should be used by the motor I-variable that picks up
position (Ix03, 1x04, or Ix05). For instance, if the first setup entry (address Y:$0720) in the conversion
table were $30FFDO (filtered parallel data), the size entry would be in Y:$0721, and the maximum change
entry would be in Y:$0722. The converted data would be placed in X:$0722. If this were the position
feedback for motor #1, 1x03 would be set to $0722 (1826 decimal). For incremental parallel feedback, bit
16 of Ix03 should be set to 1 for proper homing search moves.

Unshifted Conversion

If bit 19 of the source and process word for a parallel data conversion is set to 1, the converted data
contains no fractional bits. Entries of this form would have the conversion formats (bits 16-23 of this
word) $28, $38, $68, or $78, as opposed to the standard entries $20, $30, $60, and $70, which provide
five fractional bits in the converted data.

Setting Up a Motor 71



PMAC User Manual

Unfiltered Parallel Feedback

X-Words Y-words
1. Intermediate data: Sign-extended most | 1. Source and process
significant word Bits 0-15:

Address of source data

Y-word if $20 conversion

X-word if $60 conversion
Bits 16-23:

= $20 for Y-word source

= $60 for X-word source

2. Converted data: 2.  Bit-enable mask
Bits 0-4: Fractional Bits Bit=1 to use corresponding bit from source
Bits 5-23: Integer Bits word

Bit=0 not to use corresponding bit from
source word

Filtered Parallel Data Conversion

X-Words Y-words
1. Intermediate data: 1. Source and process
Raw data reading Bits 0-15:

Address of source data
Y-word if $30 conversion
X-word if $70 conversion
Bits 16-23:
= $30 for Y-word source
= $70 for X-word source
2. Intermediate data: 2. Bit-enable mask
Sign-extended most-significant word Bit=1 to use corresponding bit from source
word
Bit=0 not to use corresponding bit from
source word
3. Converted data: 3. Filter value: Maximum permitted change in
Bits 0-4: Fractional Bits counts/servo cycle
Bits 5-23: Integer Bits

Uses

This unshifted format is intended for high-speed, very high-resolution applications, typically with parallel
laser-interferometer feedback. With the normal shifted format, the PMAC internal velocity registers
saturate when the counts/sec * Ix08 exceed 256M (268,435,456). With the unshifted format, this limit is

32 times higher: 8G (8,589,934,592).

Using this unshifted format, be aware that PMAC will treat on LSBit of the feedback device as 1/32 of a
count, not as a full count. For example, if there is a sensor on motor 1 (X-axis) with 2.5 nanometer
resolution, to program the axis in millimeters, treat one count as 80 nm (2.5%32) and make the axis
definition #1->12500X (1,000,000 / 80).

The conversion table entry for this would consist of a source and process word $38FFC2 (unshifted
parallel conversion of Y:$FFC2), a mask word $00FF00 (to use only the middle eight bits of the 24-bit
word), and a filter word value of something like $000020 (maximum speed 32 counts per servo cycle).
Ix05 for any motor x to be slaved to this handwheel would be set to the address of the third line of this
entry in the table. For a 1:1 following ratio and a default Ix08 value of 96, Ix07 would be set to 12
instead of the usual 96, to reflect that fact that each count from this accessory appears eight times bigger
than normal.

72 Setting Up a Motor



PMAC User Manual

Shift-Right Parallel Conversion

If both bit 19 and bit 18 of the source and process word for a parallel data conversion are set to 1, the raw
data at the source address is shifted right three bits before being placed in the result word. Entries of this
form would have the conversion formats (bits 16-23 of this word) $2C, $3C, $6C, or $7C. This
conversion format is intended for data that is found in the high 16 bits of the 24-bit word (LSB is bit 8), as
for feedback from a MACRO input register.

Another use of this format is with the Acc-39 Handwheel Decoder. This board contains an HCTL-2000
quadrature decoder IC that converts the quadrature signal from a handwheel to an 8-bit parallel word that
is brought in on the JPAN control panel port. On the PMAC PC, -Lite, and -VME, this byte appears on
bits 8-15 of register Y:$FFCO0. A normal parallel conversion would put the 1’s bit of the handwheel
counter at bit 13, effectively making it 256 times greater than if it were at the normal bit-5 location. This
shift-right conversion puts the 1's bit at bit 5, as for normal encoders.

When using this shift-right format, the bits enabled mask word should reflect the locations of the bits used
after the shift. For example, if all 16 high bits are used (bits 8 to 23), then the bits enabled mask word
should be $1FFFCO0, to mark the use of bits 5 to 20 after the shift. With the Acc-39, which uses bits 8-15,
the mask word should be $001FCO0, to mark the use of bits 5 to 12 after the shift.

Time-Base Conversion Entries

A time-base conversion is basically a scaled digital differentiation. When the source data is a counter, the
result is a frequency value. Every servo cycle the table calculates the difference between the values of the
source register for this cycle for the last cycle, and multiplies the difference by the scale factor.

The most common use for the resulting value is for time-base (feedrate override) control, which makes
the speed of PMAC execution proportional to an external frequency (usually the speed of a master device.
Refer to the Synchronizing PMAC to External Events section of this manual for details on how this is
used.

Time-Base Conversion

X-Words Y-words
1. Last cycle's source data: 1. Source and process
Bits 0-4: Fractional Bits Bits 0-15: X Address of source data (usually
Bits 5-23: Integer Bits a converted position register).

Bits 16-23: = $40 for time base conversion

2. Actual time-base value: product of scale |2.  Time-base scale factor (supplied by user)
factor and difference between last two
source values

For example, the default conversion table creates a time-base value from the data in the Encoder 4
counter. It is desirable in this time-base conversion to have the source data with sub-count interpolation
— this significantly smoothes out the process by reducing the quantization error created by digital
differentiation. To do this, the source register should be from the conversion table itself, not from the
encoder counter.

In the default conversion table, the converted data from Encoder 4 is found in X:$0723 (1827 decimal).
Therefore, the first setup (Y) word for the time-base conversion entry is $400723 — the $40 specifies
time-base conversion, and the $0723 specifies the source address.

Scale Factor

The second setup (Y) word is the scaling factor — the value that multiplies the difference between the
current source data and the last source data. Setting its value usually requires some computation; this
subject is covered in the Time-Base Control section of Coordination Features of this manual.

Setting Up a Motor 73



PMAC User Manual

Converted Data

The last source data word is stored in the first X word of the entry in the table, and the net result is stored
in the second X word. The value of the net result is 2 * Scale factor * (New_source - Old_source). To
use this value to control the time-base of a coordinate system, enter this address as the value of 1x93
(Time-Base Source Address) for the coordinate system.

DEC HEX X - Register Y - Register

1824 $720

s oo
1827 $723 p (n) am

{Enc 4 counter}

1
1832 $728 Interpolated Cts(n-1) $40 0723
ces ces {Time Base}  {Int. Enc. 4}

1833 $729 {Scale factor}

193 =1833 ——

Result = 2*S.F * [Interp Cts (n) - Interp Cts (n-1)]
=2 (2YIRTIF) (2 * IF * 110/223)
=110 * (IF/RTIF)

Figure 11 Conversion Table Example for Time-Base Entry

Triggered Time-Base Conversion Entries

For those applications where it is necessary to synchronize exactly to the position of the master encoder,
the conversion table provides the capability to freeze the time-base while calculating the first moves of
the synchronized sequence. Then have the time base start up referenced exactly to the master position
that occurred when the starting trigger occurred (usually the index channel of the master encoder). This
provides a complete position lock of the slave to the master; there is no need for subsequent adjustment to
make sure that they are phased in, as would be the case for normal (untriggered) time-base control.

Entry Format

Unlike the normal (untriggered) time-base conversion, the source address must be that of the encoder
registers in the DSP-GATE with the raw (unprocessed) data. The triggered time-base conversion does the
1/T interpolation itself. The valid addresses for triggered time-base entries are the same as those for the
Incremental Encoder Entries: $C000 for Encoder 1, $C004 for Encoder 2, and so on, to $C03C for
Encoder 16.

Triggered Time-Base Conversion

X-Words Y-Words
1. Last cycle's source data: 1. Source and process:
Bits 0-4: Fractional bits Bits 0-15: Address of source (always a set of
Bits 5-23: Integer Bits DSPGATE encoder registers)
Bits 16-23:

$90 (frozen; for preparation)

$BO0 (armed; waiting for trigger)

$AO0 (running; post-trigger)

3. Actual time-base value: When running, |2. Time-base scale factor: supplied by user;
the product of scale factor and difference equal to 131,072 / real-time-input-frequency
between last two source values. in cts/msec.

74 Setting Up a Motor



PMAC User Manual

Setting the Trigger State

The process bits — bits 16 to 23 of the first Y-word in the conversion table entry — of a single triggered
time-base entry will take on three values during the normal course of use. This is done with an 8-bit M-
variable. First, with the slave axes dwelling at their starting position, these process bits should be set to
$90 in the sequence of motion program calculations for the first move. This forces the time-base value to
zero, putting the coordinate system in feed-hold mode.

Next, another program, usually a PLC program, changes the bits from $90 to $B0. This arms the time-
base, so that it is waiting for the position-capture trigger on the source encoder, as defined by
Encoder/Flag [-variable 2 for that encoder. When the capture occurs, the time base starts up, with the
captured-position register used as the initial value for the time-base difference equations. When this
happens, PMAC automatically changes the process bits from $B0 to $A0. For untriggered use of this
format, set the process bits to $A0.

Example

For example, if adding a triggered time-base entry working from Encoder 8 to the end of the standard
conversion table, with a real-time input frequency of 64 cts/msec. These entries would reside in registers
$072A(1834) and $072B (1835). Initially we would write to Y:$072A a value of $A0C01C (running
time-base from Encoder 8 registers), and to Y:$072B a value of $800 (131,072 / 64 = 2048 = $800). We
define an M-variable to the process bits with the command M199->Y:$072A,16, 8.

With the slave axes dwelling at the start-up position, freeze the time base with the motion program
command M199=$90. If x93 is not already pointing to X register $072B, do this at this time. The
motion program commands immediately following this calculate the move, but with a zero time-base
value, the move execution is stuck at the starting point. Meanwhile, a PLC program is looking for M199
to be equal to $90, at which time it changes it to $B0, arming for the trigger. Since a PLC program
cannot interrupt motion program calculations for a move, this will not be done until after the calculations
are completed. This change can be done with three program lines in a PLC program:
IF (M199=$90)

M199=$B0
ENDIF
Once the trigger is armed by the PLC program, when the capture trigger occurs, PMAC starts the time
base and changes the process bits to $A0 automatically.

Exponential-Filter Entries
It is possible to use the conversion table to create an exponential filter on a word of input data. This is
particularly useful for position following (electronic gearing), especially when the slave is geared up from
the master; i.e., the slave moves more than one count for each count of the master, where it can
significantly smooth the motion of the following axis.
The equation of the exponential filter executed every servo cycle # is:
Out(n) = Out(n-1) + (K/2%°)*[In(n)-Out(n-1)]

If [Out(n) - Out(n-1)] > Max_change, Out(n) = Out(n-1) + Max_change

If [Out(n) - Out(n-1)] < -Max_change, Out(n) = Out(n-1) - Max_change
In, Out, and K are all signed 24-bit numbers (range -8,388,608 to 8,388,607). The difference [In(n)-
Out(n-1)] is truncated to 24 bits to handle rollover properly.

. . .33 .
The time constant of the filter, in servo cycles, is 2 /K. The lower the value of K, the longer the time
constant. No shifting action is performed. Any operations such as 1/T interpolation should have been
done on the data already, so typically the source register for this filter is the result register of the previous
operation.

Setting Up a Motor 75



PMAC User Manual

The output value of the exponential filter is placed in the X register of the third line of the conversion
table entry. An operation that uses this value should address this third register; for example Ix05 for
position following, or the source address for a time-base conversion-table entry (to keep position lock in
time base, this filter must be executed before the time-base differentiation, not afterward).

Entry Format

Exponential Conversion
X-Words Y-Words
1. Intermediate data 1. Source and process: Bits 0-15: X-address of source

(usually a converted position register)
Bits 16-23: =$D0

2. Intermediate data 2.  Maximum permitted change in output value; expressed in
LSBs per servo cycle
3. Filtered result: unshifted from source 3. Exponential filter gain K where filter equation is:
register data Out(n) = Out(n-1) + (K/2>)*[In(n)-Out(n-1)]
Example:

Starting with the default encoder conversion table which occupies registers $0720 to $0729, to add a new
entry to the table that filters the handwheel encoder that is wired into Encoder 5 on PMAC, the filter must
have a time constant of eight servo cycles, and the maximum velocity of the output is to be 16 counts per
servo cycle.

In the default table, the 1/T interpolation result for Encoder 5 is placed in register X:$0724. This is the
source address for the exponential filter. Since the time constant of eight servo cycles is equal to
8,388,608 divided by filter gain K, then K is equal to 1,048,576. The units (LSBs) of the source register
are 1/32 count, so the maximum change value is 32*16, or 512 LSBs per servo cycle.

These values can be entered into the interactive menu of the PMAC Executive program (V3.0 or newer),
or they can be entered with a direct memory-write command:

WY:$072A,$D00724,512,1048576

Y:$072A is the starting location of the entry in PMAC memory; $DO specifies the exponential filter; 512
(or $200) specifies the maximum output change rate; 1048576 (or $100000) specifies the filter gain. If
the filtered value were to be used as a master encoder, Ix05 would be set to $072C.

Setting up the Encoder Conversion Table

The encoder conversion table starts at address $720 (1824 decimal) in the PMAC memory. It can
continue through address $73F (1855 decimal). The active part of the table is ended by the first Y word
that is all zeros. The encoder table as shipped from the factory converts the eight incremental encoder
registers on the base PMAC board in locations $720 through $727 (1824 to 1831). Locations $728 and
$729 create time base information from the converted Encoder 4 register ($723). Y:$72A is zero, ending
the active part of the table.

Default Encoder Conversion Table
Address Y-Word Meaning

$720 (1824) $00C000 1/T conversion of Encoder 1
$721 (1825) $00C004 1/T conversion of Encoder 2
$722 (1826) $00C008 1/T conversion of Encoder 3
$723 (1827) $00C00C 1/T conversion of Encoder 4
$724 (1828) $00C010 1/T conversion of Encoder 5
$725 (1829) $00C014 1/T conversion of Encoder 6
$726 (1830) $00C018 1/T conversion of Encoder 7
$727 (1831) $00C01C 1/T conversion of Encoder 8
$728 (1832) $400723 Time-base from converted Enc. 4
$729 (1833) $000295 Time-base scale factor for above
$72A (1834) $000000 Signifies end-of-table

76 Setting Up a Motor



PMAC User Manual

This table can be used unchanged by the great majority of PMAC users. Note that the default motor
feedback-position-address and master-position-address [-variables (1103-1105, 1203-205, etc.) point to
locations in this table and assume the default setup of the table.

However, there are several reasons to change the table:

1. If the application uses an Acc-24 axis expansion board, it will need to convert Encoders 9-16, so
entries for these must be added to the table.

2. Ifusing an external time-base frequency source, the scaling factor and maybe the source should be
changed.

3. Ifusing 1/T interpolation on the position feedback.

4. Ifrequiring fast control on just a few axes, reduce the table to save computation time, because each
conversion does take a finite amount of time.

Example

When using two axes of fast laser-interferometer quadrature feedback (into Encoders 1 and 3) with
parallel sub-count interpolation, and no handwheels or external time base, set up a table as follows for
minimum conversion time:

Minimum Conversion Time Table
Address Y-Word Meaning
$720 (1824) $80C000 || sub-count conversion of Enc. |
$721 (1825) $80C008 || sub-count conversion of Enc. 3
$722 (1826) $000000 Signifies end-of table

Example

To convert two 16-bit absolute encoders from the first Acc-14 filtered not to allow more than eight bits
change per servo cycle, four incremental encoders (ENC1-4) with 1/T interpolation, four A/D converters
(ADC1-4), and two linear displacement transducers (ENC9-10 timers) without filtering.

The conversion table setup would be:

Two 16-Bit Absolute Encoders Conversion Table
Address Y-Word Meaning

$720 (1824) $00C000 1/T conversion of Encoder 1
$721 (1825) $00C004 1/T conversion of Encoder 2
$722 (1826) $00C008 1/T conversion of Encoder 3
$723 (1827) $00C00C 1/T conversion of Encoder 4
$724 (1828) $10C006 Conversion of ADCI
$725 (1829) $10C007 Conversion of ADC2
$726 (1830) $10CO0E Conversion of ADC3
$727 (1831) $10CO0F Conversion of ADC4
$728 (1832) $30FFDO Filtered Parallel from 1st Acc-14
$729 (1833) $00FFFF Use the low 16 bits of word
$72A (1834) $000100 Max change 256 counts/cycle
$72B (1835) $30FFD1 Filtered Parallel from 1st Acc-14
$72C (1836) $00FFFF Use the low 16 bits of word
$72D (1837) $000100 Max change 256 counts/cycle
$72E (1838) $20C020 Parallel from ENC 9 timer
$72F (1839) $07FFFF Use low 19 bits (max allowed)
$730 (1840) $20C024 Parallel from ENC 10 timer
$731 (1841) $07FFFF Use low 19 bits (max allowed)
$732 (1842) $000000 Signifies end-of-table

Setting Up a Motor 77



PMAC User Manual

To use something other than the conversion table editor screen in the PMAC Executive program, view the
current set-up of the conversion table with a single Read-Hex (RH) command. For instance, if the table
were set up as in the example immediately above, the command RHY : $720, 24 (report in hex 24 Y-
words starting at $720) would yield the following response:

00C000 00C004 00CO08 00OCOOC 10C006 10C007 10COOE 10COQF

30FFDO OOFFFF 000100 30FFD1 OOFFFEF 000100 20C020 O7FFFF

20C024 O7FFFF 000000 000000 000000 000000 00OOOOO 000000
To use something other than the conversion table editor screen in the PMAC Executive program, change
the entries in the table with one or more Write (W) commands. For example, to change the third and
fourth entries above to straight conversion of the same registers, command WY : $722, $C0C008,
$C0CO00C. While the set-up values may be specified in decimal, it is easier to specify them in
hexadecimal (except possibly for scale factors).

The set-up of the Encoder Conversion Table can be stored in EAROM with the SAVE command. The
most recently saved set-up is copied from EAROM into RAM (active memory) on power-up or reset, so
SAVE changes to the table to keep them.

Further Position Processing

Once the position feedback signals have been processed by the Encoder Conversion Table (which
happens at the beginning of each servo cycle), the data is ready for use by the servo loop.

Software Position Extension

For each activated motor, PMAC takes the position information in the 24-bit register pointed to by Ix03
and extends it in software to a 48-bit register that holds the actual motor position. In the process of
extension, it multiplies the value by the Ix08 position scale factor. Since the register in the conversion
table is in units of 1/32 of a count, the actual motor position register is in units of 1/(Ix08*32) of a count.

These extended motor position registers are set to zero on power-up/reset (unless there is an absolute
position sensor), and again at the end of a homing search move. The encoder position registers are only
set to zero on power-up/reset. Therefore, after a motor is homed, there is an offset between motor zero
position and encoder zero position.

Only worry about this offset if using the encoder registers directly (e.g., position capture and compare) or
to relate these values to motor position. Find and store the offset, which is the value in the position
capture register when the home trigger is found.

Program HOMOFFST.PMC in the Examples section shows how to do this. They may also have to
handle rollover of the encoder registers if they will be traveling more than +/-8 million counts. The
modulo (%) operator is useful for this. For more details, refer to the Synchronizing PMAC to External
Events section of this manual.

78 Setting Up a Motor



PMAC User Manual

Input Encoder Encoder Motor Axis
Signal Position Position Position Position
Quadrature, Capture Position (Mx03) Act. Pos. ' Cmd., Target Pos. Move End Pos.
Parallel, Compare Position (Mx03) "P", (Mx62) :  (Mx61),(Mx63) (Mx65)
Analog, Phase Position (Mx01)
otc. Extended
Interpolated Count User
Integer Count (1/(1x08 32)ct) Units
Count (32.ct) (fixed point) (floating point)
i i i (PMATCH) i
U] Decoder/ 24 bits | Encoder |24 bits Position 48 bits Axis 48 bits
—— o .
3 7> Conversion —/— S .  —
.| Counter Extension Scaling
(e.g. 1/T)
32 * |[x08 Axis Coefficients
Done Always " Done for
Done Always Done for Dpne or
Activated Motor Defined Axis
Set to Zero on Set to Zero on Set to Zero on Can be Offset
Power-up/Reset Power-up/Reset Power-up/Reset (Axis offset, PSET,
and Home {axis}= )
‘ COMMAND
ACTUAL POSITION POSITION

Figure 12 PMAC Position Processing

Axis Position Scaling

Motor position is always kept in terms of counts. When a motor is assigned to an axis through an Axis
Definition statement, the scale factor in the statement determines what the units of the axis are (usually
inches, millimeters, degrees, etc.). Programmed moves are given for an axis, and PMAC converts this to
motor moves, using the scale factors from the Axis Definition statements. It is important to realize that
this conversion is for commanded positions only, and that the conversion normally goes only one-way:
from axis to motor. PMAC never computes actual axis positions.

Leadscrew Compensation

PMAC is capable of performing what is commonly called leadscrew compensation. This technique,
which also goes by other names, allows for a table of corrections to be entered into PMAC as a function
of motor position. PMAC can store up to eight of these compensation tables.

Each motor can have one table that belongs to it. Unless otherwise specified, the table uses position
information from this motor (source data) to determine the location in the table, and also adds its
correction to this motor (target data). However, the source motor, or both the source and the target
motors, may be specified to be motors other than the motor to which the table belongs. (If both motors
are different, the concept of the table belonging to a motor is useful only for PMAC’s bookkeeping

purposes.)

The compensation is performed inside the servo loop (every servo cycle) to obtain the maximum speed
and accuracy. PMAC takes the position of the source motor and finds the matching position in the table.
Typically this is between two entries in the table, so PMAC linearly interpolates between these two
entries to obtain the correction for the current servo cycle. It then adds this correction to the position of
the target motor. The entries of corrections in the table must be integer values, with units of 1/16 count
(so an entry of 48 represents three counts) of the target motor.

Multiple Tables Per Motor
A motor may provide the source data for up to eight compensation tables; it may also be the target of up
to eight motors.

Setting Up a Motor 79



PMAC User Manual

Table Range

The compensation is defined directly for a range of source motor positions starting at zero counts (the
most recent home or power-up/reset position) and going in the positive direction. The size of this range is
declared as the last argument of the DEFINE COMP command. This argument has units of counts of the
source motor. The spacing between entries is the total range divided by the number of entries (which is
the first argument of the DEFINE COMP command). The first entry in the table defines the correction at
one spacing from the zero position of the source motor, the second entry at two spacings, and so on.

Rollover

Outside of this range, the uncorrected position is rolled over to within this range — essentially a modulo
(remainder) operation — before the compensation is done. This permits compensation of rotary axes over
several revolutions, and simple compensation for encoder eccentricity. Of course, if the table is made big
enough to cover the entire source motor travel, the rollover feature will never be used.

If the motor has a travel range to the negative side of zero, and compensation is desired here, these entries
should be made as if they were past the positive end of the motor range. For instance, if the motor travel

were +/- 50,000 counts and a table entry was to be made every 500 counts (so 200 entries total), the table

would be set up with a DEFINE COMP 200,100000 command.

The first 100 entries would cover the 500 to +50,000 count range, and the last 100 entries would cover the
-50,000 to 0 count range. (Usually the table is referenced so there is a zero correction at the source motor
zero position, so the last entry in the table should be 0.) Essentially, the -50,000 to 0 range would be
mapped into the +50,000 to +100,000 range.

Example:

If the following table were entered:

#1

DEFINE COMP 8,4000 ; Table of 8 entries over 4000 cts belonging to motor 1;
; Uses motor 1 for source & target because no other
; motor specified

-160 ; Correction at 4000/8 (500) cts is -160/16 = -10 cts

80 ; Correction at 1000 counts is 5 counts

120 ; Correction at 1500 counts is 7.5 counts

96 ; Correction at 2000 counts is 6 counts

20 ; Correction at 2500 counts is 1.25 counts

-56 ; Correction at 3000 counts is -4.5 counts

-12 ; Correction at 3500 counts is -0.75 cts

0 ; Correction at 4000 (and 0) cts 1is zero

and the axis definition were #1->1000X, a commanded move to X1 . 3 would give an uncorrected motor
position of 1300 counts. The applied correction would be linearly interpolated from the table:

1300 — 1000
Correction = (7.5 - 5) ¥ ——————+ 5 = +6.5counts
500

At X8 .4, PMAC would calculate an uncorrected motor position of 8400 counts; roll this over to within
the table range: 8400 mod 4000 = 400 counts; and the correction from the table would be:

400 -0
500

Correction = (— 10 — 0) * + 0 = —8counts

Enabling and Disabling

All leadscrew compensation tables are enabled when 151 is set to 1. When 151 is set to 0, all are disabled.

80 Setting Up a Motor



PMAC User Manual

Uses of Cross-Axis Compensation

The ability to have separate source and target motors for a table has several uses. The first is the
traditional compensation for imperfect geometry, as in a bowed leadscrew. For instance, on an XY table,
if the X-axis leadscrew is bowed, the Y-axis position should receive a correction as a function of X-axis
position. If motor #1 is the X-axis, and motor #2 is the Y-axis, the table holding this correction would
have motor #1 as the source motor, and motor #2 as the target motor.

A second use for cross-axis compensation is what is often known as the electronic cam. In this case, the
entire movement of the target motor is caused by the entries in the compensation table, not just the
corrections. This method of implementing electronic cam operation has two significant advantages over
The PMAC time-base following, the other method of creating electronic cams: the compensation table is
bidirectional — the master can turn in either direction — and it is absolute, so the phasing in is simply a
matter of homing the axes.

The time-base method, in which the motion program of the slave motors defines the motion, retains the
advantage of being able to change on the fly through math and logic in the program, and of second or
third-order interpolation between points, rather than the compensation table’s first-order interpolation.

Two-Dimensional Leadscrew Compensation

It is possible to set up two-dimensional compensation tables on PMAC, where the compensation is a
function of the position of two motors. This makes it possible to set up planar compensation functions by
specifying a grid of compensation points. A 2D compensation table has two source motors and one target
motor. The target motor can be one of the source motors.

If the size parameter in the DEFINE COMP command that establishes the compensation table has a
decimal point, it is a 2D table, and the value before the decimal point specifies the number of columns, or
points for the first source motor; the value after the decimal point specifies the number of rows, or points
for the second source motor.

In operation, PMAC computes the compensation for a given location in the plane of the two source
motors as the weighted average of the four specified compensation values surrounding that location.

Refer to the description of the 2D DEFINE COMP command in the PMAC and PMAC?2 Software
Reference Manual, 3A0-602705-363, for details.
2D (Planar) Compensation Tables

Az = f(x,y)

DEFINE COMP 20. 15, #1, #2, #3, 20000. 15000

Table columnsJ
Table rows

1st source motor
2nd source motor

Target motor
1st motor span in counts
2nd motor span in counts

Figure 13 PMAC Compensation Tables

Setting Up a Motor 81



PMAC User Manual

S1=L1/N f L1

C,=CORRECTI +SOURCE 1
clc, POSITION
Cuz | Cus
Ccha C2N«4 ROWS
SHOULD
MATCH

COLUMNS
SHOULD
MATCH

Cunerier | Comon

+SOURCE 2
POSITION

Figure 14 Two Dimensional Compensation Table

Backlash Compensation

PMAC can perform sophisticated backlash compensation for all motors. On reversal of the direction of
the commanded velocity, a pre-programmed backlash distance is added to or subtracted from the
commanded position. This backlash distance can be constant over the travel of the motor, or it can be a
function of motor position. The rate at which the backlash is introduced or removed is programmable, as
is the magnitude of the reversal required for backlash to be introduced or removed.

Constant Backlash

Ix86 for motor x is the constant backlash distance parameter. When the direction of the motor’s
commanded movement changes from positive to negative, this value is introduced into the active
backlash compensation register, which is subtracted from the nominal commanded position. When the
direction of the motor’s commanded movement changes from negative to positive, the value of the
backlash compensation register is reduced to zero.

Note:

A positive value of [x86 adds extra distance to the travel of the motor on reversal,
which is what is desired to compensate for true physical backlash. The units of
Ix86 are 1/16 of a count, so the value should be 16 times the number of counts of
backlash compensation required.

Backlash Take-Up Rate

Ix85 controls the rate at which backlash is introduced or removed upon reversal for motor x. This helps
to optimize for swift but smooth backlash compensation. When reversal is detected, each background
cycle (between each scan of each PLC) an amount equal to 1x85 is added to or subtracted from the active
backlash compensation register, as appropriate, until a value [x86 or 0 in that register is reached. In
general, the highest value of Ix85 that produces smooth transitions should be used.

Backlash Hysteresis

199 controls for all motors on PMAC the number of counts in the new direction of the commanded
position that must be seen before PMAC determines that a reversal has occurred and the backlash must be
changed. As such, it acts as a hysteresis term. It is particularly important if a master encoder is used to
drive the motor, so slight dithering in the master encoder does not cause repeated introduction and
removal of backlash. 199 has units of 1/16 count, so the default value of 64 provides a 4-count hysteresis.

82 Setting Up a Motor



PMAC User Manual

Backlash Tables

A backlash compensation table created with the DEFINE BLCOMP command can be used to create
backlash distances that vary with the position of the motor. Most often, this is used in conjunction with a
leadscrew compensation table to create the effect of a bi-directional leadscrew compensation table.

The value of backlash distance for a given motor position derived from the backlash table is added onto
the Ix86 constant backlash parameter. The backlash distance from the table at motor position 0 (home
position) is zero by definition, so if a backlash table is used, [x86 should contain the amount of backlash
at the home position. The table then should hold the differences from this amount.

Note:

Typically, while the range and spacing of a backlash table will be the same as for
the leadscrew compensation table for the same motor, this is not required. Even
the presence of a leadscrew compensation table for a motor is not required to have
a backlash table for that motor.

The backlash table for a motor is only active if the most recent commanded direction of movement is
negative; it is still active if the motor is currently commanded to stand still but reached this position by
traveling in the negative direction. In operation, the table reads the present nominal motor position and
computes a weighted average of the two closest table entries, creating a first-order interpolation between
table points.

The backlash compensation is defined directly for a range of motor position starting a zero counts and
going in the position direction to the count length declared by the last argument in the DEFINE BLCOMP
command. The spacing between entries is this length divided by the number of entries (which is the first
argument in the command). The first entry in the table defines the correction at on spacing from the zero
position of the motor, the second entry at two spacings, and so on.

Outside this range, the uncorrected position is rolled over to within this range before the compensation is
done. This rollover occurs exactly as for leadscrew compensation tables.

The constant backlash parameter [x86 is always (potentially) active. Backlash tables are (potentially)
active if I51 is set to 1; they are inactive if 151 is set to 0.

Example:

Imagine the calibration of an axis was performed against an accurate linear measurement device on the
load, working in both directions, and the following readings of the linear device for set positions of the
motor encoder (expressed in units of the motor encoder):

Motor Pos. (cts) 0 500 1000 | 1500 | 2000 | 2500 | 3000 | 3500
Load Pos.+ (cts) 0* 510 995 | 1492.5 | 1994 |2497.5|3003.5 | 3500.5
Load Pos.- (cts) 5 516 | 998.5 | 1494 | 2000 | 2501 |3010.5]3508.5
* Reference point; zero by definition

Only the compensation table works in the positive direction, so the entries in the compensation table
should be the negative of the difference between positive-going load position and motor position,
expressed in 1/16 counts:

Motor Pos. (cts) 0 500 1000 | 1500 | 2000 | 2500 | 3000 | 3500
Load - Motor (cts) 0* +10 -5 -7.5 -6 -2.5 +3.5 | +0.5
Motor - Load (1/16 cts) 0* -160 +80 | +120 | +96 +40 -56 -8
* Reference point; zero by definition

Setting Up a Motor 83



PMAC User Manual

The compensation table definition to create these corrections would be:

DEFINE COMP 8,4000
-160 80 120 96 40 -56 -8 O

Notice that the first entry is for the correction at 500 counts, and the added last entry is 0, for the
correction at 4000 counts and 0 counts.

There is a 5-count backlash at motor position 0, so Ix86 should be set to 5*16, or 80.

The backlash table should contain the differences between negative-going load position and positive-
going load position, minus 1x86:

Motor Pos. (cts) 0 500 1000 | 1500 | 2000 | 2500 | 3000 | 3500
Load(-) - Load(+) (cts) 5 6 3.5 1.5 6 3.5 7 8
Load(-) - Load(+)-Ix86 (cts) 0* 1 -1.5 -3.5 1 -1.5 2 3
Load(-) - Load(+)-Ix86 (1/16 cts) 0* 16 24 -56 16 24 32 48

* Reference point; zero by definition

The backlash table definition to create these corrections would be:

DEFINE BLCOMP 88,4000

16 -24 -56 16 -24 32 48 0O
Notice that the first entry is for the correction at 500 counts, and the added last entry is 0, for the
correction at 4000 counts and O counts.

Torque Compensation Tables

PMAC provides the capability to create a table of corrections as a function of motor position to the output
of the servo loop. Typically, this feature will be used with the servo loop in torque mode (whether or not
PMAC is also performing motor commutation), so this function is called torque compensation table.

The torque compensation tables are entered and operated much like the leadscrew compensation tables,
which provide a position correction. However, there are no cross-axis or multi-axis torque compensation
tables. The table belonging to a motor provides a torque correction to that motor as a function of that
motor’s position.

The torque compensation table for a motor is declared with the on-line command DEFINE
TCOMP{entries}, {count length} for the addressed motor. {entries} defines the number
of points in the table, and {count length} defines the span of the table in counts of the motor. The
spacing between entries in the table is therefore {count length} / {entries}. The first entry
in the table defines the correction at one spacing from the zero position of the motor, the second entry at
two spacings, and so on. The correction at motor zero position is zero by definition.

The correction is defined directly for the range of motor positions 0 to {count length}. For motor
positions outside this range, the position is rolled over to within this range before the correction is applied.
In this way, cyclic disturbances such as motor cogging torque can be compensated for. The correction at
the end of the table is equivalent to the correction at zero position; because the correction at zero position
is zero by definition, the last entry of any table intended to be rolled over should be zero also.

After the table definition command, the next {entries} constants sent to PMAC are put into the table
as table entries. The units of the entries in the table are the units of a 16-bit DAC, with range -32,768 to
+32,767, even if an output device of a different resolution is used. Corrections at points in between
entries of the table are linearly interpolated from the adjacent values in the table.

If the following table were entered:

#1

DEFINE TCOMP 8, 2000 ;Table of 8 entries over 2000 counts for motor 1
125 ;correction at 2000/8=250 counts is 125 DAC bits
-50 ;Correction at 500 counts is -50 DAC bits

84 Setting Up a Motor



PMAC User Manual

83 ;Correction
-97 ;Correction
60 ;Correction
-43 ;Correction
129 ;Correction
0 ;Correction

the correction applied at 600 counts would be:

Correction = =50

at
at
at
at
at
at

600 - 500
A0
750 — 500

750 counts is 83 DAC bits

counts is -97 DAC bits
counts is 60 DAC bits
counts is -43 DAC bits
counts is 129 DAC bit

1000
1250
1500
1750
2000

counts (and 0)

83—[-50])=3

is 0 DAC bits

Setting Up a Motor

85



PMAC User Manual

86

Setting Up a Motor



PMAC User Manual

SETTING UP PMAC COMMUTATION

Introduction

This section explains how to set up the commutation scheme if PMAC is performing the commutation for a
motor. Ifnotusing PMAC to perform the commutation on any of the motors, skip this section. Simply
make sure that Ix01 is set to zero for all of the activated motors, so PMAC will not try to commutate them.

If using PMAC to commutate a motor, tell PMAC how to perform the commutation. This is done by
proper setup of I-variables to Ix83 for the motor. This section explains how to set these variables. Once
this setup is done the commutation operation proceeds automatically and invisibly.

PMAC has sophisticated on-board commutation features for DC brushless, variable (switched) reluctance,
AC induction, and stepper motors. These algorithms allow PMAC to drive the phases of the motor
directly, requiring only simple current-loop bridges for the amplifier. As its commutation feedback
device, PMAC can utilize the same feedback device that is used for servo position feedback (an encoder
or resolver).

Incremental Encoder Feedback Requirement

The ongoing commutation position information for a motor must come through an incremental encoder
counter. If the commutation feedback device is an absolute encoder or resolver the power-up information
can be received straight from the device, but an incremental signal must be derived from the absolute
position information for the ongoing commutation. The PMAC Acc-8D Option 7 resolver-to-digital
converter board does this automatically for resolvers, and Option 6 on an Acc-14 does this for absolute
encoders.

Specify the address of the register holding the ongoing commutation position feedback information with
Ix83. Usually (except for PMAC microstepping), this is the phase position register for an encoder in the
DSPGATE (addresses X:$C001, X:$C005, X:$C009, etc.).

Phase Referencing

When commutating a synchronous motor — permanent magnet brushless or switched reluctance — it is
necessary to reference the phasing cycle to physical features of the motor. Contrary to much that is
written, this does not require an absolute sensor. An incremental sensor can be used if a reliable phasing
search can be performed on power-up. PMAC is capable of performing such a phasing search. If an
absolute sensor is used, the phase referencing is performed only once on assembly of the system. Both
methods of phase referencing are covered in this section.

Two-Analog-Output Requirement

If PMAC is commutating a motor, two analog output channels are required per motor; the third — and
fourth, if necessary — phases are generated by balance loops in the amplifier. (Remember that if a
multiphase motor is commutated inside the amplifier, only one PMAC analog output is required.)

As mentioned previously in the Selecting the Output(s), for a PMAC-commutated motor, specify the
lower address of the pair of adjacent DAC registers that will be used to output the phase commands with
Ix02. The legitimate values of 1x02 are $C002 (DAC 1 and 2), $CO0A (DAC 3 and 4), $C012 (DAC 5
and 6), SCO1A (DAC7 and 8), $C022 (DAC 9 and 10), $C02A (DAC 11 and 12), $C032 (DAC 13 and
14), and $SCO3A (DAC 15 and 16).

Setting Up PMAC Commutation 87



PMAC User Manual

TWO OUTPUTS BECOME

TWO AXIS ONE AXIS
NO COMMUTATION | WITH COMMUTATION
NTROL PANEL D.C. +/-10V. SINUSOIDAL, +/-10V.
CONTRO TWO AXIS THREE OR FOUR PHASE
VELOCITY OR 6KHz MAX. FREQ.

TORQUE COMM. VEL. & TORQUE COMM.

16 BIT RESOLUTION | 16 BIT RESOLUTION
DISPLAYS

HOST
°°“QE%TER% ,OUT1
[2 OF 8(16)]
AVAILABLE

OUTPUTS

P PMAC
]
THUMBWHEELS - gl{r 2

L
L »
-
N
8 (16) »
POSITION AND__| outs
HANDWHEEL
ENCODER ]
—» OUT9
>
>
8 (16) EXPANSION I/0 PMAC —>
ANALOG INPUTS AND iSBX EXTENSION |
L - -
| conmousany | JATBESORLE RENECY oGy
% outie DS IR | ASCRACALL SumCOUT sOUs onoy
PROVIDES 3) D.C. BRUSHLESS(SYNCHRONOUS), A.C. INDUCTION

COMMUTATION (ASYNCHRONOUS), STEPPER & SR MOTORS

Figure 15 PMAC Commutation
Basic Parameter Specification

Regardless of the type of motor PMAC is commutating, several parameters need to be specified for the
commutation. Commutation parameters for motor x begin at Ix70. The commutation parameters are only
used if Ix01=1.

Counts per Commutation Cycle

First to be specified is the number of counts per commutation cycle (or electrical cycle, or pole-pair),
using motor I-variables [x70 and Ix71, where Ix71/Ix70 is the number of counts per cycle. Ix71 and Ix70
must both be integers. These are encoder counts after the decoding, so if x4 decode is used, there are four
counts per encoder cycle. Usually [x70 is 1, except for a few special cases like 6-pole motors, where there
is likely not to be an integer number of counts per single pole pair.

Angle Between Phases

The proper angular offset between phases, which is different for three- and four-phase motors, is set by
Ix72. This parameter also permits reversal of the phasing, so that motor leads do not have to be flipped if
the phasing was wrong in assembly. The units of Ix72 are 1/256 of a commutation cycle, so for a three-
phase motor, the possible values are 85 (1/3 of 256) or 171 (2/3 of 256). For a four-phase motor, the
possible values are 64 (1/4 of 256) or 192 (3/4 of 256). Changing Ix72 between the two values for a
given number of phases has the same effect as exchanging two of the motor leads. Tests for the proper
setting within each pair of values are given below.

88 Setting Up PMAC Commutation



PMAC User Manual

Permanent Magnet Brushless Motor Commutation

When commutating a permanent magnet brushless motor (often called a DC brushless motor, sometimes
called an AC synchronous motor), very little beyond the basic commutation cycle parameters noted above
must be specified.

Getting the Polarity Right

For proper commutation, it is required that the feedback polarity, as determined by the encoder wiring and
the Encoder Decode I-variable (1900, 1905, etc.) match the output polarity, as determined by the amplifier
and motor wiring, and by Ix72. That is, when PMAC issues a positive command through its commutated
outputs, it must cause the encoder counter to count up. If the polarity is mismatched on a permanent-
magnet brushless motor, the motor will lock in quickly and refuse to move.

Testing the Polarity

A quick test early in the setup of the motor can verify whether the polarity is correct. The test uses the
output offset variable Ix29 and Ix79 to force current directly into the particular phases and drive the motor
like a stepper motor. Observing the direction the motor position counts as different phases are driven, we
can tell whether the polarity is correct, given the present encoder wiring and decode variable, and the
present motor wiring and output phasing variable.

This test, which can be done easily from the terminal window of the Executive program by typing in a
few simple commands, is best illustrated by an example, which will use Motor 1:

#100 ; Command zero output

I129=2000 ; Positive offset of 2000 bits on 1lst phase
P ; Request position (after motor settles)
382 ; PMAC responds with position

I179=2000 ; Positive offset of 2000 bits on 2nd phase
P ; Request position (after motor settles)
215 ; PMAC responds with position

Polarity Rule

With 1172 equal to 64 or 85, the motor should have moved in the negative direction when the second-
phase positive offset was added on top of the first-phase positive offset (as it did in this example). With
1172 equal to 171 or 192, the motor should have moved in the positive direction. Alternatively stated, if
the motor counted down in the test, I172 should be set at 64 or 85; if it counted up in the test, 172 should
be set at 171 or 192.

For the motor in this example, we conclude that we want a value of 64 if it is a 4-phase motor or 85 if it is
a 3-phase motor. If the encoder direction is changed for system reasons, 1172 should be changed as well,
to match.

Power-on Phasing Search

Warning:

An unreliable phasing search method can lead to a runaway condition. Test the
phasing search method carefully to make sure it works properly under all
conceivable conditions. Make sure the Ix11 fatal following error limit is active
and as tight as possible so the motor will be killed quickly in the event of a serious
phasing search error.

Setting Up PMAC Commutation 89



PMAC User Manual

If a non-absolute sensor is used for commutation, PMAC must perform a search move for the proper
phasing reference every time it powers up (with an absolute sensor, this only needs to be done once in the
development of the system). There are several ways to do this phasing search. PMAC has two automatic
methods executed by firmware; other methods or enhancements of these methods can be executed with
PLC programs.

A power-on phasing search permits commutation of permanent-magnet brushless motors without the need
for a more expensive and possibly less accurate absolute sensor. However, a phasing search may not be
dependable in some applications; in these cases, an absolute sensor will be required.

Two-Guess Phasing Search

The PMAC first automatic phasing search method is called the two-guess phasing search, because it
makes two arbitrary guesses as to the phase position, briefly applies a torque command using each guess,
and observes the response of the motor to each command. Based on the magnitude and direction of the
two responses, PMAC calculates the two responses and the proper phasing reference point. It then starts
the commutation based on this reference, and closes the servo loop to hold position.

The two-guess phasing search is very quick and requires little movement. It works well provided that
external loads such as gravity and friction are low. However, if there are significant external loads, it may
not prove to be a reliable phasing search method (and unreliable phasing search methods can be
dangerous); if this is the case, another method such as the stepper-motor method described below should
be used.

The two-guess method is selected by setting Ix80 to 0 or 1. With Ix80 at 0, the phasing search is not
executed automatically during the power-on/ reset cycle; a $ command must be used to execute the
phasing search. With Ix80 at 1, the phasing search will automatically be executed during the power-on
reset cycle; it can also be subsequently executed with a $ command.

Two parameters must be specified to tell PMAC how to do this phasing search. 1x73 specifies the
magnitude of the torque command during each guess, with units of 16-bit DAC bits. Typical values are
2000 to 6000; 4000 (about 1/8 of full range) is a usual starting point. 1x74 sets the duration of each
torque command and the evaluation of its response, with units of servo cycles. Typical values are 3 to 10;
5 (about 2 msec at the default servo update) is a usual starting point.

Stepper-Motor Phasing Search

The other automatic method of phasing search for a synchronous motor is the stepper-motor method.
This method forces current through particular phases of the motor, as a stepper-motor controller would,
and waits for it to settle. With proper operation, this will be at a known position in the commutation
cycle.

The stepper-motor phasing search requires more movement and more time than the two-guess method,
but it is more reliable in finding the phase accurately in the presence of large external loads.

The stepper-motor method is selected by setting 1x80 to 2 or 3. With Ix80 at 2, the phasing search is not
executed automatically during the power-on/reset cycle; a $ command must be used to execute the
phasing search. With Ix80 at 3, the phasing search automatically executes during the power-on reset
cycle (this is not recommended); it can also be subsequently executed with a $ command.

In this method, [x73 controls the magnitude of the current through the phases, with 32,767 representing
full range. Typically a value near 3000, about 1/10 of full range, will be used, although the actual value
will depend on the loads.

Ix74 controls the settling time for each of the two steps used in the search. In this mode, the units of Ix74
are servo cycles*256, about 1/10 sec with the default servo cycle time. Typically a settling time of 1-2
seconds is used.

90 Setting Up PMAC Commutation



PMAC User Manual

In the stepper-motor phasing search, PMAC first forces current to put the motor at the +/-60° point in the
phasing cycle and waits for the settling time. Then it forces current to put the motor at the 0° point in the
phasing cycle and again waits for the settling time. It checks to see that there has been at least 1/16 cycle
(22.5°) movement between the two steps. If there has been, it forces the phase position register to 0,
clears the phasing-search-error motor status bit, and closes the servo loop. If it has detected less
movement than this, it sets the phasing-search-error bit, and disables (kills) the servo loop.

If the stepper motor phasing search is done outside the power-on/reset cycle, the phasing search algorithm
will also fail if an amplifier fault or overtravel limit condition is detected. PMAC will set the phasing-
search-error bit and disable the servo loop. If done inside the power-on/reset cycle, PMAC cannot
automatically detect these errors; the search will likely fail due to lack of movement.

Custom Phasing Search Methods

It may be necessary or desirable to write a custom phasing-search algorithm. Usually these are executed
as PMAC PLC programs, but often they can be tried and debugged using on-line commands. The on-line
commands are useful particularly if the phasing search is done only in development to establish a
reference for an absolute sensor.

Most custom algorithms are variations on the stepper-motor phasing search method. They use the phase-
current offset values 1x29 and Ix79 with an 00 command to force current into particular phases so the
motor will lock at a certain physical position in its phasing cycle. The following table shows the positions
in the phasing cycle created by different combinations of Ix29 and Ix79 for 3-phase motors. Usually the
magnitude of the non-zero values are 2000 to 3000:

1x29 =0 <0 <0 =0 >0 >0
Ix79 >0 >0 =0 <0 <0 =0
Pos(Ix72=85) 0% 60°e 120% + 180°% -120% -60°¢
Pos(Ix72=171) +180% | -120% -60% 0% 60°¢ 120%

For example, the following set of on-line commands typed into the terminal window of the PMAC
Executive program could be used to force a motor to the zero position in its phasing cycle, set the phase
position register as zero, and enable the motor.

#100 ; Enable the motor with open-loop zero magnitude
I129=0 ; No offset on Phase A
I179=3000 ; Positive offset on Phase B to force to 0 deg
; (Ix72=85)
M171=0 ; Write zero into phase position register
I179=0 ; No offset on Phase B
J/ ; Close servo loop

The time between typing the commands would provide sufficient delay for settling into position.

The following PLC program is a good starting point for variants on the stepper-motor phasing search
method. Extensions to this program could be to phase two gantry motors simultaneously or to “step” out
of a position limit. This example uses Ix73 and Ix74 as they would be used in the automatic stepper-
motor phasing search method.

;****************** Set_up and Definitions kAKhkkkhkhkkkhkhkkkhkhkkhkhkkhkhkhrkkhk

CLOSE ; Make sure all buffers are closed
M70->X:$0700,0,24,S ; 24-bit automatic timer register
M271->X:$007D,0,24,S ; Motor 2 phase position register

;****************** Program to do phasing Search kkhkkkhkkhkkhkhkkhkkhkhkkkhk*k

Setting Up PMAC Commutation 91



PMAC User Manual

OPEN PLC 1 CLEAR

CMD” #200” ; Force zero-magnitude open-loop
P229=T229 ; Save real Phase A bias
P279=I279 ; Save real Phase B bias
IF (I272<128)
I229=-1273 ; Force negative bias into A
I279=1273 ; Force positive bias into B
ELSE ; Ix72>128
I229=1273 ; Force positive bias into A
I279=-1273 ; Force negative bias into B
ENDIF ; This should force to 60 deg
M70=I274*256 ; Starting value for countdown timer
WHILE (M70>0) ; Wait for prescribed time
ENDWHILE
I229=P229 ; Restore real bias to A for 0 deg
M70=I274*256 ; Starting value for countdown timer
WHILE (M70>0) ; Wait for prescribed time
ENDWHILE
M271=0 ; Set phase position to zero
I279=P279 ; Restore real bias to B
CMD “#2J3/” ; Close servo loop
DISABLE PIC 1 ; Keep from executing again
CLOSE

Phasing Referenced to Absolute Sensor

With a position sensor that is absolute over at least one commutation cycle of the motor, it is possible to
set the proper phase of the motor on power-up/reset without having to perform a phasing search. Instead,
the absolute sensor is read to determine the location of the motor within its phasing cycle. With this
procedure, the phasing reference only needs to be done once, during the initial development of the
system. Remember that this reading of absolute position is only done at motor reset time; the ongoing
phase position is always read through an encoder counter.

I-Variables

Two I-variables need to be set up properly to perform phasing from an absolute sensor. Ix81 tells PMAC
the address and format of the absolute sensor. If this parameter is greater than zero, PMAC will read
from the specified address in the specified format on power-up/reset to get the absolute position. Ix75
specifies the difference between the sensor's zero position and the phase cycle's zero position, in units of
(counts * Ix70). After reading the power-up/reset position from the absolute sensor, PMAC adds this
value and writes the resulting sum to the phase position register.

Set-up Phasing Search

To set up for the absolute phasing, first do a phasing search on the motor not utilizing the absolute power-
on position. All of the directions for setting up the commutation with an incremental sensor apply here.
These tasks should be done with an unloaded motor for maximum accuracy. Assure that a phasing search
on the motor can be done consistently using the stepper motor method implemented in the PLC program
shown in this manual, and the motor can be turned in both directions with small open-loop commands
(e.g., 05, 0-5). This phasing search can also be done with four on-line commands, as shown below.

Once confident that the commutation algorithms with the stepper-motor phasing search are working well,
determine the phasing offset required for phasing with the absolute sensor. First, define an M-variable to
read the absolute sensor. For a resolver read through the Acc-8D Option 7 R/D converter board, this is a
TWR form of M-variable. For a sensor such as an absolute encoder read as parallel bits, usually through
an Acc-14 I/0 board, this is a Y form of M-variable.

92 Setting Up PMAC Commutation



PMAC User Manual

For example:

M171->TWR:0,2 ;Resolver at multiplexer address 0, location 2 at that
; address on an Acc-8D Opt 7 board
M171->Y:$FFD0,0,16,U ;16-bit parallel absolute sensor at first Acc-14 Port A

Next, manually run the stepper motor phasing search, using on-line commands. The point of this
sequence is to force the motor into the zero-point of the phasing cycle. At this point, read the absolute
sensor using the M-variable we have defined. Use Motor 1 for the example. The exact sequence depends
on the phase angle value in [x72.

For 1172 = 64 (4-phase) or 85 (3-phase):

#100 ; Open-loop command of zero magnitude
I129=-2000 I179=2000 ; Force motor to preliminary position
I129=0 ; Now force motor to zero-point of phase cycle Ix29 can

; be set to non-zero value here if the current loop
; bias has been evaluated, in which case Ix29 is set
; to the value that forces zero current through the
; phase. For I172 = 192 (4-phase) or 171 (3-phase):

#100 ; Open-loop command of zero magnitude
I129=2000 I179=-2000 ; Force motor to preliminary position
I129=0 ; Now force motor to zero-point of phase cycle

; See note above on phase current bias

At this point, read the absolute position sensor by querying the M-variable value. For example:
M171 ; Ask for value of M171

475 ; PMAC responds

Take the value PMAC returns, negate it, multiply it by Ix70, and put the resulting value in Ix75.
Continuing our example, if [170=1, issue the command:

I175=-475
If 1170=2, issue the command:
I175=-950

Final Preparations

To finish the preparation for the absolute phasing read, a few more things must be done. Remove the
remaining phase offset by setting 1x79 back to 0; prevent any phasing-search move by setting 1x73 and
Ix74 to 0, and/or removing the phasing-search PLC program; define the address for the absolute phase
position read by setting Ix81; and decide whether to enable the motor immediately on power-up/reset by
setting Ix80. To continue the example:

I179=0 ; Remove phase bias (or set to bias for zero current)
I173=0 ; Disable phasing search
I174=0 ; Disable phasing search
I180=1 ; Enable motor immediately on power-up reset
I181=$020100 ; Read R/D at location 2 ($02) of multiplexer

; address 0 ($0100) for initial phase position or
I181=$10FFDO ; Read 16 bits ($10) of parallel data from Port A

; of 1st Acc-14 ($FFDO) for initial phase position
Trying Absolute Phasing

Now try the setup by issuing the $ motor-reset command. If the phasing works well, the motor should
move easily in both directions with small open-loop commands. If the servo loop has been tuned
reasonably, the motor can now job in both directions as well, but poor jogging performance could be due
to a poorly tuned servo loop, especially if the open-loop commands work well.

Setting Up PMAC Commutation 93



PMAC User Manual

Saving Values

Once confirmed that the proper phasing can be reached with the $ command, save the parameters into
permanent memory with the SAVE command and do a full card reset with the $$$ command. If Ix80
was saved as 1, the motor should be enabled and in closed-loop position control immediately after the
reset, although if the servo loop has not been tuned, it may not be very stiff. Regardless good response
should be received from open-loop commands.

If Ix80 was saved as 0, the absolute phase position will have been done during the reset, but the motor
will be left in the disabled (killed) state. It can be enabled with either open loop or jog commands. A $
command will also enable the motor (closed-loop), doing another absolute position read in the process.

If the motor performs open-loop commands well in both directions at this point, the commutation setup is
finished, and the motor is ready for servo-loop tuning.

Phasing Referenced to Hall-Effect Sensor

PMAC can use hall-effect commutation sensors or their equivalent for an approximate phase referencing
on power-up. This phase referencing is good to +/-30° of the commutation cycle, which is enough to get
reasonable torque and reasonable smoothness without any phasing search. The final phase reference can
then be done when the index pulse is found. Usually the index pulse is part of the home position trigger,
so after the homing search move is done, the phase position is adjusted based on a measurement that was
done during development.

Setting bit 23 of Ix81 to 1 specifies a hall-effect power-on phase reference. In this case, the address
portion of [x81 specifies a PMAC X-address, usually that of an otherwise unused flag register matching
the second DAC output for the motor. For example, a motor using DACs 1 & 2 for the commutated
outputs would use Flags 1 at X:$C000 for its main flags and Flags 2 at X:$C004 for its hall-effect inputs.

PMAC expects to find the hall-effect inputs at bits 20, 21, and 22 of the specified register. In a flag
register, these bits match the HMFLn, -LIMn, and +LIMn inputs, respectively. Traditionally hall-effect
inputs are labeled U, V, and W. The U input is bit 22 (+LIMn), V is bit 21 (-LIMn), and W is bit 20
(HMFLn).

The hall-effect signals must each have a duty cycle of 50% (180°¢). PMAC can use hall-effect
commutation sensors separated by120°e. There is no industry standard with hall-effect sensors as to
direction sense or zero reference, so this must be handled with software settings of Ix81.

Bit 22 controls the direction sense of hall-effect sensors as shown in the following diagram, where a value
of 0 for bit 22 is standard and a value of 1 is reversed:

1 3 2 6 4 5

I I I I I I

1 | l | . | .

U I I I I I I

0 | . | ! | L

1 | I 1 I | |

Vv I I I I I I

O 1 | | | 1 I

1 | . l l l .

w I I I I I I

O | 1 1 1 1 1
Standard: -30 30 90 150 -150 -90
Reversed: 30 -30 -90 -150 150 90

Figure 16 Hall Effect Waveform Diagram

94 Setting Up PMAC Commutation



PMAC User Manual

Hall Diagram

This diagram shows the hall-effect waveforms with zero offset, defined such that the V-signal transition
when the U-signal is low (defined as the zero point in the hall-effect cycle) represents the zero point in the
PMAC commutation cycle.

If the hall-effect sensors do not have this orientation, bits 16 to 21 of Ix81 can be used to specify the
offset between The PMAC zero point and the hall effect zero point. These bits can take a value of 0 to 63
with units of 1/64 of a commutation cycle (5.625%). The offset can be computed by doing a phasing
search move to establish a phase reference without the hall sensors, then reading the 24-bit phase position
register (suggested M-variable Mx71 for the high 24 bits) at the V-signal transition with U low — the
hall-effect zero point. This is best done by killing the motor and rotating it by hand while watching the U
and V signals on an oscilloscope or matching M-variables in the PMAC Executive program Watch
Window, and Mx71 in the Watch Window. The offset value can then be calculated as:

Mx71%I71,
Ix71
The offset computed here should be rounded to the nearest integer.

Offset =

The description of Ix81 in the Software Reference manual shows the common values of offsets used, for

all the cases where the zero point in the hall-effect cycle is at a 0°, 60°, 120°, 180°, -120°, or -60° point —
where manufacturers generally align the sensors.

To find the precise phase position value on the motor index pulse, perform a power-on phasing search
move to establish a precise phase reference, then read the value of the phase position register Mx71 at the
index pulse, monitoring the pulse either on an oscilloscope or the matching M-variable on PMAC. This
value can be stored in the Ix75 phase position offset variable, which is not used by the automatic
firmware in this mode. In actual operation, this value can then be copied into the phase position register
Mx71 after homing to the index pulse.

The full phase reference then consists of the following steps:

e Do arough phase reference using the hall-effect sensors as specified by Ix81, either automatically on
power-up/reset if [x80=1, or on the $ command if Ix80=0.

e Do a homing search move on the motor, using the index pulse as part of the home trigger.

e  Wait for the motor to settle in-position (following error less than [x27) at the home position using the
motor in-position status bit — suggested M-variable Mx40 — [WHILE (M140=0) .. .]

e Force the motor phase position register to the pre-determined value at this point with a command like
Mx71=Ix75.

Phase Advance

A velocity phase advance gain term (Ix76) allows the phasing sequence to be advanced in the direction of
motion by an amount proportional to the velocity to counteract computational delays, and current lags in
the motor and amplifier. This feature can significantly increase the top speed of the motor, and greatly
increase the energy efficiency of the system. It is not possible when commutating off hall-effect sensors.

Usually, this parameter is set interactively by running the motor at high speed, and finding the setting that
minimizes current draw.

Setting Up PMAC Commutation 95



PMAC User Manual

Switched Reluctance Motor Commutation

To the PMAC commutation algorithm, a switched (variable) reluctance motor can look the same as a
permanent magnet DC brushless motor. The difference is in the amplifier. Because the phases of an SR
motor are driven uni-directionally, the power stage can be simpler.

However, the analog pre-driver circuitry must convert the bidirectional nature of the PMAC outputs.

First, the extra phases is generated from the commands alone (not from any actual current information, as
is desirable for DC brushless and AC induction motors). Then each of the phase current command signals
must be half-wave rectified before being sent to the current loop, because in an SR motor, during half of
the commutation cycle, any current in either direction in a phase works against you.

AC Induction Motor Commutation

PMAC can drive standard AC induction motors as position servos by a technique known as indirect
vector control. PMAC continually estimates the orientation of the rotor magnetic field and orients the
current in the stator phases in order both to induce rotor current and to create torque.

The algorithm turns out to be the same as that for the DC brushless motor, but with the addition of two
more terms. One is the magnitude of the magnetization (inducing) current (Ix77), which is kept parallel
to the estimated rotor field, and a slip gain term (Ix78), which determines how much the estimated rotor
field angle is advanced in response to each unit of stator torque current (which is kept perpendicular to the
estimated rotor field).

Setting the Slip Gain

There is a simple technique for setting the slip gain for an induction motor. Slip gain is the constant of
proportionality between applied torque and slip frequency. If the matching values of slip frequency and
torque are known, divide the former by the latter, and convert units, to get the slip gain. Get all of the
information needed from nameplate information for the motor, amplifier, and controller.

Motor Information

From the motor, obtain the following information:

e Rated (full load) speed in RPM

e Rated line (field) frequency in Hertz

e Number of poles

e Rated (full load) current (RMS)

From this information, compute the rated (full-load) slip frequency of the motor as the difference between
the field frequency and the rotor frequency:

Rated speed(RPM ) , # poles

Slip freq( Hz ) = Field freq( Hz )—
60sec/ min 2

Use the current information later.

Amplifier Information
From the amplifier, obtain the maximum (overload) RMS current as a percentage of the motor’s rated
full-load RMS current.

Controller Information
From PMAC, obtain:

e The frequency at which the phasing calculations are done

e Number of peak output (DAC) bits required to command the amplifier to its maximum RMS current
e The constant of proportionality in the equation relating slip frequency, applied torque, and slip gain.

The first piece of information will allow conversion of the rated slip frequency to units of electrical cycles
per phase update — the slip units PMAC uses:

96 Setting Up PMAC Commutation



PMAC User Manual

SlipFreq(Hz)
PhaseUpdateRate(updates / sec)

Slip Freq( cycles / update ) =

The phase update rate for PMAC is determined by the master clock frequency and by jumpers E29-E33
and E98. The default rate is 9.04 kHz, or 9040 updates/sec.

The second piece of information will allow conversion of the rated applied torque to units of DAC bits —
the torque units PMAC uses:

RatedMotorRMSCurrent( A)
MaxAmplifierRMSCurrent( 4)

RatedTorque = MotorTorque-

(DAC bits) (DAC bits)

The third piece of information allows division of the slip frequency by the torque to get slip gain in the
proper units. The equation for slip gain is:

( 2380ycles /update) 238 * Slip freq( cycles / update)

Slip gain =
(DACbit ) Torque( DACbits )

This value then is put into Ix78.
Example:
The technique is best illustrated by an example. Take a system with the following parameters:
Motor: Rated RMS current: 20A

Rated full-load speed: 1755 RPM

Rated line speed: 60 Hz

Number of poles: 4
Amplifier: Maximum RMS current: 40A
PMAC: Peak output for max amplifier current: 32,767 DAC bits (10V)

Phase update rate: 9.04 kHz (9040 updates/sec)
Constant of proportionality: 2
From this data, compute the above equations:

1755% 4
N/ Hz)=60- = 1.50H:
ip freq( Hz) 5072 z
1.50( H. _
Slip freq(cycles / update ) = (Hz) =1.659%10 4
9040(updates / sec)

Rated Torque = 32768 DAC bits * (20A / 40A) = 16384 DAC bits [2' ])
(2¥cycles/update)  2**1.659x10*

- =2784
(DACbit) 16384

Slipgain

Ix78 would be set to 2784.
Setting the Magnetization Current

Warning:

The technique described in this section can involve the measurement of high and
potentially deadly voltages unless measuring voltages well isolated from the power
voltages. Make sure proper techniques for measuring power-level AC voltages are
understood thoroughly before attempting this technique.

Setting Up PMAC Commutation 97



PMAC User Manual

Determination of the proper magnetization current is best done with a simple experimental technique.
The technique relies on the linear relationship between motor speed and back EMF, in which the
magnetization current provides the constant of proportionality (K, the velocity, or back-EMF constant, is

directly proportional to the magnetization current).

Consider the no-load speed of the motor — equivalent to the line frequency, since there is zero slip at
zero load. For a 4-pole motor at 60 Hz, the no-load speed is 1800 RPM. At this speed, with no load, the
voltage waveforms from back EMF should be just at the saturation point (for example 380V RMS).

Give the motor a starting magnetization current e.g., 5 to 10% of full current (Ix77=1638 to 3276). Set
the slip gain (Ix78) according to the above equations. Measure the back EMF of the motor at a known
fraction of the no-load speed when it is putting out zero torque (use the O0 open-loop command). Either
drive the motor from another motor at the known speed (preferred) or take the motor above this speed
with a small open-loop torque (e.g. 05), then command OO and take the measurements as the motor
coasts through the desired speed.

If the measured voltage is too low, the magnetization current is too low. If the voltage is too high, the
mag current is too high. The difference should be proportional: if the voltage is only 75% of what it
should be, the mag current is only 75% of what it should be. Adjust Ix77 according to the measurements,
and try again. The calculations should be almost correct on the second pass.

Experimental Setting of Induction Motor Parameters

If it is not practical to use the induction motor nameplate values to set the induction motor parameters, or
if it is desired to check whether the parameters derived from the nameplate values are proper, the
following experimental method can be used. This method should be used on an unloaded motor because
it utilizes open-loop commands that create a large number of revolutions that are not well controlled. The
settings derived from the tests on an unloaded motor are valid even with the load because the induction
motor parameters are load independent, functions only of the electrical properties of the motor.

Select an arbitrary value for Ix77 magnetization current. If there is a calculated number from the
nameplate values, use it. If starting without any previously calculated value, 3000 (about 1/10 of
maximum) is a good starting value.

Select an arbitrary value for Ix78 slip gain. If there is a calculated number from the nameplate values, use
it. If starting without any previously calculated value, 4000 is a good starting value

Gather actual position data from the motor while accelerating the motor with an open loop command.
Use the PMAC Executive program to select gathering of the actual motor position. To perform the actual
gathering, use the following sequence of on-line commands:

Note:

The values obtained in this test are dependent on the motor’s rotor temperature,
because the resistance of the rotor, and hence its L/R time constant, change with
temperature. It is best to optimize the settings with the rotor hot. In this case, the
motor will run less efficiently with the rotor cold, which will require more current,
heating up the motor towards the proper settings. Run the motor for several
minutes at a significant current level (e.g. O30) before trying to do final

optimization.
GAT 010 ; Start data gathering, open-loop 10% command
ENDG ; Stop data gathering
o0 ; Open loop 0% to stop motor

Do not issue the ENDG command until the motor has stopped accelerating. Upload the data to the PC by
pressing the F10 key.

98 Setting Up PMAC Commutation



PMAC User Manual

e Plot the velocity-vs.-time graph on the screen. Calculate an acceleration value from the slope of the
curve as it leaves zero velocity.

e Decrease the Ix78 slip gain by 10% and repeat steps 3 and 4. If the acceleration from zero velocity is
greater than the first plot, continue decreasing slip gain. If the acceleration is less than the first plot,
increase Ix78 from the initial value by 10% and repeat steps 3 and 4.

e Continue modifying Ix78 slip gain until honing in on a value that provides the maximum acceleration.
When close, use progressively smaller changes to Ix78 until noticing that there is no significant
change in the motor response.

e  Multiply the values of Ix77 and Ix88 together. This product is optimum for the motor (at least at its
present temperature).

e Notice the maximum velocity on the plot that provides maximum acceleration. The acceleration
stopped because of the back EMF of the motor, which is proportional to your Ix77 magnetization
current, matched the supply voltage. To get to a higher speed than this, decrease the Ix77 value in
inverse proportion to the desired increase in speed. To double the speed, decrease Ix77 to 50% of its
present value.

If able to tolerate a lower maximum speed, and a higher torque at low speed, increase the Ix77 value. If
changing the Ix77 value, change the [x78 value in inverse proportion, so the [x77*Ix78 product stays
constant (newlx78=IdealProduct/newlx77).

Open-Loop Microstepping Commutation
PMAC has the ability to do open-loop microstepping (direct microstepping) of standard stepper motors,
working off internally generated pseudo-feedback for both commutation and servo algorithms.

This technique is different from using PMAC with a voltage-to-frequency converter to command an
external microstepping drive; that technique does not utilize the PMAC commutation algorithms at all.

When microstepping, PMAC provides two analog outputs that are used as current commands for phases

of the motor. Typically, for a microstepping motor, the two phases are electrically independent and 900
out of phase with each other. In this case, the two outputs are simply bidirectional current commands for
the H-bridge amplifiers driving each phase. These amplifiers can be simple torque-mode (current-mode)
DC brush motor amplifiers.

The PMAC microstepping algorithm provides 256 microsteps per electrical cycle, which is 64
microsteps/step. On a typical 200-step/revolution motor, this amounts to 12,800 microsteps per
revolution. With the default phase update frequency of 9 kHz, PMAC can slew at over 576,000
microsteps/second (9000 full.

Master Compensation ' .
Position Correction PMAC E Drive & Motor
]
‘
]
i H-Bridge
Trajectory PID Sine Wave DAC : »  Drive
Generation Commutation DAC |—i H-Bridge
Simulated H Drive
Positon E
]
]

Figure 17 PMAC/PMAC?2 Direct Microstepping System

Setting Up PMAC Commutation 99



PMAC User Manual

Setting the I-Variables
Setting up a motor for microstepping is simply a matter of setting motor I-variables according to the
following list. Since there is no feedback, there is no tuning necessary.

Ix01:
1x02:

1x03, Ix04:

Ist Y-register:

Set to 1 to enable PMAC commutation.

Set bits 0 to 15 to the lower address of the pair of output DACs you wish to use ($C002
for DAC1 and DAC2, $CO0A for DAC3 & DAC4). Set bit 16 to 1 to tell PMAC it is
microstepping this motor. For example: 1102=$1C002.

Set both of these to a register in the encoder conversion table that has processed data from
the phase position register. That entry in the table should be set up as follows:
$600041(560 is parallel X-word source; $0041 is motor 1 phase position):

Use $60007D for motor 2;
Use $6000B9 for motor 3;
Use $6000F5 for motor 4;
Use $600131 for motor 5;
Use $60016D for motor 6;
Use $6001A9 for motor 7;
Use $6001E5 for motor 8.
Second Y-register: $0000FF(Only use lowest 8 bits)

Remember to point Ix03 and Ix04 to the second line of the entry. For example,

WY$720,$600041, S0000FF sets up the conversion table entry; I103= $721 and I104=$721
point to it ($721=1825 decimal).

1x08, Ix09: Set these scaling factors to 32.

1x30: Set this proportional gain term to 8192.

Ix31: Set this derivative gain term to 0.

1x32: Set this velocity feedforward term to 65,536.

Ix33: Set this integral gain term to 0.

Ix35: Set this acceleration feedforward term to 65,536. If a following error is received during a
jog (likely only on a high- numbered motor), increase this by [65,536 * phase-update-
time / servo-update-time] — usually [65,536*1/4]=16,384, yielding 81,920. If still
getting a following error, increase again by the same increment (usually yielding 98,304).

1x69: Set this DAC output limit to 524,287 (219—1).

Ix70, Ix71: Set Ix70 to 1 and Ix71 to 256 to provide 256 counts (microsteps) per electrical cycle (64
microsteps/step).

Ix72: Set this phase angle parameter to 64 or 192 for the usual two-phase microstepping motor.
Changing between these two values changes the direction sense of positive rotation. To
try microstepping a 3-phase motor, use 85 or 171.

Ix77: Set this magnetization current parameter to control the amount of current used in the
phases. This holds the maximum number of DAC bits that will be used to command a
DAC output (current command to the amplifier). For instance, a value of 16,384
provides a +/-5V sinusoidal output on each phase.

Ix78: Set this slip gain parameter equal to 4,194,304/N, where N is the number of phasing
cycles per servo cycle, as set by E3-E6. The default setting of these jumpers provides an
N of 4, so Ix78 would be set to 1,048,576 with the default setting.

Ix83: Set the phase address parameter to $42 for motor 1, $7E for motor 2, $BA for motor 3,
$F6 for motor 4, $132 for motor 5, $16E for motor 6, $1AA for motor 7, and $1E6 for
motor 8.

100 Setting Up PMAC Commutation



PMAC User Manual

Using the Motor
Once the motor is set up, use it just as any other PMAC motor. In fact, because it is working off internal
feedback, this motor can be programmed and tested without any physical motor attached!

User-Written Commutation Algorithm

For the sophisticated user with unusual and/or difficult commutation needs, PMAC provides the hooks for
custom user-written commutation (phasing) algorithms. These routines are written in Motorola 56000
assembly language code, usually on a PC or compatible, and cross assembled for the 56000. Delta Tau
provides the information about where to pick up the needed information, where to leave the output
commands, and where to store the algorithm itself. The writing and download procedure is as for the
user-written servo algorithm.

Note:

This is not a task for the inexperienced user. To attempt this, the user should be
well acquainted with both motor theory and assembly language coding.

The user-written commutation algorithm is enabled by setting Ix59 to 2 or 3 for Motor x (Ix59 = 3 also
enables the user-written servo). PMAC will only select between the standard commutation algorithm and
the user-written commutation algorithm at power-on/reset, so in order to change which algorithm is used,
[x59 must be changed, the value must be stored to non-volatile memory with the SAVE command, and the
card must be reset.

Memory Space, Software Interface, and Program Restrictions

The program space allocated for a user-written commutation is:

e Program code starting address P:$BB00

e  Maximum continuous program length is 256 24-bit words (P:$3BB00 to P:$BBFF). With jump
instructions, other program memory reserved for user use (P:$8000-P:$BAFF) can be accessed.
Compiled PLC code, if present, starts at P:$8000; user-written servo, if present, starts at $B800.
Memory in this range not used for these purposes may be used for user-written commutation.

The data spaces easily available for variables used in the user-written servo are:

e Zero-value-initialized registers L:$0770 to L:$077F

e Uninitialized user registers L:$07F0 to L:$S07FF. These registers retain the last values written to them
before power-down/reset in battery-backed PMACs; then power up with the last values saved to flash
memory in flash-backed PMACs.

e Registers reserved with the DEFINE UBUFFER command; from L:$9FFF, with decreasing address
values to the declared length of the buffer.

The user-written commutation algorithm must directly access memory and memory-mapped I/O registers.

Unlike the user-written servo, no special data is placed into or removed from internal DSP registers.

Common registers to be used in user-written commutation are:

e Servo filter result: X:$0045, X:$0081, etc.

¢ Encoder phase position register:X:$C001, X:$C005, etc.

The following restrictions must be observed in the user-written commutation algorithm:

The code must start with ORG P:$BB00

No assumptions can be made as to the state of any internal DSP registers on entry.

No stack use is allowed.

If any R, M, or N registers are used, they must be restored before exiting.

The B-accumulator register must be cleared on exit (required for PMACI only).
The code must finish with an RTS instruction.

Setting Up PMAC Commutation 101



PMAC User Manual

102 Setting Up PMAC Commutation



PMAC User Manual

CLOSING THE SERVO LOOP

The Purpose of the Servo Loop

PMAC automatically closes a digital servo loop for all activated motors. The purpose of the servo loop is
to command an output in such a way to try to make the actual position for the motor match the
commanded position. How well it does this depends on the tuning of the servo loop filter — the setting of
its parameters — and the dynamics of the physical system under control.

Servo Update Rate

The servo loop is closed (updated) at a frequency determined by:

The master clock rate

Jumper €98

Jumpers €29-e33 (which divide down the master clock to generate the phase clock)
Jumpers e3-e6 (which divide down the phase clock to generate the servo clock)
Parameter Ix60 (which can extend the servo clock in software).

Ix60 is useful to slow down the servo update rate for a particular motor, while leaving the faster rate for
other motors; it is also useful to test quickly whether the required performance can be obtained on all
motors with a slower servo update; in addition, it can be used slow the update rate below 1 kHz.
However, it is generally more efficient to slow down the update rate for all motors using the jumpers.

Reasons to Increase Rate

How fast should the servo loops be updated in the system? For most applications, the default setting of a
442 usec update can be retained. There are two basic reasons to change this time. First, if not getting the
dynamic performance required, speed up the servo update rate (decrease the update time). In most
systems, a faster update rate means that a stiffer and more responsive loop can be closed, resulting in
smaller errors and lags.

Reasons to Decrease Rate

Second, if the routines of lower priority than the servo loop are not executing fast enough, consider
slowing down the servo update rate (increasing the update time). The system may be updating faster than
is required for the dynamic performance needed. If so, processor time is being wasted on needless extra
updates.

For example, doubling the servo update time from 442 psec to 885 usec, virtually doubles the time
available for motion and PLC program execution, allowing much faster motion block rates and PLC scan
rates.

Some systems get better performance with a slower servo update rate. Generally, these are systems with
relatively low encoder resolution, usually an encoder only on the load, where the derivative gain cannot
be raised enough to give adequate damping without causing an unstable buzz due to amplified
quantization errors. In this case, slowing down the update rate (increasing the update time) can help to
give adequate damping without excessive quantization noise.

Ramifications of Changing the Rate

If changing the servo update time, many of the existing servo gains Ix30 to Ix39 will behave differently.
To retain equivalent servo performance, change these values. Refer to the Notch Filter section in this
manual to see how to re-compute the notch filter parameters Ix36-1x39.

If changing the servo update time with the jumpers, change parameter 110 to match the change in order
that trajectories are executed at the right speed. 110 does not have to be changed to match changes in
1x60.

Closing the Servo Loop 103



PMAC User Manual

Amplifier Types

PMAC can interface to a variety of different types of amplifiers. The type of amplifier used for a
particular motor has important ramifications for the tuning of the servo loop. Each of the common types
is explained below.

Velocity-Mode Amplifiers

Many amplifiers accept a velocity command from the controller and a velocity feedback signal from a
motor sensor — usually from a tachometer or synthesized from a resolver. Motors using these amplifiers
have their velocity loops closed in the amplifier, and should not require use of the derivative gain of the
PMAC position loop, provided that the velocity loop is well tuned. In these systems, the PMAC analog
output represents a velocity command. These amplifiers also close current loops internally, and if the
motor is brushless, they perform the phase commutation.

The key virtue of velocity-mode amplifiers is that in closing an analog velocity loop, they are not subject
to the quantization errors and sample-rate limitations of a digital velocity loop. Therefore, they can often
achieve higher velocity-loop gains, resulting in higher stiffness and better disturbance rejection. For this
reason, they are used widely in machine tool cutting applications, maintaining accuracy against high
cutting forces.

Because of these high gains, the position-loop proportional gain in PMAC tends to be much lower for
these amplifiers than for other types. However, much of the velocity-loop stiffness comes from velocity
integral gain. Integral gain in a loop creates a lag, and this makes response to external commands
sluggish. Therefore, these amplifiers are not well suited to applications with quick starting and stopping,
as many indexing applications use.

As processor speeds increase with DSPs and higher clock rates, helping to overcome sample rate
limitations, and digital velocity estimation techniques improve with methods such as 1/T, reducing
quantization errors, velocity-mode amplifiers are being used less and less.

Before tuning the PMAC position loop, it is important that the velocity loop of a velocity-mode drive be
well tuned with the load that it will drive. Because the velocity-loop tuning is load dependent, the
amplifier manufacturer cannot do the final tuning; the machine builder must tune the loop. The velocity
step response must not have any significant overshoot or ringing; if it does, it will not be possible to close
a good position loop around it with PMAC. The PMAC Executive Program’s tuning section has a
function called Open-Loop Tuning that can be used to give velocity command steps to the amplifier and
to observe the response plotted on the screen. This makes it easy to tune the amplifier, or simply to
confirm that it has been well tuned.

Torque-Mode Ampilifiers

Another popular type of amplifier is the torque-mode amplifier, in which the analog voltage from the
controller represents a torque command for the motor (a force command for a linear motor). Since the
basic motor equation shows that torque is proportional to motor current, these are often called current-
mode or current-loop amplifiers (a current loop must be closed to ensure that the torque out is
proportional to the voltage in). Another name occasionally used for these types of amplifiers is the
transconductance amplifier, signifying that a voltage input results in a proportional current output. If the
motor is brushless, these amplifiers also perform the motor phase commutation.

Newton's second law states that torque or force is proportional to rotary or linear acceleration,
respectively, so the commands into these amplifiers are effectively acceleration commands. No velocity
loop is closed in the amplifier; so it is up to PMAC to close the velocity loop itself to get enough damping
for a stable system. With the standard PID filter, this is done with the derivative gain, so it is important to
have enough derivative gain in these systems for stable response.

104 Closing the Servo Loop



PMAC User Manual

Torque-mode amplifiers are popular for several reasons. Since they do not need a tachometer or analog
velocity-loop electronics, they can be simpler and less expensive. Because the current loop gains are
dependent only on motor properties, and not on the load, they can be tuned by the manufacturer for the
particular motor that is being used. No retuning is required by the machine builder when the motor is
connected to the load.

In addition, torque-mode amplifiers generally work better in applications with rapid accelerations and
decelerations. They do not depend heavily for their performance on error integrators, which introduce
time lags and slow response to velocity changes. As such, they are often preferred over velocity-mode
amplifiers, even without the cost advantage.

Voltage-Mode Amplifiers

Voltage-mode amplifiers are the simplest and least costly amplifiers. A voltage command input causes a
larger proportional voltage output to the motor. No feedback of any kind is used in the amplifier itself.
However, they are usually unsuitable for industrial position control applications for several reasons.

First, a voltage command to the motor must overcome the motor’s L/R electrical time constant to cause
current in the motor. This can create delays in motor response. Second, the voltage command to the
motor that can produce current even after the delay is only that voltage above the back EMF of the motor;
therefore the torque produced is dependent on the motor speed. For both of these problems, it is up to the
slower digital position and velocity loops to try to correct.

Finally, controlling current directly is the best way of preventing damaging overcurrent conditions. Most
industrial servomotors work with a supply voltage that could burn them up if they were exposed fully to it
for just several milliseconds without substantial back EMF. If current sensors are required anyway for

protective overcurrent shutdown, they can also be used to close current loops at very little additional cost.

The behavior of voltage-mode amplifiers is somewhere between velocity-mode amplifiers and torque-
mode amplifiers. At low loads, the speed is limited by the back EMF of the motor; at low speeds, the
current is limited by the resistance of the armature. From the controller's point of view, the motor gets
some damping from its own back EMF, but not enough for most positioning applications, so it must be
supplemented with the controller's derivative gain.

Sinusoidal-Input Amplifiers

A relatively new type of amplifier for brushless motors, both permanent magnet and induction, that does
not do the commutation itself, relying on a controller such as PMAC to do it, expects two analog phase
current commands from the controller. At a constant velocity and load, these commands will be
sinusoidal waveforms, so these amplifiers are sometimes called sinusoidal-input amplifiers.

The amplifier still closes current loops on these phases, and it generates the third and fourth phase
commands if necessary through simple balance loops. To the PMAC servo loop, this type of amplifier
looks like a torque-mode amplifier; the magnitude of the sinusoids is proportional to the torque command.
The servo algorithm produces a single torque command; however, instead of writing this command value
directly to an analog output, PMAC processes it through the commutation algorithm to produce two
analog outputs.

There are several advantages to this type of amplifier. First, it permits use of the PMAC high-
performance commutation algorithms, which often provide superior performance to amplifier
commutation. Second, for synchronous motors (permanent magnet and switched reluctance), it allows the
use of less expensive incremental position sensors, because of the PMAC power-on phasing search
capabilities. Third, it reduces wiring, because only the controller needs position feedback, not the
amplifier.

Closing the Servo Loop 105



PMAC User Manual

Finally, it provides a safer failure mode on loss of feedback. When a servo algorithm loses feedback, it
puts out a large torque command, which can cause runaway. However, when a commutation algorithm
loses its feedback, it will lock in like a stepper motor (for a synchronous motor) or at least fail to generate
significant torque (for an asynchronous — induction — motor). When both the servo and commutation
algorithms use the same feedback sensor connected over the same cable, both will lose feedback if one
does, creating a much more benign failure condition.

Pulse-and-Direction Amplifiers

Most stepper-motor amplifiers, and some stepper-replacement servo amplifiers, accept pulse and direction
inputs, where each pulse is a position increment. PMAC can generate this command format by passing its
analog command voltage through a voltage-to-frequency (V/F) converter such as the Acc-8D Option 2
board. In these systems, the true position loop is closed in the amplifier, as well as any velocity loops,
current loops, and motor commutation.

PMAC must close a false position loop for these motors using the electronically generated pulse train as
feedback. Since the output command is a frequency, or rate, of position change, it is effectively a velocity
command, and the loop can be tuned like that for a velocity-loop amplifier. The manual for Acc-8D Opt
2 V/F board has a list of optimal gain settings for each frequency version of the board.

Hydraulic Servo Amplifiers

Hydraulic servo valves create a pressure or force proportional to their command voltage by controlling
the orifice opening. Therefore, to the controller's servo loop it looks like a torque-mode amplifier
requiring derivative gain for stability. Some machine builders use the less expensive hydraulic
proportional valves. These valves have substantial crossover deadband compared to the servo valves.
This deadband can be compensated for to some extent with the PMAC Ix64 and [x65 deadband
compensation, but the physical limitations of such an amplifier must still be realized.

Hydraulic motor amplifiers can be either torque-mode or velocity-mode, depending on whether they use a
velocity sensor and close a velocity loop themselves. To the PMAC servo loop, these amplifiers look just
like the amplifiers of the same type for electromagnetic motors.

PID Servo Filter

The standard PMAC controller provides a PID position loop servo filter. Usually, this filter is sufficient
to control the system, and easily understandable as well, even for non-control specialists. The filter is
tuned by setting the appropriate [-variables for each motor.

How the PID Filter Works

The proportional gain (P — Ix30) provides the stiffness of the system; the differential gain (D — Ix31)
provides the damping for stability; the integral gain (I — [x33) eliminates steady-state errors. 1x34
determines whether the integral gain is active all the time, or just during periods when the commanded
velocity is zero.

106 Closing the Servo Loop



PMAC User Manual

A2
Ky (1227 +2%)

Reference

Position + Big Step/

Deadband
Filter

K _: Proportional Gain (Ix30)
Kd : Derivative Gain (Ix31)

Kvﬁ: Velocity Feedforward Gain (1x32)

Ki : Integral Gain (Ix33)
IM : Integration Mode (Ix34)

-, -2
140 2" 2

Notch Filter

K ": Acceleration Feedforward Gain (Ix35)
El

Figure 18 PMAC PID and NOTCH Servo Filter

tod, 27 22

Notch Coefficients

n,: Ix36

ny: Ix37

dy:Ix38

dy: Ix39
Secondary
Position
("Velocity")

1271 -
(usually
the same)
Primary

Position
Feedback

In addition, velocity feedforward gain (Ix32) reduces following errors introduced by damping (which are
proportional to velocity), and acceleration feedforward gain (Ix35) reduces or eliminates following errors
due to system inertia (which are proportional to acceleration).

Tuning the PID Filter

The PMAC Executive Program for PC-compatible computers provides an easy means of tuning the PID
filter. It allows simple commands that automatically perform standard moves, gather the response data,
plot this data to the screen, and compute important statistics for the response. This permits even
inexperienced users to make some judgments according to simple (provided) rules to optimize the tuning.
Detailed instructions and examples are provided in the Executive Program manual.

The Executive program also has an auto-tuning function that stimulates the motor, evaluates the response,
and calculates the gains required for the desired response level. This function allows the computer to
make all of the decisions as to what the proper gains should be.

"Friction
Feedforward"
Command [
1z 1 | Velocity
L= |
-1

Input
"Big Step"
Limit

-/

Ix67

Deadband

%

1x64,65

Command
Position

Actual

Position Integration

Mode

Cmd Vel =0?

Ix34

Signum
Function

Integration
Limit

% 7ZF
1x02

it 15) 1x29

Phase 1 Bias

1x29
hase 2 Bias

/-

Ix79
DAC Bias

Ix29

Motor Position

Load Position

Figure 19 PMAC PID Servo Loop Modifiers

Closing the Servo Loop

107



PMAC User Manual

Actual PID Algorithm

The actual equation used in the PID algorithm to compute the commanded output for motor x is as
follows:

19 Ix32-CV(n)+ Ix35- CA(n) Ix33-1E(n)  Ix31-Ix09 - AV (n)
DACout(n) =2 - Ix30| Ix08 - {FE(n) + + } -

128 ,23 128

where:
e DACout(n) is the 16-bit output command (-32768 to +32767) in servo cycle n. It is converted to a -
10V to +10V output. DACout(n) is limited by Ix69.

e Ix08 is an internal position scaling term for motor x (usually set to 96).
e Ix09 is an internal scaling term for the velocity loop for motor x.

e FE(n) is the following error in counts in servo cycle n, which is the difference between the
commanded position and the actual position for the cycle [CP(n) - AP(n)].

e AV(n) is the actual velocity in servo cycle n, which is the difference between the last two actual
positions [AP(n) - AP(n-1)] in counts per servo cycle.

¢ CV(n) is the commanded velocity in servo cycle n: the difference between the last two commanded
positions CP(n) - CP(n-1)] in counts per servo cycle.

e CA(n) is the commanded acceleration in servo cycle n, which is the difference between the last two
commanded velocities [CV(n) - CV(n-1)] in counts per servo cycle

IE(n) is the integrated following error in servo cycle n, which is:

n-1

2. [FEG)]

j=0
(For all servo cycles for which the integration is active. Ix34=1 turns off the input to, but not the output
from the integrator when CV does not equal zero.)

Notch Filters

The PMAC can be used to set up notch filters. A notch filter is an anti-resonance (band-reject) filter used
to counteract a physical resonance. While there are many different philosophies as to how to set up a
notch filter, we recommend setting up a lightly damped band-reject filter at about 90% of the resonant
frequency, and a heavily damped band-pass filter somewhat greater than the resonant frequency (to
reduce the high-frequency gain of the filter itself).

For those familiar with control theory (not necessary to use the notch), the form of the PMAC notch filter
system is:

Nz 1+Niz= 14 N2z—2

Diz) 1+DIlz1+D2z=7

where the numerator — N(z) — is the band-reject filter, and the denominator — D(z) — is the band-pass
filter. The notch filter acts on the output of the PID filter itself.

PMAC uses four I-variables to specify the full notch filtering system: two (Ix36 [N1] and Ix37 [N2]) for
the band-reject filter, and two (Ix38 [D1] and [x39 [D2]) for the band-pass filter. These I-variables
represent the actual coefficients used in the difference equations for the notch. These I-variables have a
range of -2.0 to +2.0; they are 24-bit values, with one sign bit, two integer bits, and 21 fractional bits.

Before implementing a notch filter in the PID-Plus algorithm, tune the PID parameters somewhat to get at
least minimal performance, even if control of oscillations is poor.

108 Closing the Servo Loop



PMAC User Manual

Automatic Notch Specification

With the PMAC Executive Program, set up a notch filter (this can be done without the need to understand
how a notch filter works). The easiest way is to enter the frequency of the mechanical resonance that to
control. The Executive Program will compute automatically the desired characteristics of the band-reject
and band-pass filters, calculate their coefficients, and download them to PMAC. Alternatively, the
desired characteristics of the band-reject and band-pass filters can be specified individually, and PMAC
will compute the coefficients to achieve those characteristics and download them to PMAC. Refer to the
Pewin Software User Manual for more details.

Manual Notch Specification
To compute the notch filter coefficients manually, consider the continuous transfer function for a notch
filter:

s2 +2{ o +a)2

zZ nz nz

G(s): 5 5
s°+2 o+

p np np

Start with five parameters for the filter:

e @, the natural frequency of the zeroes in radians/second (not in Hertz)
e (. the damping ratio of the zeroes

e, the natural frequency of the poles in radians/second (not in Hertz)
e ¢, the damping ratio of the poles

e T the servo-loop sampling period in seconds (not in msec)

To compute radians/second from Hertz, multiply by 27 (6.283). To compute the sampling period in
seconds from the sampling rate in kHz, first multiply the rate by 1000 to get Hz, and then take the
reciprocal. Remember that the sampling period is equal to (Ix60+1) times the servo-interrupt period.

First, compute the following intermediate values:

a =1+2{ o T +a)2T2
zZ zZ nz s nz s
@ =1+20 © T +0° T?
p p np s np s

Then compute the filter coefficients:
- (Zé’za)nsz + 2)

Ix36 =
Oz
1
Ix37 =—
az
—(2¢ popyTs + 2
[x38 = e ponpTs +2)
“p
1
Ix39 =—
2p
Finally, modify the proportional-gain term to compensate for the DC-gain change that the filter creates:
2
Opp a
130y = 130,y —3—2
Opz %p

Closing the Servo Loop 109



PMAC User Manual

For example, suppose a 55 Hz resonance has been identified in the mechanical coupling. To compensate
for this, put a lightly damped band-reject filter (damping ratio 0.2) at 50 Hz natural frequency, and a
heavily damped band-pass filter (damping ratio 0.8) at 80 Hz natural frequency to limit the high-
frequency gain of the filter. The servo update time is the default of 442 microseconds.

sec

Ty = 442 u sec* 10—6 = 0.000442 sec

U sec
wpz =27 * 50Hz = 314.2 rad [ sec
@pp = 27 * 80Hz = 502.7 rad | sec

az; =1+2¢;0pn;Ts +wr€szz

= [+2%0.2%314.2%0.000442 + 314.2° *0.000442°
=1.0748
ap,=1+2 ,0,,T ‘o2, TE
V2 p=np-s np-+s
=1+2%0.8%502.7*0.000442 + 502.72 * 0.0004422
= 1.4049
Next compute the filter coefficients:

~(2¢0p:Ts +2)  —(2%0.2%314.2%0.000442 + 2)

Ix36 = = =-]9]2
o, 1.0748
37 =— =— > =0.930
a,  1.0748
(28 ponpTs +2)  —(2%0.8%502.7* 0.000442 + 2
Ix38 = eponpTs )= ( )=—1.677
ap 1.4049
Ix39=—=—"—=0.712
ap 14049

Finally, compute the DC gain adjustment, assuming for the example that the existing proportional gain
term Ixx30 had been 500,000:

2

Ix30 30, P2 _ 500,000 30277 10748 979.169

X3Upew = 1 Y = , = ’
old a)erz ap 314.2° 1.4049

DC Gain Correction
Finally, multiply the old proportional gain (Ix30) by the reciprocal of the notch DC gain. If Ix30 was
100,000 before implementing the notch, to keep the same stiffness set:

Ix30 =227000 ; 100,000 * 2.27
Play with Ix30 some more now to modify loop stiffness without affecting the characteristics of the notch.

Indeed, one of the important reasons for introducing a notch is to be able to increase the stiffness of the
loop without going unstable.

Other Uses of the Notch Filter

The notch filter is really a generalized second-order digital filter that can be put to uses other than creating
anotch. This can give great flexibility in tailoring the performance of the servo algorithm.

110 Closing the Servo Loop



PMAC User Manual

Lead-Lag

The notch filter can be used as a lead-lag filter if the roots are real rather than imaginary. A lead-lag filter
is similar in performance to a PID filter; it is useful when filter settings are determined analytically rather
than experimentally. When a basic lead-lag servo filter is desired, all servo gains Ix31 to Ix35 should be
set to zero; Ix30 is used as the generalized gain term.

Low-Pass Filter

It is also possible to use this filter component as a low-pass filter if reducing roughness of operation is
more important than high system bandwidth. This can be accomplished by setting the D1 term (Ix38) to a
negative value between -1.0 and 0.0. The larger the value, the lower the cutoff frequency of the filter.
The DC gain of this filter is 1/(1+D1), so the proportional gain must be increased by a factor of (1+D1) to
keep the overall loop gain the same.

Extended (Pole-Placement) Servo Filter

For systems with more difficult dynamics, such as multiple resonances and low-frequency resonances, the
extended servo algorithm purchased with PMAC Option 6 can be used instead of the PID filter. When
Option 6 is purchased, all motors on the PMAC must use the extended algorithm instead of the PID; no
mixing is possible. With Option 6, the meanings of [-variables Ix30-1x69 are different from the standard
PMAC; refer to the manual for the extended servo algorithm for these meanings.

Because the extended algorithm is expressed in pole/zero form instead of gain form, it is not an intuitively
tunable filter as the PID is. For this reason, usually the Acc-25 Servo Evaluation Package must be used to
tune this filter properly.

1.7 —»| &R
1z hytha(1-2") p| _ KSikyt e« = ther?

1Lz e g2

U(z)

T
5 HaZ * |: i
+aan 7
RN 3 3 4>® ! v
- 4 . 148(HZ += » = +aZ EFRr "‘ 15 to output

i

Encoder#1 Feedback
* Encoder # Loon #1

8402

il Encoder #1

— Feedback
¥ | - »
®  Encoder#2 Loop #2

Figure 20 Extended Control Alogorithm Block Diagram
User-Written Servo Filter

For the sophisticated user with very unusual and/or difficult dynamics, PMAC provides the hooks for
custom user-written servo algorithms. These routines are to be written in Motorola 56000 assembly
language code, usually on a PC or compatible, and cross assembled for the 56000. Delta Tau provides the
information about where to pick up the needed information, where to leave the output commands, and
where to store the algorithm itself.

Note:

This is not a task for the inexperienced user. To attempt this, the user should be
well acquainted with both servo theory and assembly language coding.

Closing the Servo Loop 111



PMAC User Manual

What is needed to write the Filter

The user-written filter will be written on host computer using a cross-assembler. Motorola provides
56000 cross-assembler programs for IBM-PC and compatibles (SSP56000CLASa), Macintosh II
(SSP56000CLASD), Sun-3 workstations (SSP56000CLASc), and DEC VAX computers
(SSP56000CLASd). Almost all will work on the IBM PC, because the file will have to be converted to
DOS format anyway. Typically, the routine will be written using a simple screen editor, then converted
to 56000 machine code with the cross-assembler. The machine-code file should have the DOS suffix
LOD for the steps below.

Download and Enable Procedure

Step 1
Assemble the user-written filter into a DOS file with an LOD suffix.

Step 2

Execute the IBM-PC conversion program CODE.EXE that is provided by Delta Tau to convert the

machine code file into a format acceptable by PMAC. Do this by typing at the DOS prompt:
CODE {filename} <ENTER>

where { filename} is the name of the machine code file (without the .LOD suffix). CODE will
generate a file called { £ilename} . PMC that can then be sent to PMAC.

Step 3

Execute the PMAC Executive Program and select the Editor menu (with mouse, <ALT-E>, or <F10>E).
Select the Download File to PMAC option, and type in the name of the file in response to the prompt
(.PMC is the default suffix). Once <ENTER> is pressed, the Executive Program will download the file
automatically to the proper PMAC memory location, where it will be held indefinitely by the battery-
backed RAM.

Step 4
Enable the user-written filter for each desired motor by setting [x59for that motor to 1 or 3. IfIx59 is O or
2 for a motor (the default), it will use the standard servo algorithm.

Memory Space, Software Interface, and Program Restrictions

The program space allocated for a user-written servo is:

e Program code starting address: P:$B800 (P:$9C00 in V1.14 and older)
e  Maximum allowed program length is 1K 24-bit words (P:$B800 to P:$BBFF; or P:$9C00 to P:$9FFF
in V1.14 and older)

Usable Data Spaces

The data spaces available for variables used in the user-written servo are:

e Zero-value-initialized user registers L:$0770 to L:$077F

e Un-initialized user registers L:$07F0 to L:07FF. These registers retain the last values written to them
before power-down/reset in battery-backed PMACs; they power up with the last values saved to flash
memory in flash-backed PMAC:s.

e Registers reserved with the DEFINE UBUFFER command; from L:$9FFF, with decreasing address
values to the declared length of the buffer.

Interface to Other Firmware

The following software interface format is used for the PMAC firmware in order to communicate with a
user-written filter:

¢ On entry, the B accumulator contains a 48-bit integer representing desired position (DPOS) in units of
1/(Ix08*32) counts.

112 Closing the Servo Loop



PMAC User Manual

e On entry, the X register contains a 48-bit integer representing actual position (APOS) in units of
1/(Ix08*32) counts

e On entry, the A accumulator contains a 48-bit integer representing desired velocity (DVEL) in units
of 1/(Ix08*32) counts/servo cycle.

¢ On entry, the Y1 register contains the value of Ix08.0n entry, the R1 register contains the address of
the servo status register for the motor whose loop is to be closed ($003D for Motor 1, $0079 for
Motor 2, etc.). This information can be used when servoing multiple motors to distinguish motor-
specific registers.

e On exit, the upper 18 bits of Al should contain the control effort for the motor. If the motor is not
commutated by PMAC (Ix01=0), this value will be loaded directly into the DAC register. If the
motor is commutated by PMAC, this value will be used by the phasing routines to create two DAC
outputs.

e  The user-written filter algorithm must end with a JMP instruction to location P:$0023.

Restrictions
The following restrictions must be observed in the user-written code:

e Only one level of stack use is allowed.

e Do not write to 56000 address registers R2, R3, R6, or R7; modifier registers M2, M3, M6, or M7; or
offset registers N2, N3, N6, or N7. Other R, M, and N registers may be written to, but must be
restored before exiting the user-written code.

e Apart from the A, B, X, and Y registers, all other 56000 registers must be restored before exiting the
user-written code.

Alternative Uses for User-Written Servo

This calculation does not have to be used to close the servo loop for a motor or motors. It can be thought
of simply as a very fast software routine that executes every servo cycle without fail. As such, it can be
used as a super-fast PLC program (better by far in speed than PLC 0).

The most common use for this user-written non-servo is for the very fast setting and clearing of many
outputs based on position (when more is needed than just the hardware position-compare output). Using
this routine for such a function has several advantages over a PLC program. First, it is written in
assembly language, so there are no compilation inefficiencies or interpretation delays.

Second, it can use simple fixed-point arithmetic, rather than the floating-point arithmetic that the PLC
(and motion) programs use. Third, it is guaranteed to run at a fixed rate; even PLC 0 can be delayed by
motion programs.

To implement such a function, activate an extra motor (Ix00=1) and tell it to use the user-written servo
(Ix59=1). The motor must be in a closed-loop enabled state for the algorithm to execute; this will happen
automatically if [x80=1, or it can be brought into this state with a J command. Do not worry about where
to pick up and leave off the servo information, but be careful not to disturb anything else.

Simple User-Written Servo Example

; ENTER: B=demand angle (integer),

H X=actual angle (integer).

i EXIT: upper 18 bits of Al=DAC (integer),

; This servo routine executes a low pass filter of
; the form: uf (k)=al*error (k)+a2*uf (k-1)

; Prior to enabling this routine al & a2 should be
; initialized in L:COEF_A cells. Also, Sampling

Closing the Servo Loop 113



PMAC User Manual

; period factor and its counter should be

; initialized in L:SAMP A. Notice the sampling

; period counter always should be less than the

; sampling period factor. The content of the

; sampling period factor cell represents an integer

; multiple of the hardware selected PMAC servo

; sampling period. In this way the sampling frequency
; may be reduced from the the PMAC default wvalue.

OLD UF A EQU $0770 ;01d UVAL after filter.

COEF_A EQU $07F0 ;Filter coef. al (x mem.), a2 (y mem).

SAMP A EQU $07F1 ;Sampling period factor (y mem.) &
;counter (x mem.).

DEMAND A EQU $07F2 ;Address for the temp. storage of
;demand value.

ACTUAL A EQU $07F3 ;Address for the temp. storage of
;actual value.

DAC_A EQU $07F4 ;Address for dac value.

ORG P:$B800

CLR B B10,L:DEMAND A ;Save the demand in memory.

MOVE #1,B1 ;Bl=1.

MOVE X:SAMP A,A ;Al=counter.

ADD B,A Y:SAMP A, YO0 ;Counter=counter+l, YO=samp. factor.

SUB YO0 ,A Al,X:SAMP A ;Compare counter with factor & save
;count.

JMI ESERVO ;Skip if counter < samp. factor.

MOVE Al ,X:SAMP A ;Clear and save the counter.

MOVE Y:DEMAND A,B ;Load demand position (assuming 24- bit)

MOVE X1,A ;Load Actual position (assuming 24- bit)

SUB A,B ;Form the 24-bit error (k)

;Now execute the low pass filter and exit
;with value of DAC in the upper 18 bits
;of Al (integer).

’

RND B X:COEF_A,X1 ;Round B adding 1 to bit 23 (of BO).
MOVE X:OLD_UF A,X0 B,Yl1 ;X0=uf (k-1), Yl=error(k), Xl=al.
MPY X1,Y1l,B Y:COEF_A,Y0 ;B=al*error(k), YO0=a2.

MACR X0,Y0,B ;B=al*error (k) +a2*uf (k-1) .

MOVE B,X:OLD_UF_A ;Save uf (k)

ESERVO

MOVE X:OLD_UF_A,A ; LOAD SAVED DAC VALUE

MOVE AO0,Al

REP #6

ASL A

JMP <$23 ;RETURN TO SERVO

END

C Program to Convert .LOD File to PMAC Format

/* .LOD TO .PMC CONVERSION PROGRAM 09/04/90 V1.0 */
#include <string.h>

#include <stdio.h>

#include <stdlib.h>

FILE *infile,*outfile;

Char buf[81] ,bufr[32768];

Int l,m,n,x,y;

void main (argc,argv)

114 Closing the Servo Loop



PMAC User Manual

int argc;
char *argvl[];
{

m=0;
x =0;
if (argec > 1) {
infile = fopen(strcat(strcpy(buf,argv[1l]),".lod"),"c");

if (infile '= NULL) {
outfile = fopen (strcat(strcpy (buf,argv[1l]),".pmc"),"wb")
setvbuf (outfile,bufr, IOFBF,632767);
while (fgets (buf,80,infile) !=NULL&&strncmp (buf," DATA P",7)!'=0);
sscanf (buf+8, "%$4x", &y) ;
while (fgets (buf,80,infile) !=NULL&&strncmp (buf," END", 4) !'=0) {
n=20;
1l = strlen(buf);
while (1 > n+5) {
switch (m) {
case O:
fprintf (outfile, "WP$%04X",y); y += 5;
default:
fprintf (outfile,",$%c%c%c%c%c%c" ,buf[n] ,buf[n+l] ,buf[n+2],
buf[n+3] ,buf[n+4] ,buf[n+5]) ;
}
n += 7;
m+= 1;
if (m==5)
m=0;
fprintf (outfile,"\r\n");

}
}
if (m>0) fprintf (outfile,"\r\n");

Closing the Servo Loop 115



PMAC User Manual

116 Closing the Servo Loop



PMAC User Manual

MAKING THE APPLICATION SAFE
Responsibility for the Safety of a Control System

Delta Tau Data Systems has provided many safety features on the PMAC controller, and invested many
resources to make PMAC a safe product. However, the ultimate responsibility for the safety of a control
system using PMAC must lie with the system designer, utilizing the safety features on PMAC and in
other parts of the system.

Hardware Overtravel Limit Switches

PMAC has positive and negative hardware overtravel limit switch inputs associated with each encoder
input. These inputs are optically isolated, with fail-safe circuit design. The inputs must actively be held
low, with the card sourcing current (i.e. a normally closed switch) for PMAC to consider itself not into
the limit. The source of the current is either the external +15V input that powers the analog output stage,
the +12V bus power line if that is jumpered over to power the analog output stage (defeating the analog
optical isolation), or a +24V input brought in on the JMACH2 OPTO+V pin. Jumpers E89 and E90
control which of these sources is used. They must be set properly for the card to be able to move.

Each motor must be directed to look at one of these pairs of inputs — this is done by setting [-Variable
Ix25 (for motor #x) to the address of the register that holds the appropriate inputs. On hitting a limit,
PMAC decelerates the offending motor at a user-programmed rate (see [-variable Ix15). If the motor is in
a coordinate system that is running a motion program at the time, all motors in the coordinate system are
decelerated to a stop at their own Ix15 rate. The effect is equivalent to issuing an A (abort) command.

The limit input pins are direction sensitive: the -LIM pin only stops positive direction moves (those
coming at it from the negative side), and the +LIM pin only stops negative direction moves (those coming
at it from the positive side). This makes it possible to command a move out of the limit that you have run
into. However, this also makes it essential to have your limit switches wired into the proper inputs, or
they will be useless.

The hardware limit function can be disabled for a motor by setting bit 17 of [x25 to 1. This can be useful
for homing into a limit switch (which will not work if the limits are enabled, the default condition), or for
a system where hardware overtravel limit switches are not practical, such as rotary tables. If the address
of the flags in Ix25 were $C004, the value of Ix25 with limits disabled would be $2C004.

Note:

PMAC brings the commanded trajectory for the motor to a stop at the Ix15 rate as
soon as it detects a limit condition. If there is significant following error at the
time, the actual position can try to catch up to the commanded position for a long
period of time. With a large enough following error, it is possible that the
commanded position would be well past the limit and into the hard stop. It is
important to set a reasonable fatal following error limit and to allow sufficient
room past the limit switch to absorb errors up to that following error limit.

The polarity of the limit switches is the opposite of what many would consider
intuitive. That is the -LIMn input should be tied to a switch at the positive end of
travel, and the +LIMn input should be tied to a switch at the negative end of travel.
Make sure the polarity of the limit switches are tested carefully.

Making Your Application Safe 117



PMAC User Manual

Software Overtravel Limits

PMAC also has positive and negative software limits for each motor to complement or replace the
hardware limits. The user-set values (Ix13 and Ix14 parameters for motor #x) for these limits cannot be
saved in EAROM on battery-backed boards; they are held in battery-backed RAM. The behavior on
hitting these limits is the same as for hardware limits. A value of zero in these parameters disables the
limit.

The software limits are disabled automatically during homing search moves, until the homing trigger is
found. As soon as the trigger is found, the software limits are reactivated, using the new home position as
the reference. If overtravel limits are used, they should be far enough from the home position to allow for
deceleration and turnaround after the trigger is found.

Following Error Limits

PMAC has three following error limits for each motor (following error is the difference between the
commanded position and the actual position at any time). The following error limit is an important
protection against serious system faults, such as loss of feedback that can cause dangerous conditions like
full speed runaway.

Fatal Following Error Limit

One of these limits (Ix11) is a fatal limit, which causes a shutdown of the system — zero output
commanded, amplifier disabled (i.e., the motor is killed), moves for the motor and programs for the
motor's coordinate system aborted.

Which amplifiers get disabled — only the offending motor, all in the coordinate system, or all in PMAC —
is determined by Ix25. This limit is intended for conditions where something has gone seriously wrong
(e.g., loss of feedback or power stage) and all operation should cease.

After the motor or motors have been killed due to the fatal following error limit, closed-loop control can
be re-established with the J/ command (single motor), the A command (coordinate system), or the
<CTRL-A> command (entire card).

Warning Following Error Limit

The second limit (Ix12) is a warning limit — when exceeded, PMAC sets status bits for the motor and the
motor's coordinate system, and can set output lines on the control panel connector, the machine
connectors, and through the programmable interrupt controller (for PMAC PC and PMAC STD). This
permits special action to be taken, either by PMAC itself through a PLC program, by the host, which can
find out through an interrupt or by polling the card, or by an operator notified with one of the external
signals.

These limits may be disabled by setting the parameter to zero, but this is strongly discouraged in any
application that has the potential to kill or injure people, or even to cause property damage. Disabling the
fatal limit removes an important protection against serious fault conditions that can cause runaway
situations, bringing the system to full power output faster than anybody could react.

Integrated Following Error Protection

In addition to the normal following error protection provided by the Ix11 variable for each motor, PMAC
can shut down the motor if the time-integrated value of the following error exceeds a preset value. This
integrated error feature can protect against those cases where the magnitude of the measured following
error never gets very large — for example, a loss of feedback followed by a very short commanded move.

118 Making Your Application Safe



PMAC User Manual

PMAC only performs the integrated following error check if the Ix63 integration limit parameter is less
than zero. When this is the case, the magnitude of Ix11 is used for the normal unintegrated following
error check, but in addition, the value of the PID integrator is compared against the Ix63 integration limit
magnitude. If the integrator value has saturated at +/-1x63 (the limiting function in the PID loop will not
let it exceed this value), then PMAC will trip (kill) this motor on an integrated following error fault, just
as it would for a normal following error fault.

For the integrated following error limit to be effective, the Ix33 integral gain must be greater than zero,
and preferably set as high as can be tolerated. Also, the Ix34 integration mode parameter must be set to 0,
so that the integrator is on during programmed moves.

Remember that the integrator stops increasing in magnitude if the command output has saturated at [x69.
The magnitude of [x63 must be small enough that it will trip before the output saturates. The magnitude
of Ix63 that would cause output saturation at [x69 from the integrator alone is:

|[ 63| Ix69 * 223
63l = | 22214
Ix08 * Ix30

The magnitude of [x63 must be less than this value for the shutdown function to be effective. Remember
that there will be other components to the output, for instance from the proportional gain. With a bare
motor, test it to see that this limit can trip the motor reliably.

When a motor is killed due to integrated following error fault, the standard following error fault motor
status bit is set. In addition, a separate integrated following error fault motor status bit is set. Both bits
are cleared when the motor is re-enabled.

Note:

The integrated following error protection feature is not available on PMACs with
the Option 6 Extended Servo Algorithm firmware. That algorithm has no
integrator register in the servo to compare against a limit.

Velocity Limits

PMAC has a programmable velocity limit for each motor (Ix16) that is in effect for linear blended
program moves. Circular, PVT, rapid, and splined moves do not observe this limit. If the commanded
velocity requested of a motor exceeds the limit for the motor, the move is slowed so that the velocity limit
is not exceeded. In a multi-axis programmed move, all axes in the coordinate system are slowed
proportionally so that no change in path occurs. Velocities are compared to these limits assuming no
feedrate override (% value of 100); if feedrate override (a.k.a. time-base control) is used, the velocity
limits scale with the override. When PMAC is automatically segmenting moves (113 > 0), the Ix16
velocity limits are not observed.

Acceleration Limits

PMAC has two programmable acceleration limits for each motor, one for jogging and homing moves
(Ix19), and one for linear blended program moves (Ix17). Circular, rapid, PVT, and splined moves do not
observe this limit. If the commanded acceleration requested of a motor exceeds the limit for the motor,
the acceleration is stretched out so that the acceleration limit is not exceeded. In a multi-axis blended
programmed move, all axes in the coordinate system are slowed proportionally so that no change in path
occurs. Accelerations are compared to these limits assuming no feedrate override (% value of 100); if
feedrate override (a.k.a. time-base control) is used, the acceleration limits scale with the override. When
PMAC is segmenting moves (113 > 0) automatically, which is required for Circular Interpolation, the
Ix17 accelerations are not observed.

Making Your Application Safe 119



PMAC User Manual

Ix17 is particularly useful to prevent unreasonable moves early in system development, when it is easy to
make large mistakes in scaling. In some systems, it can be used during the actual application to make
sure that accelerations always happen in the minimum time. In these applications, the TA and TS
acceleration times are set very small so that the Ix17 limit is always used.

Sometimes the Ix17 limit is too effective limiting when it is not wanted; other times it is not effective
enough, permitting the trajectory to violate the limit. For more details, reference Chapter 14, Writing
Programs for PMAC.

Command Output Limits

PMAC has a programmable output limit (on the command PMAC sends to the amplifier) for each axis
(Ix69), which acts as a torque limit for current-loop amplifiers, or an actual velocity limit for tachometer
amplifiers. If this limit is engaged to change what the servo loop commands, the PMAC anti-windup
protection activates to prevent oscillation when coming out of the limiting condition. In addition, there is
a limit on the size of the error that the feedback filter is permitted to see (Big Step limit: Ix67), which has
the effect of slowing down too sudden a move in a controlled fashion.

Integrated Current (I°T) Protection

PMAC can be set up to fault a motor if the time-integrated current levels exceed a certain threshold. This
can protect the amplifier and/or motor from damage due to overheating. This type of protection is
commonly known as I°T (eye-squared-tee) because it measures integrates the square of current over time
— power dissipation is proportional to the square of current.

Some amplifiers have their own internal I'T protection, but many others do not. The PMAC I'T
protection can be used in either case. It reads the PMAC commanded current registers to determine
current levels, so it can be used without bringing actual current measurement signals into PMAC. It can
be used with any amplifier for which PMAC computes current commands, whether or not PMAC also
performs the commutation and/or digital current loop functions. It is not suitable for use in systems
where PMAC outputs a velocity command, either analog velocity or a pulse frequency.

Note:

The I’'T protection feature is not available on PMACs with the Option 6 Extended
Servo Algorithm firmware. Ix57 and Ix58 have other functions in that firmware
version.

Two I-variables control the functioning of the I’T protection for each motor. Ix57 is the continuous
current limit magnitude. It has the same units as the [x69 instantaneous output limit, bits of a 16-bit DAC
(even if some other output device is used). Both have a range of 0 to 32,767, where 32,767 is the PMAC
maximum possible output magnitude. Generally, Ix57 will be 1/4 to 1/2 of the value of Ix69.

Ix58 is the integrated current limit parameter. If Ix58 is set to 0, this function is disabled. If Ix58 is
greater than 0, PMAC will compare the integrated current value to Ix58. When the integrated current
value exceeds this value, PMAC will fault this motor as if an amplifier fault had occurred. The offending
motor is killed; if it was in a coordinate system running a motion program, that motion program aborted;
other motors are killed according to the setting of bits 21 and 22 of Ix25.

The PMAC I°T function works according to the following equation:

1 ’ 1 : 57 ?
Sum = Sum + a + d i At
32768 32768 32768

120 Making Your Application Safe



PMAC User Manual

where:

a. [ (quadrature current) is the commanded torque-producing output of the PID filter in
7 units of a 16-bit DAC;

b. [ (direct current) is the magnetization current command as set by Ix77. This is usually
d  zero except when PMAC is doing vector control of induction motors.

¢. Ayt Isthetime since the last sample in servo cycles

If Sum exceeds Ix58, an I°T fault will occur. When commanded current levels are below Ix57, Sum will
decrease, but it will never go below zero.

Example: With command output limit [x69=32767 (maximum), integrated current limit Ix57=16384
(half of maximum), and magnetization current Ix77=0, the motor hits an obstruction, and the command

output saturates at 32767. The I’T function will calculate during this time:
Sum = Sum+ |1 +07 = 0.5 At = Sum+0.75.41

Sum will increase at a rate of 0.75 per servo cycle. At the default servo cycle update rate of 2.25 kHz,
Sum will increase at a rate of 2250*0.75=1688 per second. To trip the motor after three seconds of this
condition, set Ix58 to 1688*3 = 5064.

When an I°T fault occurs on a motor, PMAC reacts just as for an amplifier fault error. The offending
motor is killed, and possibly other motors as set by [x25. PMAC sets the amplifier fault motor status bit.
For an I'T fault, PMAC also sets a separate I°T fault motor status bit. Both bits are cleared when the
motor is re-enabled.

Note:

When PMAC is not commutating a motor with I'T protection, make sure
magnetization current parameter Ix77 is still set to 0. In this setup, Ix77 will not

affect operation, but it will affect I’T calculations.

Amplifier Enable and Fault Lines

The use of the amplifier enable (AENA) output and the amplifier fault (FAULTn) input lines for each
motor are important for safe operation. Without the use of the enable line, disabling the amplifier relies
on precise zero offsets in the PMAC analog output and the amplifier's analog input.

Without the use of the fault line, PMAC may not know when an amplifier has shut down and may not
take appropriate action.

If either the +5V supply for the PMAC computational section, or the +15V analog supply is lost, the
amplifier will be disabled automatically, because the output transistor will go into its non-conducting
state. To get this failsafe protection without connecting a signal of this polarity directly to the amplifier,
use intermediate circuitry to change the signal format. With the alternate sourcing drivers, the high-true
enable polarity provides better failsafe protection.

For more details, refer to the Dedicated Digital Output Flags (JMACH, JEQU Ports) and Dedicated
Digital Input Flags sections of this manual.

Note:

With the default sinking drivers for the amplifier enable signals, using the low-true
enable polarity (low voltage — conducting — is enable; high voltage — non-
conducting — is disabled) provides better failsafe protection against loss of power-

supply.

Making Your Application Safe 121



PMAC User Manual

Watchdog Timer

PMAC has an on-board dead-man (or watchdog) timer. This subsystem provides a fail-safe shutdown to
guard against software malfunction. To keep it from tripping the hardware circuit for the watchdog timer
requires that two basic conditions be met. First, it must see a DC voltage greater than 4.75V. If the
supply voltage is below this value, the circuit's relay will trip and the card will shut down. This prevents
corruption of registers due to insufficient voltage. The second necessary condition is that the timer must
see a square wave input (provided by the PMAC software) of a frequency greater than 25 Hz. In the
foreground, the Real Time Interrupt routine sets the signal and then the background routine resets it. If
the card, for whatever reason, due either to hardware or software problems, cannot set and clear this bit
repeatedly at this frequency or higher, the circuit's relay will trip and the card will shut down.

When the timer trips, line F2LD/ on the JPAN connector, and (if E28 is connected 2-3) line FEFCO/ on
the JMACH connector(s) are taken low, the DAC outputs are forced to zero, and the AENA lines are
forced to the disable state. In addition, a level 3 (IR3) interrupt is triggered on the PMAC PC's
Programmable Interrupt controller (PIC), and a level 5 (IR5) interrupt is triggered on the PMAC STD's
PIC. The red LED on the CPU section of the board is turned on.

It is important to shut down your power circuitry if the PMAC watchdog timer trips. The FEFCO/ output
on the JIMACHI1 connector is useful for this purpose. It is an open collector output referenced to AGND
that goes low (100 mA sinking capability) when the watchdog trips. It may also trip on the loss of +5V
power if the loss is slow enough that the watchdog trips from under voltage before complete shutdown.
This use must be evaluated on an individual system to see if it is reliable.

Once the watchdog timer has tripped, power to the PMAC must be cycled off and on, or the INIT/ line on
JPAN must be taken low, then high, to restore normal functioning.

Hardware Stop Command Inputs

PMAC has hardware inputs that can stop a move or a program with user-set decelerations. The Abort
input stops motion of all axes in the selected coordinate system(s), as determined by the motor/system
select inputs, starting immediately, and with each motor decelerating at a rate set by Ix15. The Hold input
performs the same function, except that the axes are decelerated at rates such that the desired multi-axis
path is maintained during deceleration.

These dedicated inputs are on the PMAC control panel connector (JPAN; J2). Which coordinate system

they act on is determined by the binary number produced by the four low-true input lines FPD0/ (LSBit),
FPD1/, FPD2/, and FPD3/ (MSBit). A value of zero (all high) disables the functions; values of 1 through
8 select the numbered coordinate system.

Host-Generated Stop Commands

These functions and several others also can be performed from the host with one- or two-character
commands. For instance, <CTRL-A> performs the same function as the Abort input with all coordinate
systems selected, and A aborts the software-addressed coordinate system. <CTRL-0> holds all
coordinate systems, and H holds the software-addressed coordinate system. In addition, <CTRL-Q> stops
all programs at the end of the upcoming move, and Q stops the program of the software-addressed
coordinate system. <CTRL-K> disables all motors immediately, and K disables the software-addressed
motor (if the motor is in a coordinate system that is running a motion program, an Abort command should
be issued before the K command.

Any of these commands may be issued from within a PMAC program, using the COMMAND { command }
or the COMMAND {letter} syntax. However, a motor-kill (K) command for a motor in the coordinate
system will be rejected automatically when issued from within a motion program running in that
coordinate system.

122 Making Your Application Safe



PMAC User Manual

Program Checksums

PMAC continually computes the checksum of its internal program (firmware) as a background task.
Each time it has computed the checksum, it compares this value to a reference register in memory
(X:$07B1) that has been manually entered with the correct value. PMACs shipped from the factory are
preloaded with the correct reference value for that firmware version at the factory.

Firmware Checksum

If PMAC detects a mismatch between its calculated checksum and the reference checksum, it sets global
status bits (bits 12 and 13 of X:$0003 — accessible with the ??? command) and stops performing any
checksum operations. This leaves the calculated value frozen in the running checksum register X:$0794.
PMAC does take any other action in the event of a firmware checksum error; it is up to the host or a
PMAC PLC program to decide what action to take.

When a PMAC is upgraded to new firmware by replacement of the PROM IC in standard CPU sections
or downloading of new firmware into the flash EEPROM IC in Option CPU sections, the reference
checksum value will be wrong initially for the new firmware. The easiest way of getting the proper
reference checksum value is to re-initialize the card with a $$$*** command, which automatically loads
the firmware's checksum value into the reference register. To make this change permanent, the SAVE
command should be issued before a power-off/reset of PMAC.

To update the reference checksum value without re-initializing the card, it is possible to utilize the fact
that the running checksum register X:$0794 has the last calculated value frozen in it when there is a
mismatch. Therefore, the proper checksum value for the new version can be read with the command
RHX:$0794, and the returned value can be written to the reference register X:$07B1.

User-Program Checksum

PMAC continually computes the checksum of the fixed user program buffers as a background task. Each
time it has computed the checksum, it compares this value to the checksum value that was computed the
last time one of these buffers was closed.

If PMAC detects a mismatch between these two checksums, it sets a global status bit (bit 13 of X:$0003
accessible with ???) and stops performing any program checksum operations (communications
checksum is independent). It does not shut down operation automatically. It is up to the host or a PMAC
PLC program to decide what action to take if there is a checksum error.

Communications Data Integrity Features

PMAC provides a variety of techniques for ensuring valid transmission of data, including serial parity
checking, framing error checking, serial full-duplex communications, and bi-directional checksum
computation on both serial and bus communications. For more details on how these techniques work,
refer to the Writing a Host Communications Program section in this manual.

Making Your Application Safe 123



PMAC User Manual

124 Making Your Application Safe



PMAC User Manual

BASIC MOTOR MOVES

Commanding Some Basic Moves for the Motor

Once the motor is defined and basically working, command some basic moves for the motor. Jogging
commands allows the motor to make simple moves, independent of other motors, without writing a
motion program. Use these moves for development, diagnostics, and debugging, but also use them in the
actual application.

Another type of simple motor move is the homing search move. This is a jog-until-trigger type of move,
where PMAC commands the motor to move until it sees a pre-defined trigger. It then brings the motor to
a stop and returns to the trigger position (possibly with an offset), and sets the motor position to zero. A
homing search move should be performed when it is not known where home position is. If there is an
incremental position sensor, the location is not known on power-up. Therefore, the homing search move
is typically the first move done in this type of system. If the home position is known, to return to that
position, there is no need to do a homing search move; simply command a move to the zero position (e.g.,
J=0 or X0)

The trajectories for jogging and homing moves are essentially the same as for linear blended program
moves. The differences are that the move parameters must be specified by I-variables, and that the moves
themselves are started by on-line commands, not by motion programs. These moves are specified directly
to the motor, specified by number, rather than the axis, specified by letter. The moves are described in
unscaled units (all based on counts and milliseconds).

Jogging Move Control

Jog Acceleration
Jog/home acceleration time is specified by [x20 for motor x, and the S-curve time by Ix21. IfIx20 is less
than two times Ix21, the acceleration time used will be twice Ix21. The acceleration limit for jog/home

moves is set by Ix19 (in counts/msec?). If Ix20 and Ix21 are so small that Ix19 would be exceeded, Ix19
controls the acceleration time (without changing the profile shape). To always specify the acceleration by
rate instead of time, simply set the acceleration time parameters small enough that the limiting
acceleration rate parameter is always used.

To specify the acceleration by rate, do not set both acceleration time parameters Ix20 and Ix21 to zero.
This will cause a division-by-zero error in the move calculations that could cause erratic movement. The
minimum acceleration time setting should be [x20=1 and I1x21=0.

Jog Speed
Jogging speed is specified by Ix22, which is a magnitude of the velocity, in counts per millisecond.
Direction is specified by the jog command itself.

Jog Commands
The commands to jog a motor are on-line (immediate) commands that are motor-specific; they act on the
currently addressed motor.

A jog command to a motor will be rejected if the motor is in a coordinate system currently executing a
motion program, even if the motion program is not commanding that motor to move. PMAC will report
ERROO1 if I6 is set to 1 or 3.

Basic Motor Moves 125



PMAC User Manual

Indefinite Jog Commands

J+ commands an indefinite positive jog for the addressed motor; J- commands an indefinite negative
jog; J/ commands an end to the jog, leaving the motor in position control after the deceleration. It is
possible for the J/ command to leave the commanded position at a fractional count, which can cause
dithering between the adjacent integer count values. If this is a problem, the J! command can be used to
force the commanded position to the nearest integer count value.

Jogging To A Specified Position

Jog commands to a specified position, or of a specified distance, can be given. J= commands a jog to the
last pre-jog position; J={constant} commands a jog to the (unscaled) position specified in the
command; J=={constant} commands a jog to the (unscaled) position specified in the command and
makes that position the pre-jog position; J* { constant} commands a jog of the specified distance from
the actual position at the time of the command (J*0 can be useful to take up remaining following error);
J: {constant} commands a jog of the specified distance from the commanded position at the time of
the command.

Jog Moves Specified By A Variable

Jogging moves to a position or of a distance specified by a variable are possible. Each motor has a
specific register (L:$082B for motor 1, L:$08EB for motor 2, etc.) that holds the position or distance to
move on the next variable jog command. This register contains a floating-point value scaled in encoder
counts. It should be accessed with an L-format M-variable. The J=* command causes PMAC to use this
value as a destination position. The J** command causes PMAC to use the value as a distance from the
actual position at the time of the command. The J:* command causes PMAC to use the value as a
distance from the commanded position at the time of the command.

Each time one of these commands is given, the acceleration and velocity parameters at that time control
the response to the command. To change speed or acceleration parameters of an active jog move, change
the appropriate parameter(s), then issue another jog command.

Jog-Until-Trigger

The jog-until-trigger function permits a jog move to be interrupted by a trigger and terminated by a move
relative to the position at the time of the trigger. It is similar to a homing search move, except that the
motor zero position is not altered, and there is a specific destination in the absence of a trigger.

The jog-until-trigger function for a motor is specified by adding a ~ {constant} specifier to the end of
a regular definite jog command for the motor, where this { constant} is the distance to be traveled
relative to the trigger position before stopping, in encoder counts. It cannot be used with the indefinite
jog commands J+ and J- .

This makes the jog command for a jog-until trigger something like J=100004100 , J=**-50 or
J:5000040. The value before the # is the destination position or distance (depending on the type of jog
command) to be traveled in the absence of a trigger. If this first value is represented by a * symbol,
PMAC looks in a pre-defined register for the position or distance. The second value is the distance to be
traveled relative to the position at the time of the trigger. This value is always expressed as a distance,
regardless of the type of jog command. Both values are expressed in encoder counts. The trigger
condition for the motor is set up just as for homing search moves:
e Ix03 bit 17 specifies whether input flags are used to create the trigger, or the warning following error
limit status bit is the trigger (torque-limited triggering): O=flags, 1=error status

o Ifinput flags are to create the trigger, Ix25 specifies the flag register.

e Ifinput flags are to create the trigger, Encoder/Flag I-variables 2 and 3 for this set of flags specify
which edges of which signals will cause the trigger.

126 Basic Motor Moves



PMAC User Manual

e Ix03 bit 16 specifies whether the hardware-captured counter value is used as the trigger position —
suitable for incremental encoder signals, real or simulated — or the software-read position is used
instead — suitable for other types of feedback (O=hardware, 1=software). The software-read position
must be used if the following error status is used for the trigger.

PMAC will use the jog parameters Ix19-1x22 in force at the time of the command for the pre-trigger
move, and the values of these parameters in force at the time of the trigger for the post-trigger move.

The captured value of the sensor position at the trigger is stored in a dedicated register if later access is
needed. The units are in counts; for incremental encoders, they are relative to the power-up/reset
position.

PMAC sets the motor home-search-in-progress status bit (bit 10 of the first motor status word returned on
a ? command) true (1) at the beginning of a jog-until-trigger move. The bit is set false (0) either when the
trigger is found, or at the end of the move.

PMAC also sets the motor trigger move status bit (bit 7 of the second motor status word returned on a ?
command) true at the beginning of a jog-until-trigger move, and keeps it true at least until the end of the
move. Ifa trigger is found during the move, this bit is set false at the end of the post-trigger move; however,
if the pre-trigger move finishes without finding a trigger, the bit is left true at the end of the move.
Therefore, this bit can be used at the end of the move to tell whether the trigger was found successfully or
not. The motor desired-velocity-zero status bit can be used to determine the end of the move.

Ix20 ACCELERATION TIME (JOG, HOME)

(Units: msec); integer

Ix21 S-CURVE TIME (JOG, HOME)

(Units: msec); integer

VA
1x20 > 2 * Ix21
Ix21 el < X Ix21 E x21 T
VA
1x20 < 2 * Ix21
o2t | 621 oe—Tizi > T
| P e T
VA
Ix21=0

—1v

Figure 21 Motor x Motion Variables

Basic Motor Moves 127



PMAC User Manual

Homing Search Move Control

Homing Acceleration
The acceleration for homing search moves is controlled by the same parameters (Ix19, [x20, and Ix21) as
for jogging moves. These are described in the previous section.

Homing Speed

Homing speed and direction are specified by Ix23. If Ix23 is greater than zero, the homing search move
will be positive. If it is less than zero, the move will be negative. The magnitude of Ix23 controls the
speed of the move (in counts/msec).

Home Trigger Condition

The PMAC homing search moves utilize the hardware position capture feature built in to the DSPGATE
IC. Because no software action is required to do the actual capture, it is incredibly fast and accurate
(delay less than 100 nsec). This means that the capture is fully accurate regardless of motor speed, so
there is no need to slow down the homing move to get an accurate capture.

Specify Flag Set

In the basic setup of the motor, Ix25 specifies which set of flags (associated with one of the encoder
counters) is used for that motor. It is important that the flag number match the position encoder number
for the motor (e.g. if using ENCI as the position-loop feedback, use Flagsl — HMFL1, +/-LIM1,
FAULT1 — for the flags, and CHC1 as the encoder index channel) in order to make use of the PMAC
accurate hardware position capture feature.

Software Capture Option

If not using quadrature encoder feedback for the position loop, but a homing search move still needs to be
done, set bit 16 of the position-loop feedback address parameter Ix03 to 1 to tell PMAC that it cannot use
the hardware capture feature, so it must use a software capture technique. For example, if the address for
Ix03 is $0724, Ix03 should be set to $10724 for the software capture of home position.

When software capture is used, there is a potential delay between the actual trigger and the PMAC
position capture of several milliseconds. This can lead to inaccuracies in the captured position; the speed
of the motor at the time of the trigger must be kept low enough to achieve an accurate enough capture. A
two-step procedure with a fast, inaccurate capture followed by a slow, accurate capture is commonly used
in these types of systems.
Vel
A Trigger Home Complete=1
Occurs Home Search in Progress=0

Home Complete=0 \' /

Home Search
In Progress=1

Net distance from
trigger position
= |x26

T|me_

x21 x4 x21 <
h20 Deswed Velocity Zero=1
In Position=1
' (when FE in range)
®  Rate of acceleration
1x21 M Ix21 Ix2
Ix20 Ix20

limited by Ix19 - can override
Ix20 and Ix21

Figure 22 Homing Search Move Trajectory

128 Basic Motor Moves



PMAC User Manual

Trigger Signals and Edges

Once the set of flags for the motor have been specified with Ix25, use Encoder/Flag I-variable 2 (1902,
1907, etc.) to tell PMAC whether to use a flag, the index channel, or both, as the capture trigger, and
which edge of the flag and/or the index channel to use.

Next, use Encoder/Flag [-variable 3 (1903, 1908, etc.) to specify which of the four flags (HMFLn, +LIMn,
-LIMn, FAULTn) is to use for the capture. If using a limit or a fault flag for home capture, disable the
normal function of that input by setting high bits of Ix25, at least for the duration of the homing search
move.

Torque-Mode Triggering

Normally, the trigger condition for homing search moves, jog-until-trigger moves, and motion program
move-until-trigger moves is an input flag signal transition. Sometimes it is desired that a trigger occur
when an obstruction such as a hard-stop is encountered. To support this type of functionality, PMAC
permits triggering on a warning following error condition instead of an input flag. This is sometimes
called torque-mode triggering, because it effectively triggers on a torque level (except for velocity-mode
amplifiers) because output torque command is proportional to following error. It is also called a torque-
limited mode, because it provides an easy way to create moves that are limited in torque, and that stop
when the torque limit is reached.

To enable this torque-mode triggering, set bit 17 of the position-loop feedback address I-variable Ix03 to
1. In addition, Bit 16 of Ix03 should be set to 1 to tell PMAC to use the software-read position on a
capture instead of the hardware-latched position, because there is no input signal to latch the position in
this mode. Bits 0-15 contain the actual address of the feedback. For example, the default value of 1103 is
$0720, specifying the address of the first entry in the encoder conversion table, and specifying signal-
based triggering. If 1103 is changed to $30720, the same register is used for feedback, but torque-mode
triggering is specified.

In this mode, the trigger for a homing search move or a move-until-trigger is a true state of the warning
following error status bit for the motor. The warning following error magnitude for the motor is set by
Ix12, with units of 1/16 of a count. When PMAC detects this transition, it will read the present feedback
position as the trigger position, then move relative to this position. In a homing search move, the relative
distance is specified by 1x26, in units of 1/16 count. In a jog-until-trigger, the distance is specified by the
second value in the jog command — the value after the # arrow — in units of counts. In a motion
program move-until-trigger, the distance is specified by a second value in the axis command (the value
after the ~ arrow) in user axis units.

In many cases in these types of moves, the [x69 command output should be set to a lower value
representing the torque or force limit to ensure that this limit is not exceeded at any time during the move,
before or after the trigger.

Notice that if the warning following error status bit is true at the start of the move, the trigger will occur
almost immediately.

Merits of Dual Trigger

It is common practice to use a combination of a homing switch and the index channel as the home trigger
condition. The index channel of an encoder, while precise and repeatable, is not unique in most
applications, because the motor can travel more than one revolution. Typically, the homing switch, while
unique, is not extremely precise or repeatable. By using a logical combination of the two, uniqueness
from the switch and precision and repeatability from the index channel can be achieved. In this scheme,
the homing switch is effectively used to select which index channel pulse is used as the home trigger.

Basic Motor Moves 129



PMAC User Manual

Although the homing switch does not need to be placed accurately in this type of application, it is
important that its triggering edge remain safely between the same two index channel pulses. Also, the
homing switch pulse must be wide enough to always contain at least one index channel pulse.

Action on Trigger

In the homing search move, as soon as the PMAC firmware recognizes that the hardware trigger has
occurred, it takes several actions. It reads the position at the time of capture (usually the hardware capture
register) and uses it and the 1x26 home offset parameter to compute the new motor zero position. As soon
as this is done, reported positions are referenced to this new zero position (plus or minus any axis offset in
the axis definition statement). If the axis definitions is #1->10000X+3000, the home position will be
reported as 3000 counts.

If software overtravel limits are used (Ix13, Ix14 not equal to zero), they are re-enabled at this time after
having been disabled automatically during the search for the trigger. The trajectory to this new zero
position is then calculated, including deceleration and reversal if necessary. The motor will stop under
position control with its commanded position equal to the home position. If there is a following error, the
actual position will be different by the amount of the following error.

Note:

If a software limit is too close to zero, the motor may not be able to stop and
reverse before it hits the limit.

Home Command

The homing search move can be executed through either an on-line command (which can be given from a
PLC program using the COMMAND " " syntax), or a motion program statement.

On-Line Command

A homing search move can be initiated with the on-line motor-specific command HOME (short form HM).
This is simply a command to start the homing search; PMAC provides no automatic indication that the
move is completed, unless the system is set up to recognize the in-position (IPOS) interrupt.

Monitoring for Finish

If monitoring the motor from the host or from a PLC program to see if it has finished the homing move, it
is best to look at the home complete and desired velocity zero motor status word, accessed either with the
? command, or with M-variables. The home complete bit is set to zero on power-up/reset; it is also set to
zero at the beginning of a homing search move, even if a previous homing search move was completed
successfully. It is set to one as soon as the trigger is found in a homing search move, before the motor has
come to a stop.

The home search in progress bit simply is the inverse of the home complete bit during the move: it is 1
until the trigger is found, then 0 immediately after. Therefore, the monitoring should also look for the
desired velocity zero status bit to become 1, which will indicate the end of the move.

Monitoring for Errors

A robust monitoring algorithm will look also for the possibility that the homing search move could end in
an error condition. Often this is just part of the general error monitoring that is done at all times, looking
for overtravel limits, fatal following errors, and amplifier faults. If an error does occur during the homing
move, it is important to distinguish between one that occurs before the trigger has been found, and one
that occurs after. If the error occurs after, PMAC knows where the home position is, and the homing
search does not need to be repeated. Once the error cause has been fixed, the motor can simply be moved
to the home position with a command such as J=0.

130 Basic Motor Moves



PMAC User Manual

Buffered Program Command

The homing search move can also be commanded from within a motion program with the HOMEn
command, where n is the motor number. This command specifies a motor; unlike other motion program
commands that specify an axis move. In a motion program, the PMAC automatic program sequencing
routines monitor for the end of the move. When the move is successfully completed, program execution

continues with the next command.

Multiple homing moves can be started together by specifying a list or range of motor numbers with the
command (e.g., HOME1 , 3 or HOME2 . . 6). Further program execution will wait for all of these motors to
finish their homing moves. Separate homing commands, even on the same line (e.g., HOME1 HOME2)
will be executed in sequence, with the first finishing before the second starts. It is not possible to execute
partially overlapping homing moves from a single motion program.

Note carefully the difference in syntax between the on-line command and the buffered command. The
on-line command is simply HOME or HM, and it acts on the currently addressed motor, so the motor
number must be specified in front of the command (e.g. #1HM). In the buffered command, the motor
number is part of the command, following immediately after HOME or HM letters (e.g. HM1).

Homing from a PLC Program

PMAC PLC programs can command homing search moves by giving on-line commands with the

COMMAND" " statement (e.g. COMMAND" #1HM").

These commands simply start the homing search

move; code must be written to monitor for finishing if that is desired. The motor number must be
specified in the specific command string, or with the ADDRESS#n statement; without this statement,
motor addressing is not modal within PLC programs.

Motion vs. PLC Program Homing

This table summarizes the differences between homing using Motion programs and PMAC PLC

programs.

Motion vs. PLC Program Homing

Motion Programs

PLC Programs

Program execution point stays on the line containing the
Home command until the homing move is finished.

The PLC does not monitor for the start and end of the homing
move automatically.

Home command can be combined with programmed
axis moves.

Axis motion can only be performed through Jog commands.

The C.S. must be ready to run a motion program.

The C.S. does not need to be ready to run a motion program.

Can only home motors defined in the C.S. running the
program.

Can home any motor not defined in a C.S. running a program.

Motors can be homed simultaneously, one after another,
or any combination of the two.

Motors can be homed in any order. This includes starting one
motor in the middle of another motor’s home move.

The motion program must be started by an on-line
command, a PLC program, or another motion program.

The PLC can be started by an on-line command, a PLC
program, another motion program, or automatically at power-
up or reset.

Zero-Move Homing

To declare the current position the home position without commanding any movement, use the HOMEZ
(on-line) or HOMEZn (motion program) command. These are like the HOME command, except that they
immediately take the current commanded position as the home position. The Ix26 offset is not used with

the HOMEZ command.

Basic Motor Moves

131




PMAC User Manual

Note:

If the following error is received when giving the HOMEZ command, the reported
actual position after the HOMEZ command will not be exactly zero; it will be equal
to the negative of the following error.

Homing into a Limit Switch

It is possible to use a limit switch as a home switch. However, first disable the limit function of the limit
switch to have the move finish normally; if this is not done, the limit function will abort the homing
search move. Even so, the home position has been set; a J=0 command can then be used to move the
motor to the home position.

To disable the limit function of the switch, you must set bit 17 of variable Ix25 for the motor to 1. For
example if 1125 is normally $CO000 (the default), specifying the use of +/-LIM1 for motor 1, setting 1125
to $2C000 disables the limit function.

Note:

The polarity of the limit switches is the opposite of what many people would
expect. The -LIMn input should be connected to the limit switch at the positive
end of travel; the +LIMn input should be connected to the limit switch at the
negative end of travel.

It is a good idea to use the home offset parameter [x26 to bring the home position out of the limit switch,
so the limits can be re-enabled immediately after the homing search move, without being in the limit.

The following examples show two quick routines to do this type of homing. One uses a motion program
and the other a PLC program. The same function could also be done with on-line commands.

px*xxkxxkkx Motion Program Set-up Variables (to be saved) **x*x*xxskxx
CLOSE

I123=-10 ; Home speed 10 cts/msec negative
I125=$C000 ; Use Flagsl for Motor 1 (limits enabled)
I126=32000 ; Home offset of +2000 counts

; (enough to take you out of the limit)
I902=3 ; Capture on rising flag and rising index
I1903=2 ; Use +LIM1 as flag (negative end switch)

JREXKXKKKKKARK* MOtion Program Lo execute FOULLIME ** %k kkk ko ko ko kkx
OPEN PROG 101 CLEAR

I125=$2C000 ; Disable +/-LIM as limits

HOME1 ; Home #1 into limit and offset out of it
I125=$C000 ; Re-enable +/-LIM as limits

CLOSE ; End of program

;************** PI.C Set_up Variables (to be Saved) R R d b e dh b ah A a4

CLOSE

I123=-10 ; Home speed 10 cts/msec negative
I1125=$C000 ; Use Flagsl for Motor 1 (limits enabled)
I126=32000 ; Home offset of +2000 counts

; (enough to take you out of the limit)
I902=3 ; Capture on rising flag and rising index
I1903=2 ; Use +LIM1 as flag (negative end switch)
M133->X:$003D,13,1 ; Desired Velocity Zero bit
M145->Y:$0814,10,1 ; Home complete bit

132 Basic Motor Moves



PMAC User Manual

;************** PI.C program to execute routil’le kAkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkkhkhkkhkhk ki h%k

OPEN PLC 10 CLEAR

I125=$2C000 ; Disable +/-LIM as limits

CMD" #1HM" ; Home #1 into limit and offset out of it
WHILE (M145=1) ; Waits for Home Search to start

ENDWHILE

WHILE (M133=0) ; Waits for Home motion to complete
ENDWHILE

I125=$C000 ; Re-enable +/-LIM as limits

DIS PLC10 ; Disables PLC once Home is found

CLOSE ; End of PLC

Multi-Step Homing Procedures

A homing procedure may be required that cannot be executed with a single PMAC homing move. In this
case, use two (or possibly more) homing search moves, changing the move parameters in between.
Although this can be done with a sequence of on-line commands, it is probably easier to create a small
motion program to execute the sequence.

Which Direction to Home?

The most common of these situations is the case in which it is not known on which side of the home
trigger when powering-up. In this case, move into one of the limit switches to make sure the position is at
one end of travel (this can be done by homing into the limit, much as in the above example). Then do a
homing move the other direction into the real home trigger. A sample Motion Program routine that does
this is:

CLOSE OPEN PROG 102 CLEAR

I223=10 ; Home speed 10 cts/msec positive direction
1225=$2C004 ; Disable +/-LIM2 as limits

I226=0 ; No home offset

I907=2 ; Capture on rising edge of a flag

I1908=1 ; Use -LIM2 as flag (positive end limit!)
HOME2 ; Home into limit

I223=-10 ; Home speed 10 cts/msec negative direction
I225=$C004 ; Re-enable +/-LIM2 as limits

I907=11 ; Capture on flag low and index channel high
I908=0 ; Use HMFL2 (home flag) as trigger flag
HOME2 ; Do actual homing move

CLOSE

A sample PLC Program routine that does this is:

CLOSE

M233->X:$0079,13,1 ; Desired Velocity Zero bit
M245->Y:$08D4,10,1 ; Home complete bit

OPEN PLC 11 CLEAR

I223=10 ; Home speed 10 cts/msec positive direction
I225=$2C004 ; Disable +/-LIM2 as limits

I226=0 ; No home offset

I907=2 ; Capture on rising edge of a flag

I908=1 ; Use -LIM2 as flag (positive end limit!)
CMD" #2HM" ; Home into limit

WHILE (M245=1) ; Waits for Home Search to start

ENDWHILE

WHILE (M233=0) ; Waits for Home motion to complete
ENDWHILE

I223=-10 ; Home speed 10 cts/msec negative direction
I225=$C004 ; Re-enable +/-LIM2 as limits

Basic Motor Moves 133



PMAC User Manual

I907=11 ; Capture on flag low and index channel high
I908=0 ; Use HMFL2 (home flag) as trigger flag

CMD" #2HM" ; Do actual homing move

WHILE (M245=1) ; Waits for Home Search to start

ENDWHILE

WHILE (M233=0) ; Waits for Home motion to complete

ENDWHILE

DIS PLC1l1l ; Disables PLC once Home is found

CLOSE ; End of PLC

Already Into Home?

A similar situation occurs when it is not known on power-up whether or not it is positioned already into
the home trigger. Here, the easiest solution is to write a program that evaluates this condition; if it is in
the trigger, it moves out before doing the real homing.

jRFAAF KRR AAAF KXY Motion Program Set-up variables (to be saved) **xx*#*x*

CLOSE

M320->X:$C008,20,1 ; Variable for HMFL3 input

I1325=$C008 ; Use Flags3 for Motor 3

; kAhkkhkkhkkhkkkkkkhkkKhkh kK Motion program to execute routine Ak khkkhkhkkhkkhk kK khkkhkhhkk Ak hkhkxkh*k

OPEN PROG 103 CLEAR

IF (M320=1) ; Already in trigger?
I323=10 ; Home speed 10 cts/msec positive direction
I326=1600 ; Home offset +100 counts (to make sure clear)
I912=11 ; Capture on falling flag and rising index
I913=0 ; Use HMFL3 as flag
HOME3 ; "Home" out of switch

ENDIF

I323=-10 ; Home speed 10 cts/msec negative direction

I326=0 ; No home offset

I912=3 ; Capture on rising flag and rising index

I913=0 ; Use HMFL3 as flag

HOME3 ; Do actual homing move

CLOSE ; End of program

jhKkkkkkkkkkkk*k**PLC Set-up variables (to be saved) ***kkkkkkkkkkkkkkkk*
CLOSE

M320->X:$C008,20,1 ; Variable for HMFL3 input
I325=$C008 ; Use Flags3 for Motor 3
M333->X:$00B5,13,1 ; Desired Velocity Zero bit
M345->Y:$0994,10,1 ; Home complete bit
M350->D:$009E ; Present Desired Velocity

JrRFFHKA KKK X KRk x k% PLC Program Lo eXECULE TOULLINE * %% k& xkkkxkkkxkkkx
OPEN PLC 12 CLEAR

IF (M320=1) ; Already 1in trigger?
I323=10 ; Home speed 10 cts/msec positive direction
I326=1600 ; Home offset +100 counts (to make sure clear)
I912=11 ; Capture on falling flag and rising index
I913=0 ; Use HMFL3 as flag
CMD" #3HM" ; "Home" out of switch
WHILE (M345=1) ; Waits for Home Search to start
ENDWHILE
WHILE (M333=0) ;Waits for Home motion to complete
ENDWHILE

ENDIF

I323=-10 ; Home speed 10 cts/msec negative direction

134 Basic Motor Moves



PMAC User Manual

I326=0 ; No home offset

I912=3 ; Capture on rising flag and rising index
I913=0 ; Use HMFL3 as flag

CMD" #3HM" ; Do actual homing move

WHILE (M345=1) ; Waits for Home Search to start
ENDWHILE

WHILE (M333=0) ; Waits for Home motion to complete
ENDWHILE

DIS PLC1l2 ; Disables PLC once Home is found
CLOSE ; End of program

Storing the Home Position

PMAC stores the encoder position that was captured during the latest homing search move for the motor
automatically. This value is kept in the Motor Encoder Position Offset Register [Y:$0815 (Motor 1),
Y:$08D5 (Motor 2), etc.], which is set to zero on power-up/reset for motors without absolute power-on
position. If Ix10>0 to specify an absolute power-on position read from a resolver so no homing is
necessary, this register holds the negative of the power-on resolver position. In either case, it contains the
difference between the encoder-counter zero position (power-on position) and the motor zero (home)
position, scaled in counts.

Note:

Prior to V1.14 firmware, this value could be obtained by using the PLC program
HOMOFFST.PMC. Starting in V1.14, PMAC stores this value automatically.

Uses

There are two main uses for this register. First, it provides a reference for using the encoder position-
capture and position-compare registers. These registers are referenced to the encoder zero position, which
is the power-up position, not the home (motor zero) position. This register holds the difference between
the two positions. This value should be subtracted from encoder position (usually from position capture)
to get motor position, or added to motor position to get encoder position (usually for position compare).

Example:
To move an axis until a trigger is found, then convert the captured encoder position to a motor position,
use the following M-variable definitions:

M103->X:$C003,24,S ; Encoder 1 position-capture register
M117->X:$C000,17 ; Encoder 1 position-capture flag
M125->Y:$0815,24,S ; Motor 1 encoder position offset register
Now use a motion program segment like the following:
INC ; Incremental moves
TM10 TA1l0 ; Move segment time 10 msec
WHILE (M117=0) ; While no trigger to capture position

X20 ; Command next move segment
ENDWHILE
P103=M103-M125 ; Read captured position; subtract offset to

; get motor position at trigger

The second use for this register is to determine whether the encoder counter has lost any counts. This can
be done by performing a second homing search move after an operation, and comparing the contents of
the register after the second homing search move to the contents after the first homing search move.

Basic Motor Moves 135



PMAC User Manual

Open-Loop Moves

Open-loop moves, as their name implies, do not do closed-loop position control. They open up the servo
loop and just put commands of the specified magnitude on the outputs. Typically, these are used for
diagnostic purposes, but they can also be used in the actual applications.

These moves are executed using the motor-specific O {constant} on-line command, where
{constant} represents the magnitude of the output as a percentage of 1x69, the maximum output
parameter. This command may not be part of a motion program, and it may not be given to a motor when
that motor's coordinate system is executing a motion program, even if it is not moving that motor.

If the motor is not commutated by PMAC, this command creates a constant DC voltage on the single
DAC output for the motor. If the motor is commutated by PMAC, this command sets the magnitude of
the signal that is sinusoidally commutated onto the two DAC outputs for the motor.

To do a variable O-command, define an M-variable to the filter result register (X:$003A, etc.), command
an OO0 to the motor to put it in open-loop mode, then assign a variable value to the M-variable. This
technique will even work on PMAC-commutated motors.

The PMAC Executive Program tuning section uses the open-loop moves to allow the user to diagnose and
tune amplifier response.

136 Basic Motor Moves



PMAC User Manual

SETTING UP A COORDINATE SYSTEM

Coordinating Multiple Motions

Once the motors have been set up and tuned and they are doing controlled jogging and homing search
moves, assemble one or more coordinate systems so that motion programs can be run.

PMAC has several methods of coordinating multiple motions, whether they are all under the PMAC
direct control or not. Depending on needs, one of the coordination strategies below can be implemented.

What is a Coordinate System?

A coordinate system in PMAC is a grouping of one or more motors for the purpose of synchronizing
movements. A coordinate system (even with only one motor) can run a motion program; a motor cannot.
PMAC can have up to eight coordinate systems, addressed as &1 to &8, in a very flexible fashion (e.g.
eight coordinate systems of one motor each, one coordinate system of eight motors, four coordinate
systems of two motors each, etc.).

In general, if certain motors should move in a coordinated fashion, put them in the same coordinate
system. To have them move independently of each other, put them in separate coordinate systems.
Different coordinate systems can run separate programs at different times (including overlapping times),
or even run the same program at different (or overlapping) times.

A coordinate system must first be established by assigning axes to motors in Axis Definition Statements.
A coordinate system must have at least one motor assigned to an axis within that system, or it cannot run
a motion program, even non-motion parts of it. When a program is written for a coordinate system, if
simultaneous motions are desired of multiple motors, their move commands are simply put on the same
line, and the moves will be coordinated.

What is an Axis?

An axis is an element of a coordinate system. It is similar to a motor, but not the same thing. An axis is
referred to by letter. There can be up to eight axes in a coordinate system, selected from X, Y, Z, A, B, C,
U, V,and W. An axis is defined by assigning it to a motor with a scaling factor and an offset (X, Y, and
Z may be defined as linear combinations of three motors, as may U, V, and W). The variables associated
with an axis are scaled floating-point values.

One-to-One Matching

In the vast majority of cases, there will be a one-to-one correspondence between motors and axes. That
is, a single motor is assigned to a single axis in a coordinate system. Even when this is the case, however,
the matching motor and axis are not completely synonymous. The axis is scaled into engineering units,
and deals only with commanded positions. Except for the PMATCH function, calculations go only from
axis commanded positions to motor commanded positions, not the other way around.

Multiple-Motor Axes

More than one motor may be assigned to the same axis in a coordinate system. This is common in gantry
systems, where motors on opposite ends of the crosspiece are always trying to do the same movement.
By assigning multiple motors to the same axis, a single programmed axis move in a program causes
identical commanded moves in multiple motors. Typically, this is done with two motors but up to eight
motors have been used in this manner with PMAC. Remember that the motors still have independent
servo loops, and that the actual motor positions will not necessarily be the same.

Setting Up a Coordinate System 137



PMAC User Manual

Coordinating parallel gantry motors in this fashion is in general superior to using a master/slave technique
(which can be done on PMAC with the position following feature described in the Synchronizing PMAC
to External Events section of this manual. In the master/slave technique, the actual trajectory of the
master as measured at the encoder, with all of the disturbances and quantization errors, becomes the
commanded trajectory for the slave, whose actual trajectory will have even more errors. The roughness in
the slave motor's commanded trajectory makes it difficult or impossible to use feedforward properly,
which introduces a lag. True, if the master gets a disturbance, the slave will see it and attempt to match it,
but if the slave gets a disturbance, the master will not see it.

Care must be taken in the startup and homing of gantry motors that have a tight mechanical linkage. In
general, the motors will power up not quite in ideal alignment with each other. The usual procedure is to
do a homing search move on one motor with the second motor slaved to it, followed by an offset back out
far enough that the second motor knows which way it has to go to its home trigger.

Next the second motor is made the master and is told to do a homing search move with the first motor
slaved to it. This will leave the first motor slightly off from its home position; it can now be told to go
there with just a J=0 command. The slaving is then turned off, and the motors are then commanded
identically through joint axis commands.

Phantom Axes

An axis in a coordinate system can have no motors attached to it (a phantom axis), in which case
programmed moves for that axis cause no movement, although the fact that a move was programmed for
that axis can affect the moves of other axes and motors. For instance, if sinusoidal profiles are desired on
a single axis, the easiest way to do this is to have a second, phantom axis and program circularly
interpolated moves.

Axis Definition Statements

A coordinate system is established by using axis definition statements. An axis is defined by matching a
motor (which is numbered) to one or more axes (which are specified by letter).

Matching Motor to Axis

The simplest axis definition statement is something like #1->X. This simply assigns motor #1 to the X
axis of the currently addressed coordinate system. When an X axis move is executed in this coordinate
system, motor #1 will make the move.

Scaling and Offset

The axis definition statement also defines the scaling of the axis' user units. For instance, #1->10000X
also matches motor #1 to the X axis, but this statement sets 10,000 encoder counts to one X-axis user unit
(e.g., inches or centimeters). This scaling feature is almost universally used. Once the scaling has been
defined in this statement, the axis can be programmed in engineering units without ever needing to deal
with the scaling again.

The statement #1->10000X+20000 also sets the axis zero at 20,000 count (2 user unit) distance from
the motor zero (home position). This offset is rarely used. Further, an axis definition statement can
match a motor to a linear combination of cartesian axes (see section below), which allows for rotation of a
coordinate system, or orthogonality correction.

138 Setting Up a Coordinate System



PMAC User Manual

Axis Types

An axis can have several attributes, as specified below. Note that for most axis functions, it does not
matter what type of axis is used, or what letter is given it. However, for some features, only particular
axis names may be used.

Cartesian Axis

A Cartesian axis is one that may be put into a grouping of two or three axes so that movement along an
axis is a linear combination of motion on two or three motors. X, Y, and Z form one set of Cartesian
axes; U, V, and W form the other. In addition, there are several commands (NORMAL, circular move)
which can reference the X, Y, and Z axes through the use of I, J, and K vectors, respectively.

To make a cartesian axis a linear combination of several motors, use an extended form of the axis

definition statement. For instance, to get a 300 rotation of the axes from the motors with the following
axis definition statements:

#1->8660.25X-5000Y
#2->5000X+8660.25Y

In this case, a request for a Y-axis (or an X-axis) move would cause both motors #1 and #2 to move.

Only the X, Y, and Z cartesian axes may be used for the PMAC circular interpolation routines, cutter
radius compensation routines, and matrix axis transformation routines. To do circular interpolation on
other axes, do it through blended short moves and trigonometry in subroutines. See example program
CIRCTRY.PMC

Rotary Axis

A rotary axis is one that permits rollover, but cannot be assigned to combinations of motors. A rotary
axis must be named A, B, or C. The rollover is technically a motor function, specified by [x27 for motor
X, but it can only operate when the motor is assigned to a rotary axis. Rollover permits the motor to take
the shortest path around the rotary range when an absolute axis move is specified in a program.

Feedrate Axis

A feedrate axis is an axis in a coordinate system that figures into the calculations of a feedrate-specified
move. The time for a feedrate-specified move is calculated as the vector distance for the feedrate axes
divided by the feedrate itself. If other axes are commanded to move in the same statement, they will be
linearly interpolated over this same computed time.

The default feedrate axes are the Cartesian axes X, Y, and Z. This setting can be changed with the FRAX
(feedrate axis) command.

Axis-Motor Position Re-matching

There is only one type of calculation in which PMAC converts from commanded motor position to
commanded axis position. This is in the PMATCH (position-match) function. This is needed in only a few
cases.

First, when a motor function, such as a jog move, open-loop move, or a stop on abort or limit, has
changed the motor commanded position since the last axis move (or home search move). In other words,
the axis does not know where the motor has gone. In order for the next axis (programmed) move to
function properly, the axis must be told where it is starting from. This is what the PMATCH function does.

Second, if there is an absolute position sensor, the PMATCH function should be used before the first
programmed move, because the motor will not, in general, power up at zero position (as it does for an
incremental sensor), and the axis must be given this starting point.

Setting Up a Coordinate System 139



PMAC User Manual

The PMATCH function effectively inverts the equations contained in the Axis Definition statements for the
coordinate system, using motor commanded positions, and solves for axis commanded positions. If more
than one motor is assigned to the same axis (e.g. #1->10000X, #2->10000X), the commanded
position of the lower-numbered motor is used in the PMATCH calculations.

If variable 114 is equal to 1, the PMATCH function is executed automatically every time motion program
execution is started (on all R [run] and S [step] commands). It does not hurt to do a PMATCH function if
the positions already match, so use the card with 114=1.

1) Scaling and Translation
vy A

A (m) #1 -> 10000X + 40000
Motor #2 (1 0’000%}'15- ) #2 -> 10000Y + 20000
4’ 4" 17
v X(n)
2" > |
Motor #1 (10,000 = )4
2) Scaling and Rotation
s A #1-> 7071.07X - 7071.07Y

Motor #2 (10,0007 ) #2 -> 7071.07X + 7071.07Y

‘j 45°
|-
1 >
Motor #1 (10,000 €% )

3) Orthogonality Correction
A

Y (in) Motor #2 (10,ooo°i—:f)
#1 ->10000.00X - 2.91Y
#2 ->10000.00Y
X (in)
1 arc min >
(exaggerated) Motor #1 (10,000 %}f‘ )

Figure 23 PMAC Coordinate Definition

140 Setting Up a Coordinate System



PMAC User Manual

What Is Coordinate System Time-Base?

Each coordinate system has its own time base that helps control the speed of interpolated moves in that
coordinate system. The PMAC interpolation routines increment an elapsed-time register every servo
cycle. While the true time for the servo cycle is set in hardware for the card (by jumpers E98, E29-E33,
and E3-E6) and does not change, the value of time added to the elapsed-time register each servo cycle is
just a number in a memory register. It does not have to match the true physical time for the cycle.

The units for the time base register are such that 223 (8,388,608) equals 1 millisecond. The default value
for the time-base register is equal to the value of I10. The factory default value for 110 of 3,713,707
represents the default physical servo cycle time of 442 microseconds.

If the value of the time base register is changed from 110, interpolated moves will move at a different
speed from that programmed. Many people call this capability feedrate override. The physical time does
not change, so servo loop dynamics remain unchanged.

Each coordinate system has a variable 1x93 that contains the address of the register that the coordinate
system uses for its time base. With the default value of Ix93, the coordinate system gets its time base
information from a register that is set by $ commands from the host computer. A $100 command puts a
value equal to 110 in this register; a $50 command puts a value equal to 110/2 in this register.

Regardless of the source of the time base information, a $ query command causes PMAC to report back
the value of the present time base expressed as a percentage of 110.

Time base information can come from other sources. The most common alternative to command-sourced
time base is external frequency-sourced time base, where the time base value is proportional to the
frequency of a master encoder. This provides a powerful position-synchronized slaving mechanism that
is commonly called electronic cam.

Setting Up a Coordinate System 141



PMAC User Manual

142 Setting Up a Coordinate System



PMAC User Manual

COMPUTATIONAL FEATURES

Advanced Computational Features

PMAC has advanced computational features that permit off-loading of many operations from a host, or
even stand-alone operation in ways that were not previously possible. Many arithmetic, logical, and
transcendental operations can be performed on variables and constants in user programs on board the
card.

Computational Priorities

As a multi-tasking, real-time computer, PMAC has an elaborate prioritization scheme to ensure that vital
tasks get accomplished when needed, and that all tasks are executed reasonably quickly. The scheme was
designed to hide its complexity as much as possible, but also to give some flexibility in optimizing the
controller for his particular needs. The tasks at the different priority levels are:

¢ Single Character I/O: Bringing in a single character from, or sending out a single character to, the
serial port or host port (PC or STD) is the highest priority in PMAC. This task takes only 200 nsec
per character, but having it at this high priority ensures that PMAC cannot be outrun by the host on a
character-by-character basis. This task is never a significant portion of the PMAC total calculation
time. This task does not include processing a full command; that happens at a lower priority (see
below).

e Commutation Update: The commutation (phasing) update is the second highest priority on PMAC.
For each motor commutated by PMAC, this task takes 3 psec per update cycle (2 psec for the 30
MHz card). The frequency of this task is determined by the master clock frequency, and jumpers
E98, E29-E33. The default update frequency is 9 kHz (110 usec cycle). At the default, the
commutation of each motor takes approximately 3% of the PMAC computational power.

e Servo Update: The servo update — computing the new commanded position, reading the new actual
position, and computing a command output based on the difference between the two — is the third
highest priority on PMAC. For each activated motor on PMAC, this task takes 30 psec per update
cycle (20 psec for the 30 MHz card) plus about 30 psec for general servo tasks such as the encoder
conversion table. The frequency of this task is determined by the master clock frequency, and
jumpers E98, E29-E33, E3-E6. The default update frequency is 2.26 kHz (442 psec cycle). At the
default, the servo update of each motor takes approximately 7% of the PMAC computational power.
See Closing the Servo Loop section in this manual for details on optimizing this update rate.

e Real-Time Interrupt Tasks: The real-time interrupt (RTI) tasks are the fifth highest priority on
PMAC. They occur immediate after the servo update tasks at a rate controlled by parameter I8 (every
I8+1 servo update cycles). There are two significant tasks occurring at this priority level: PLC 0 and
motion program move planning.

e PLC Program 0: PLC 0 is a special PLC program that operates at a higher priority than the other
PLC programs. It is meant to be used for only a few tasks (usually a single task) that must be done at
a higher frequency than the other PLC tasks. The PLC 0 will execute every real-time interrupt as
long as the tasks from the previous RTI have been completed. PLC 0 is potentially the most
dangerous task on PMAC as far as disturbing the scheduling of tasks is concerned. If it is too long, it
will starve the background tasks for time. The first thing to notice is that communications and
background PLC tasks will become sluggish. In the worst case, the watchdog timer will trip, shutting
down the card, because the housekeeping task in background did not have the time to keep it updated.

Computational Features 143



PMAC User Manual

e Motion Program Move Planning: .Motion program move planning consists of working through the
lines of a motion program until the next move or dwell command is encountered, and computing the
equations of motion for this next part of the move sequence. Every time PMAC starts executing a
new move, it sets an internal flag indicating it is time to plan the next move in the program. This
planning occurs at the next RTI.

e VME Mailbox Processing: Reading or writing a block of up to 16 characters through the VME
mailbox registers is the fourth highest priority in PMAC. The rate at which this happens is controlled
by the host. This never takes a significant portion of the PMAC computational power.

e Background Tasks: In the time not taken by any of the higher-priority tasks, PMAC will be
executing background tasks. There are three basic background tasks: command processing, PLC
programs 1-31, and housekeeping. The frequency of these background tasks is controlled by the
computational load on PMAC: the more high-priority tasks are executed, the slower the background
tasks will cycle through; and the more background tasks there are, the slower they will cycle through.

e PLC Programs 1-31: PLC programs 1-31 are executed in background. Each PLC program executes
one scan (to the end or to an ENDWHILE statement) uninterrupted by any other background task
(although it can be interrupted by higher priority tasks). In between each PLC program, PMAC will
do its general housekeeping, and respond to a host command, if any.

e Compiled PLC Programs 1-31: Compiled PLC programs (PLCC programs) 1-31 are executed in
background. All enabled PLCC programs execute one scan (to the end or to an ENDWHILE
statement) starting from lowest numbered to highest uninterrupted by any other background task
(although it can be interrupted by higher priority tasks). At power-on\reset PLCC programs run after
the first PLC program runs.

¢ Host Command Response: The receipt of a control character from any port is a signal to PMAC that
it must respond to a command. The most common control character is the carriage return (<CR>),
which tells PMAC to treat all the preceding alphanumeric characters as a command line. Other
control characters have their own meanings, independent of any alphanumeric characters received.
Here PMAC will take the appropriate action to the command, or if it is an illegal command, it will
report an error to the host.

e General Housekeeping: Between each scan through each background PLC program, PMAC
performs its housekeeping duties to keep itself properly updated. The most important of these are the
safety limit checks (following error, overtravel limit, fault, watchdog, etc.) Although this happens at
a low priority, a minimum frequency is ensured because the watchdog timer will trip, shutting down
the card, if this frequency gets too low.

e Priority Level Optimization: PMAC will usually have enough speed and calculation power to
perform all of the tasks asked of it without having to worry. Some applications will put a large
demand on a certain priority level and to make PMAC run more efficiently some priority level
optimization should be done.

When PMAC begins to run out of time, problems such as sluggish communications, slow PLC/PLCC
scan rates, run-time errors, and even tripping the Watchdog timer can occur. The specific solutions to the
above symptoms are discussed in the sections of this manual dedicated to those subjects. The general
solution to such problems is two-fold. First, high priority jobs could be slowed down or moved to a lower
priority position. Jobs such as the Encoder Conversion Table, PLC/PLCCO0, and the Real Time Interrupt
(RTI) should be evaluated. Check to see if everything in these jobs is necessary or if some of it could be
moved to a lower priority or slowed down.

For example: A 5-axis application might not need Encoder Conversion Table entries 6 to 9, PLCO could
maybe be done as PLCCI1, or the RTI could be done every fourth or fifth servo cycle.

144 Computational Features



PMAC User Manual

Second is to adjust the jobs at a priority level to give them less emphasis. Large PLC programs can be
split into a few shorter PLC programs. This increases the frequency of housekeeping and
communications by giving more breaks in PLC scans. Motion program WHILE (condition)WAIT
statements could be done as follows:

WHILE (condition)
DWELL20
ENDWHILE

This will give more time to other RTI jobs such as Move Planning and PLC/PLCCO.
Numerical Values

PMAC can store and process numerical values in many forms, with both fixed-point and floating-point
values. The Motorola 56000 DSP that acts as the PMAC CPU is a fixed-point processor with built-in 24-
bit and 48-bit arithmetic capability (plus a 56-bit accumulator). However, the PMAC firmware
implements a full set of floating-point routines.

Internal Formats

The internal servo, interpolation, and commutation routines all operate with fixed-point arithmetic, 24-bit
and 48-bit, for maximum speed. The user motion and PLC programs, use floating-point arithmetic for
maximum range and generality. Even when reading from and/or writing to fixed-point registers, the
intermediate formats are all floating-point values. The only exception to this rule is the new compiled
PLC programs; in a statement containing only L-variables and integer constants, the intermediate format
is signed 24-bit integer. Refer to the section on compiled PLCs under the Writing a PLC Program section
of this manual for more details.

The general floating-point format is 48 bits long, with a 36-bit mantissa and a 12-bit exponent. This

provides a range of i2i2047, or +3.233 x IOim, which should provide sufficient range for any foreseeable
uses on the card.

Receiving Values

Constant values sent from the host as part of command lines are sent as ASCII text, either as decimal
values or hexadecimal values. Hexadecimal values must be preceded by a $ character; they must be
unsigned, and they cannot include fractional values. Decimal values can be positive or negative, and can
include fractional values. The PMAC value interpreter does not support exponential notation, and it is

- . : 35 +10 . .
limited to passing through values in the range +2° , or +3.43 x 10" . Values outside this range are
truncated to the maximum or minimum values of the range.

Computational Features 145



PMAC User Manual

CT - Conversion Table
# n - Motor n Servo Update
HK - Housekeeping

*
CT ‘#1 ‘#2 ‘#3 ‘#4 PLCO ‘ PLC1... :
i Servo RTI Background
CT‘#1‘#2‘#3‘#4 PLC 1 (cont.) ‘rm‘mca.)
i Servo Background
CT‘#1‘#2‘#3‘#4 NCHWMJ‘M(%mJPWSm )
Servo Background
| x
CT ‘ #1 ‘ #2 ‘ #3 ‘ #4 PLCO ‘ Move Planning .}. )
i Servo RTI
CT ‘ #1 ‘ #2 ‘ #3 ‘ #4 |MovePI (cont)| PLC 3 (cont)... )
i Servo RTI Background
CT‘m ‘m ‘m ‘M- PLC 3 (cont) ‘m‘ PLC1.. )
Servo Background
| *
CT ‘ #1 ‘ #2 ‘ #3 ‘ #4 PLCO ‘PLC1 (cont) )
i Servo RTI
CT ‘#1 ‘#2 ‘#3 ‘#4 PLC 1 (cont) ‘HK‘ Comm :
Servo Background

Comm - Communications Line Processing

v - Servo Interrupt
RTI - Real Time Interrupt Task

* - Start of RTI

Figure 24 PMAC Multitasking Example

Examples
1234

3

03

-27.656
0.001

.001

$££00

Reporting Values

(leading zeros OK)

(leading zero not required)
(interpreted as hexadecimal)

PMAC reports numerical values to the host computer as part of response lines in decimal ASCII text form
(although address values can be reported in hexadecimal ASCII form if 19=2 or 3 — see the Addresses

. C e . . . +47 +14
section below). The value reporter is limited to passing values in the range of +2° ,or +1.41 x 10™ .
Values outside of this range are truncated to the maximum or minimum values of the range.

146

Computational Features



PMAC User Manual

Addresses

PMAC uses the Motorola DSP56001 as its processor. The 56001 has dual 16-bit address spaces (of 24-
bit data) for memory and I/O. (The I/O in PMAC is memory-mapped; it does not have a separate I/O
space as the PC does.) When specifying an address in PMAC, one must state which half of memory (X
or Y) — or both halves (L) for a long 48-bit word — followed by an optional colon, followed by the
numerical address itself. The numerical address is a constant that in the range of 0 - 65535 ($0-$FFFF if
specified in hex).

Do not confuse the memory and I/O addresses of PMAC itself with those of the host computer. Examples
of legal address specifications are:

Y:$FFC2 (word containing machine 1/0O)
X:1824 (interpolated encoder 1 position)
X$C003 (captured encoder 1 position)
Y49155 (DACI output value)

This form of address specification is used particularly in M- variable definitions and direct read (R) and
write (W) commands. There are [-variables that specify addresses, but these are usually pre-defined to the
X or'Y space, so all that is needed is the numerical value. The data-gathering-address I- variables (121-
144) use an extra hex digit in front of the numerical value to specify the memory half (see 121
description).

Variables

PMAC has several types of variables. In PMAC, a variable is specified by a single letter (I, P, Q, or M)
followed by a number from 0 to 1023. Each letter denotes a different type of variable, each type with its
own properties. The different types share the characteristics that when their name is cited in an
expression, the current value of the variable is used (reading from them); and values can be assigned to
them in an equation (writing to them).

Variable names may not be specified on PMAC; however, the Editor in the PMAC Executive Program
has a substitution (macro) scheme that allows programs to be written using user-defined variable names,
but changes these names into PMAC-legal variable names during the download process.

I-Variables

I-Variables (initialization, or setup variables) determine the personality of the card for a given application.
They are at fixed locations in memory and have pre-defined meanings. Most are integer values, and their
range varies depending on the particular variable. There are 1024 I-variables from 10 to 11023, and they
are organized as follows:

10 —179: General card setup

180 — 199: Geared Resolver setup
1185 —1199: Coordinate System 1 setup
1200 — 1284: Motor #2 setup

1285 — 1299: Coordinate System 2 setup
1800 — 1884: Motor #8 setup

1885 — 1899: Coordinate System 8 setup
1900 — 1979: Encoder 1 - 16 setup

1980 — 11023: Reserved for future use

Computational Features 147



PMAC User Manual

Value Assignment

Values assigned to an I-variable may be either a constant or an expression. The commands to do this are
on-line (immediate) if no buffer is open when sent, or buffered program commands if a buffer is open.
Examples:

I120 = 45
I120 = (I120+P25*3)

Limited Range

For [-variables with limited range, an attempt to assign an out-of-range value does not cause an error.
The value is rolled over automatically to within the range by modulo arithmetic (truncation). For
example, 13 has a range of 0 to 3 (four possible values). The command I3=5 would actually assign a
value of 5 modulo 4 = 1 to the variable.

Power-Down Storage

On PMACs with battery-backed RAM, most of the I-variable values can be stored in a 2K x § EEPROM
IC with the SAVE command. These values are safe here even in the event of a battery-backed RAM
failure, so the basic setup of the board is not lost. After a new value is given to one of these I-variables,
the SAVE command must be issued in order for this value to survive a power-down or reset.

The I-variables that are not saved to EEPROM are held in battery-backed RAM. These variables do not
require a SAVE command to be held through a power-down or reset, and the previous value is not
retained anywhere. These variables are: 119-144, Ix13, Ix14.

On PMACs with flash memory backup (those with Option 4A, 5A, or 5B), all of the [-variable values can
be stored in the flash memory with the SAVE command. If there is an EEPROM IC on the board, it is not
used. After a new value is given to any I-variable, the SAVE command must be issued in order for this
value to survive a power-down or reset.

Default Values

Default values for all I-variables are contained in the manufacturer-supplied firmware. They can be used
individually with the I {constant}=* command, or in a range with the
I{constant}..{constant}=* command. Upon board re-initialization by the $$$*** command
or by a reset with E51 in the non-default setting, all default settings are copied from the firmware into
active memory. The last saved values are not lost; they are just not used. See the I-variable description
section for the functions of individual variables.

148 Computational Features



PMAC User Manual

X-Memory Y-Memory
23 1615 8 7 023 1615 87 0

$0000 Internal DSP
$00FF T T Memory
$0100 Fixed{Use Calculation Registers
$17FF
1800
$ External
Static
User Buffer [Storage Space RAM
(Battery
Backed)
$BBFF
$BC00 User-Written Servo| Storage M-Variable Definitions
$BFFF
$C000
DSP-Gate
$CO3F Registers
D000
$ Dual-Ported
$DFFF RAM
$E000
E SetupRegisters ailhox Registers VME bus
registers
$F000
110
Registers
$FFFF

Figure 25 PMAC Memory Mapping
P-Variables

P-variables are general-purpose user variables. They are 48-bit floating-point variables at fixed locations
in the PMAC memory, but with no pre-defined use. There are 1024 P-variables, from PO to P1023. A
given P-variable means the same thing from any context within the card; all coordinate systems have
access to all P-variables (contrast Q-variables, which are coupled to a given coordinate system). This
allows for useful information passing between different coordinate systems. P-variables can be used in
programs for any purpose desired: positions, distances, velocities, times, modes, angles, intermediate
calculations, etc.

Array Capabilities

Array Reading

It is possible to use a set of P-variables as an array. To do this when reading from the variables is easy:
Simply replace the constant specifying the variable number with an expression in parentheses — use the
({expression}) syntax instead of the P{constant} syntax. PMAC simply treats this syntax as a
type of function call, like SIN ({expression}).

Example:
To move in sequence to the positions specified by P101 to P200, you could use a program segment like
the following:

F10

P1=101 ; Array index variable

WHILE (P1<201) ; Start loop

X(P(P1)) ; As Pl changes, the destination position changes
DWELL100
P1=P1+1 ; Increment the index

ENDWHILE

Computational Features 149



PMAC User Manual

Array Writing

Writing to a set of P-variables as an array must be done with indirect addressing techniques. To set this
up, first define an M-variable to point to PO (e.g. MO->L: $1000). Next, define a second M-variable to
point to the lowest twelve bits of the first M-variable’s definition word which is in Y-register $BCO00 (e.g.
M10->Y:$BC00, 0,12 defines M10 to the low 12 bits of the definition word for M0). To point to the
definition word for M1, use Y-register $BCO1; for M2, Y:$BC02; for M100, Y:$BC64 (64 hex is 100
decimal); for M1023, Y:$BFFF.

Now, by giving a value to the second M-variable, it changes which P-variable the first M-variable points
to. In the example, the command M10=5 makes MO point to variable P5.

Once the first M-variable has been pointed to a particular P-variable, giving a value to this M-variable
writes that value into the addressed P-variable. Continuing the example, the command M0=73 writes a
value of 73 to P5.

Example:
To create a sine table with one entry per degree in P-variables PO to P359, use the following program
segment (this assumes the use of M0 and M10 as set up above):
P1000=0 ; Starting value for array index
WHILE (P1000<360) Loop until done
M10=P1000 Point MO to the proper P-variable
MO=SIN (P1000) Assign the sine value to this P-variable
P1000=P1000+1 Increment the array index

ENDWHILE
Special-Use P-Variable

If a command consisting simply of a constant value is sent to PMAC, PMAC assigns that value to
variable PO, unless a special table buffer such as a compensation table or stimulus table has been defined
but not filled — in that case, the constant value will be entered into the table. For example, if the
command 342<CR> is sent to PMAC, it will interpret it as P0=342<CR>. This capability is intended to
facilitate simple operator terminal interfaces. It does mean, however, that it is not a good idea to use PO
for other purposes, because it is easy to change this accidentally.

Q-Variables

Ne Ne Ne N N

Q-variables, like P-variables, are general-purpose user variables: 48-bit floating-point variables at fixed
locations in memory, with no pre-defined use. However, the meaning of a given Q-variable (and hence
the value contained in it) is dependent on which coordinate system is utilizing it. This allows several
coordinate systems to use the same program (for instance, containing the line X(Q1+25) Y(Q2), but to do
have different values in their own Q variables (which in this case, means different destination points).

Allotting Q-Variables

There are a total of 1024 Q-variables. If you are only using a single coordinate system (Coord.Sys. 1 —
specified as &1), you may use all of these: Q0 to Q1023. The Q-variables of Coordinate System 2 (&2)
overlap these: QO of &2 is the same thing as Q512 of &1, and Q511 of &2 is the same thing as Q1023 of
&1. (The Q buffer is actually rotary, so Q512 of &2 is the same thing as QO of &1, and Q1023 of &2 is
Q511 of &1.) Thus, both coordinate systems have 512 unique Q-variables: Q0 to Q511.

There is no protection against overwriting another coordinate system's Q- variables. It is the user's
responsibility to keep Q-numbers within the proper range.

150 Computational Features



PMAC User Manual

Coordinate System 3's QO is the same thing as the Q256 of &1; Coordinate System 4's QO is the same
thing as Q256 of &2, and as Q768 of &1. QO of &S5 is equivalent to Q128 of &1; Q0 of &6 is equivalent
to Q128 of &2, and to Q640 of &1; QO of &7 is equivalent to Q128 of &3, and to Q384 of &1; QO of &8
is equivalent to Q128 of &4, and to Q896 of &1. See the table below for clarification. The bold numbers
denote the sequentially numbered Q-variables that can be used for a coordinate system without overlap
provided no higher number coordinate systems are used.

PMAC Q - Variable Memory Map

Memory Coord. | Coord. | Coord. | Coord. | Coord. | Coord. | Coord. | Coord.

Location Sys. 1 Sys. 2 Sys. 3 Sys. 4 Sys. 5 Sys. 6 Sys. 7 Sys. 8
$1400 0 512 768 256 896 384 640 128
$147F 127 639 895 383 1023 511 767 255
$1480 128 640 896 384 0 512 768 255
$14FF 255 767 1023 511 127 639 895 383
$1500 256 768 0 512 128 640 896 384
$157F 383 895 127 639 255 767 1023 511
$1580 384 896 128 640 256 768 0 512
$15FF 511 1023 255 767 383 895 127 639
$1600 512 0 256 768 384 896 128 640
$167F 639 127 383 895 511 1023 255 767
$1680 640 128 384 896 512 0 256 768
$16FF 767 255 511 1023 639 127 383 895
$1700 768 256 512 0 640 128 384 896
$177F 895 383 639 127 767 255 511 1023
$1780 896 384 640 128 768 256 512 0
$17FF 1023 511 767 255 895 383 639 127

Addressing a Q-Variable Set

How to know which set of Q-variables are working within a command? It depends on the type of
command. When you are accessing a Q-variable from an on-line (immediate) command from the host,
working with the Q-variable for the currently host-addressed coordinate system (with the &n command) is
selected.

When accessing a Q-variable from a motion program statement, the Q-variable belonging to the
coordinate system running the program is selected. If a different coordinate system runs the same motion
program, it will use different Q-variables.

When accessing a Q-variable from a PLC program statement, the Q-variable for the coordinate system
that has been addressed by that PLC program with the ADDRESS command is the one working. Each
PLC program can address a particular coordinate system independent of other PLC programs and
independent of the host addressing. If no ADDRESS command is used in the PLC program, the program
uses the Q-variables for Coordinate System 1.

Computational Features 151



PMAC User Manual

Array Capabilities
Array Reading

It is possible to use a set of Q-variables as an array. To do this when reading from the variables, simply
replace the constant specifying the variable number with an expression in parentheses — use the
({expression}) syntax instead of the Q{constant} syntax. PMAC simply treats this syntax as a
type of function call, like SIN ( {expression}).

Example:
To move in sequence to the positions specified by Q51 to Q100, use a program segment like the
following.
F10
P1=51 ; Array index variable
WHILE (P1<101) ; Start loop
X(Q(P1)) ; As Pl changes, the destination position changes
DWELL100
P1=P1+1 ; Increment the index
ENDWHILE
Array Writing

Writing to a set of Q-variables as an array must be done with indirect addressing techniques. To set this
up, first define an M-variable to point to Q0 of C.S.1 (e.g. M60->L:$1400). Next, define a second M-
variable to point to the lowest twelve bits of the first M-variable's definition word which is in Y-register
$BC3C (e.g. M70->Y:$BC3C, 0, 12 defines M70 to the low 12 bits of the definition word for M60).

To point to the definition word for M0, use Y-register $BC00; for M1, Y:$BCO1; for M50, Y:$BC32 (32
hex is 50 decimal); and for M1023, Y:$BFFF.

Now, by giving a value to the second M-variable, it changes which Q-variable the first M-variable points
to. In the example, the command M70=1024+17 makes M60 point to variable Q17 of C.S.1.

Q-Pointer Offsets
Note the offset of 1024 for C.S.1; each coordinate system has its own required offset to make the value in
the M-variable definition match the Q-variable number for that coordinate system. The offsets are:

CS.1: 1024 C.S.5: 1152
C.S.2: 1536 C.S.6: 1664
CS.3 1280 C.S.7: 1408
CS4 1792 C.S.8: 1920

Once the first M-variable has been pointed to a particular Q-variable, giving a value to this M-variable
writes that value into the addressed P-variable. Continuing our example, the command M60=3.14
writes a value of 3.14 to Q17 of C.S.1.

Example:

To create a table of square roots of values from 0.0 to 9.9 in Q-variables QO to Q99 of C.S.2, use the

following program segment, which assumes the use of M60 and M70 as set up above:

Q100=0

WHILE (Q100<100)
M70=1536+Q100
M60=SQRT (Q100/10)

Starting value for array index
Loop until done

Point M60 to the proper Q-variable
Assign square root value to this
Q-variable

Increment array index

Ne Ne Ne Ne Ne N

Q100=Q100+1
ENDWHILE

152 Computational Features



PMAC User Manual

Special-Use Q-Variables

Several Q-variables have special uses that need to be watched. The ATAN2 (two-argument arctangent)
function uses QO as its second argument (the cosine argument) automatically. The READ command
places the values it reads following letters A through Z in Q101 to Q126, respectively, and a mask word
denoting which variables have been read in Q100. The S (spindle) statement in a motion program places
the value following it into Q127.

M-Variables

To permit easy access to the PMAC memory and I/O space, M-variables are provided. Generally, a
definition only needs to be made once, with an on-line command. On PMACs with battery backup, the
definition is held automatically. On PMACs with flash backup, the SAVE command must be used to
retain the definition through a power-down or reset.

Define an M- variable by assigning it to a location, and define the size and format of the value in this
location. An M-variable can be a bit, a nibble (four bits), a byte (eight bits), 1-1/2 bytes (12 bits), a
double-byte (16 bits), 2-1/2 bytes (20 bits), a 24-bit word, a 48-bit fixed-point double word, a 48-bit
floating-point double word, or special formats for dual-ported RAM and for the thumbwheel multiplexer
port.

There are 1024 M- variables (MO to M1023), and as with other variable types, the number of the M-
variable may be specified with either a constant or an expression: M576 or M(P1+20) when read from;
the number must be specified by a constant when written to.

M-Variable Definitions.

The definition of an M-variable is done using the defines-arrow (->) composed of the minus-sign and
greater-than symbols. Generally, a definition only needs to be made once, with in an on-line command,
because it is stored in battery-backed RAM or saved to flash memory. The M-variable thus defined may
be used repeatedly.

An M-variable may take one of the following types, as specified by the address prefix in the definition:

1 to 24 bits fixed-point in X-memory
1 to 24 bits fixed-point in Y-memory
48 bits fixed-point across both X- and Y-memory
48 bits floating-point across both X- and Y-memory

DP: 32 bits fixed-point (low 16 bits of X and Y) (for use in dual-ported RAM

F: 32 bits floating-point (low 16 bits of X and Y) (for use in dual-ported RAM
TWD: Multiplexed BCD decoding from Thumbwheel port
TWB: Multiplexed binary decoding from Thumbwheel port
TWS: Multiplexed serial I/0 decoding from Thumbwheel port
TWR: Multiplexed serial resolver decoding from Thumbwheel port

*: No address definition; uses part of the definition word as general-purpose variable

If an X or Y type of M-variable is defined, also define the starting bit to use, the number of bits, and the
format (decoding method).

To<x

Typical M-variable definition statements are:
M1->Y:$FFC2,8,1
M102->Y:49155,8,16,S
M103->X:$C003,0,24,S
M161->D:$002B

M191->1.:$0822

M50->DP:$D201

M51->F:$D7FF
M100->TwWD:4,0.8.3,U

Computational Features 153



PMAC User Manual

See the instructions for each type of M-variable definition in the On-Line Commands section of this
manual. Many suggested M-variable definitions are given in SETUP.PMC in the Examples section of the
manual.

It is a good idea to prepare a single file with all of the M-variable definitions and to put at the top of this
file the command MO . . 1023->*, This will remove all existing definitions, and help to prevent
mysterious problems caused by stray M-variable definitions.

The M-variable definitions are stored as 24-bit codes at PMAC addresses Y:$BCO00 (for M0) to Y:$BFFF
(for M1023). For all but the thumbwheel multiplexer port M-variables, the low 16 bits of this code
contains the address of the register pointed to by the M-variable (the high eight bits tell what part of the
address is used and how it is interpreted). If another M-variable points to this part of the definition, it can
be used to change the subject register. The main use of this technique is to create arrays of P- and Q-
variables, as is explained above, with examples, in the descriptions of those variables. It can also be used
to create arrays in dual-ported RAM or in user buffers (see on-line command DEFINE UBUFFER).

Limited Range

Many M-variables have a more limited range than the PMAC full computational range. If a value outside
of the range of an M-variable is placed to that M-variable, PMAC automatically rolls over the value to
within that range and does not report any errors.

For example, with a single bit M-variable, any odd number written to the variable ends up as 1, any even
number ends up as 0. If a non-integer value is placed in an integer M-variable, PMAC automatically
rounds to the nearest integer.

Using M-Variables

Once defined, an M-variable may be used in programs just as any other variable — through expressions.
When the expression is evaluated, PMAC reads the defined memory location, calculates a value based on
the defined size and format, and utilizes it in the expression.

Care should be exercised in using M-variables in expressions. If an M-variable is something that can be
changed by a servo routine (such as instantaneous commanded position), which operates at a higher
priority the background expression evaluation, there is no guarantee that the value will not change in the
middle of the evaluation. For instance, if in the expression (M16- M17)*(M16+M17) the M-variables are
instantaneous servo variables, the user cannot be sure that M16 or M17 will have the same value both
places in the expression, or that the values for M16 and M17 will come from the same servo cycle. The
first problem can be overcome by setting P1=M16 and P2=M17 right above this, but there is no general
solution to the second problem.

Operators

PMAC operators work like those in any computer language: they combine values to produce new values.

Arithmetic Operators

PMAC uses the four standard arithmetic operators: +, -, *, and /. The standard algebraic precedence rules
are used: multiply and divide are executed before add and subtract, operations of equal precedence are
executed left to right, and operations inside parentheses are executed first.

Modulo Operator

PMAC also has the % modulo operator, which produces the resulting remainder when the value in front
of the operator is divided by the value after the operator. Values may be integer or floating point. This
operator is particularly useful for dealing with counters and timers that roll over.

When the modulo operation is done by a positive value X, the results can range from 0 to X (not
including X itself). When the modulo operation is done by a negative value -X, the results can range
from -X to X (not including X itself). This negative modulo operation is very useful when a register can
roll over in either direction.

154 Computational Features



PMAC User Manual

Logical Operators

PMAC has three logical operators that do bit-by-bit operations: & (bit-by-bit AND), | (bit-by-bit OR), and
~ (bit-by-bit EXCLUSIVE OR). If floating-point numbers are used, the operation works on the fractional
as well as the integer bits. & has the same precedence as * and /; | and " have the same precedence as +

and -. Use of parentheses can override this default precedence.

Note:

Bit-by-bit logical operators differ from the simple Boolean operators AND and OR
used in compound conditions (q.v.).

Functions

These perform mathematical operations on constants or expressions to yield new values. The general
format is:

{function name} ({expression})
The available functions are SIN, COS, TAN, ASIN, ACOS, ATAN, ATAN2, SQRT, LN, EXP, ABS, and
INT.

Note:

The global I-variable 115 controls whether the units for the trigonometric functions
are degrees or radians.

SIN
Function standard trigonometric sine function.
Syntax SIN ({expression})
Domain All real numbers
Domain units | none
Range -1.0 — 1.0
Range units | none
Possible errors | none
COS
Function standard trigonometric cosine function.
Syntax COS ({expression})
Domain All real numbers
Domain units | radians/degrees
Range -1.0—1.0
Range units | none
Possible errors | none
TAN
Function standard trigonometric tangent function
Syntax TAN ({expression})
Domain all real numbers except +/- Pi/2, 3Pi/2, 5Pi/2...
Domain units | radians/degrees
Range all real
Range units | none
Possible errors | Divide by zero on illegal domain (may just return
maximum real value instead).

Computational Features

155



PMAC User Manual

ASIN
Function inverse sine (arc-sine) function with its range reduced to
+/-90 degrees.
Syntax ASIN ({expression})
Domain -1.0—1.0
Domain units | none
Range -Pi/2 — P1/2 radians (-90 — 90 degrees)
Range units | radians/degrees
Possible errors | Illegal Domain
ACOS
Function inverse cosine (arc-cosine) function with its range reduced
to 0 — 180 degrees.
Syntax ACOS ({expression})
Domain -1.0—1.0
Domain units | none
Range 0 — Pi radians (0 — 180 degrees)
Range units | radians/degrees
Possible errors | Illegal Domain
ATAN
Function standard inverse tangent (arc-tangent) function.
Syntax ATAN ({expression})
Domain all reals
Domain units | none
Range -Pi/2 — P1/2 radians (-90 — 90 degrees)
Range units radians/degrees
Possible errors | none
ATAN2

This function returns the angle whose sine is the expression in parentheses and whose cosine is the value
of QO for that coordinate system. (Actually, it is only the ratio of the magnitudes of the two values, and
their signs, that matter in this function). It is distinguished from the standard ATAN function by the use of
two arguments. The advantage of this function is it has a full 360 degree range, rather than the 180
degree range of the single-argument ATAN function.

Function expanded arctangent function
Syntax ATAN2 ({expression})
Domain all reals
Domain units | none
Range -Pi — Pi radians (-180 — 180 degrees)
Range units radians/degrees
Possible errors | none

Note:

If doing the calculation in a PLC program, make sure that the proper coordinate
system has been addressed in that PLC program.

156 Computational Features



PMAC User Manual

LN
Function natural logarithm function (log base e).
Syntax LN ({expression})
Domain all positive reals
Domain units | none
Range all reals
Range units none
Possible errors |illegal domain
EXP
Note:
To implement the yX function, use ¢ "9 instead. A sample PMAC expression
would be EXP (P2*LN (P1)) to implement the function Plp2
Function exponentiation function (eX).
Syntax EXP ({expression})
Domain all reals
Domain units | none
Range all positive reals
Range units none
Possible errors |none
SQRT
Function square root function.
Syntax SQRT ({expression})
Domain all non-negative reals
Domain units free
Range all non-negative reals
Range units free
Possible errors |illegal domain
ABS
Function absolute value function.
Syntax ABS ({expression})
Domain all reals
Domain units | free
Range all non-negative reals
Range units free
Possible errors | none
INT
Note:

This function returns the greatest integer less than or equal to the argument (INT
(2.5)=2, INT (-2.5)=-3).

Computational Features 157



PMAC User Manual

Function truncation function
Syntax INT ({expression})
Domain all reals
Domain units | free
Range integers
Range units free
Possible errors |none

Expressions

A PMAC expression is a mathematical construct consisting of constants, variables, and functions,
connected by operators. Expressions can be used to assign a value to a variable, to determine a motion
program parameter, or as part of a condition. A constant can be an expression, so if the syntax calls for
{expression}, a constant may be used as well as a more complicated expression — no extra
parentheses are required for non-constant expressions, unlike when {data} is specified. Examples of
expressions are:

512

Pl

P1-Q18

1000*COS (Q25*3.14159/180)

I100*ABS (M347) /ATAN (P(Q3+1)/6.28)+5

Data

For PMAC purposes, if command syntax requires {data}, either a constant that is not surrounded by
parentheses, or an expression that is surrounded by parentheses can be utilized. (Since a constant can be
an expression, it is legal to put a constant in parentheses, but this takes more storage and more calculation
time.)

For example, if the listed command syntax is T{data, it is legal to use T100, T (P1+250*P2), or
T (100) (which is legal but wasteful).

Variable Value Assignment Statement

This type of statement calculates and assigns a value to a variable. When a value assignment statement is
sent to PMAGC, if a program buffer is open, the statement is added to the buffer. If not, it is executed
immediately. The standard assignment syntax is:

{variable name}={expression}

where {variable name} specifies which variable is to be used, and {expression} represents the
value to be assigned to the variable.

I-Variable Default Value Assignment
A statement with the syntax:

I{data}l=*

will assign to the specified [-variable the manufacturer's default value for that variable (not the user's
EEPROM-stored value).

Synchronous M-Variable Value Assignment

In a motion program, when PMAC is blending or splining moves together, it must be calculating in the
program ahead of the actual point of movement. This is necessary in order to be able to blend moves
together at all, and to be able to do reasonable velocity and acceleration limiting. Depending on the mode
of movement, calculations while blending may occur one, two, or three moves ahead of the actual
movement.

158 Computational Features



PMAC User Manual

Why Needed

When assigning values to variables is part of the calculation, the variables will get their new values ahead
of their place in the program when looking at actual move execution. For P and Q-variables, this is
generally not a problem, because they exist only to aid further motion calculations. However, for M-
variables, particularly outputs, this can be a problem, because with a normal variable value assignment
statement, the action will take place sooner than is expected, looking at the statement's place in the
program.

For example, in the program segment

X10 ; Move X-axis to 10
Ml=1 ; Turn on Output 1
X20 ; Move X-axis to 20

expect that Output 1 would be turned on at the time the X-axis reached position 10. But since PMAC is
calculating ahead, at the beginning of the move to X10, it will have already calculated through the
program to the next move, working through all program statements in between, including M1=1, which
turns on the output. Therefore, using this technique, the output will be turned on sooner than desired.

How They Work

Synchronous M-variable assignment statements were implemented as a solution to this problem. When
one of these statements is encountered in the program, it is not executed immediately; rather, the action is
put on a stack for execution at the start of the actual execution of the next move in the program. This
makes the output action properly synchronous with the motion action.

In the modified program segment

X10 ; Move X-axis to 10
Ml== ; Turn on Output 1 synchronously
X20 ; Move X-axis to 20

the statement M1==1 (the double-equals indicates synchronous assignment) is encountered at the
beginning of the move to X10, but the action is not actually performed until the start of blending into the
next move (X20).

Note:

With synchronous assignment, the actual assignment is performed where the
blending to the new move begins, which is generally ahead of the programmed
point. In LINEAR and CIRCLE mode moves, this blending occurs V*TA/2
distance ahead of the specified intermediate point, where V is the commanded
velocity of the axis, and TA is the acceleration (blending) time.

Also, notice that the assignment is synchronous with the commanded position, not necessarily the actual
position. It is the responsibility of the servo loop to make the commanded and actual positions match
closely.

In applications where PMAC is executing segmented moves (I13>0), the synchronous M-variables are
executed at the start of the first 113 spline segment after the start of blending into the programmed move.

Note:

Synchronous M-variables after the last move or DWELL in the program do not
execute when the program ends or temporarily stops. Use a DWELL as the last
statement of the program to execute these statements.

Computational Features 159



PMAC User Manual

Syntax

There are four forms of synchronous M-variable assignment statements:
M{constant}=={expression} ; Straight equals assignment
M{constant}&={expression} ; AND-equals assignment
M{constant} |={expression} ; OR-equals assignment
M{constant}“*={expression} ; XOR-equals assignment

In all of these forms, the expression on the right side of the statement is evaluated when the line is
encountered in the program, ahead of the execution of the move. The value of the expression, the
variable number, and the operator are placed on a stack for execution at the proper time.

Execution

When actual execution of the appropriate move starts, these items are pulled off the stack, and the actual
action is performed. In the case of the == syntax, the value is simply assigned to the variable at this time.
In the case of the other forms (&=, | =, and ~=), the variable is read at this time, the bit-by-bit Boolean
operation (AND, OR, XOR, respectively) is performed between the variable value and the expression
value, and the result is written back to the variable.

Special Boolean Feature

These Boolean assignment operators are subtly different from what would seem to be equivalent ==
statements. Consider the two statements acting on an 8-bit M-variable, which attempt to make all of the
odd bits 1, while leaving the even bits where they are:

M50==M50 & $AA

M50&=$AA

The difference between the two statements is in when M50 is read for the operation. In the first case, it is
read when the statement is first evaluated in the program. In the second case, it is read when the
operation is pulled off the stack, immediately before the variable is written to. In this second technique,
there is no chance that the value of the M-variable can be changed by some other task in the mean time.

Limitations
There are a few limitations to these functions to be aware of:

Valid Forms

These statements may not be used with any of the thumbwheel-multiplexer-port M-variable forms (TWB,
TWD, TWR, or TWS). The Boolean assignments (&=, | =, ~=) cannot be used with any double-width M-
variable forms (D, L, or F).

Stack Limits

Second, the stack space that holds these actions is limited to 32 words of memory (per coordinate
system). Each assignment occupies two or three words of memory while it is pending, and there is one
extra word per move to mark the end of actions for that move. When PMAC is working n» moves ahead,
it is always safe to allot 32/(n+1) words per move. This rule of thumb will give PMAC adequate stack
space for its stack manipulations and will give enough synchronous M-variables. When PMAC is
working one move ahead, this rule of thumb gives 16 words per move of stack space (which is at least
five assignments plus one end word); when PMAC is working two moves ahead, this rule of thumb gives
10 words per move of stack space (which is at least three assignments plus one end word).

More assignments than this can be made with a single move if, for instance, it is known that the next
move will have no synchronous assignments, or that some of the assignments will occupy less than three
words on the stack. In no case may the assignments for a single move occupy more than 32 words of
memory.

The following table shows the number of words of stack space required for each type of assignment:

160 Computational Features



PMAC User Manual

Function | Expression | 1-to 20-bit M- * or 24-bit M- 32- or 48-bit M-
Value Variable Variable Variable

== All 1's 2 2 3

== All 0's 2 2 3

== Others 3 2 3

&= All 1's 0 (no-op) 0 (no-op) illegal

&= All 0's 2 2 illegal

&= Others 2 2 illegal
|= All 1's 2 2 illegal
= All 0's 0 (no-op) 0 (no-op) illegal
= Others 2 2 illegal
A= All 1's 2 2 illegal
N= All0's 0 (no-op) 0 (no-op) illegal
A= Others 2 2 illegal

Comparators

A comparator evaluates the relationship between two values (constants or expressions). It is used to
determine the truth of a condition in a motion or PLC program. The valid comparators for PMAC are:

= (equal to)

'= (not equal to)

> (greater than)

!> (not greater than; less than or equal to)

< (less than)

'< (not less than; greater than or equal to)

~ (approximately equal to — within one)

'~ (not approximately equal to — at least one apart)

Notice that <= and >= are not valid PMAC comparators. The comparators !> and !<, respectively,
should be used in their place.

Conditions

A condition can be used to control program flow in motion or PLC programs. It is evaluated as either
true or false. It can be used in an IF branching statement or WHILE looping statement. PMAC supports
both simple and compound conditions.

A condition in a command line —IF or WHILE — must be surrounded by parentheses.

Simple Conditions
A simple condition consists of three parts:

{expression} {comparator} {expression}
If the relationship between the two expressions defined by the comparator is valid, then the condition is
true; otherwise, the condition is false. Examples of simple conditions in commands are:

WHILE (1<2) (always true)
IF(P1>5000)
WHILE (SIN (P2-P1) !>P300/1000)

Notice that parentheses are required around the condition itself.
Unlike in some high-level languages, a PMAC condition may not be simply a value, evaluated for zero or

non-zero (e.g. IF (P1) is not valid). It must explicitly be a condition with two expressions and a
comparator.

Computational Features 161



PMAC User Manual

Compound Conditions

A compound condition is a series of simple conditions connected by the logical operators AND and OR.
The compound condition is evaluated from the values of the simple conditions by the rules of Boolean
algebra. In the PMAC, AND has execution precedence over OR (that is, ORs operate on blocks of ANDed
simple conditions). PMAC will stop evaluating compound AND conditions after one false simple
condition has been found. Examples of compound conditions in command lines are:

IF (P1>-20 AND P1<20)

WHILE (P80=0 OR I120>300 AND I120<400)

IF(Q16!'<Q17 AND Q16!>Q18 OR M136<256 AND M137<256)

The simple conditions contained within a compound condition on a single line must not be separated by
parentheses. For example, IF ( (P1>-20) AND (P1<20)) is an illegal condition and will be rejected
for illegal syntax.

Single-Line Condition Actions

In PMAC motion programs (but not in PLC programs), the action(s) to be executed on a true condition
can be put on the same line as the condition itself. In this case, no ENDIF or ENDWHILE is required to
mark the end of the conditional action, and none may be used; the end of the line is automatically the
marker for the end of the conditional action. Examples of this form are:

IF (P1<0) P1=0

WHILE (M11=0) DWELL 10

In PMAC rotary program buffers single-line condition actions are the only types of conditional statements
permitted. Multiple-line conditions are not permitted because it cannot be guaranteed that the line that
must be jumped to will be in the rotary buffer at that time.

Multiple-Line Conditions

In PMAC PLC programs (but not in motion programs), compound conditions over several program lines
are allowed. The first line of the condition must start with IF or WHILE; following lines of the condition
must start with AND or OR. Simple and compound conditions within a program line are always evaluated
before the conditions on separate lines are combined. Between the conditions on multiple lines, AND
takes precedence over OR. PMAC will stop evaluating a multi-line AND condition after one single-line
condition has been found false. An example is:

IF (M1l=1 OR M12=1)

AND (M13=1 OR M14=1)

Timers

There are four timer registers at addresses X:$0700, Y:$0700, X:$0701, and Y:$0701. These four 24-bit
registers are general-purpose timers for user program use. PMAC decrements them once per servo cycle.
It is permitted to write to them as desired. Typically, read and write access is through M-variables.
Usually a value is written equal to the time to wait, scaled in servo cycles. Then the program waits for the

register to become less than 0. The registers will continue to count down until they reach —223 (-

8,388,608). They will not roll over back to positive values.

Since these timers have units of servo cycles, and it is preferred to work in milliseconds, a conversion
23

must be done. To convert from milliseconds to servo cycles, multiply by 2 (8,388,608) and divide by

the value of 110.

When looking for a zero-crossing on these registers, it is important to treat them as signed (two's-
complement) variables. Any M-variable definitions should be in S (signed format).

For example: M90->Y:$0700,0,24,S.

162 Computational Features



PMAC User Manual

Example:

In a PLC program, to turn on an output for a fixed number of milliseconds:

Ml=1 ; Turn on Machine Output 1

M90=125*8388608/1I10 ; Set timer (M90) to 125 msec, in servo cycles
WHILE (M90>0) ; Wait for counter to count down to zero
ENDWHILE

M1=0 ; Turn off Machine Output 1

Computational Considerations

When PMAC is doing calculations in a PLC program, motion program, or on-line, it uses its 48-bit
floating point format for the intermediate form of the calculation. This gives PMAC the ability to
automatically convert between its different numerical formats and enables it to do bit-wise operations on
its P and Q-variables although they are floating point values.

The process of converting a number to 48-bit format is fast and will not be noticeable in most PMAC
applications. However, skipping the conversion step can help increase the PMAC speed and efficiency
for computationally demanding applications. In such applications using P, Q, and L (long) format M-
variables skip the conversion step (they are already in 48-bit format) and are computed faster than other
variable types.

When PMAC is doing calculations with L-variables in a compiled PLC program (PLCC) it uses a 24-bit
fixed point format for the intermediate form of the calculation. This gives PMAC the ability to perform
the calculations extremely fast. L-variable calculations are about ten times faster than equivalent floating
point calculations.

Computational Features 163



PMAC User Manual

164 Computational Features



PMAC User Manual

WRITING PROGRAMS FOR PMAC

Writing a Motion Program

PMAC can hold up to 256 motion programs at one time. Any coordinate system can run any of these
programs at any time, even if another coordinate system is already executing the same program. PMAC
can run as many motion programs simultaneously as there are coordinate systems defined on the card (up
to eight). A motion program can call any other motion program as a subprogram, with or without
arguments.

The PMAC motion program language is perhaps best described as a cross between a high-level computer
language like BASIC or Pascal, and G-Code (RS-274) machine tool language. In fact, it can accept
straight G-Code programs directly (provided it has been set up properly). It has the calculational and
logical constructs of a computer language, and move specification constructs very much like machine tool
languages. Numerical values in the program can be specified as constants or expressions.

Flow Control

In a motion program, PMAC has WHILE loops and IF. .ELSE branches that control program flow.
These constructs can be nested indefinitely. In addition, there are GOTO statements, with either constant
or variable arguments (the variable GOTO can perform the same function as a Case statement). GOSUB
statements (constant or variable destination) allow subroutines to be executed within a program. CALL
statements permit other programs to be entered as subprograms. Entry to the subprogram does not have
to be at the beginning — the statement CALL 20.15000 causes entry into Program 20 at line N15000.
GOSUBs and CALLs can be nested only 15 deep.

G-Codes

To handle machine tool G-codes, PMAC treats Gnn as CALL 1000.nn000. The following values on
the line (e.g. X1000) can be treated as parameters to be passed, as for a canned cycle, or the subprogram
can execute without arguments, return, and execute the rest of the line (as for a modal G-code). The
machine tool designer writes Program 1000 to implement the G-codes as he wishes, allowing
customization and enhancements. Delta Tau provides a sample file implementing all of the standard G-
codes. M, S, T, and D codes are similarly implemented.

Modal Commands

Many of the statements in PMAC motion programs are modal in nature. These include move modes,
which specify what type of trajectory a move command will generate; this category includes LINEAR,
RAPID, CIRCLE, PVT, and SPLINE. Moves can be specified either incrementally (distance) or
absolutely (location) — individually selectable by axis — with the INC and ABS commands. Move times
(TA, TS, and TM) and/or speeds (F), are implemented in modal commands. Modal commands can
precede the move commands they are to affect, or they can be on the same line as the first of these move
commands.

Move Commands

The move commands themselves consist of a one-letter axis-specifier followed by one or two values
(constant or expression). All axes specified on the same line will move simultaneously in a coordinated
fashion on execution of the line; consecutive lines execute sequentially (with or without stops in between,
as determined by the mode). Depending on the modes in effect, the specified values can mean
destination, distance, and/or velocity (see Trajectory Features section).

Writing Programs for PMAC 165



PMAC User Manual

Motion Program Trajectories

Among the PMAC outstanding characteristics are the power and flexibility of its trajectory generation
algorithms. These algorithms allow a variety of difficult maneuvers to be performed, and permit the
choice of tradeoffs between ease of use and degree of control. It is important to remember that these
trajectories are series of commanded positions only. It is up to the servo loops for each axis to try to
make the actual positions match the commanded positions. All the times, speeds, distances, and profiles
discussed in this section are commanded ones, unless otherwise noted.

Linear Blended Moves

The easiest class of moves to make is the linear blended move category. In this type of move, an axis
moves toward the target position at a designated speed, accelerating to and decelerating from this speed in
a controlled fashion. If more than one move is specified in succession with no pause in between, the first
move will blend into the second with the same type of controlled acceleration as is done to and from a
stop.

Linear blended move mode is the default mode for motion programs. If in another move mode, the
program can be put into this mode with the LINEAR statement. The program can be taken out of
LINEAR mode with another move mode statement (e.g. CIRCLE1, CIRCLE2, RAPID, PVT, SPLINE).
It is good programming practice to declare the LINEAR mode in each program, and not rely on the
default. The LINEAR statement is equivalent to the RS-274 G-Code GO1.

Acceleration Parameters

The acceleration to and from velocity can be constant, providing trapezoidal velocity profiles, it can be
linearly varying, and yielding S-curve velocity profiles, or it can be a combination of the two. Specify the
time for the full acceleration (TA — default parameter is coordinate system I-variable 1x87), and the time
in each half of the S (TS — default parameter [x88). If the specified TA time is less than twice the
specified TS time, the TA time used will be twice TS (to get pure S-curve acceleration, set TA to 0).
PMAC can only use integer values for TA and TS. If a non-integer value is specified, PMAC will round
it to the nearest integer before using it in trajectory calculations.

Acceleration Limit

If the acceleration thus specified exceeds the maximum programmed acceleration (set by Ix17 in
counts/msecz) for any motor involved in the move, the acceleration for all motors in the move is
decreased in proportion so that no motor exceeds this limit. The path through space is not changed, nor is
the shape of the velocity profile for any motor. To specify acceleration rate directly, TA and TS should
be set to very small to violate the limit, in which case the acceleration is controlled by the motors' I-
variables Ix17.

When too Effective

When blending linear moves together, the Ix17 limit is enforced even for the intermediate decelerations to
a stop that are removed to blend into the next move. As PMAC calculates each move in the blended
sequence, it has to assume that it could be the last move in the sequence, and it will try to make sure that
the deceleration to a stop at the programmed position obeys this limit. This can result in a deceleration
time longer than the programmed move time (specified either directly with TM, or indirectly by distance
over F feedrate), which will cause the move to execute at lower than the programmed speed. This can be
especially limiting when moves are broken into very small pieces to be blended together. The Ix17 limit
must be set higher than the top speed divided by the smallest segment time in order not to limit the speed.
This can make it too high for effective acceleration control.

166 Writing Programs for PMAC



PMAC User Manual

Note:

If PMAC is operating in move segmentation mode (I13>0), which is required for
circular interpolation, this Ix17 acceleration limit is not observed.

Do not set both the TA and TS (Ix87 and Ix88.) times to zero, even if planning to
rely on the acceleration limit. This would cause a divide-by-zero error, yielding
possible erratic performance.

When not Effective Enough

PMAC looks two moves ahead of actual move execution to perform its acceleration limit, and can
recalculate these two moves to keep the accelerations under the Ix17 limit. However, there are cases
where more than two moves, some much more than two, would have to be recalculated in order to keep
the accelerations under the limit. In these cases, PMAC will limit the accelerations as much as it can, but

because the earlier moves have already been executed, they cannot be undone, and therefore the
acceleration limit will be exceeded.

1x87 DEFAULT ACCELERATION TIME (PROGRAM)

(Units: msec); integer
Overridden by TA in program

Ix88 DEFAULT S-CURVE TIME (PROGRAM)

(Units: msec); integer
Overridden by TS in program

Va4
Ix87 > 2 * Ix88
j«—Ix88 P j«—Ix88 P j«—1x88 P j4—1x88 » -F
4 IxX87 ——p «——Ix87 ——»
VA
IXx87 <2 * Ix88
»
— Ix88 —ple4—Ix88 —» [¢— Ix88 -—pt—Ix88 —»i T
[« 2"Ix88 ——p ¢ 2/Ix88 ——p
Va
1x88=0
»
¢ Ix88 ——p ——— x88 ——» T

Figure 26 Coordinate System Variables

Writing Programs for PMAC

167



PMAC User Manual

SPECIFY t AND t_

ACCEL

AND ACCELERATION LIMIT

ACCELERATION
— Parabolic i
///,> Sinusoidal For Comparison @
/ t.=0
2a . /d.[tACCEL= 2t @
o \\\\\ / ) = -
22" /—» o=t @
E " ts =0
a ~ - - y /_/—b[tACCEL= 2ts @
0 TIME
» Parabolic (sinusoidal
VELOCITY t =teen - 28 for comparison @
-~ ts —re— t, —
MAX. T —
tL =0
»E:ACCEL= Zts @
T >t =t @
ts =0
tACCEL= tL @
0 TIME
le N
= ACCEL gl

tacceL = 26 +
Figure 27 Automatic S Curve Acceleration

Feedrate or Move-Time Specification

The target velocity (feedrate) for the move can be specified, with an F command, or the move time with
the TM command. If F is specified, the move time is calculated, and if TM is specified, the feedrate is
calculated. The relationship between the two values is reciprocal for a given move distance. In either
type of specification, remember that there is an extra TA time at the end of a move or move sequence to
decelerate to a stop. That is, a single move with a specified TM will take TM+TA time from start to stop.
An N-segment move will take

SUM(]:I ‘o N){TM[} + TA;/2 + TAp/2

to complete. The same is true of feedrate-specified moves, except that TM is calculated as distance
divided by feedrate for each segment, instead of specified directly.

168 Writing Programs for PMAC



PMAC User Manual

Note:

Feedrate is a magnitude and should therefore always be a positive number. A
negative Feedrate will cause the motion to be opposite of what is defined as
positive in the Coordinate System definition.

Short Moves

If a feedrate-specified move segment is so short in distance that it cannot reach its target velocity, it will
spend its entire time in acceleration (yielding a triangular rather than trapezoidal profile). The minimum
time for such a move is thus the specified acceleration time (TA or 2TS). For a single move remember to
add on the extra acceleration time to decelerate to a stop.

In a time-specified move segment, if TM is less than the acceleration time, the segment will be done in
acceleration time, not TM time.

In other words, the acceleration time is the minimum time for an individual blended move or blended
move segment. This is in part a protection against move times getting so short that PMAC cannot
calculate them in real time. If working with very short move segments and the move sequence is going
more slowly than desired, this acceleration-time limit may well be causing the problem.

Long Moves

The maximum time for one programmed move is 27 (8,388,607) msec, approximately two hours and
20 minutes. This is the maximum value that PMAC will accept with a TM command. In addition, it is the
maximum value PMAC will compute for a feedrate-specified move when it divides the vector distance
for the move by the feedrate. If the vector distance for the move divided by the feedrate yields a time
greater than 8,388,607 msec, PMAC will use 8,388,607 msec as the move time, and the speed will be
higher than what was programmed.

Writing Programs for PMAC 169



PMAC User Manual

Small acceleration time

\/ A
—TMor APIF— P time
4-TA > TA >
\Y} A
— TMor APIF—»¢—TMor APIF— ¥ time
tTA ETAD eTA P
\V A
¢— TM or APIF—P»<¢—TMor APIF—» time
eTA TA TA
\Y A
<« TA «TA >
4— TMorAPIF—»¢— TMorAPIF —PNT TM or A P/F —| time
€ TA > € TA >

Figure 28 Linear Mode Trajectories (Sheet 1 of 4)

170 Writing Programs for PMAC



PMAC User Manual

Acceleration time matches move time

»

4— TMor APIF —M time

»
»

4— TM or APIF —»<4— TMor APIF —™ time
“—— TA —Pe—— TA ——>e—— TA —>

VA

4— TM or AP/IF —»<—TM or APIF —» tir:\e
“— TA —P&— TA —P¢— TA — M

VA

»

/ tir;e

“«—— TA ¢ TA ¥

4— TM or AP/IF — »<¢— TMor AP/IF — ¥
e TA — >t TA — W

Figure 29 Linear Mode Trajectories (Sheet 2 of 4)

Writing Programs for PMAC 171



PMAC User Manual

Large (velocity limiting) acceleration time

N

< TM or AP/F ¥ time
«———TA ——de—— TA ——»

VA

d N

v

¢ TM or AP/F ¥ -TM or AP/F > tir:le
H——TJA —P>¢—TA ——P¢—TA ——»

VA

///\

v

¢ TM or AP/F ¥ -TM or AP/F > time
H—— TJA —P¢——TA ——P¢— TA ——»

Figure 30 Linear Mode Trajectories (Sheet 3 of 4)

172 Writing Programs for PMAC



PMAC User Manual

Changing acceleration times

VA

»
»

— TM or AP/F —»<— TM or AP/F — time
<+ TA1—™ +— TA2—» «—TA2—»

VA

4— TM or AP/F —»<4— TM or AP/F—™ time
—TA1 > —— TA2—> «——TA2 —>

VA

»
»

4 TA1 »¢—TA2 actual———» &— TA2 specified—> time
«— TAZ2 specified—»

vA ,,,,,,,
\\ 3
+—TM1 —>le— TM2 —— ti;]e
«— TA1—> e TA2 — ¢ TA2 — >

Figure 31 Linear Mode Trajectories (Sheet 4 of 4)

Writing Programs for PMAC 173



PMAC User Manual

Feedrate Axes

If a multi-axis move is specified by feedrate (and not time), there is further flexibility by specifying which
axes control the vector feedrate, using the FRAX command (on-line or buffered), and velocity is
apportioned among these axes so that their vector combination (root of sum of squares) is the specified
velocity. PMAC calculates the move time as the vector distance of the feedrate axes divided by the
programmed feedrate. There is no need to compute each axis’ velocity individually for each different
angle of movement. If a simultaneous move is requested of a non-feedrate axis, that move is completed
in the same time as that computed for the feedrate axes. The default feedrate axes for a coordinate system
are the X, Y, and Z axes.

Note:

If a feedrate-specified move is requested only of non-feedrate axes, PMAC
calculates the vector distance to be zero (because none of the feedrate axes move),
yielding a zero move time. Therefore, the move time will be controlled by the
acceleration time and/or the motor velocity limits.

Example Vector Feedrate Calculations

INC ; Dist = SQRT (32 + 42) =5
FRAX (X,Y) ; Move Time = 5/10 = 0.5
X3 Y4 F10 ; Vx = 3/0.5 = 6

; Vy = 4/0.5 = 8
INC ; Dist = SQRT (32 + 42) =5
FRAX (X,Y) ; Move Time = 5/10 = 0.5
X3 Y4 Z12 F10 ; Vx = 3/0.5 = 6

; Vy = 4/0.5 = 8

; Vz = 12/0.5 = 24
INC ; Dist = SQRT(32 + 42 + 122) = 13
FRAX (X,Y,2) ; Move Time = 13/10 = 1.3
X3 Y4 Z12 F10 ; Vx = 3/1.3 = 2.31

; Vy = 4/1.3 = 3.08

; Vz = 12/1.3 = 9.23
INC ; Dist =0
FRAX (X,Y, Z) ; Move Time = 0/10 = 0 (<TA)
C1l0 F10 ; Acceleration limited move

Velocity Limit

The velocity thus requested of each motor is constrained by the velocity limit for that motor (Ix16). Ifa
request exceeds this limit, all motors involved in the move are slowed in proportion, so that the motor
does not exceed its limit, but the path in space is preserved.

Note:

If PMAC is operating in move segmentation mode (113>0), which is required for
circular interpolation, this Ix16 velocity limit is not observed.

The Blending Function

If more than one move is specified in succession without any intervening dwell commands, each motor
blends smoothly from its velocity for the first move to the velocity for the second move according to the
acceleration and S-curve values in force at the time. This change in speed (which can be a zero change)
starts at the point where the first move would start to decelerate to a stop at its specified end position, not
at the first move's endpoint itself. (However, if 1x92 is set to one, blended moves in that coordinate
system always come to a stop before the next move.)

174 Writing Programs for PMAC



PMAC User Manual

The acceleration parameters TA and TS can change between each move. If the final deceleration to a
stop should use a different TA or TS from the previous blending acceleration time in a sequence, declare
the new TA or TS after the final move command in the sequence, but before the DWELL or other feature
that stops the continuous sequence.

Rapid-Mode Moves

Rapid mode moves are essentially jog moves for each motor assigned to an axis specified in the move.
The acceleration for each motor is controlled by the values of Ix19 to Ix21 (jog acceleration limit and
time) in force at the time of the move. The speed of the move is controlled either by the jog speed
parameter Ix22 or the maximum-speed parameter Ix16. Global variable 150 controls which of these is
used for all motors (I50=0 means [x22 is used; [50=1 means Ix16 is used).

On a multi-axis rapid mode move, only the motor calculated to take the longest time at its specified speed
will actually be commanded to move at that speed. The commanded speeds for other motors are lessened
so that they have the same ratio of distance to speed. This makes the move path approximately linear.
However, if the acceleration times are not the same for all motors, the commanded move path will not be
perfectly linear.

A rapid-mode move is never blended with another move; all motors will be commanded to at least a
momentary stop before the next move is commanded to start.

A motion program is put into this mode using the RAPID statement. It is taken out of this mode by
another move mode command (e.g., LINEAR, CIRCLE1, CIRCLE2, PVT, SPLINE1). RAPID is
equivalent to the RS-274 G-Code G0O.

Motion Program Move-Until-Trigger

The move-until-trigger function permits a programmed move to be interrupted by a trigger and terminated
by a move relative to the position at the time of the trigger. It is very similar to a homing search move,
except that the motor zero position is not altered, and there is a specific destination in the absence of a
trigger.

The move-until-trigger is a variant of the RAPID move mode on PMAC. Speeds and accelerations are
governed by the same variables as for regular rapid moves. The move-until-trigger function for an axis,
and therefore for any motor(s) defined to that axis, is specified by adding a ~ {data} specifier to the
move command for the axis, where {data} is the distance to be traveled relative to the trigger before
stopping.

This makes the axis command for a move-until trigger {axis} {data} “~{data}, something like
X504-5. The first value is the destination position or distance (depending on whether the axis is in
absolute or incremental mode) to be traveled in the absence of a trigger. The second value is the distance
to be traveled relative to the position at the time of the trigger. This value is always expressed as a

relative distance, regardless of whether the axis is in absolute or incremental mode. Both values are
expressed in the axis user units.

Other axes can be specified on the same line without a colon and second value. These axes will do a
simultaneous normal rapid move. However, if an axis matrix transformation is active for the X, Y, and Z
axes in this coordinate system (TSELECT has been used to select a matrix), or if there is a move-until-
trigger on any of the X, Y, and Z axes, the other axes in the XYZ triplet will also execute a move until
trigger. If no post-trigger move is specified for the axis, the post-trigger distance is assumed to be zero.
If no move at all is specified for the axis, a zero-distance pre-trigger move is assumed.

The trigger condition for each motor is set up just as for homing search moves:
e Ix03 bit 17 specifies whether input flags are used to create the trigger, or the warning following error
limit status bit is the trigger (torque-limited triggering): O=flags, 1=error status

Writing Programs for PMAC 175



PMAC User Manual

e Ifinput flags are to create the trigger, Ix25 specifies the flag register.

e Ifinput flags are to create the trigger, Encoder/Flag I-variables 2 and 3 for this set of flags specify
which edges of which signals will cause the trigger.

e Ix03 bit 16 specifies whether the hardware-captured counter value is used as the trigger position
(suitable for incremental encoder signals, real or simulated) or the software-read position is used
instead (suitable for other types of feedback O=hardware, 1=software). The software-read position
must be used if the following error status is used for the trigger.

Notice that each motor has an independent triggering function and move relative to the trigger, even if the
motors are assigned to the same axis. If a common trigger signal is desired for multiple motors, the same
trigger signal must be wired into the flag inputs for all of those motors.

PMAC will blend each motor smoothly from the pre-trigger move to the post-trigger move according to
the jog/home acceleration parameters Ix19, 1x20, and Ix21.

All motors must come to a stop, either at the originally specified position, or at the post-trigger position,
before PMAC will calculate any further in the motion program. This means that there is no blending of
the post-trigger move into any subsequent moves.

The captured value of the sensor position at the trigger is stored in a dedicated register if later access is
needed. The units are in counts; for incremental encoders, they are relative to the power-up/reset
position.

PMAC sets the motor home-search-in-progress status bit (bit 10 of the first motor status word returned on
a ? command) true (1) at the beginning of a programmed move-until-trigger move. The bit is set false (0)
either when the trigger is found, or at the end of the move.

PMAC also sets the motor trigger move status bit (bit 7 of the second motor status word returned on a ?
command) true at the beginning of a programmed move-until-trigger move, and keeps it true at least until
the end of the move. If a trigger is found during the move, this bit is set false at the end of the post-trigger
move; however, if the pre-trigger move finishes without finding a trigger, the bit is left true at the end of
the move. Therefore, this bit can be used at the end of the move to tell whether the trigger was found
successfully or not.

Circular Blended Moves

PMAC allows circular interpolation on the X, Y, and Z axes in a coordinate system. As with linear
blended moves, TA and TS control acceleration to and from a stop, and between moves. Circular blended
moves can be feedrate-specified (F) or time-specified (TM), just as with linear moves. It is possible to
change back and forth between linear and circular moves without stopping.

Note:

In order for PMAC to do circular moves, parameter 113 must be greater than zero.

Specifying the Interpolation Plane

The first thing that should be done in preparing for a circular move is to specify the orientation of the
plane that will contain the circle. This is done by specifying the normal vector to that plane with the
NORMAL command. The arguments of this command are the component magnitudes of the vector: I (X-
axis direction), J (Y-axis direction), and K (Z-axis direction). A typical command might be NORMAL
I0.866 J0.5 KO0.0. The length of the normal vector specified here is not important; only the ratio
between the component magnitudes is (which determines the direction).

176 Writing Programs for PMAC



PMAC User Manual

Standard Planes

To specify the circles in the XY plane, simply command NORMAL K-1 (equivalent to G17 in machine-
tool code). Similarly, for circles in the ZX plane, command NORMAL J-1 (G18 equivalent); for circles
in the YZ plane, command NORMAL I-1 (G19 equivalent).

Clockwise Direction Sense

The directional sense of the normal vector is right handed; that is, in a right-handed coordinate system, if
pointing a right thumb in the direction of the specified normal vector, the fingers will curl in the direction
of a clockwise arc in the plane thus specified.

Circle Modes

To put the program in circular mode, use the program command CIRCLE1 for clockwise arcs (G02
equivalent) or CIRCLE2 for counterclockwise arcs (GO3 equivalent). LINEAR will go back to linear
blended moves. Once in circular mode, a circular move is specified with a move command specifying the
move endpoint and either the vector to the arc center or the distance (radius) to the center. The endpoint
may be specified either as a position or as a distance from the starting point, depending on whether the
axes are in absolute (ABS) or incremental (INC) mode (individually specifiable).

Center Vector

If the vector method of locating the arc center is used, the vector is specified by its I, J, and K components
(I specifies the component parallel to the X axis, J to the Y axis, and K to the Z axis). This vector can be
specified as a distance from the starting point (i.e. incrementally), or from the XYZ origin (i.e.
absolutely). The choice is made by specifying R in an ABS or INC statement (e.g. ABS (R) or INC
(R)). This affects I, J, and K specifiers together. (ABS and INC without arguments affect all axes, but
leave the vectors unchanged). The default is for incremental vector specification.

Note:

The standard machine tool usage is for incremental vector specification even when
move endpoint specification is absolute.

A typical circular move command with a vector specification is:

X1000 Y2000 I500 J-500

Example:

Starting from the point X0 Y0, make a quarter circle clockwise in the XY plane to X20 Y20, then a linear
move to X40 Y20, then a three-quarters circle clockwise to X20 Y0. With the default modes of absolute
move and incremental vector specification, the program would be:

NORMAL K-1 ; XY plane

F10

CIRCLE1l ; Clockwise circle

X20 Y20 120 JO ; Arc move; I=20-0=20; J=0-0=0
LINEAR

X40 Y20

CIRCLE1l

X20 YO I0 J-20 ; Arc move; I=40-40=0; J=0-20=-20

Writing Programs for PMAC 177



PMAC User Manual

Radius Size Specification

If the radius method of locating the arc center is used, the radius is the number after the letter R in the
move command. This value always represents the distance from the move starting point. With radius
specification, it is also necessary to specify whether the arc to the move endpoint is the long route (>=180
degrees) or the short route (<=180 degrees). The PMAC convention is to take the short arc path if the R
value is positive, and the long arc path if R is negative. R values are not modal. A value must be
specified on each move command line. It is not possible to do a full circle in a single move command
with a radius specification; the circle must be broken into at least two parts. A typical circular move
command with a radius specification is:

X1000 Y2000 R750

Example:

To do the same moves as in the above example, except with radius center specification, the program
would be:

NORMAL K-1 ; XY plane

F10

CIRCLE1l

X20 Y20 R20 ; Arc move < 180 deg
X40 Y20 ; Automatically linear
X20 YO R-20 ; Arc move > 180 deg

Do not use the R radius specification if using the axis transformation matrices for scaling purposes with
the AROT or IROT statements. The radius value will not scale with the axes.

END

Y (25,30) Y
1 NORMAL K-1
Defaults { ABS (XY)
INC (R) CIRCLE2
CIRCLE1 TM1000
> F10 X15Y101-10
X25Y30120J5
—— .
AV 4 ) g X >
X > X
Y:
@ CIRCLE2

CIRCLE TM2000

X30Y101-10J10 END X0Y10R10

or 0,10 @ CIRCLE2

1-10J10 TM2000

@ X0Y10R-10
START,END
(30,10) @
START (10,0)
X * X

Figure 32 PMAC Circular Interpolation

No Center Specification

If there is neither a vector specification nor a radius specification on a given move command line, the
move will be linearly interpolated between start and end points, even if the program is in circular move
mode. However, cutter compensation will not work properly if this is done. LINEAR move mode must

be explicitly declared if cutter compensation is on.

178 Writing Programs for PMAC



PMAC User Manual

Feedrate Axes

Any axes used in the circular interpolation are automatically feedrate axes for circular moves, even if they
were not so specified in a FRAX command. Other axes may or may not be feedrate axes. Any non-
feedrate axes commanded to move in the same move command will be linearly interpolated so as to finish
in the same time. This permits easy helical interpolation. See the Feedrate Axes section in this manual.

Circle Radius Errors

If the endpoint is not the same distance from the center as the starting point, the change in radius is taken up
smoothly over the course of the move. This allows smooth compensation for round off errors. For circles
using the Radius center specification (the R format as opposed to I, J, K format) each coordinate system
has an I-variable (Ix96) that determines the limit in distance difference for which this compensation will be
done. Above this limit, a run-time error will be generated and the program will stop.

This limit helps distinguish between round off errors and major mistakes. Regardless of this limit, if the
distance from starting point to center or from ending point to center is zero, an error will be generated and
the program will stop. If the specified vector does not lie in the plane of interpolation, the projection of
that vector into the plane is used.

Move Segmentation

PMAC computes circular trajectories through a rapid and continuous cubic spline technique. The spline
segments are of a time specified by 113 (in units of milliseconds). Typically, a value of 5 to 10
milliseconds will be used, depending on the number of axes being controlled by the card. When I13 is
greater than zero, all blended moves (linear and circular) are computed through this ongoing cubic spline
technique. If 113 is zero, linear moves are not computed using this spline technique, and circular moves
are not permitted (if a circular move is requested, it will be done as a linear move). The difference in the
actual performance of linear and transition-point moves between 113=0 mode and 113>0 mode is virtually
imperceptible, unless the feature sizes of the moves are in the same range as the 113 time.

PVT-Mode Moves

For the user who desires more direct control over the trajectory profile, PMAC offers Position-Velocity-
Time (PVT) mode moves. In these moves, the axis states are specified directly at the transitions between
moves (unlike in blended moves). This requires more calculation by the host, but allows tighter control
of the profile shape. For each piece of a move, specify the end position or distance, the end velocity, and
the piece time.

Mode Statement

PMAC is put in this mode with the program statement PVT {data}, where {data} is a constant,
variable, or expression, representing the piece time in milliseconds. This value should be an integer; if it
is not, PMAC will round it to the nearest integer. The piece time may be changed between pieces, either
with another PVT {data} statement, or with a TA{data} statement. The program is taken out of this
mode with another move mode statement (e.g. LINEAR, RAPID, CIRCLE, SPLINE).

Move Statements

A PVT mode move is specified for each axis to be moved with a statement of the form
{axis}{data}: {data}, where {axis} is a letter specifying the axis, the first {data} is a value
specifying the end position or the piece distance, depending on whether the axis is in absolute or
incremental mode, respectively, and the second {data} is a value representing the ending velocity.

The units for position or distance are the user length or angle units for the axis, as set in the Axis
Definition statement. The units for velocity are defined as length units divided by time units, where the
length units are the same as those for position or distance, and the time units are defined by variable Ix90
for the coordinate system (feedrate time units). The velocity specified for an axis is a signed quantity.

Writing Programs for PMAC 179



PMAC User Manual

PMAC Calculations

From the specified parameters for the move piece, and the beginning position and velocity (from the end
of the previous piece), PMAC computes the only third-order position trajectory path to meet the
constraints. This results in linearly changing acceleration, a parabolic velocity profile, and a cubic
position profile for the piece.

Problems in Stepping

Since a non-zero end velocity for the move can be specified (directly or indirectly), it is not a good idea to
step through a program of transition-point moves, and care must be exercised in downloading these
moves in real time. With the use of the BLOCKSTART and BLOCKSTOP statements surrounding a series
of PVT moves, the last of which has a zero end velocity, it is possible to use a Step command to execute
only part of a program.

Use to Create Arbitrary Profiles

The PVT mode is useful for creating arbitrary trajectory profiles. It provides a building block approach to
putting together parabolic velocity segments to create whatever overall profile is desired. PVT mode can
create any profile that any other move mode can. The following diagram shows common velocity
segment profiles.

\" \"
AP=1/2 Vt g
P=1/3 Vt
t  Time t Time
Vel Vel
\" \
AP=2/3 Vt AP=Vt
t  Time t Time
Vel Vel
vas
AP=1/6 Vit
Vi2+
AP,=5/6 Vt
AP=112(\/1 +V )t
2

t t 2t
Figure 33 PVT Mode Contouring (Hermite Spline)

Use in Contouring

PVT mode provides excellent contouring capability, because it takes the interpolated commanded path
exactly through the programmed points. It creates a path known as a Hermite Spline. LINEAR and
SPLINE modes are second and third order B-splines, respectively, which pass to the inside of
programmed points.

Compared to the PMAC SPLINE mode, PVT produces a more accurate profile. Its worst-case error can
be estimated as:

180 Writing Programs for PMAC



PMAC User Manual

 384R3 384

where V is the vector velocity, T is the segment time, R is the local radius of curvature, and €1is the
subtended angle.

v4r4  Ro4
E_ —

Splined Moves

PMAC can perform two types of cubic splines (cubic in terms of the position vs time equations) to blend
together a series of points on an axis. Its SPLINE1 mode is a uniform non-rational cubic B-spline and its
SPLINE2 mode is a non-uniform non-rational cubic B-spline. It can, of course, do either spline for all of
the axes simultaneously. Splining is particularly suited to odd (non-cartesian) geometries, such as radial

tables and rotary-axis robots, where there are odd axis profile shapes even for regular tip movements.
P

c i+2

To compute axis velocities at point P
1. Find common center of P, P, P,

2. Compute velocity vector as normal
to radius vector

3. Resolve velocity vector into components

Figure 34 PVT Segment Shapes

If segment were
done at constan
velocity:

A
etc. V = i

VEL e
No velocity or acceleratiol TA
discontinuities at segmen

boundaries
— » INCREMENTAL

SPLINE
TA500
X10000
X9000
X10500
X12000

I »
T

TA TA TA TA TA TA _
(added) (added) TIME

Figure 35 Splined Moves (All Segments at Same Time)

Writing Programs for PMAC 181



PMAC User Manual

\ \
TA (added)  TA  TA (added) ime TA (added)  TA TA TA(added)time
One Programmed Segment Two Programmed Segments
v %
TA (added) TA TA TA TA (added)  time TA (added) TA TA TA TA TA (added) time
Three Programmed Segments Four Programmed Segments

Figure 36 Cubic Spline Trajectories

A
VEL dA
at constant(calculated)
Ag P, (specified)
(calculated) .
P,V V1 (specified)
(f?omo A1 (calculated)
before)
PVT200
APPy Py
X9000:150
e TA ———¥
(specified) TIME
Figure 37 PMAC Transition Point Moves (PVT Mode, Parabolic Velocity)
How They Work

In SPLINE1 mode, a long move is split into equal-time segments, each of TA time. Each axis is given a
destination position in the motion program for each segment with a normal move command line like
X1000Y2000. Looking at the move command before this and the move command after this, PMAC
creates a cubic position-vs-time curve for each axis so that there is no sudden change of either velocity or
acceleration at the segment boundaries. The commanded position at the segment boundary may be
relaxed slightly to meet the velocity and acceleration.

PMAC can only work with integer (millisecond) values for the TA segment times. If a non-integer value
is specified for the TA time, PMAC will round it to the nearest integer automatically. It will not report an
error. This rounding will change the speeds and times for the trajectory.

PMAC computes intermediate way points for each axis for each point along the spline by taking a
weighted average of the specified point X(n) and the specified points on either side, according to the
equation:

Xin—1)+4X(n) + X(n + 1)
6

WP(n) =

182 Writing Programs for PMAC



PMAC User Manual

PMAC also computes the velocity for each axis at each way point along the spline by taking the velocity
halfway between the average velocities of the segments on either side of the way point:
[X(n+1)- X(n)] + [X(n)- X(n-1)]  Xn+1)- X(n-1)

- 2*T4 T 2

Having computed exact positions and velocities at segment boundaries, PMAC calculates the unique

cubic position equation (parabolic velocity profile) that meets these constraints, and uses this equation for
interpolation.

Vin)

The segment time may not be changed on the fly in SPLINE1 mode. If the segment time is changed in
the middle of a sequence of moves, PMAC will bring the early part of the sequence to a stop
automatically, and then start up the following section with the new segment time. If the segment times
are small, this can be a very rough operation.

Added Pieces

At the beginning and end of a series of splined moves, PMAC automatically adds a zero-distance segment
of TA time for each axis, and performs the spline between this segment and the adjacent one. This results
in an S-curve acceleration to and from a stop.

Quantifying the Position Adjustment
The difference between the splined commanded position and the pre-splined (program-line) commanded
position for an axis at the end of segment » can be calculated according to the simple equation:
Dist(n+1)— Dist(n)

6

where Dist(n) is the programmed distance for segment n of the spline (whether in absolute or incremental
mode), and Dist(n+1) is the programmed distance for segment n+1.

Diff =

5-Point Spline Correction

In contouring applications, it is often desired to pass through the series of points as closely as possible. In
these applications, the error introduced by the standard spline algorithm may be too large to tolerate.
However, a very simple pre-compensation can dramatically reduce the splining errors. For each point
X(n) in the spline, replace with a point X'(n) with the following formula before sending to PMAC:

- X(n-1)+8X(n)—X(n+1)

X'(n)= p

Non-Uniform Spline

The PMAC SPLINE2 mode is very similar to the SPLINE1 mode, except that the requirement that the
TA spline segment time remain constant is removed. The removal of this constraint makes the SPLINE2
mode a non-uniform non-rational cubic B-spline, whereas the SPLINE1 mode is a uniform non-rational
cubic B-spline. The non-rational specification indicates that there are no independent weightings (ratios)
of the different points in the spline.

The extra freedom of non-uniform segment times makes the SPLINE2 mode more flexible than the
SPLINE1 mode, but at the cost of about 20% extra calculation time. SPLINE2 mode is still more
efficient than any of the non-spline calculation modes. If the TA segment time is held constant,
SPLINE2 mode produces trajectories that are identical to SPLINE1 mode.

The added segment at the beginning of a spline has the same time as the first programmed segment; the
added segment at the end of a spline has the same time as the last programmed segment.

The combined time of any three consecutive segments in a SPLINE2 continuous spline must be less than
8,388,608 msec, or about 2 hours and 20 minutes.

Writing Programs for PMAC 183



PMAC User Manual

Cutter Radius Compensation

PMAC provides the capability for performing cutter (tool) radius compensation on the moves it performs.
This compensation can be performed among the X, Y, and Z axes, which should be physically
perpendicular to each other. The compensation offsets the described path of motion perpendicular to the
path automatically by a programmed amount, compensating for the size of the tool. This permits
programming the path along the edge of the tool, letting PMAC calculate the tool-center path, based on a
radius magnitude that can be specified independently of the program.

Cutter radius compensation is valid only in LINEAR and CIRCLE move modes. The moves must be
specified by F (feedrate), not TM (move time). PMAC must be in move segmentation mode (113 > 0) to
do this compensation (I13 > 0 is required for CIRCLE mode anyway.)

Note:

In CIRCLE mode, a move specification without any center specification results in
a linear move. This move is executed correctly without cutter radius compensation
active, but if the compensation is active, it will not be applied properly in this case.
A linear move must be executed in LINEAR mode for proper cutter-radius
compensation.

Defining the Plane of Compensation

Several parameters must be specified for the compensation. First, the plane in which the compensation is
to be performed must be set using the buffered motion-program NORMAL command. Any plane in XYZ-
space may be specified. This is done by specifying a vector normal to that plane, with I, J, and K-
components parallel to the X, Y, and Z-axes, respectively.

For example, NORMAL K-1, by describing a vector parallel to the Z-axis in the negative direction,
specifies the XY-plane with the normal right/left sense of the compensation (NORMAL K1 would also use
the XY-plane, but invert the right/left sense). This same command also specifies the plane for circular
interpolation. NORMAL K-1 is the default. The compensation plane should not be changed while
compensation is active.

Other common settings are NORMAL J-1, which specifies the ZX-plane for compensation, and NORMAL
I-1, which specifies the YZ-plane. These three settings of the normal vector correspond to RS-274 “G-
codes” G17, G18, and G19, respectively. If you are implementing G-codes in PMAC program 1000, you
could incorporate in PROG 1000:

N17000 NORMAL K-1 RETURN
N18000 NORMAL J-1 RETURN
N19000 NORMAL I-1 RETURN

Defining the Magnitude of Compensation

The magnitude of the compensation — the cutter radius — must be set using the buffered motion program
command CCR{data} (Cutter Compensation Radius). This command can take either a constant
argument (e.g. CCRO . 125) or an expression in parentheses (e.g. CCR (P104+0.0625)) . The units of
the argument are the user units of the X, Y, and Z-axes. In RS-274 style programs, these commands are
often incorporated into tool data D-codes using PMAC motion program 1003.

Negative and zero values for cutter radius are possible. Note that the behavior in changing between a
positive and negative magnitude is different from changing the direction of compensation. See the
Changes in Compensation section in this manual. Also, the behavior in changing between a non-zero
magnitude and a zero magnitude is different from turning the compensation on and off. See the
appropriate sections.

184 Writing Programs for PMAC



PMAC User Manual

Turning on Compensation

The compensation is turned on by buffered motion program command CC1 (offset left) or CC2 (offset
right). These are equivalent to the RS-274 G-Codes G41 and G42, respectively. If implementing G-
Code subroutines in PMAC motion program 1000, simply incorporate in PROG 1000:

N41000 CCl RETURN
N42000 CC2 RETURN

Turning off Compensation

The compensation is turned off by buffered motion program command CCO, which is equivalent to the
RS-274 G- Code G40. If implementing G-Code subroutines in PMAC motion program 1000, simply
incorporate in PROG 1000:

N40000 CCO RETURN

How PMAC Introduces Compensation

PMAC gradually introduces compensation over the next LINEAR or CIRCLE-mode move following the
CCl1 or CC2 command that turns on compensation. This lead-in move ends at a point one cutter radius
away from the intersection of the lead-in move and the first fully compensated move, with the line from
the programmed point to this compensated endpoint being perpendicular to the path of the first fully
compensated move at the intersection.

Note that few controllers can make their lead-in move a CIRCLE-mode move. This capability permits
establishing contact with the cutting surface very gently, important for fine finishing cuts.

Inside Corner Introduction

If the lead-in move and the first fully compensated move form an inside corner, the lead-in move goes
directly to this point. When the lead-in move is a LINEAR-mode move, the compensated tool path will
be at a diagonal to the programmed move path. When the lead-in move is a CIRCLE-mode move, the
compensated tool path will be a spiral.

Introducing Compensation — Inside Corner

Line
Programmed
Path

Programmed
Path

Tool Center
________ Path______y Line

_Line  Tool Center\
- Path

"(/:Icz v
Line to Line Line to Arc

“ce2

Line )
Programmed

Path

Programmed
Path

Tool Center

Ly E_éﬂl,,,,,,,)

//’. /‘/. \
- Spiral o Spiral Tool Center',

Path

(CCZ ‘I(
Arc to Line Arc to Arc

Ccc2

Figure 38 Compensation — Inside Corner

Writing Programs for PMAC 185



PMAC User Manual

Outside Corner Introduction

If the lead-in move and the first fully compensated move form an outside corner, the lead-in move moves
first to a point one cutter radius away from the intersection of the lead-in move and the first fully
compensated move, with the line from the programmed point to this compensated endpoint being
perpendicular to the path of the lead-in move at the intersection. When the lead-in move is a LINEAR-
mode move, this compensated tool path will be at a diagonal to the programmed move path.

When the lead-in move is a CIRCLE-mode move, this compensated tool path will be a spiral. Then a
circular arc move with radius equal to the cutter radius is added, ending at a point one cutter radius away
from the intersection of the lead-in move and the first fully compensated move, with the line from the
programmed point to this compensated endpoint being perpendicular to the path of the first fully
compensated move at the intersection.

Introducing Compensation — Outside Corner

A
/
/’I
Line ,’/
P Programmed > Arc
Path /" Tool Center
’ Path
4 Tool Center
N - G E@Ul__._____)
Line to Line \m
CC2 CC2
1 i
\ \ A
\ \ |
\ \ /
\\ \\ I’
\ \ /
\ Line S |\‘ /I
Spiral \ ﬁ iral \ y
P \ Programmed P \ Are
\ Path \ /" Tool Center
r ’ Path
4 Tool Center 4 »
D SR— E@Ul_l:'_____ D
. ine
Arc to Line Arc to Arc

Figure 39 Compensation Outside Corner
The behavior for lead-in moves is different from changing the compensation radius from zero to a non-
zero value while compensation is active. An arc move is always added at the corner, regardless of the
setting of 189. This ensures that the lead-in move never cuts into the first fully compensated move.

Treatment of Compensated inside Corners

Inside corners are still subject to the blending due to the TA and TS times in force (default values set by
coordinate system I-variables Ix87 and Ix88, respectively). The longer the acceleration time, the larger
the rounding of the corner. (The corner rounding starts and ends a distance F*TA/2 from the

compensated, but unblended corner.) The greater the portion of the blending is S-curve, the squarer the
corner will be.

When coming to a full stop (e.g., Step, Quit, or DWELL at the corner) at an inside corner, PMAC will stop
at the compensated, but unblended, corner point.

186 Writing Programs for PMAC



PMAC User Manual

Inside Corner Cutter Compensation

Programmed

Line

[ Programmed )
P

Path

ath

Tool Center

Path i Arc
------------------- Line
y r Line >
/ Y N\ Arc
7 // \
/ Line Line k!
/ /" Tool Center’
/ Path !
/ | 4
Line to Line Line to Arc

Line L
Programmed #
Path

Programmed
Path

Tool Center

\

,/I Tool Center‘:
:‘ Path ly
Arc to Line Arc to Arc

Figure 40 Inside Corner Cutter Compensation

Treatment of Outside Corners

For outside corners, PMAC will either blend the incoming and outgoing moves directly together, or it will
add an arc move to cover the additional distance around the corner. Which option it chooses is dependent
on the relative angle of the two moves and the value of I-variable 189.

The relative angle between the two moves is expressed as the change in directed angle of the motion
vector in the plane of compensation. If the two moves are in exactly the same direction, the change in

directed angle is 0°; if there is a right angle corner, the change is +/-90°; if there is a complete reversal, the
change in directed angle is 180°.

189 specifies the boundary angle between directly blended outside corners and added-arc outside corners.
It is expressed as the cosine of the change in the directed angle of motion (cos0°=1.0, c0s90°=0.0,
cos180°=-1.0) at the boundary of the programmed moves. The change in directed angle is equal to 180°
minus the included angle at the corner.

Sharp outside Corner
If the cosine of the change in directed angle is less than 189, which means the corner is sharper than the
specified angle, then an arc move will be added around the outside of the corner.

Writing Programs for PMAC 187



PMAC User Manual

Outside Corner Cutter Compensation, Sharp Angle ( cos AG < I1sx99)

\
!
Arc/

:‘ Programme Programme
5\ ath \ ath
Arc™_ | Tool Center Arc Tool Center
S Path g S Path ___
Line Line
Line to Line Line to Arc

/
/

!

\ Programmed
\

T~ Are

T~ Are
Tool Center
Path 4

Tool Center 3
Path 4

Arc to Line Arc to Arc

Figure 41 Outside Corner Cutter Compensation Sharp Angle

Shallow outside Corner
However, if the cosine of the change in directed angle is greater than 189, which means that the corner is

flatter than the specified angle, the moves will be directly blended together without an added arc.

Outside Comer Cutter Compensation, Shallow Angle ( cos A® > 1sx99)

.
Tool Center A
Path

ArctoLine Arcto Arc

Figure 42 Outside Corner Cutter Compensation — Shallow Angle

188 Writing Programs for PMAC



PMAC User Manual

The added arc prevents the compensated corner from extending too far out on the outside of a sharp
corner. However, as an added move, it has the minimum time of the acceleration time, which can cause a
slowdown on a very shallow angle. While the default value for I89 of 0.9998 (cos1°) causes an arc to be
added on any change in angle greater than 1°, many users will set 189 to 0.707 (cos45°) or 0.0 (cos90°) so
arcs are only added on sharp corners.

When coming to a full stop (e.g. Step, Quit, /, or DWELL) at an outside corner with an added arc, PMAC
will include the added arc move before stopping. When coming to a full stop at an outside corner without
an added arc, PMAC will stop at the compensated, but unblended, corner point.

Treatment of Full Reversal

If the change in directed angle at the boundary between two successive compensated moves is 180° + 1° (the
included angle is less than 1°), this is considered a full reversal and special rules apply. If both the incoming
and outgoing moves are lines, the corner is always considered an outside corner, and an arc move of
approximately 180° is added. If one or both of the moves is an arc, PMAC will check for possible inside
intersection of the compensated moves. If such an intersection is found, the corner will be treated as an
inside corner. Otherwise, it will be treated as an outside corner with an added 180° arc move.

Reversal In Cutter Compensation

________ N L BIREN
r \\
LPro rammeq Path \‘ Rrogrammed Path ArcY
gng <10 ( Arc A Line J
/l Arc r S/
! _Line a7
\“"‘“—_HQ‘?__ /’/ Tool Center/'ArC Arlc’/TooI Center
Nter Pagp X ----- - Path Right / /' Path Left
\4
Line to Line Line to Arc,

Inside and Outside
Tool Center, -~~~
Path ,~  Arc

\ Programmed
Path

Arc

Programmed -

Path Tool Center ~~4ATC

""" Path >
Arc to Arc Outside Arc to Arc Inside
Figure 43 Reversal in Cutter Compensation

Arc.-7

Note on Full Circles

If a full-circle move is executed while in cutter compensation, and one or both of the ends produces a
shallow outside corner that is directly blended (no added arc — see the previous section Treatment of
Outside Corners), the compensated arc move will be extended beyond 360°, and PMAC may produce just
a very short arc, 360° shorter than what is desired (making it appear that the circle has been skipped.

Typically, while this is the result of sloppy programming — an outside corner with a full circle causes an
overcut into the circle — many machine designers may want to permit slight cases of this. Coordinate
system parameter Isx97 defines the shortest arc angle that may be executed; the longest arc angle is 360°
plus this angle.

The default value of Isx97 sets a minimum arc angle of one-millionth of a semi-circle, enough to account
for numerical round off, but sometimes not enough for compensated full circles. To handle these cases,
Isx97 should be set to a somewhat larger value.

Writing Programs for PMAC 189



PMAC User Manual

Failure When Compensation Extends Full Circle

Tool Center
~_Path

0}

Executed

Programmed
Path

Compéhsated
Circle
“Skipped”

Programmed
(@ Full Circle

Figure 44 Failure When Compensation Extends Full Circle

Speed of Compensated Moves

Tool center speed for the compensated path remains the same as that programmed by the F parameter.
On an arc move, this means that the tool edge speed (the part of the tool in contact with the part) will be
different from that programmed by the fraction R /R .

Changes in Compensation

PMAC permits changes both to the radius of compensation and the direction of compensation while the
compensation is active. It is important to understand exactly how PMAC changes the compensated path
in these cases.

Radius Magnitude Changes

Changes in the magnitude of compensation (new CCR values) made while compensation is active are
introduced linearly over the next move. When this change is introduced over the course of a LINEAR-
mode move, the compensated tool path will be at a diagonal to the programmed move path. When this
change is introduced over the course of a CIRCLE-mode move, the compensated tool path will be a
spiral.

Compensation Direction Changes
Changes in the direction of compensation (between CC1 and CC2) made while compensation are
generally introduced at the boundary between the two moves.

190 Writing Programs for PMAC



PMAC User Manual

Cutter Compensation Change of Direction

CC1

CC2

Line

// Programmed
’ Path

/// Tool Center
Il Path

Line to Line

Arc\\\
CcC1 AN
\\
Arc “\
\
\ Programmed
| Path -
cc2 i Line [
|
Tool Center/
Path /
Line
e >
Arc to Line

///Arc
/
/
/ Arc
Programmed K
Path ! Ny,
CC2  Line | > cet
\\Tool Center
\ Path
______ Line -3y
Line to Arc
Programmed _
Ccc2 Path T >

Arc

W
Tool Center ™, /

Path A
CccC1

Arc to Arc

Figure 45 Cutter Compensation Change of Direction
However, if there is no intersection between the two compensated move paths, the change is introduced

linearly over the next move.

Cutter Compensation Change of Direction — No Intersection

Programmed

Programmed
Path )
Line

CC2

Tool Center
Path

Change Through a Line

Tool Center

CC1
Programmed
Path

Change Through a Line

Change Through an Arc

cc2 Programmed Path

A
~cc1 Line T
r

o Tool Center Path >
=~ Line -

Change in Reversal

Figure 46 Cutter Compensation Change of Direction — No Intersection

How PMAC Removes Compensation

PMAC gradually removes compensation over the next LINEAR or CIRCLE-mode move following the
CCO0 command that turns off compensation. This lead-out move starts at a point one cutter radius away
from the intersection of the lead-in move and the first fully compensated move, with the line from the
programmed point to this compensated endpoint being perpendicular to the path of the first fully

compensated move at the intersection.

Writing Programs for PMAC

191



PMAC User Manual

Note that few controllers can make their lead-out move a CIRCLE-mode move. This capability permits
releasing contact with the cutting surface very gently, important for fine finishing cuts.

Inside Corner

If the last fully compensated move and the lead-out move form an inside corner, the lead-out move starts
directly from this point to the programmed endpoint. When the lead-out move is a LINEAR-mode move,
the compensated tool path will be at a diagonal to the programmed move path. When the lead-in move is
a CIRCLE-mode move, the compensated tool path will be a spiral.

Removing Compensation — Inside Corner

Line
Programmed

CCO

Path Programmed
Path
Tool Center
__________ Path ____ Are Line
Line
Arc /// AN
/Tool Center  Line™<_
/' Path .
|
\
Line to Line Line to Arc

Line
Programmed
Path

CCo CCo

Programmed
Path

Tool Center

Arc ///
/ Tool Center
Path

Spiral ™.
N
N

Arc to Line Arc to Arc
Figure 47 Removing Compensation — Inside Corner

Outside Corner

If the last fully compensated move and the lead-out move form an outside corner, the last fully
compensated move ends at a point one cutter radius away from the intersection of the last fully
compensated move and the lead-out move, with the line from the programmed point to this compensated
point being perpendicular to the path of the fully compensated move at the intersection.

PMAC then adds a circular arc move with radius equal to the cutter radius, ending at a point one cutter
radius away from the same, with the line from the programmed point to this compensated endpoint being
perpendicular to the path of the lead-out move at the intersection.

Finally, PMAC gradually removes compensation over the lead-out move itself, ending at the programmed
endpoint of the lead-out move. When the lead-out move is a LINEAR-mode move, this compensated tool
path will be at a diagonal to the programmed move path. When the lead-in move is a CIRCLE-mode
move, this compensated tool path will be a spiral.

192 Writing Programs for PMAC



PMAC User Manual

Removing Compensation — Outside Corner

Line
Programmed
Path

N\ Arc
\\

/

/ Tool Center

/

Path
Tool Center

Line

Line to Line

!
]

1

/

Line
Programmed
Path

/
/s
/ Spiral \\ Arc

Path
Tool Center

Arc to Line Arc to Arc
Figure 48 Removing Compensation — Qutside Corner

Note that this behavior is different from changing the magnitude of the compensation radius to zero while
leaving compensation active. An arc move is always added at the corner, regardless of the setting of 189.
This ensures that the lead-out move will never cut into the last fully compensated move.

Failures in Cutter Compensation

It is possible to give PMAC a program sequence in which the cutter compensation algorithm will fail, not
producing desired results. There are three types of reasons the compensation can fail.

Inability to Calculate Through Corner
First, if PMAC cannot see ahead far enough in the program to find the next move with a component in the

plane of compensation before the present move is calculated, then it will not be able to compute the
intersection point between the two moves. This can happen for several reasons:

e There is a move with no component in the plane of compensation (i.e., perpendicular to the plane of

compensation, as in a Z-axis-only move during XY compensation) before the next move in the plane
of compensation.

e There is more than one DWELL before the next move in the plane of compensation.

e Program logic causes a break in blending moves (e.g., looping twice through a WHILE loop).

If PMAC cannot find the next move in time, it will end the current move as if the intersection with the
next move would form an outside corner. If the next move, when found, does create an outside corner, or
continues straight on, compensation will be correct. On an outside corner, an arc move is always added at
the corner, regardless of the setting of 189. However, if the next move creates an inside corner, the path
will have overcut into the corner. In this case, PMAC will then move to the correct intersection position
and continue with the next move, leaving the over cutting localized to the corner.

Writing Programs for PMAC 193



PMAC User Manual

Failures in Cutter Compensation

Overcut

S Line ____ >
Programmed Tool LT Tool Center
Path . Center Point " Arc Path

Line Ll at Failure ~3 ,/ r

(No Overcut) k

/ Programmed
/

4 }K Tool _ / r Path
/. Center Point . Lme// Line
5

atFailure © __ Line

& /
—————————— T /
/

Line .~ Tool Center /
ot : Path / Line
//Line /,’/
Failure to See Through Failure to See Through
Inside Corner Outside Corner
Tool Center
Line Line
Programmed ” Arc
Path r
Tool Center . r
Line T ; o Path >o .
i Line
Programmed | Stoppi
Path pping
Point
Overcut (Not
Executed)
Inside Corner Smaller Than Arc Radius Smaller Than
Cutter Radius Cutter Radius

Figure 49 Failures in Cutter Compensation

Inside Corner Smaller than Radius

Second, if the compensated path produces an inside corner with one of the moves shorter than the cutter
radius, the cutter compensation will not work properly. This situation results in a compensated move that
is in the opposite direction from that of the uncompensated move, and there will be over cutting at the
corner.

Inside Arc Radius Smaller than Cutter Radius

Third, if the program requests an arc move with compensation to the inside, and the programmed arc
radius is smaller than the cutter radius, then no proper path can be calculated. In this case, PMAC ends
the program at the end of the previous move with a run-time error, setting the coordinate-system run-time
bit in the status word to 1.

Single-Stepping While in Compensation

It is possible to execute moves in single-step mode while cutter compensation is active, but be aware of
several special considerations for this mode of operation. Because of the need for the program to see
ahead far enough to find the next move in the plane of compensation before the current move can be
executed, the execution of an S single-step command may not produce the intuitively expected results.
The single-step command on a move in compensation causes the preliminary calculations for that move to
be done, not for the move to be actually executed. This has the following ramifications:

e A single-step command on the lead-in move for compensation will produce no motion, because the
next move has not yet been found.

e Single-step commands on compensated moves in the plane of compensation will cause the previous
move to execute.

e A single-step command on the lead-out move will cause both the last fully compensated move and the
lead-out move to execute.

194 Writing Programs for PMAC



PMAC User Manual

Unlike many controllers, PMAC can execute non-motion program blocks with single-step commands with
cutter compensation active. However, be aware that the execution of these blocks may appear out of
sequence, because the motion from the previous programmed move block will not yet have been executed.

Synchronous M-variable assignments in this mode are still buffered and not executed until the actual start
of motion execution of the next programmed move.

Lookahead

A move exactly perpendicular to the plane of compensation will temporarily turn off compensation
because PMAC does not know on which side of the point to compensate. A tiny component of the move
in the plane of compensation is enough to keep compensation turned on.

Two DWELL commands in between moves will temporarily turn of compensation at the point of the
DWELL. Also a looping structure such as the HILE (condition)WAIT or a WHILE loop with no
motion commands will temporarily turn off compensation.

Axis Transformation Matrices

PMAC provides the capability to perform matrix transformation operations on the X, Y, and Z axes of a
coordinate system. These operations have the same mathematical functionality as the matrix forms of the
axis definition statements, but these can be changed on the fly in the middle of programs; the axis
definition statements are meant to be fixed for a particular application.

The matrix transformations permit translation, rotation, scaling, mirroring, and skewing of the X, Y, and
Z axes. They can be useful for English/metric conversion, floating origins, making duplicate mirror
images, repeating operations with angle offsets, and more.

The basic mathematical operation that the matrix operation performs is as follows:
X' RIIRI2RI3 || X DI
Y |=| R2IR22R23 || Y |+| D2
z' R3IR32R33 || Z D3

The base X, Y, and Z coordinates are those defined by the axis definition statements. Those statements
may or may not incorporate a matrix relationship between the axes and motors. If there is a matrix
relationship in the definition statements, these matrix operators will act "on top" of that relationship.

Setting Up the Matrices

The first thing that must be done is to define a buffer space for the transformation matrices. Use the on-
line command DEFINE TBUF{constant}, where {constant} represents the number of matrices
to be defined. Each matrix is set automatically to the identity matrix at this command. This needs to be
done only once; as the space and the values for the matrices will be kept in battery-backed RAM until a
DELETE TBUF or $$$*** command is given.

Using the Matrices

Inside the motion program, the TSEL{constant} (transform select) command picks one of the
matrices that has been defined for use as the active transformation matrix for the coordinate system. This
matrix will be in force for the next calculated moves in the program.

Once selected, the matrix may be processed with several program commands. The processing serves to
put new values in the selected matrix. The matrix is used, with whatever values it contains at the time,
during the calculation of any move involving the X, Y, or Z axes.

Initializing the Matrix
The TINIT (transform initialize) command makes the selected matrix the identity matrix, so that
transformed positions would equal untransformed positions.

Writing Programs for PMAC 195



PMAC User Manual

Absolute Displacement

The ADIS{constant} (absolute displacement) command sets up the displacement portion of the
selected matrix by making the three displacement values (D1, D2, & D3) equal to the three Q-variables
starting with the one specified with {constant}. For instance, ADIS 25 would make the X-
displacement equal to Q25, the Y-displacement equal to Q26, and the Z-displacement equal to Q27.

Incremental Displacement
The IDIS{constant} (incremental displacement) command changes the displacement portion of the
selected matrix by adding the values of the three Q-variables to the existing displacement.

Absolute Rotation/Scaling

The AROT { constant} (absolute rotation) command sets up the rotation/scaling portion of the selected
matrix by making the nine rotation/scaling values equal to the nine Q-variables starting with the one
specified by {constant}. For instance, AROT 71 would make R11 in the matrix equal to Q71, R12
equal to Q72, and so on, to R33 equal to Q79.

Incremental Rotation/Scaling

The IROT{constant} (incremental rotation) command changes the rotation/scaling portion of the
selected matrix by multiplying it by a matrix consisting of the nine Q-variables starting with the one
specified by {constant}. This has the effect of adding angles of rotation, and multiplying scale
factors. For instance, IROT 100 would multiply the existing matrix by multiplying it by a matrix
consisting of the values of Q100 to Q108.

After using any of these commands, any changes to the Q-variables used do not change the selected
matrix. Another command using the Q-variables must be executed to change the selected matrix.

When using axis matrix transformation for scaling, do not use the R radius specification for circular
interpolation, because the radius will not scale with the axes. Use the IJK center vector specification
instead.

Calculation Implications

It takes one to two milliseconds to perform the matrix transformation for every move involving the X, Y,
or Z axis. This will decrease the maximum block execution rate for the motion program. A two-axis
system that was capable of 400 blocks per second without matrix transformation will be capable of only
about 250 blocks per second once matrix transformation has been activated with the TSEL command. To
disable the matrix transformation calculations, use TSELECTO, which deselects all matrices, and stops
the matrix calculation overhead.

Examples
These concepts are probably best illustrated with some simple examples. In actual use, much more
sophisticated things may be done with the matrices, especially with the inclusion of math and logic.

Scaling Example
If the axis definition statements scaled the axes in units of millimeters, but it should be programmed in
inches at least temporarily, set up the matrix as follows:

TSEL 1 ; Select Matrix 1

Q11=25.4 Q12=0 Q13=0 ; Variables for first row
Q14=0 Q15=25.4 Q16=0 ; Variables for second row
Q17=0 Q18=0 Q19=25.4 ; Variables for third row
AROT 11 ; Use Q11-Q19 for matrix

Notice that pure scaling uses only the primary diagonal of the matrix. The scaling is done with respect to
the origin of the coordinate system. Of course, the Q-variable values do not have to be assigned three per
command line, but this is for program readability.

196 Writing Programs for PMAC



PMAC User Manual

Rotation Example

To rotate the coordinate system 15 degrees about the origin in the XY plane. Set up the matrix as
follows:

TSEL 2 ;Select Matrix 2

Q40=COS (15) Q41=SIN(15) Q42=0 ;Variables for first row

Q43=-SIN(15) Q44=COS(15) Q45=0 ;Variables for second row

Q46=0 Q47=0 Q48=1 ;Variables for third row

AROT 40 ;Assign these values to the rotation portion
This transformation rotates the points 15 degrees counterclockwise in the XY plane relative to fixed XY
axes when viewed from the +Z axis in a right-handed coordinate system (i x j = k). Alternately stated, it
rotates the XY axes 15 degrees clockwise in the XY plane relative to fixed points when viewed from the
+Z axis in a right-handed coordinate system.

Displacement Example
To offset the Y and Z axes by five units and 2.5 units, respectively, leaving the X axis unchanged. Set up
the matrix as follows:

TSEL 3 ; Select Matrix 3
Q191=0 ; First variable
Q192=5 ; Second variable
Q193=2.5 ; Third variable
ADIS 191 ; Assign these values to the displacement portion

Second Rotation Example

To rotate the coordinate system 15 degrees in the XY plane, as in the first rotation example, but about an
arbitrary point (P1, P2) instead of the origin. In this case, the rotation matrix is the same as for a rotation
about the origin, but a displacement vector is also required. In general, for a rotation of angle 6 about a
point (x , y ), the displacement vector required is:

[xO(] - cos—) - Yo sin]
[x() sin+ y()(] - cos)]
[ 0 ]
To implement this in PMAC code, assuming that Q40 through Q48 are as in the above rotation example,
we add:
Q50=P1* (1-COS (15) ) -P2*SIN (15)
Q51=P1*SIN(15)+P2* (1-COS (15))

Q52=0
AROTA40 ; Create 15 degree rotation
ADISS50 ; Create proper displacement

Current Position Transformation

When a coordinate system is transformed, it is important to realize that the starting positions for the
upcoming move are transformed, and this has an effect on an axis not explicitly commanded in this
upcoming move. In absolute mode, any axis not explicitly commanded implicitly receives a command to
its existing position, in this case, the transformed position. For example, if the absolute move X1YO is

followed by a 45° rotation, this position is transformed to X0.707Y0.707. If this is followed by an
absolute X2 move command, this is equivalent to an X2Y0 . 707 command, not to an X2Y0 command.

Writing Programs for PMAC 197



PMAC User Manual

Entering a Motion Program

The motion program statements are entered one program buffer at a time into PMAC. For each program
buffer, the first step is to open the buffer for entry with the OPEN PROG n command (where 7 is the
buffer number — with a range of 1 to 32,767). Next, if there is anything currently in the buffer that should
not be kept, it should be emptied with the CLEAR command. Existing lines cannot be edited or new lines
cannot be inserted between existing lines. However, new lines can be appended to the end (with, of
course, the option of clearing the whole buffer first).

Typically, in program development, the editing will be done in a host-based text editor such as the PMAC
Executive Program editor, and the old version of the PMAC program buffer is cleared every time the new
version is downloaded to the card. After the last of the program statements is downloaded, a CLOSE
command should be sent to the card to close the program buffer.

It is a good idea to issue a few commands before the OPEN PROG n command to make sure the buffer
space is ready for the program statements. First, make sure that no motion programs are currently
executing (except for rotary programs). The A (for the addressed coordinate system) or <CTRL-A> (for
all coordinate systems) abort command can be used to make sure execution has stopped. Also make sure
that no other buffer is open; use the CLOSE command for this. Next, to make sure that all the open buffer
space has not been taken up with a data gathering buffer; use the DELETE GATHER command for this.

All of these (on-line) commands can be included in the editor file with the actual motion program
statements, even though they are not part of the actual program. They would not be reported as part of the
program if PMAC were asked to LIST PROG n. (The PMAC Executive program editor, as part of its
Upload function, appends these commands to the returned program.)

The advisable format to use when working in a text editor is:

A

CLOSE

DELETE GATHER

OPEN PROG n

CLEAR

{program statements}
CLOSE

After the program has been downloaded and the buffer closed, a coordinate system that is to execute this
program must be pointed to the program with the B command. For example, B6 would point the
addressed coordinate system's program counter to the beginning of motion program 6. This can be
confirmed with the PC (program counter) query command, which should return P6: 0 if it is pointing to
the top of program 6. If it returns a <BELL> character, it is not pointing to any valid program. Once the
coordinate system is pointing to the top of the program, execution can be started with the R command.
The B and the R commands can be combined into one command line, such as B6R.

Learning a Motion Program

It is possible to have PMAC learn lines of a motion program using the on-line LEARN command. In this
operation, the axes are moved to the desired position and the command is given to PMAC. PMAC then
adds a command line to the open motion program buffer that represents this position. This process can be
repeated to learn a series of points.

The motors can be open loop or closed loop as they are moved around. At the time of the LEARN
command, PMAC reads the motor commanded positions (in open-loop, commanded positions are always
equal to actual positions) and converts them to axis positions by effectively executing a PMATCH
command, inverting the axis definition equations.

198 Writing Programs for PMAC



PMAC User Manual

If the LEARN command specifies which axes are to be learned (e.g. LEARN (A, B, C) ), only those axis
commands will be added to the program. If the LEARN command does not specify any axes, commands
for all nine axis names are added to the motion program.

The LEARN function can only add axis move commands to the program. Any other parts of the motion
program, including math, logic, move modes, and move times, must be sent to the open motion program
buffer directly.

Motion Program Structure

Typically, PMAC motion programs are combinations of movement specification statements, calculation
statements, and logic statements. The movement specification statements are used to generate
commanded trajectories for the axes, according to the rules explained in the Program Trajectory section of
this manual. The calculation statements can be used to determine the parameters for the movement
specifications, and the logic statements can be used to determine which movement statements get
executed, and when.

Basic Move Specifications
The simplest motion programs just contain movement specifications. For example:

F5000
X10000
DWELL1000
X0

(Remember that in entering this program, surround these statements with the buffer control commands as
explained previously.)

The F (feedrate) statement specifies a speed, the X statements command actual moves for the X-axis, and
the DWELL statement commands a halt for the specified time. This program simply specifies a basic
move and return.

Defaults

A program this simple relies on quite a few default settings and modes. This one uses the following
defaults: LINEAR move mode, ABS (absolute) axis specification, with Ix87 and Ix88 specifying the TA
and TS acceleration times, respectively.

Controlling Parameters

What the values in the program mean can depend on external parameters as well. The X positions are in
user units, as defined in the axis definition statement for the X-axis. The F speed specification is in terms
of user position units divided by feedrate time units, as set by variable Ix90 for the coordinate system.

Simultaneous Moves on Multiple Axes

To perform simultaneous coordinate moves of several axes in a coordinate system, simply put their move
specifications on the same line. For instance, if we changed the above program to:

F5000

X10000 Y10000 Zz10000

DWELL1000

X0 YO ZO

the X, Y, and Z axes will command a simultaneous move to 10000, stay there for one second, then
command a simultaneous move to 0.

If an axis in the coordinate system is not commanded in a given move line, a zero-distance move for that
axis is assumed (note that it is technically performing a move, so it cannot be in-position).

Writing Programs for PMAC 199



PMAC User Manual

Sequential Moves

If the program is in LINEAR, CIRCLE, PVT, or SPLINE mode, and there is more than one move
command line in a program without a DWELL or DELAY in between (there can be other statements in
between), the moves will blend together without stopping. The exact form of the blending will depend on
the move mode in force (see the Program Trajectory section of this manual). However, if [x92 for the
coordinate system (Move Blend Disable), this blending capability is disabled.

Adding Logic

A little logic can be added to make the language more powerful. Suppose we wanted to repeat the above
sequence 100 times. Rather than repeating the above statements 100 times, we can create a loop:

F5000

P1=0

WHILE (P1<100)
X10000
DWELL1000
X0
DWELL1000
P1=P1+1

ENDWHILE

Notice that the F5000 statement is not inside the loop. By putting it before the loop, we save PMAC
from having to interpret and execute the statement every time through the loop. Since it is a modal
statement, its effect stays in force. This is not essential, but if loop time is very short, it can make a
difference.

Line Labels

It is possible to put line labels in the motion program to mark particular sections of the program. The
syntax for a line label is N{constant} or O{constant}, where {constant} is an integer from 1
to 262,143.

Notice that these are line labels, not line numbers (even though they are specified by number). A line
does not require a label; and the labels do not need to be in numerical order. These line labels are used
only to specify the jumps in GOTO, GOSUB, and CALL commands (all discussed below).

GOTO Command

PMAC provides a GOTO{data} command in its motion program syntax, which causes a jump to line
label N{data} in the same motion program (without return). In general, the use of GOTO commands is
strongly discouraged, because of the tendency to build up programs that are very hard to decipher.

However, when the {data} in a GOTO command is a variable or expression (e.g. GOTO (P20), it can be
used to build the equivalent of a structured CASE statement, creating a multiple-pronged branching point.

Adding Variables and Calculations

Motion programs can be made a lot more flexible with the use of variables and mathematical calculations.
The above example program will command the same moves with the same timing every time it is
executed. If any parameter for the program would need to be changed, the entire program would need to
be re-entered (or a different program used). However, if we use variables in place of the constants, we
only need to change variable values to change the action of the program:

F (P2)

P1=0

WHILE (P1<P3)
X (P4)
DWELL (P5)
X0

200 Writing Programs for PMAC



PMAC User Manual

DWELL (P5)
P1=P1+1
ENDWHILE

The variables P2, P3, P4, and P5 could be set by the host with on-line commands (e.g. P2=2000) by a
PLC program because of inputs and/or calculations, or even by another motion program.

With calculations inside the motion program, we can get even more sophisticated. General mathematical
expressions can be built in a PMAC motion program using constants, variables, functions and operators
(see Computational Features). The calculations can be done in separate program statements, assigning the
calculated value to a variable, and then using the variable in another statement. Alternately, the
expression can be used directly in a motion specification statement, in which case the value of the
expression is not retained after the statement is executed.

Subroutines and Subprograms

It is possible to create subroutines and subprograms in PMAC motion programs to create well-structured
modular programs with re-usable subroutines. The GOSUBx command in a motion program causes a
jump to line label Nx of the same motion program. Program execution will jump back to the command
immediately following the GOSUB when a RETURN command is encountered. This creates a subroutine.

The CALLx% command in a motion program causes a jump to PROG x, with a jump back to the command
immediately following the CALL when a RETURN command is encountered. If x is an integer, the jump
is to the beginning of PROG x; if there is a fractional component to x, the jump is to line label
N(y*100,000), where y is the fractional part of x. This structure permits the creation of special
subprograms, either as a single subroutine, or as a collection of subroutines, that can be called from other
motion programs.

Passing Arguments to Subroutines

These subprogram calls are made more powerful by use of the READ statement. The READ statement in
the subprogram can go back up to the calling line and pick off values (associated with other letters) to be
used as arguments in the subprogram. The value after an A would be placed in variable Q101 for the
coordinate system executing the program, the value after a B would be placed in Q102, and so on (Z
value goes in Q126).

This structure is useful for creating machine-tool style programs, in which the syntax must consist solely
of letter-number combinations in the parts program. Since PMAC treats the G, M, T, and D codes as
special subroutine calls (see below), the READ statement can be used to let the subroutine access values
on the part-program line after the code.

Example:

For example, the command CALL500 X10 Y20 causes a jump to the top of PROG 500. If, at the top
of PROG 500, there is the command READ (X, Y), the value with X will be assigned to Q124 (X is the
24th letter) and the value with Y will be assigned to Q125. Now the subroutine can work with the values
of Q124 and Q125 (in this case, 10 and 20, respectively), processing them as needed.

What Has Been Passed?

The READ statement also provides the capability of seeing what arguments have been passed (the letters
listed in the READ statement are those that can be passed). The bits of Q100 for the coordinate system are
used to note whether arguments have been passed successfully; bit 0 is 1 if an A argument has been
passed, bit 1 is 1 if a B argument has been passed, and so on, with bit 25 set to 1 if a Z argument has been
passed. The corresponding bit for any argument not passed in the latest subroutine or subprogram call is
set to 0.

Writing Programs for PMAC 201



PMAC User Manual

If the logic of the subroutine needs to know whether a certain argument has been passed to it or not, it
should use the bit-by-bit AND operator (&) between Q100 and the value of the bit in question. The value
of bit 0 is 1, of bit 1 is 2, of bit 2 is 4, and so on (bit value is 2N-1, for the Nth letter of the alphabet). For
instance, to see if a D-argument has been passed, the condition would be:

IF (Q100 & 8 > 0)

3
D is the fourth letter, so the bit value is 2 = 8. To see if an S argument has been passed — S is the 19th
18
letter, so the bit value is 2 = 262,144 — the condition would be:
IF (Q100 & 262144 > 0)

PRELUDE Subprogram Calls

PMAC permits creation of an automatic subprogram call before each move command or other letter-
number command in a motion program or section of a motion program. If the subprogram starts with a
READ command, then the move command or letter-number command itself is turned arguments for the
subprogram call. This functionality is very useful for executing canned cycles in machine-tool style
programs, or for turning ordinary move commands into arguments for a subprogram that executes inverse
kinematic or similar calculations.

This capability is accomplished through the motion-program PRELUDE command. To turn on the
function, declare PRELUDE]1 in the motion program, followed by the subprogram call you wish to be
executed before each subsequent move command or letter-number command. This subprogram call can
be declared with a CALL command, or a G, M, T, or D-code, any of which is a special subprogram call. In
a PRELUDE1 declaration the value in the subprogram call specifying which subprogram and which line
must be a constant; it cannot be a variable or expression.

Once PMAC has encountered a PRELUDE1 command in the program, it will execute the specified
subprogram call each time it encounters a move command or other letter-number command in the motion
program (including G, M, T, and D codes, but excluding N and O line labels). The move command or
letter-number command must be at the beginning of a program line, or immediately following an N or O
line label at the beginning of a program line.

Once PMAC has jumped to the subprogram specified by PRELUDE1, it will treat any move command or
letter-number command in the subprogram as it normally would; these will not cause another subprogram
call automatically. Automatic PRELUDE subprogram calls therefore cannot be nested within each other;
however, a single PRELUDE subprogram call may be nested within explicit subroutine and subprogram
calls, and explicit subroutine and subprogram calls may be nested with a single automatic PRELUDE
subprogram call.

A new PRELUDE1 command supersedes the existing PRELUDE1 command. A PRELUDEO command
(no arguments necessary) turns off the PRELUDE function.

Running a Motion Program

Once the motion program has been entered and the program buffer closed, execute the motion program.
Since PMAC can store multiple programs at once, the first thing to do is to tell the PMAC coordinate
system which program to run (remember that it is a coordinate system in PMAC that executes a motion
program; different coordinate systems may be executing other motion programs at the same time).

202 Writing Programs for PMAC



PMAC User Manual

Pointing to the Program

Pointing to the program is done with the B{constant} command, where the { constant} represents
the number of the motion program buffer. Use the B command to change motion programs, and after any
motion program buffer has been opened. Do not use it if repeatedly running the same motion program
without modification. When PMAC finishes executing a motion program, the program counter for the
coordinate system is set automatically to point to the beginning of that program, ready to run it again.

Use the PC (program counter) command to see which program the coordinate system is pointing to at the
time. A response is received something like P5 : 0, which means that the coordinate system is pointing to
motion program 5, at the top (address offset of 0).

Running the Program

Once pointing to the motion program to run, issue the command to start execution of the program. For
continuous execution of the program, use the R command (KCTRL-R> for all coordinate systems
simultaneously), or take the START/ line on the JPAN connector low with the coordinate system selected
on the FPDn/ lines of the same connector. The program will execute all the way through unless stopped
by command or error condition.

Stepping the Program

To execute just one move, or a small section of the program, use the S command (<KCTRL-S> for all
coordinate systems simultaneously), or take the STEP/ line on the JPAN connector low with the
coordinate system selected on the FPDn/ lines of the same connector. The program will execute to the
first move DWELL, or DELAY, or if it first encounters a BLOCKSTART command, it will execute to the
BLOCKSTOP command.

What PMAC Checks For

When a run or step command is issued, PMAC checks the coordinate system to make sure it is in proper
working order. If it finds that something in the coordinate system is not set up properly, it will reject the
command, sending a <BELL> command back to the host. If 16 is set to 1 or 3, it will report an error
number as well telling the reason the command was rejected.

PMAC will reject a run or step command for any of the following reasons:

e A motor in the coordinate system has both overtravel limits tripped (ERR010)

e A motor in the coordinate system is currently executing a move (ERRO11)

e A motor in the coordinate system is not in closed-loop control (ERR012)

e A motor in the coordinate system in not activated {Ix00=0} (ERRO13)

e There are no motors assigned to the coordinate system (ERR014)

e A fixed (non-rotary) motion program buffer is open (ERR015)

¢ No motion program has been pointed to (ERR016)

e Aftera / or \ stop command, a motor in the coordinate system is not at the stop point (ERR017)

Implementing a Machine-Tool Style Program

PMAC permits the execution of machine-tool style RS-274 (G-Code) programs by treating G, M, T, and
D codes as subroutine calls. This permits the machine tool manufacturer to customize the codes for their
own machine, but it requires the manufacturer to do the actual implementation of the subroutines that will
execute the desired actions. Many of the codes are quite standard, and Delta Tau has provided examples
of these. This section discusses subtler issues involved in implementing the codes.

Writing Programs for PMAC 203



PMAC User Manual

G, M, T, and D-Codes

When PMAC encounters the letter G with a value in a motion program, it treats the command as a CALL
to motion program 10n0, where 7 is the hundreds’ digit of the value. The value without the hundreds’
digit (modulo 100 in mathematical terms) controls the line label within program 10n0 to which operation
will jump — this value is multiplied by 1000 to specify the number of the line label. When a return
statement is encountered, it will jump back to the calling program.

For example, G17 will cause a jump to N17000 of PROG 1000; G117 will cause a jump to N17000 of
PROG 1010; G973 .1 will cause a jump to N73100 of PROG 1090.

M-codes are the same, except they use PROG 10n1; T-codes use PROG 10n2; D-codes use PROG 10n3.
Most of the time, these codes have numbers within the range 0 to 99, so only PROGs 1000, 1001, 1002,
and 1003 are required to execute them. To extend code numbers past 100, PROGs 1010, 1011, etc., will
be required to execute them.

The manufacturer's task is to write routines for motion programs 10n0 to 10n3 to implement the codes in
the manner desired. Once this is done, the method of implementation is invisible to the part programmers
and machine operators.

Standard G-Codes

These are the issues involved in implementing some of the more common G-codes:

G00 — Rapid Point-to-Point Positioning

Typically, this code is implemented in PMAC through use of the RAPID command. Many will have only
RAPID RETURN as the implementation of this code. (Since this is a call to NO of PROG 1000, and the
NO label is implied automatically by the beginning of any motion program, do not explicitly add an NO;
this routine must be at the very top of PROG 1000.)

If utilizing an external feedrate override signal, and the override should be disabled during RAPID mode,
set the time base source address variable back to its default value and away from the external source (e.g.
I193=2054). Alternately, this variable could be set to another external source if the machine had a
separate rapid override setting.

The section of the file to implement GO0 would look something like:

CLOSE

OPEN PROG 1000

CLEAR ; To erase old version when sending new
RAPID ; First actual line of program
I193=2054

RET

GO01 — Linear Interpolation Mode

Typically, this code is implemented in PMAC through use of the LINEAR command. The simplest
implementation of this is NO1000 LINEAR RET. If feedrate override is desired, and it could have been
disabled in RAPID mode, the subroutine should set the time-base source address variable to the register
containing the external information (e.g. I193=1833).

G02 — 2D Clockwise Arc Mode

Typically, this code is implemented in PMAC through use of the CIRCLE1 command. The simplest
implementation of this is NO2000 CIRCLE1l RET. If feedrate override is desired, and it could have
been disabled in RAPID mode, the subroutine should set the time-base source address variable to the
register containing the external information (e.g. I193=1833).

204 Writing Programs for PMAC



PMAC User Manual

G03 — 2D Counterclockwise Arc Mode

Typically, this code is implemented in PMAC through use of the CIRCLE2 command. The simplest
implementation of this is NO2000 CIRCLE2 RET. If feedrate override is desired, and it could have
been disabled in RAPID mode, the subroutine should set the time-base source address variable to the
register containing the external information (e.g. I193=1833).

G04 — Dwell Command

This code requires the use of the READ command. Different dialects of G-codes have the dwell time after
a P or after an X. PMAC can handle either; just use a READ (P) or a READ (X) as appropriate; the P-
value would be placed in Q116, and the X-value would be placed in Q124. The units of time must also be
considered. PMAC dwell units are in milliseconds. If the GO4 units are seconds, the value passed must
be multiplied by 1000. A typical implementation would be NO4000 READ (P) DWELL
(Q116*1000) RET.

G09 — Exact Stop

In some dialects of G-code, this code causes a stop between two moves so that no corner-rounding
blending between the moves is done. In PMAC, this can be implemented simply by executing a short
dwell. A typical implementation would be NO9000 DWELL10 RET.

G17, G18, G19 — Select Plane

These codes select the plane in which circular interpolation and cutter radius compensation will be done.
G17 selects the XY plane, G18 selects the ZX plane, and G19 selects the YZ plane. In PMAC, this is
performed by the NORMAL command, which specifies the vector normal to this plane (and is not limited
to these choices). The standard PMAC implementation of these codes would be:

N17000 NORMAL K-1

RET

N18000 NORMAL J-1

RET

N19000 NORMAL I-1

RET

It is important that the RET command be on a separate line here; otherwise when PMAC returns to the line
that called the subroutine, the NORMAL command would try to pick up more arguments from that line.

To use this information for other routines (such as G68 rotation), set some variable(s) in these routines to
note what plane has been specified. The PMAC circular interpolation and radius compensation routines
do not need such a variable.

G40, G41, G42 — Cutter Radius Compensation
Cutter radius compensation can be turned on and off easily with the CC0O, CC1, and CC2 PMAC commands,
corresponding to G40, G41, and G42, respectively. The subroutines to implement this would be:

N40000 CCO RET ; Turn off cutter compensation
N41000 CCl RET ; Turn on cutter compensation left
N42000 CC2 RET ; Turn on cutter compensation right

G90 — Absolute Move Mode

Typically, this code is implemented in PMAC through use of the ABS command. The ABS command
without a list of axes puts all axes in the coordinate system in absolute move mode. The typical
implementation would be G90000 ABS RET. Also if the G-Code dialect has G90 making the circle-
move center vectors absolute, an ABS (R) command should be added to this routine.

Writing Programs for PMAC 205



PMAC User Manual

G91 — Incremental Move Mode

Typically, this code is implemented in PMAC through use of the INC command. The INC command
without a list of axes puts all axes in the coordinate system in incremental move mode. The typical
implementation would be G91000 INC RET. If the G-Code dialect has G90 and G91 also affecting
the mode of circle-move center vectors (non-standard), an INC (R) command should be added to this
routine.

G92 — Position Set (Preload) Command

If this code is used just to set axis positions, the implementation is very simple: G92000 PSET RET.
With the return statement on the same line, the program would jump back to the calling line and use the
values there (e.g. X10 Y20) as arguments for the PSET command. However, if the code is used for
other things as well, such as setting maximum spindle speed, the subroutine will need to be longer and do
the setting inside the routine.

For example, if G92 is used to preload positions on the X, Y, and Z axes, set the maximum spindle speed (S
argument), and define the distance from tool tip to spindle center (R argument), the subroutine could be:
N92000 READ (X,Y,Z,S,R)

IF (Q100 & 8388608 > 0) PSET X(Ql24) ; X axis preload
IF (Q100 & 16777216 > 0) PSET Y(Q125) ; Y axis preload
IF (Q100 & 33554432 > 0) PSET Z(Q126) ; Z axis preload
IF (Q100 & 262144 > 0) P92=Q119 ; Store S value
IF (Q100 & 131072 > 0) P98=M165-Q118 ; Store R value
RET

The purpose of the condition in each line is to see if that argument has been sent to the subroutine in the
subroutine call — if it has not, nothing will be done with that parameter (see the previous Passing
Arguments to Subroutines section). In the case of the S argument, the value is stored for later use by
other routines, so that a commanded spindle speed will not exceed the limit specified here. In the case of
the R argument, the routine calculates the difference between the current commanded X-axis position
(M165) and the declared radial position (R argument: Q118) to get an offset value (P98). This offset
value can be used by the spindle program to calculate a real-time radial position.

G94 — Inches (Millimeters) per Minute Mode

This code sets up the program so that F-values (feedrate) are interpreted to mean length units (inches or
mm) per minute. In PMAC, F-values are interpreted to mean a speed (length per time) where the length
units are set by the axis definition statements, and the time units are set by the coordinate system variable
1x90. Since the units of Ix90 are milliseconds, this routine should set Ix90 to 60,000. Also, because G94
is used usually to cancel G95, which interprets F-values as inches (mm) per spindle revolution by using
the spindle encoder as an external time base source, this routine should return the coordinate system to
internal time base. A typical routine would be:

N94000 I190=60000 ; Feedrate is per minute
I193=2054 ; Use internal time base
RET

G95 — Inches (Millimeters) per Revolution Mode

This code sets up the program so that F-values (feedrate) are interpreted to mean length units (inches or
mm) per spindle revolution. In PMAC, this requires that the time base for the coordinate system be
controlled by the spindle encoder. Feedrate is still interpreted as length per time, but with external time
base, time is interpreted as proportional to input frequency, and hence, spindle revolutions, giving an
effective length per revolutions feedrate.

206 Writing Programs for PMAC



PMAC User Manual

The subroutine implementing G95 must therefore cause the program to get its time base from the spindle
encoder and get the constants of proportionality correct. (Actually, some or all of these constants may be
set up ahead of time.) This external time base function is performed through a PMAC software feature
known as the Encoder Conversion Table, which is documented in detail in the Feedback Features section
of the manual. Instructions for setting up an external time base are given in detail in Chapter 15,
Synchronizing PMAC to External Events.

Briefly, a scale factor between time and frequency must be set up in the conversion table that defines a
"real-time" input frequency (RTIF). The motion program then can be written as if it were always getting
this frequency. In our case, we will take a real- time spindle speed that is near or greater than our
maximum.

For example, we use 6000 rpm (100 rev/sec) as our real-time spindle speed. In "real time", one spindle
revolution takes 10 msec, so we want our feedrate to be in units of length per (10 msec), which we
achieve by setting Ix90 (feedrate time units) to 10. If we have 4096 counts per spindle revolution (after
decode) our RTIF would be 4096 x 100 = 409,600 cts/sec = 409.6 cts/msec. The equation for the
conversion table scale factor (SF) is:

SF =131,072 / RTIF (cts/msec) = 131,072 / 409.6 =320

This value must come out to an integer for true synchronization without any roundoff errors. Usually it is
easy if the spindle encoder has a resolution of a power of 2. If not, the real-time spindle speed in rps
should be a power of 2, and Ix90 would not be an integer.

This scale factor would be written to the appropriate register in the conversion table. In general, this
would not have to be done every time G95 is executed; rather, it would be part of the system setup.

The typical subroutine for G95 would consist of setting x93 and Ix90 for the coordinate system:

N95000 I190=10 ; PMAC F is length/ 10 msec
I193=1833 ; Time base source 1is external
RET

G96 — Constant Surface Speed Mode Enable

This code sets up the programs so that the spindle is put in constant surface speed (CSS) mode. In this
mode, the spindle angular velocity is varied in real time so that its surface speed past the tool tip remains
constant. Essentially, this means that the angular velocity of the spindle is inversely proportional to the
radial distance of the tool tip from the spindle center. Usually this distance is the X-axis position —
implying that the X-axis zero position is at the spindle center. Some G-code dialects allow the parts
program to create an X-axis offset with G92 R (q.v.), which defines what the radial distance is at the
current X-axis commanded position.

The method suggested here for CSS mode has the spindle in a separate PMAC coordinate system from
the other axes. This allows a spindle program to be executing and reacting at a different rate from the
main parts program, yet to be ultimately controlled by the parts program through variables and flags.
This type of spindle program is explained in detail below.

A G96 code will carry with it a spindle surface speed S code in either feet/minute or meters/minute. This
value should be placed in a variable for the spindle program to pick up. A flag should also be set noting
which mode the spindle is in. Note that spindle mode and speed can be set independently of spindle on/off
state and direction (for which see M03, M04, M05). A typical G96 routine using this approach would be:

N96000 READ (S) ; Read spindle surface speed into Q119
P96=Q119 ; Store spindle speed

M96=1 ; Flag to mark CSS mode

RETURN

Writing Programs for PMAC 207



PMAC User Manual

G97 — Constant Surface Speed Disable

This code cancels spindle constant surface speed mode and puts the spindle into a constant angular
velocity mode. In this mode, the spindle speed is independent of tool radial position. With the spindle
axis in a separate coordinate system, the subroutine executing this code simply sets a variable and a flag
for that program to see. Usually, a G97 code will carry with it a spindle speed S code in RPM. If it does,
the routine picks it up and puts it into a variable. If it does not, the routine allows the spindle program to
keep its last RPM computed under G96 from surface speed and radial distance. A typical G97 routine
using this approach would be:

N97000 READ(S) ; Read spindle RPM into Q119
IF (M100 & 262144 > 0) P97=Q119 ; Store for spindle prog
M96=0 ; Cancel CSS mode

Spindle Programs

Controlling the spindle axis in PMAC may be done in different ways, depending on what the spindle
needs to do. The simplest type of spindle operation, of course, is the one in which the spindle is simply
asked to move at constant speeds for substantial periods of time in one direction or another. In this case,
there is no need to write a spindle motion program; either PMAC just puts out a voltage proportional to
speed (so the spindle is open-loop as far as PMAC is concerned), or the spindle motor is jogged (under
PMAC closed-loop control).

Jogged Spindle

The jogged spindle motor does not need to be in any coordinate system (it must not be in the same
coordinate system as the other axes or it cannot be jogged while a parts program is running), but it is a
good idea to put it in a different coordinate system, because motors that are not in any coordinate system
use Coordinate System 1’s time base control (feedrate override).

Spindle speed values simply are scaled and put into jog speed I-variables (Ix22), and the spindle on/off
functions simply command jog starts and stops (see MO3, M04, and M05).

Open-Loop Spindle

If using the open loop spindle, write directly to an otherwise unused DAC output register by use of an M-
variable. For instance, the definition M425->Y : $C00A, 8,16, S matches the variable M425 to the
DAC4 output register. Any value given to this M-variable will cause a corresponding voltage on the
DACH4 output line. In this method, a spindle-on command (see MO3, M04) could be M425=P10 or
M425=-P10, where P10 has been set previously by an S-code. The spindle-off command (see MO5)
could be M425=0.

Switching Between Spindle and Positioning

There are cases where the spindle motor is sometimes used as a regular axis, doing position moves instead
of steady velocity, and sometimes as a regular spindle. In this case, the spindle motor will be made an
axis in the main coordinate system so it can do coordinated moves. When real spindle operation is
desired, a pseudo-open-loop mode can be created by setting the motor's proportional gain to zero and
writing to the output offset register (1x29). In this method Ix29 would be treated just as M425 was in the
above paragraph. Of course, a velocity-loop (tachometer) amplifier would be required for this mode of
operation. See the example OPENCLOS.PMC for more details.

Constant-Surface-Speed Spindle

To perform in constant surface speed (CSS) mode, write a motion program, because the speed must vary
as a function of another axis position. The suggested method, shown in the example SPINDLE.PMC is to
break the move into small time slices with the commanded distance for each slice dependent on the
system conditions at the time, including commanded speed, mode, and tool radial position.

208 Writing Programs for PMAC



PMAC User Manual

If the spindle were to be controlled in open-loop fashion in CSS mode, it would be best to have a PLC
program modifying the output command (Mx25 or 1x29) as a function of tool radial position. The
structure of the PLC program would be like that of the closed-loop motion program example
SPINDLE.PMC, except no actual move command would be needed; once the math was processed, the
value would simply be assigned to the appropriate variable.

Standard M-Codes

The sections below detail what is involved in implementing the standard M-codes. It is important to
realize the difference between an M-code in a program and an M-variable. They may look the same, but
to be interpreted as an M-variable, it must be used in an equation or expression. For instance, M01=1
refers to M- variable number 1 (usually this sets Machine Output 1), whereas MO1 by itself is the M-code
number 1.

M-codes are treated as subprogram calls to the appropriate line label of motion program 1001.

MOO — Programmed Stop

The routine to execute this code simply needs to contain the STOP command. This code is looking for
the line label NO of PROG 1001, and the beginning of any program is always implicitly NO, so this must
be at the very top of PROG 1001. The part of the file to implement this could be:

CLOSE

OPEN PROG 1001 ; Buffer control command

CLEAR ; To erase old when sending new
STOP ; First line of actual program
RET ; Will jump back when restarted

MO1 — Optional Stop

Typically this code is used to do a stop if the Optional Stop switch on the operator's panel is set.
Assuming this switch is wired into the PMAC Machine Input 1, and variable M11 has been assigned to
this input (this is the default), then the routine to execute this code could be:

N01000 IF (M11=1) STOP

RET

MO02 — End of Program

Since PMAC recognizes the end of a program automatically, and resets the program pointer back to the
top of the program, the routine for this code could be empty (RET statement only). However, in many
systems, a lot of variables and modes get set to default values here. A typical end-of-program routine

might be:

N02000 M55=0 ; Turn off spindle

M7=0 ; Turn off coolant

M2=0 ; Turn off conveyor

LINEAR ; Make sure not in circular mode
RET

MO3 — Spindle on Clockwise
If the spindle is simply doing constant speed moves, these routines can issue jog commands. For
instance:

MO04 — Spindle on Counterclockwise
N03000 CMD "#4J+"

RET

N04000 CMD "#4J-"

MO05 — Spindle Stop
RET

N05000 CMD "#4J/"
RET

Writing Programs for PMAC 209



PMAC User Manual

This assumes, of course, that motor #4 on PMAC is the spindle motor and that the counting-up direction
is clockwise. Spindle speed will have been determined already in other routines by setting 1422 (motor #4
jog speed).

If PMAC were controlling the spindle with an open loop voltage, these routines would put a voltage on an
otherwise-unused analog output by writing to a DAC register. For example:

NO3000 M402=P97*P9

RET

N04000 M402=-P97*P9

RET

NO5000 M402=0

This sample assumes M402 is assigned to the DAC4 register (Y:$C00A,8,16,S), P97 is the desired
spindle speed in RPM, and P9 is the scale factor relating RPM to DAC bits (3,276.7 DAC bits/volt).

If fancier tasks such as constant surface speed are desired, a separate motion program for the spindle will
be required. If these M-codes were to interface with this example, they would be:

N03000 M55=1 ; Flag for clockwise spindle

CMD "&2B1010R" ; Start the spindle program

RET

N04000 M55=-1 ; Flag for counterclockwise spindle
CMD "&2B101OR" ; Start the spindle program

RET

N05000 M55=0 ; Flag for spindle off

RET ;

MO7 — Low-Level (Mist) Coolant On
MO8 — High-Level (Flood) Coolant On
M09 — Coolant Off

The actual implementation of these M-codes will be machine dependent, but typically it will be simple.
For instance, if the coolant on/off control were wired into the PMAC Machine Output 7, and the coolant
high/low control were wired into the PMAC Machine Output 8, the routines could simply be:

N0O7000 M7=1 ; Set Mach. Out. 7: Coolant On
M8=0 ; Clear Mach. Out. 8: Low Level
RET

NO08000 M7=1 ; Set Mach. Out. 7: Coolant On
M8=1 ; Set Mach. Out. 8: High Level
RET

N09000 M7=0 ; Clear Mach. Out. 7: Coolant Off
RET

DWELL statements could be added before and/or after the setting of the outputs if it is desired to provide
some time for the change to occur.

M12 — Chip Conveyor On

M13 — Chip Conveyor Off

The implementation of these codes will be machine dependent, but typically very simple. For instance, if
the conveyor on/off line were wired into Machine Output 2, these routines could simply be:

N12000 M2=1 ; Set Mach. Out. 2: Conveyor On
RET

N13000 M2=0 ; Clear Mach. Out. 2: Conveyor Off
RET

210 Writing Programs for PMAC



PMAC User Manual

M30 — End of Program with Rewind
See M02 description. M30 will be essentially equivalent to MO2 in most systems but will return to the
beginning of the program.

Default Conditions

Typically, a machine running G-code style programs requires many default values and modes beyond
what PMAC sets automatically during its power-up/reset cycle. To set these defaults, it is best to use the
PLC 1 program, which will be the first thing executed after the automatic power-up/reset cycle
(effectively extending what is done in this cycle). The last line in this program should be DISABLE PLC
1, which prevents repeated execution of the program. A simple file for such a program could be:

CLOSE

OPEN PLC 1

CLEAR

M55=0 ; Spindle Off

P92=3000 ; Maximum spindle RPM

P95=1000 ; Max spindle accel in RPM/sec
M70=0 ; English measurements

DISABLE PIC 1 ; So this is only executed once
CLOSE

Rotary Motion Program Buffers

The rotary motion program buffers allow for the downloading of program lines during the execution of
the program and for the overwriting of already executed program lines. This permits continuous
execution of programs larger than the PMAC memory space, and also real-time downloading of program
lines (equivalent to SMCC’s MDI mode).

Defining a Rotary Buffer

Each coordinate system can have a rotary program buffer. To create a rotary buffer for a coordinate
system, address that coordinate system (&n) and send the DEFINE ROT {constant} command,
where {constant} is the size of the buffer in memory words. Each value in a program (e.g. X1250)
takes one word of memory. The buffer should be sized to allow enough room for the distance ahead of
the execution point you wish to load. Since most applications utilizing rotary buffers will not strain the
PMAC memory requirements, it is a good idea to oversize the buffer by a good margin.

For instance, to load 100 program lines ahead of the execution point in a four-axis application where it is
using constant values for position (e.g. X1000 Y1200 Z1400 A1600), there should be at least 400
words of memory in the buffer, so it would be a good idea to allot 500 or 600 words for the rotary buffer
(c.g. DEFINE ROT 600).

Required Buffer State for Defining:

In order for PMAC to be able to reserve room for the rotary buffer, there can be no data-gathering buffer
and no rotary program buffer for a higher-numbered coordinate system at the time of the DEFINE ROT
command. Therefore, delete any data-gathering buffer first, and define the rotary buffers from high-
numbered to low-numbered. For instance:

DELETE GATHER

&3 DEFINE ROT 200

&2 DEFINE ROT 1000

&1 DEFINE ROT 20

Writing Programs for PMAC 211



PMAC User Manual

Preparing to Run

To prepare to run a rotary program in a coordinate system, use the BO command (go to Beginning of
program zero — the rotary program) when addressing that coordinate system. This must be done when
no buffers are open, or it will be interpreted as a B-axis command. Once prepared this way, the program
is started with the R command. This command can be either given with the buffer open or closed. If the
R command is given for an empty rotary buffer, the buffer will simply wait for a command to be given to
it, then execute that command immediately.

Opening for Entry

The OPEN ROT command opens all of the rotary program buffers that have been defined. Program lines
following this are sent to the buffer for the host-addressed coordinate system (&n). Most users of rotary
program buffers will have only one coordinate system, so this will not be of concern to them, but it is
possible to switch coordinate systems on the fly and use several rotary buffers at once.

It is important to realize that after the OPEN ROT command, PMAC is treating as many commands as
possible as buffered commands, even if it is executing them immediately (some commands mean one
thing as an on-line command, and another thing as a buffered command). For instance, an 1100
command is a request for a value of I-variable 100 when buffers are closed, but it is a command to do a
full circle with a 100-unit radius when a motion program buffer is open (the I-value is the X-axis
component of the radial vector. Since no axis positions are given, they are all assumed to be the same as
the starting point).

Staying Ahead of Executing Line

The key to the handling of a rotary program buffer is knowing how many lines ahead the program is; that
is, how many program lines have been loaded ahead of the program line that PMAC is executing.
Typically, load ahead until a certain number of lines ahead is reached, and then wait until the program
catches up to within a smaller number of lines ahead. A real-time application may work one line ahead of
the executing line; an application doing periodic downloading of a huge file may get 1000 lines ahead,
then start again when the program has caught up to within 500 lines.

PR Command
The PR (program remaining) command returns the number of lines ahead. This provides a simple polling
scheme, but one that is probably not good for tight real-time applications.

BREQ Interrupt

For tightly coupled applications, there are hardware lines to handle the handshaking for the rotary buffer,
and variables to control the transition points of the lines. The BREQ (Buffer Request) line goes high
when the rotary buffer for the addressed coordinate system wants more program lines, and it goes low
when it does not. This line is wired into PMAC PC's programmable interrupt controller, so it can be used
to generate an interrupt to the host PC. The complement, BREQ/, is provided on the JPAN connector. In
addition, there is a Buffer Full (BREQ/) status bit for each coordinate system.

117 Stops Interrupts

Variable 117 controls how many lines ahead the host can load and still get BREQ true. If a program line
is sent to a rotary buffer, BREQ is taken low, at least temporarily. If still less than [17 lines ahead of the
executing line, BREQ is taken high again, which can generate an interrupt. If 117 or more lines ahead,
BREQ is left low. When a rotary program buffer is entered with OPEN ROT or change the addressed
coordinate system, BREQ is taken low, and then set high if the buffer is less than 17 lines ahead of the
executing point.

212 Writing Programs for PMAC



PMAC User Manual

|16 Restarts Interrupts

Variable 116 controls where BREQ gets set again as the executing program in the rotary buffer catches up
to the last loaded lines. If after execution of a line, there are less than 116 lines ahead in the rotary buffer,
BREQ is set high. This can be used to signal the host that more program lines need to be sent.

By using these two variables and the BREQ line for interrupts, an extremely fast and efficient system for
downloading programs in real time from the PC is created.

If the Buffer Runs Out

If the program calculation catches up with the load point of the rotary buffer, there is no error; program
operation will suspend until more lines are entered into the rotary buffer. Technically, the program is still
running; a Q or A command must be given to truly stop the program.

If PMAC is in segmentation mode (I13>0) and is executing the last line in the rotary buffer, as long as a
new line is entered before the start of deceleration to stop, PMAC will blend into the new move without

stopping.
Closing and Deleting Buffers
The CLOSE command closes the rotary buffers just as it does for other types of buffers. Closing the

rotary buffers does not affect the execution of the buffer programs; it just prevents new buffered
commands from being entered into the buffers until they are reopened.

DELETE ROT erases the rotary buffer for the addressed coordinate system and de-allocates the memory
that had been reserved for it.

How PMAC Executes a Motion Program

It can be important to know how PMAC works its way through a motion program. A motion program
differs fundamentally from a typical high-level computer program in that it has statements (moves,
DWELLs, and DELAYs) that take time; there is an important difference between the calculation time and
the execution time.

A PMAC program exists to pass data to the trajectory generator routines that compute the series of
commanded positions for the motors every servo cycle. The motion program must be working ahead of
the actual commanded move to keep the trajectory generators fed with data. If the program fails to keep
ahead, and the time for the next move comes without the proper data in place for the trajectory generators,
PMAC will abort the program and bring all motors in the coordinate system to a stop.

Calculating Ahead

PMAC processes program lines either one or two moves (including DWELLs and DELAYs) ahead.
Calculating one move ahead is necessary in order to be able to blend moves together; calculating a second
move ahead is necessary if proper acceleration and velocity limiting is to be done, or a three-point spline
is to be calculated (SPLINE mode). For linear blended moves with 113 (move segmentation time) equal
to zero (disabled), PMAC calculates two moves ahead, because the velocity and acceleration limits are
enabled here. In all other cases, PMAC is calculating one move ahead.

Note:

No velocity- or acceleration-limiting done on the fly can be entirely foolproof.

The more moves that an on-the-fly algorithm looks ahead, the more likely it is to
be successful in catching all cases, but to be certain, the entire move sequence must
be evaluated ahead of time.

Writing Programs for PMAC 213



PMAC User Manual

Starting Calculations

Upon the command to start the program, PMAC will calculate program statements down to and including
the first or second move statement, depending on the mode of the move and the setting of [13. This can
include multiple modal statements, calculation statements, and logical control statements.

Actually the programmed moves will not start executing until I11 milliseconds have passed, even if the
calculations were finished earlier. This permits proper synchronization between cards, so one will not
start before the other. If 111 is set to zero, the first move will start as soon as the calculations have
finished.

Statements down to and including the next move statement, putting the data thus computed into a queue
for the trajectory generator. Program calculation is then held up until the trajectory generator starts the
next move, and PMAC performs other tasks (PLC programs, communications, etc.).

Calculation of Subsequent Moves
As soon as the actual execution of a move by the trajectory generating routines starts, a flag is set for
PMAC to calculate the entire succeeding program insufficient calculation time.

If PMAC ever cannot finish calculating the trajectory for a move by the time execution of that move is
supposed to begin, PMAC will abort the program, showing a run-time error in its status word. Usually
this happens when move times are made short (a few milliseconds) and/or there is a large amount of
calculation in between move commands. The limit on this move block calculation rate is application-
dependent, but generally is several hundred blocks per second.

If concerned about this move calculation limit, during development make the move times continually
shorter until PMAC fails. Then for the final application make sure that the minimum move time is kept
greater than this, usually with a safety margin of at least 25%.

A. Two moves ahead
LINEAR with 113=0

SPLINE1

Execute | "R" @
=111 E@ }@. }@. time
O

Calculate

B. One move ahead
LINEAR with 113>0

CIRCLE, PVT
Execute | "R" O
b«m—ﬂ@ '© ‘® ‘@ time

Calculate

C. No moves ahead
1x92=1, RAPID,
HOME, DWELL,"S"

©) ©) ®

Execute

|11J len1a] LDWELL,Lm J time
time @

Calculate

Figure 50 PMAC Motion Program Recalculation

214 Writing Programs for PMAC



PMAC User Manual

When No Calculation Ahead

There are several conditions in a motion program that break the blending and stop the calculation ahead.
In these cases, PMAC waits until that operation is finished before it starts calculations on the next move
or two moves. During any of these breaks, PMAC will use the [11 calculation time to delay the start of
the next move.

DWELL Commands

A DWELL command in a motion program breaks the blending of moves, so PMAC will not calculate
through a DWELL. PMAC does not start the calculation of subsequent moves until after the DWELL time
is complete. A DELAY command, by contrast, is really a zero-distance move command of the specified
time; PMAC does calculate through a DELAY.

HOME, RAPID Moves

If a homing search move (HOMEn) or a RAPID mode move is commanded from within a program, it is
not blended with any other move. PMAC does not start the calculation of subsequent moves until after all
motors have completed their commanded moves of these types.

PSET Command

If a PSET command is used within a motion program to redefine axis position(s), PMAC will not blend
the move before the PSET to the move after. It will not start the calculation of the subsequent move until
after the previous commanded move has finished and the PSET command has been executed.

Double-Jump-Back Rule

If in the course of trying to calculate the next move, PMAC detects two backward jumps in the logic of
the program, PMAC will not try to blend the last calculated move to an upcoming move. These backward
jumps can be caused either by ENDWHILE statements or GOTO statements; GOSUB, CALL, and RETURN
jumps do not count here. The intent of this rule is to prevent PMAC from having to abort a program due
to insufficient calculation time if it has to loop multiple time on short moves.

Blending Stopped

PMAC will instead allow the previous move to come to a stop, and will start calculating the program
again at the next real-time interrupt (see I8 description), continuing until it finds the next move statement,
or two more jumps back (in which case the process is repeated). This permits indefinite waiting loops
that will not cause PMAC to abort the motion program because of insufficient calculation time.

Nested Loops

This double jump-back rule can cause programmers to inadvertently stop blending when they are
calculating moves within nested while loops. Consider the following example that attempts to creates
continuously blended sinusoidal motion generated in the inner loop, using the outer loop to index the size
of the sinusoid:

SPLINE1 TA20

P1=0
WHILE P1<10)
P2=0
WHILE (P2<360)
X (PL*SIN(P2))
P2=P2+1
ENDWHILE
P1=P1+1
ENDWHILE

Writing Programs for PMAC 215



PMAC User Manual

The first 360 pieces will be blended (splined) together on the fly as PMAC cycles through the inner loop.
But when PMAC increments P2 to 360, it hits the first ENDWHILE and jumps back to the inner WHILE
condition, which is now false, so it jumps down, increments P1, hits the second ENDWHILE, and jumps
back to the outer WHILE condition, all without encountering a move command.

At this point, PMAC invokes the double-jump-back rule and lets the last programmed move come to a
stop. It does this to prevent the possibility that it might be caught in an indefinitely true set of loops with
no movement, which could mean that it would not have the next move equations ready in time. It
resumes calculations when this move has finished and will start up the next sequence of moves in the
inner loop.

To blend all of these moves together continuously, pull the last move of the inner loop outside of the
inner loop. This way, two ENDWHILE statements will never be encountered between move commands:

SPLINE1l TA20

P1=0
WHILE (P1<10)
P2=0
WHILE (P2<359) ; Note that loop
; stops earlier
X (P1*SIN(P2))
P2=pP2+1
ENDWHILE
X (P1*SIN(P2)) ; Last move from
; inner loop
P1=P1+1
ENDWHILE

Looping to Wait

There are several methods for holding program execution while waiting for a certain condition to occur.
Usually this is done with a WHILE loop, but what is done inside the loop has an effect on responsiveness
and calculation load.

The fastest execution is the WHILE ({condition}) WAIT loop. As soon as the WAIT command is
encountered, motion program calculations are suspended until the next real-time interrupt, at which time
they will re-evaluate the condition. The motion program effectively becomes like a one-line PLC
program. If the next RTI has already occurred, it will re-enter the interrupt service routine immediately
and re-evaluate the condition. If this occurs repeatedly, background routines will be starved for time,
slowing PLCs and communications, or in the worst case, tripping the watchdog timer. Usually this
happens only if multiple coordinate systems are in simultaneous WHILE. . .WAIT loops.

Of similar speed is an empty WHILE. . . ENDWHILE loop, or at least one with no motion commands
inside. Each RTI, this will execute twice, stopped by the double-jump-back rule. Calculations resume at
the next RTI, or if this has occurred already, they resume immediately, with the same possible
consequences for starving background calculations.

Using a WHILE ({condition}) DWELL single-line loop helps to control the looping rate better,
giving time for background routines. The condition is evaluated only once after each DWELL.

Implications of Calculating Ahead

The need of the motion program to calculate ahead during a continuous sequence of moves means that
non-motion actions (particularly the setting of outputs) taken by the program happen before it is thought
they would by one or two moves. For variables that are only used within the program, this is no problem,
because everything happens sequentially within the program.

216 Writing Programs for PMAC



PMAC User Manual

It is possible to move these non-motion actions to a point one or two moves later in the program to get the
actions to occur when they are desired. However, this makes the program extremely difficult to read as
far as the proper sequence of operations.

Synchronous M-Variable Assignment

The synchronous M-variable assignment statement is designed to get around this problem. This type of
statement uses a double equals sign (==) instead of a single equals sign. This is a flag to PMAC to hold
off the actual execution of the statement until the beginning of the move immediately following it, so the
actual action coincides with the actual motion.

Synchronous M-variable assignment statements are discussed in detail in the Computational Features
section of the User's Guide, with syntax instructions under M{ constant}=={expression}.

Writing Programs for PMAC 217



PMAC User Manual

218 Writing Programs for PMAC



PMAC User Manual

SYNCHRONIZING PMAC TO EXTERNAL EVENTS
Features to Help Synchronize Motion

PMAC has several powerful features to help in synchronizing the motion under PMAC control to external
events. These include position following, commonly known as electronic gearing; time-base control,
commonly known as electronic cams; position capture, which is very useful for registration applications;
and position compare, which can be used for precision scanning and measurement applications. Each of
these areas is covered in this section.

Position Following (Electronic Gearing)

PMAC has several methods of coordinating the axes under its control to axes not under its control. The
simplest method is basic position following. This is a motor-by-motor function, not a coordinate system
function as time-base following is. An encoder signal from the master axis (which is not under the
PMAC control) is fed into one of the PMAC encoder inputs. Typically this master signal is either from
an open-loop drive or a handwheel knob.

Position Following I-Variables

One or more of the PMAC motors is told that this encoder register is the master (with Ix05). Ix05 is an
address I-variable; that is, its value contains the address of the register holding the master position
information. Typically, this register is that of some processed position data in the Encoder Conversion
Table. It is helpful to have done the 1/T interpolation or similar to reduce the quantization noise in the
sampling of the master encoder (this is done automatically in the default setup).

The following ratio for each motor is set by Ix07 and Ix08, which can be analogized to the number of gear
teeth on master and slave in a mechanical following application. The following function is turned on and
off with Ix06. When it is on, the input stream from the master acts just like a trajectory generator,
creating a series of commanded positions to which the following axis controls.

A. Two moves ahead
LINEAR with 113=0
SPLINE1

Execute] "R" @
l t } } >
f— 11— @ ® ® time
Calculate o2 6
B. One move ahead
LINEAR with 113>0
CIRCLE, PVT @) ©) @
Execute] "R" Q [
; \:\ Il Il »
fe—111— ©) @ ® time
Calculate
C. No moves ahead
1x92=1, RAPID,
HOME, DWELL,"S"
ngn
Execute B D @ @ ®
l ¥ \ | \ | ¥ »
111l le11t] th\i/ynlnglml time
Calculate O @ & ®

Figure 51 PMAC Motion Program Recalculation

Synchronizing PMAC to External Events 219



PMAC User Manual

Changing Ratios on the Fly
To vary the following ratio in the middle of an application, change Ix07 alone. Ix08 is involved in the
scaling of servo feedback calculations, and so should not be changed in the middle of an application.

There can be tradeoffs between the resolution of on-the-fly changes and the servo performance of the
system. The higher the Ix08 scale factor, the finer the resolution of the changes can be. However, the
higher Ix08 is, the lower proportional gain [x30 can be before internal saturation occurs, and the lower the
maximum velocity can be before there is internal saturation of those registers. In general, Ix08 should be
kept below 1000.

Superimposing Following on Programmed Moves

In addition, this following function can be superimposed on calculated trajectories. This permits, for
instance, shapes to be cut out of a moving web, where the shape program can be written without regard to
the web movement, and a master signal from the web compensates for the movement.

Bit 16 of Ix05 determine whether the following occurs in offset mode, where the reported position of the
following motor does not reflect the change due to following, or normal mode, in which it does. Usually
to superimpose following and calculated moves, use offset mode in which bit 16 is 1 (if the master
position is taken from X-register $0721, the parameter value would be, for example, [105=$10721).

Time-Base Control (Electronic Cams)

A more sophisticated method of coordination to external axes is time-base control, in which the input
signal frequency controls the rate of execution of moves and programs. Time-base control operates on an
entire coordinate system together. Specify which encoder register is receiving the input frequency, and
the relationship between the input frequency and the program rate of execution. This not only varies the
speed of moves in proportion to the input frequency (all the way down to zero frequency), but also keeps
total position synchronization. This permits operations such as multi-pass screw threading.

What Is Time-Base Control?

The PMAC motion language expresses the position trajectories as functions of time. Whether the moves
are specified directly by time, or by speed, ultimately the trajectory is defined as a position-vs.-time
function.

This is fine for a great number of applications. However, in many applications the PMAC axes is slaved
to an external axis not under PMAC control (or occasionally, an independent axis under PMAC control in
a different coordinate system). In these applications, define the PMAC trajectories as functions of master
position, not of time.

Ix05 Master (HW) Position Address & Mode

1x06 Following Enable

Ix07 Master Scale Factor

I1x08 Position Loop (Load) Scale Factor

1x09 Velocity Loop (Motor) Scale Factor

Encoder Table

o
Can be
: e
° |x06 | changed on
the fly

$0720-$0739

Trajectory

+ To DAC
Cannot be
changed on AP
the fly Actual
Motor
Position
ﬁctual
Pogﬁi%n
1x08

Figure 52 Position Following Parameters

220 Synchronizing PMAC to External Events



PMAC User Manual

Real-Time Input Frequency

The PMAC method for doing this leaves the language expressing position as a function of time, but
makes time proportional to the distance covered by the master. This is done by defining a real-time input
frequency (RTIF) from the master's position sensor, in units of counts per millisecond. For example, an
RTIF of 32 cts/msec is defined. Then, in time-base mode, when the program refers to a millisecond, what
it is really referring to is 32 counts of the master encoder, whatever physical distance that is. If move is
programmed in the slave program to take 2 seconds, it will really take 64,000 counts of the master
encoder to complete.

Constraints on Selection of RTIF

If PMAC had infinite resolution and infinite dynamic range in its time base calculations, the choice of
real-time input frequency would be entirely arbitrary. Any frequency can be selected as the RTIF, and a
motion program can be written for that RTIF. However, PMAC does its time-base calculations in integer
arithmetic, which limits the resolution, and in 24-bit registers, which limits the dynamic range.

These limitations lead to three restraints on the selection of the RTIF:

e The time base scale factor (TBSF) derived from the RTIF must be an integer. The value that PMAC
needs for its calculations is not the frequency in cts/msec, but the inverse of the frequency in msec/ct.
In order for this number to be in the range of integer values, the rule is to multiply the frequency
inverse by 2" (131,072).

e Ifa value of 100 cts/msec were chosen for RTIF, then the TBSF would be 131,072/100 = 131.072,
which is not an integer. PMAC could only accept the integer part of 131, and drift would occur.

e A choice of real-time input frequency that is a power of 2 in cts/msec (e.g. 32, 64, 128) will always
produce an integer TBSF. In addition, RTIF values that are equal to a power of 2 divided by an
integer will work typically. For example, 204.8 cts/msec (=2048/10, = 2'%/10) will yield a TBSF of
2"7/2'%%10 = 640.

e The time base calculations will saturate at an input frequency (IF) where IF/RTIF equals the servo
update frrequency in kHz. At the default servo update frequency of 2.25 kHz and an RTIF of 32
cts/msec, the maximum input frequency that can be accepted without saturation is 32%2.25 =72

cts/msec. If the system could operate to 100 cts/msec, the choice of RTIF=32 cts/msec would not be
acceptable, but a choice of RTIF=64 cts/msec would be acceptable (100/64=1.5625<2.25).

e A choice of RTIF greater than the maximum input frequency is always acceptable.

e If PVT or SPLINE mode moves are used, the segment times at the RTIF must be an integer number
of milliseconds. This means that the RTIF must be chosen so that the total cycle time at the RTIF is
an integer number of milliseconds.

e Sometimes this will not be possible unless the resolution of the master encoder is a power of 2. For
this reason, it is suggested that the master encoder resolution be selected as a power of 2 (e.g. 1024
lines/rev instead of 1000 lines/rev).

e For example, with a 1000 line/rev encoder (4000 cts/rev) on a spindle motor, an RTIF of 200 cts/msec
corresponds to a speed of 50 revs/sec (3000 rpm), or exactly 20 msec/rev. However, it yields a TBSF
of 655.36, which is not an integer.

e  With this encoder, an RTIF that yields an integer TBSF (256 cts/msec yields 512, or 204.8 cts/msec
yields 640) corresponds to a cycle time that is not an integer.

e However, with a 1024 line/rev encoder (4096 cts/rev), an RTIF of 204.8 cts/msec corresponds to a
speed of 50 rps (3000 rpm) for a revolution time of 20 msec, and it yields a time-base scale factor of
exactly 640. In this case, the time base function stays locked, and a SPLINE or PVT sequence can be
written that corresponds to an exact number of spindle revolutions.

Synchronizing PMAC to External Events 221



PMAC User Manual

How It Works

Time-base control works by lying to the commanded position update equations that occur every servo
cycle about the amount of elapsed time since the last servo cycle. (Variable 110 contains the actual
amount of time.)

Note:

The actual time between servo cycles does not change, nor do the dynamics of the
servo loops. It is only the rate of the commanded trajectories that change with the
external frequency, and since all of the trajectories in the coordinate system change
together, the path through space does not.

Instructions for Using an External Time-Base Signal
Using an external time-base signal requires several steps to set up. However, once the setup is complete,
the time-base control is automatic. The steps in the set-up are detailed below.

Step 1: Signal Decoding

The signal is input to the PMAC at one of the incremental encoder inputs (Channels A and B). The signal
must be either a quadrature signal (as out of an encoder) or a pulse and direction signal (pulse into A,
direction into B). For the encoder inputs used (one of the Encoders 1 to 16), Encoder I-variable 0 (1900
for Encoder 1, 1905 for Encoder 2, etc.) controls the decode method, and defines what a count is. For
instance, with a quadrature signal into Encoder 4 lines, 1915 = 3 or 7 defines four counts per encoder
cycle, whereas 1915 = 2 or 6 defines only two counts per encoder cycle. The difference between 3 and 7,
or 2 and 6 is for which sense of the signal does the decoder count up.

Make sure that to count up in the direction that the master signal is going. Counting down would imply a
negative time-base, which PMAC cannot handle.

Analog Source for Frequency

PMAC has a single on-board voltage-to-frequency (V-to-F) converter that allows a voltage level input to
the Wiper line of the JPAN connector (Pin 20 of J2) to control the time base. The input is 0 to +10V
analog signal that is converted to a nominal 0 to 250 KHz frequency (25KHz/V). Jumpers E72 and E73
ON connect this signal to the Encoder 4 decoder-counter (there is no choice about which encoder). Make
sure jumper E24 connects pins 1 and 2 (the default). I-variable 1915, which controls decoding this signal,
should be set to 4 (pulse and direction, counting up on this signal).

From this point on, the time-base control can be treated just as if it came from an external frequency
source. Note that the default conversion table is set up to handle time-base information from this encoder
counter. Refer to the diagram under Control-Panel I/O in the Connecting PMAC to the Machine section
of this manual.

Step 2: Interpolation

Once decoded and counted, the value from the signal is brought into the encoder conversion table once
per servo cycle, exactly as a position feedback signal would be. Using the 1/T conversion method here is
recommended, because this method gives a very good sub-count interpolation of the signal (using timers
associated with the counter) that significantly enhances the smoothness of the time base information.
Make sure that the conversion table is set up to process the counter from the input signal this way. The
encoder conversion table is set up at the factory to do 1/T conversion on encoder counters 1 through 8.
See the description of the encoder conversion table for more details.

222 Synchronizing PMAC to External Events



PMAC User Manual

Step 3: Time Base Calculation

A separate entry in the encoder conversion table takes the interpolated position information from the
above step, subtracts out the interpolated position information from the previous servo cycle, and
multiplies this difference by a scale factor to produce the time base value for the servo cycle. (This time
base value is then a multiplying factor in the position update calculations, so the amount of update is
proportional to the number of counts received from the time base signal in the last servo cycle.)

The two set-up items in this step are the source of information (the interpolated "position" register) and
the scale factor. Both of these are entries in the encoder conversion table. See the description of the table
for more details on how to enter these. The equation for the time base conversion is:

(100 .0 - SCALE _ FACTOR - INPUT _ FREQ )

0,
% value 317

where the value (also known as feedrate override value) is what controls the rate of position update when
it equals 100.0, programs and moves operate in real time (i.c., at the times and speeds specified in the
program). SCALE FACTOR is the integer value that must be determined to set up time base following
properly. INPUT FREQ is the count rate (as determined by the signal and Encoder I-variable 0) in
counts/millisecond 2'” is 131, 072.

To set the scale factor, decide on a real-timeinput count frequency which is the rate of input counts at
which the program and moves should execute at the specified rate. Since this is the rate at which the %
value will be 100.0, solve it simply for the scale factor:

131,072

SCALE _ FACTOR =
- (REAL _TIME _INPUT _ FREQ )

Since the scale factor must be an integer, and 131,072 is a power of two, make the real time input
frequency a power of two in units of counts/msec. For instance, if using a system where the typical full-
speed input count frequency is 60,000 counts/second, define the real-time input frequency to be 64
counts/msec. This would then make the scale factor 131,072 / 64 = 2,048.

So far, all there is only a value in a register proportional to the master frequency. Now make use of this
value to control the motion program.

Step 4: Using the Time-Base Calculation

Time base values work on a coordinate system. Each coordinate system has an I-variable that tells it
where to look for its time base information. This variable is [x93 for Coordinate System x. The default
values for [x93 are the addresses of registers that are under software control, not the control of an external
frequency. For a coordinate system to be under external time-base control, put the address of the scaled
time-base value determined above. For instance, in the default conversion table, this value is at address
$729 (1833 decimal), so if Coordinate System 1 were to be controlled by this frequency, 1193 would be
set to 1833 (this is always an X-memory word, so X does not need to be specified).

Once this [-variable has been set up, all motors assigned to this coordinate system will be under the
control of the external frequency, in programmed and non-programmed moves.

I-variable Ix94 controls the maximum rate of change of the time-base value for Coordinate System x.
When commanding the time-base value from the host (with a $n command), this value should be set
fairly low to produce a nice slewing to the new commanded value. However, to keep synchronized to an
external signal as time-base source, this value should be set as high as possible (maximum value is
8,388,607) so the time base can always slew as fast as the signal. Setting the value low can improve
following smoothness at the cost of some slip in the following. If the [x94 limit is ever used in external
time base, position synchronization to the master is lost.

Synchronizing PMAC to External Events 223



PMAC User Manual

Step 5: Writing the Program

When writing the program that is to be under external time-base control, simply write it as if the input
signal were always at the real-time frequency. When run, the program will execute at a rate proportional
to the input frequency. There is full floating-point resolution on the move times and feedrates specified.

Remember that DWELL commands always execute in real time, regardless of the input frequency. If you
want pauses in your program that are proportional to an input frequency, use the DELAY command, not
DWELL.

Time-Base Example

There is a web of material moving at a nominal speed of 50 inches per second. There is an encoder on the
web that gives 500 lines per inch. There is a crosscutting axis under PMAC control. When the web is
moving at nominal speed you want to make a cutting move in 0.75 seconds and be ready to start another
move 2.50 seconds later. The web encoder is attached to Encoder 2 input lines.

Step 1: Signal Decoding

Since the web encoder is Encoder 2, 1905 controls the decode. For maximum resolution, set 1905 to 3 or
7 for 4x decode. Try 3 first. Looking in the list of suggested M-variables in the manual, notice that the
encoder position M-variable for this encoder is M201. Make the definition for M201 and query its value
repeatedly (probably using the Executive program Watch window) while turning the web encoder in the
direction it will be going in the application. If the value increases as the encoder is turned, 1905 is set
properly. If it decreases, change 1905 to 7. (If it does not change, check the connections.)

Step 2: Interpolation

Next look at the current set-up of he encoder conversion table. The easiest way to do this is through the
Configuration menu of the PMAC Executive program. If this is not available, command PMAC with
RHY:$720, 16, which causes PMAC to report the contents of addresses Y:$720 to Y:$72F — the set-up
data for the table. We get back something like this:

00CO00 00C004 00CO08 00COOC 00C0O10 00CO14 00cCO18

00C0O1C 400723 000295 000000 000000 000000 000000

000000 000000

(The values shown here are the default values for the table.) The second value returned (from address
Y:$721) shows a 1/T conversion of Encoder 2, which occupies registers $C004 to $C007 (49156 to
49159). This gives us our desired sub-count data for smoothness. We do not have to change anything
here. However, if the entry read COC004, we could change it by commanding

inches cycles counts counts
50 - 500 -4 = 100 ,000
sec inch cycle sec
counts
= 100
m sec

WY:$721,500C004.

Step 3: Time-Base Calculation

Now set up an entry in the table to convert the interpolated position to time base format. Looking at the
values reported above, notice that the ninth entry (from address Y:$728),400723, is a time-base
conversion. However, its source is address $723, which is the interpolated position from Encoder 4, not
Encoder 2 as it should be. To change it, command WY : $728,$400721.

Now compute the scaling factor. Look at the nominal speed of 50 inches/sec, the resolution of 500
cycles/inch, and the 4x decode, and calculate:

224 Synchronizing PMAC to External Events



PMAC User Manual

Since the math works out more easily if this number is a power of two, declare the real-timecount rate to
be 128 counts/msec. Then calculate the scale factor as 131,072 / 128 = 1024. Enter the scale factor by
commanding WY : $729,1024 (note that the value can be entered as a decimal number by omitting the
dollar sign).

Step 4: Using the Time-Base Calculation
Since working in Coordinate System 1, assign 1193 to $729 (1833 decimal) to point to this time base
value. Set 194 to the maximum value of 8,388,607 so we do not lose synchronicity on rapid changes.

Step 5: Writing the Program

In writing the program, work at the real-timeinput frequency, which differs from the nominal speed that
was started with, in this case, it is exactly 28% faster. Therefore, any programmed speeds would be 28%
higher; any programmed times would be 28% less. Take the nominal cut time of 750 msec (0.75 sec) and
multiply it by 100/128 to get exactly 585.9375 msec. The 2500 msec return is similarly scaled to
1953.125 msec. (If these numbers do not come out exactly in the program, put the math directly in the
program; PMAC calculates with 48-bit floating-point precision.) There will be a main program loop
something like this:

WHILE (M11l=1) ; Cut as long as input is true
T™™ 585.9375 ; Cut move time
X10000 ; Actual cut move
DELAY 500 ; Hold; part of 1953.125 msec return
TM 953.125 ; Return time; part of 1953.125 msec
X0 ; Actual return move
DELAY 500 ; Hold; part of 1953.125 msec return
ENDWHILE

Triggered Time Base

The time-base techniques discussed so far keep the slave coordinate system locked perfectly to the master,
but they do not provide a way of synchronizing automatically to a particular point on the master. Thus, the
slave cycle can be out of phase with the master cycle, and some special technique, usually involving
position capture from a registration mark, must be used to bring the cycles in phase with each other.

Many time-base applications do not require the master and slave cycles to be in phase with each other (for
instance, cutting blank sheets of paper to length rather than printed pages), and others have to be
continually re-registered due to stretching, slippage, or uneven spacing. These types of applications can
use the standard time base function.

However, applications that do need to be in phase with the master, and in which a registration procedure
to do this is difficult or impossible, can use the triggered time base feature of the conversion table. This
technique permits perfect synchronization to the position of the master that is captured by a trigger, by
freezing the time base until the trigger is received, then starting the time base referenced to the position
that was captured by that trigger.

The triggered time-base entry in the conversion table is similar to the standard time-base entry. Itisa
two-line entry, with the first line specifying the process and the source address for the master encoder
data, and the second line specifying the time-base scale factor. There are two important differences
between the triggered time-base entry and the standard time base entry. First, the value specifying the
process is different, and it is changed during the process of triggering ($90, $A0, and $B0, versus the $40
for standard time-base). Second, the source address is that of the actual master encoder counter registers,
not the processed encoder data in the conversion table. The scale factor is the same as for the standard
time-base. The rules for this entry are discussed in detail in the instructions for the conversion table.

Synchronizing PMAC to External Events 225



PMAC User Manual

Instructions for the Triggered Time-Base

Using the triggered time-base feature involves proper setup of I-variable values, M-variable definitions,
and conversion table entries (these can be done ahead of time), writing motion programs, and writing PLC
programs. Each of these is covered in this section, first with a general explanation, then with a specific
example.

Step 1: Signal Decode Setup
The signal decoding of the master signal is the same as for standard time-base: the quadrature or pulse

and direction signal must be decoded so that the counter counts up. This is set with Encoder I-variable 0
(1900, 1905, etc.).

Step 2: Interpolation and Time-Base Setup

The triggered time-base conversion in the encoder conversion table handles both the 1/T count
interpolation and the time-base calculation from the interpolated value. In the initial setup, a triggered
time-base entry is created in the conversion table, usually in the running (not frozen or waiting for trigger)
state. The time base scale factor is also entered here; it is calculated in exactly the same way as for the
standard time base.

Step 3: Writing the Motion Program

In writing the motion program that is to use triggered time base, all of the axes must be brought to a stop
at the point where they will wait for the trigger. If this is not at the beginning of the motion, the section
should be preceded immediately by a DWELL command.

At the start of the calculations for the moves that are to be started on the trigger, the time base should be
frozen to prevent the move from starting. Use an M-variable that has been assigned to the process bits for
the triggered time base entry in the conversion table. If the previous moves were done working from a
different time-base source, the time-base address for the coordinate system (Ix93) should be changed to
the triggered time-base entry.

These commands in the motion program are followed immediately by the calculations and commands for
the first move(s) that are to be started on the trigger. With the time-base frozen, PMAC will perform all
of the calculations, but not start actual execution of these moves. Variable I11 (calculation delay) should
be set to 0, so PMAC will be ready to start the move as soon as the time base starts.

Step 4: Arming the Trigger

The motion program that calculates the moves cannot arm the trigger itself without having a chance that
the trigger could occur before the calculations are done. If this were to happen, the program would be
behind the desired synchronization. Therefore, for reliable operation, the trigger should be armed by a
task that cannot execute until all of the move calculations are done, usually a PLC program. Arming the
trigger requires just one simple conditional branch in a PLC program; it just looks to see if the time base
is frozen, and if it is, the PLC program arms the trigger. Since the PLC program cannot interrupt the
motion program, this is guaranteed to happen after the motion program has finished the calculations for
the move.

Step 5: Starting on the Trigger

Once the trigger has been armed, PMAC waits for the position-capture trigger to occur on the master
encoder. Encoder/Flag I-variables 2 and 3 determine which edge(s) of which signal(s) cause the trigger.
When PMAC sees that the trigger has occurred, it starts the time base, using the captured master position
as the starting point for the time base.

Triggered Time-Base Example

Motor #1 is the A-axis in Coordinate System 1. It is a rotary axis with a 2500 line-per-revolution encoder
on the motor, and its load is geared down from the motor at a 3-to-1 ratio. It is to be slaved to a master
encoder connected to PMAC on Encoder 4.

226 Synchronizing PMAC to External Events



PMAC User Manual

The master encoder has 4096 lines per revolution, and typically rotates at about 600 rpm. After being
given the command to run, the X-axis must wait for the index pulse of the master and for 45 degrees past
it. For the next 36 degrees of the master, it must accelerate up to speed, then run at speed for 144 degrees
of the master, and finally decelerate over 36 degrees of the master. This move must cover one full

revolution of the A-axis.

For this example, use the triggered time-base, triggering from the master encoder's index pulse. Choosing
600 rpm as the real-time speed for the master, compute the real-time input frequency (RTIF) in

counts/msec:

min lines counts sec counts
. -4096 - 4 . =163.84
60 sec rev line 1000m sec m sec

The time-base scale factor (SF) is:

- 131,072 131,072 _ gp0(decimal)

RTIF  163.84

At the real-time speed of 600 rpm (10 rps), one revolution of the master takes 100 msec; so 45 degrees of
the master takes 12.5 msec, and so on.

Set up and Definitions

I915=3

I917=1

WY:$072A,$A0C00C, 800

M199->Y:$072A,16,8
&l
#1->83.33333333A

Motion Program
CLOSE

OPEN PROG 12 CLEAR
1193=$072B
DWELLO

M199=$90

LINEAR

INC

TAL0

TSO

DELAY12.5

TM50

A360

CLOSE

PLC Program
CLOSE

OPEN PLC 10 CLEAR
IF (M199=$90)

M199=$B0
ENDIF
CLOSE

x4 decode of ENC 4, set to count up in direction of

; motion

ENC 4 capture trigger on rising edge of index pulse

; Add triggered time base entry to end of default

conversion table; process $A0 is triggered time base,
running (post-trigger); $CO00C points to ENC4 registers.
Scale factor is 800 decimal

Process bits of conversion table entry

; Address Coordinate System 1
; Motor 1 is A-axis in C.S.1; 3 x 2500 x 4 cts/rev/

(360 deg/rev)

Time base source address is triggered

time-base conversion in table (2nd line)

Freeze the time-base (line before should be a DWELL)
Linear move mode

Incremental move specification

36 degrees of master is 10 msec

No S-curve

45 degrees of master is 12.5 msec

36+144 deg of master is 50 msec

One full revolution of slave axis

Has time-base been frozen?

Then arm for trigger

Synchronizing PMAC to External Events 227



PMAC User Manual

Synchronizing PMAC to Other PMACs

When multiple PMACs are used together, inter-card synchronization is maintained by passing the servo
clock signal from the first card to the others. With careful writing of programs, this permits complete
coordination of axes on different cards.

PMAC provides the capability for putting multiple cards together in a single application. To get the cards
working together properly in a coordinated fashion, several factors must be considered:

e Host communications addressing

e Clock timing

e Motion program timing

The host communications addressing is covered in the previous Talking to PMAC section and the
following Writing a Host Communications Program section. The timing (synchronization) issues are
covered immediately below.

Clock Timing

PMAC cards use a crystal clock oscillator (the master clock) as their fundamental time measuring device.
Each PMAC has its own crystal oscillator. Although these crystals are made to a very tight tolerance (50
ppm accuracy standard; 10 ppm with Option 8), they are not exactly the same from card to card. This can
cause cards to lose synchronicity with each other over long move sequences if they are each using their
own master clock. Generally, this will be noticeable only if a continuous move sequence lasts more than
10 minutes. For example, in the worst case, with 100 ppm difference between two cards, at the end of a
10-minute continuous sequence, the cards will be off by 60 msec.

Sharing Clock Signals

The solution to this problem is to have all the cards share a common clock signal. With PMAC, this is
done over spare lines on the serial connector. Card @0 outputs its clock signals; all other cards take the
clock signals as inputs. What are actually being shared are the phase clock and servo clock signals, which
are divided down from the master clock as determined by the settings of jumpers E29-E33 and E3-E6.
When sharing clock signals, only the settings of these jumpers on card @0 matter. The 110 servo period
parameter on every board in the chain should match the jumper settings on card @0.

When multiple cards are communicating on the same serial port, they must share a common clock signal.
This is because the same jumpers or switches that control the software addressing (E40-E43, or SW1-1 -
SW1-4) also control whether the clock signal is input or output, so only one card in the chain can use its

own clock signals; all others must receive theirs through the serial port connector.

When multiple cards are communicating at separate hardware addresses on a common bus, or are
operating standalone, it is optional whether they share the same clock signals. To have them share a
common clock signal, use the jumpers or switches to set up one card as @0, and the rest as higher
numbered cards, and tie together the clock signals on the serial ports of all cards. It may be easiest to tie
all of the lines of the serial port together from card to card. These jumper settings will not affect bus
communications protocol in any way.

If not sharing clock signals on multiple cards in a bus application, every card must be set up as @0.

Connections

Clock signals can be shared simply by tying identical pins on the PMACs together. Acc-3D or 3L cables
with extra PMAC connectors (one Acc-3E for each extra PMAC) can be used to share the clock signals in
either bus or serial communications applications (and of course, for actual serial communications). In a
standalone or bus-communications application, there is no need for a host drop on the cable.

As is the case for the communications lines, you cannot tie the clock lines from the RS-422 port of a
PMAC PC to the RS-232 port of a PMAC Lite. With the RS-422 option on the PMAC Lite (Option 9L),
connection to a PMAC PC is possible, but the connector pinouts are different.

228 Synchronizing PMAC to External Events



PMAC User Manual

If no serial communication is being used, but the serial data lines are connected along with the clock
signals, it may be desirable to deactivate the serial port to prevent noise on the lines from creating input
command characters to PMAC. On PMAC PC, PMAC Lite, and PMAC VME, this is done by making
jumpers E44-E47 all ON; on PMAC STD, by making DIP switches SW1-5 to SW1-8 all OFF.

External Time Base

If synchronicity is desired in an application where axes on several cards are tied to an external frequency
time base, the same frequency signal must be brought into encoder counters on all cards. If it is not also
required to have complete synchronicity when on an internal time base, there is no need to tie the PMAC
clock signals together, because the external frequency will effectively provide the common clock.

Motion Program Timing

Whether or not cards share a common clock signal, the synchronization of moves between multiple cards is
only as good as the time specification in the motion programs in each card. If one card is told to do a 3-
second long move, and another to do a 4-second long move, and they are started at the same time, they will
obviously not finish together. Therefore, it is imperative that motion programs on several cards that are
intended to run together must be written carefully so that they take the same amount of time for moves.

Initial Calculation Delay

After receipt of a Run or Step command, a PMAC requires some initial calculation time before it can start
the first move, typically a few milliseconds. If several PMACs are told to start a program simultaneously,
the cards will in general not take the same amount of time to calculate their first move. If each card
started its first move immediately on finishing the calculations, there would be a loss of synchronicity
between cards. PMAC parameter [11 (Motion Program Calculation Delay) exists to prevent this problem.
It determines the number of milliseconds between the receipt of the Run or Step command, and the start
of the first move. 111 should be set to the same value on all cards for which synchronicity is desired; the
default value of 10 (=10 msec delay) can be used in virtually all applications. (IfI11 is set to O, the first
move starts immediately after calculations are finished. Typically, this is works in single-card
applications, but not in multi-card applications.)

Time-Specification of Moves

In general, moves in these programs should be specified by move time (TM, TA, and TS), and not by
feedrate (F). The time for a feedrate-specified move is calculated as the vector distance of all feedrate
axes (FRAX) divided by the feedrate. It is difficult to ensure that such moves on separate cards will take
the same amount of time.

DWELL is a non-synchronous move and should not be used when writing programs for multi-card
applications. Use the DELAY command to maintain program synchronicity.

No-Drift Conditions

If motion programs are written carefully, using time-specified moves, and the cards share common clock
signals, they can run indefinitely with no drift between the cards. There can be an initial offset between
the cards of up to a few msec as to when they start their motion programs, even with simultaneous
commands, but this offset will not increase with properly written motion programs and shared clock
signals. The following section explains how to minimize (and usually eliminate) this offset.

Minimizing Initial Offset

Usually PMAC cards told to simultaneously start a program will do so on the same servo cycle providing
that no PLC programs are enabled. Programs that do not start on the same servo cycle will start at the
next real time interrupt. This will be ((I8 + 1) * servo cycle length) us later. If PLC programs are
enabled, the starting offset between cards could be as much as the amount of time the longest PLC
requires to run and be translated. A good method for eliminating an initial execution offset is as follows:

e Initialize all program counters on all PMAC cards. For the case of the same program with the same
name on each card, enter Q@B1<CR>. For a more complicated case, enter @0B1Q@1 &3B2<CR>.

Synchronizing PMAC to External Events 229



PMAC User Manual

e Disable all PLC programs using <CTRL-D. This will give the fastest possible response to a
command.

e Set I8 to 0, which forces a real time interrupt every servo cycle. If not running a PLC 0, leave this at
zero permanently.

e Begin the programs using RKCR> if @@ has been issued as in the simple case or use <CTRL-R>
which is the global run command.

e TorunaPLC O, set I8 back to its original value (usually 2). Leaving I8 at 0 will probably cause PLC
0 to starve the background tasks for processor time, causing loss of communications or even a
watchdog timer failure.

e Enable the PLC programs required. Have the first line of each motion program enable the PLC
programs for its respective PMAC card. For example:
OPEN PROG 1 CLEAR
ENA PLC 1..31
TM 1000

Position-Capture Functions

The position-capture function latches the current encoder position at the time of an external event into a
special register. It is executed totally in hardware, without the need for software intervention (although it is
set up, and later serviced, in software). This means that the only delays in the capture are the hardware gate
delays (negligible in any mechanical system), so this provides an incredibly accurate capture function.

Setting the Trigger Condition

The position capture register can be used both automatically, as in homing routines where the firmware
handles the register directly, and manually, where the user program must handle the register information.
Regardless of the mode, the event that causes the position capture is determined by Encoder I-variables 2
and 3 (1902 and 1903 for Encoder 1). Encoder I-Variable 2 defines what combination of encoder third-
channel transition and encoder flag transition triggers the capture (it also allows software trigger). If it
says to use a flag, Encoder I-variable 3 determines which flag (almost always set to zero to specify the
home flag.)

Using for Homing

When using this feature for homing a motor, the motor flag address I-variable (Ix25 for motor x) must
point to the proper set of flags (this has to be done to address the limit flags properly). For instance, the
default value of 1125 is 49152 ($C000), pointing to the first set of flags. Then Encoder/Flag I-variable 2
(e.g. 1902) and Encoder/Flag I-variable 3 (e.g. 1903) define the transition within this encoder and flags to
cause the position capture. Once these have been set up properly, the homing function will use the
position-capture feature automatically.

Using in User Program

If using the position-capture function in the own program, these two I-variables still control the capture
event. Access the captured position through a full word M-variable (M 103 is the suggested M-variable
for the Encoder 1 capture register: M103->X:$C003,0,24,S). Use the position-captured flag bit (bit
17 of the control/status register). For example: M117->X:$C000,17,1. This bit goes true when the
trigger condition has gone true; it goes false when the capture register is read (when M103 is used in an
expression). As long as the bit is true, the capture function is disabled; read the capture register to re-
enable the capture function. The example program MOVTRIG.PMC shows how this function can be
used for precision registration.

Offset from Motor Position

Encoder position is referenced to the position at the most recent power-on or reset, regardless of any
homing moves or offset commands done since then. To relate this encoder position to motor position,
one must know the offset between encoder zero and the homing-zero positions.

230 Synchronizing PMAC to External Events



PMAC User Manual

Fortunately, this is simply the position captured during the homing move, which PMAC stores for future
use in registers Y:$0815 (#1), Y:$08D5 (#2), etc.

Note:

The position-capture feature gets encoder position, rather than motor or axis
position.

Position-Compare Functions

The position-compare feature is essentially the opposite of the position-capture function. Instead of
storing the position of the counter when an external signal changes, it changes an external signal when the
counter reaches a certain position. In this way, events can be triggered to happen on the actual position of
your system. Because the triggering is a pure hardware function (although setup is software), it is very
fast and accurate. Use the signal to trigger an action in the host, in the plant, or in PMAC itself.

4 CIRCUITS PER —» POSITION COMPARE REGISTER EaL
[ GATE ARRAY ]
PHASE CLOCK |
PHASE CAPTURE REGISTER
FIVE INPUTS : ERSJP&%E ?
C" CHANNEL; TRIGGER
3 CONTROL
4FLAGS, "HOME" CAPTURE REGISTER e
| : | i
m A > P COUNT 24 BIT UP/DOWN POSITION REGISTER
Ulle »| FEFEE | | DECODING | DIRECTION (10 MHe MAX) i
0 Lad
ENCODER INPUT i
10MHz MAX. H
W/MODE CONTROL ‘ ¢
X1,X2,X4,P/D,CLK
§ SERVO POSITION CAPTURE REGISTER
SERVO CLOCK!
; TIMER REGISTERS (2)
CLOCK, 10 MHz | 1/T, ENCODER PERIOD MEASUREMENT
24 BIT DATA. BUS — CONTROL REGISTER
CONTROL i
4 BIT ADDRESS I DonTiRe
HF.&C ©3) EQL. H
5INPUTS ‘ 3 STATUS ‘ 16 CONTROLS

Figure 53 PMAC PC/VME Custom Gate Array (DSPGATE) Encoder Functions
Required M-Variables

To utilize this feature, access the position-compare register itself, and several status and control bits. For
Encoder 1, declare:

M103->X:$C003,0,24,S ; 24-bit position compare register
M111->X:$C000,11,1 ; Compare flag latch control bit
M112->X:$C000,12,1 ; Compare output-enable bit
M113->X:$C000,13,1 ; Compare output invert control bit
M116->X:$C000,16,1 ; Compare-equals flag

Preloading the Compare Position

To preload a compare position, simply assign a value to M103, such as M103=1250. This value can be
between -8,388,608 and +8,388,607. To obtain the position-capture register, read from the same address.
The command can be given from a PMAC motion program, a PMAC PLC program, or from the host.
This is the encoder position; to reference it to motor zero position, the homing offset must be know.

Synchronizing PMAC to External Events 231



PMAC User Manual

Compare Control Bits

There are three control bits to set up the format of the equals signals. The flag-latch control bit (M111 in
our example) controls whether the compare-equal signal is transparent (true only when the positions are
actually equal) or latched (true until actively reset). The signal is transparent if this control bit is zero,
and latched if the control bit is one. To clear a latched flag, take the control bit to zero, then back to one.

This compare-equal signal is always copied into the compare-equal flag (M 116 in our example) that is
available for the PMAC internal use. If using this flag internally, make sure that the signal is latched
(M111=1), or it will be missed. For interrupting the host (edge-triggered), make the signal transparent.

The output-enable bit (M 112 here) determines whether the compare-equal flag will be output on the EQU
line (1 enables). This must be set to use the signal either to interrupt the host or to trigger an external
event directly. The output-invert bit (M113 here) determines whether the EQUn output is high true or
low true (1 inverts to low true). For host-interrupt purposes, set this high true.

Interrupting the Host on a Compare-Equals

If using this EQUn line to interrupt the host, jumper the line to PMAC PC's 8259 Programmable Interrupt
Controller (PIC). The jumpers for this purpose are in the range E54 to E65 along the bottom edge of the
PMAC PC board. The output from this PIC must be jumpered to a PC interrupt line using one of the
jumpers E76-E84. Refer to the jumper tables and the Using the PMAC PC to Interrupt the Host
Computer section.

Directly Triggering External Action

To use the EQU lines to trigger external action from a PMAC PC, put a connector on the E-points (E53-
E65) that would jumper these signals to the interrupt controller (an IDC 26-pin connector can work
nicely). There is no other connector to bring these signals out. These signals must be buffered; the TTL
drivers for these outputs on PMAC PC are very weak.

On the PMAC Lite, PMAC VME and PMAC STD, there is a JEQU connector to bring out the Compare-
Equals outputs. These output are open-collector (sinking) outputs, rated to 24V and 100 mA. The
existing socketed driver IC may be replaced with a sourcing driver IC (UDN2981A).

Example:

The program COMPPULS.PMC in the Examples section shows how to use this feature to generate a very
rapid series of equals pulses on position intervals. As soon as PMAC detects that the previous compare
position has been reached, it clears the flag, loads the next compare position, and calculates the position
after that.

Offset from Motor Position

Encoder position is referenced to the position at the most recent power-on or reset, regardless of any
homing moves or offset commands done since then. To relate this encoder position to motor position,
one must know the offset between encoder zero and the homing-zero positions. Fortunately, this is
simply the position captured during the homing move, which PMAC stores for future use — in registers
Y:$0815 (#1, Y:$08D5 (#2), etc.

Note:

The position-compare feature uses encoder position, rather than motor or axis
position.

Synchronous M-Variable Assignment

Synchronous M-variable assignment statements allow outputs to be set and cleared synchronously with
the start of the next commanded move in the motion program. The output is synchronous with the
commanded position, not necessarily the actual position, which can be different due to following error.
These statements are discussed in detail in the Computational Features section of this manual.

232 Synchronizing PMAC to External Events



PMAC User Manual

WRITING A PLC PROGRAM
PLC Programs

In addition to the motion programs, which operate sequentially and synchronously in time (any move
command takes a specified amount to execute before succeeding program lines are executed) PMAC has
64 PLC programs that operate asynchronously and with rapid repetition (32 compiled PLC programs as
well as 32 uncompiled PLC programs). They are called PLC programs because they perform many of the
same functions as hardware programmable logic controllers. PLC programs have most of the same
logical constructs as the motion programs, but no move-type statements.

Most compiled PLC programs are very similar, if not identical to uncompiled PLC programs. In fact,
before compiling a PLC program, it should be tested and debugged as an uncompiled PLC. The
differences between the two types of PLC programs are in the area of buffer control, L-variables, some
command syntax, and the use of the compiler. Because of these similarities, much of the section about
uncompiled PLC programs also applies to compiled PLC programs. The information specifically
concerning compiled PLC programs is contained in the section entitled Compiled PLC Programs.

When to Use

PLC programs are designed for actions that are asynchronous to the motion. If the action you want is
synchronous to the programmed motion (e.g. once per move), use a motion program instead to create the
action.

Common Uses

PLC programs are particularly useful for monitoring analog and digital inputs, setting outputs, sending
messages, and monitoring motion parameters, issuing commands as if from a host, changing gains, and
starting and stopping moves. By their complete access to PMAC variables and 1/0 and their asynchronous
nature, they become powerful adjuncts to the motion control programs.

32 PLC Programs

PLC programs are numbered 0 through 31 for both the compiled and uncompiled PLCs. This means that
both a compiled PLC n and an uncompiled PLC n can be stored in PMAC. PLC program 0 is a special
fast program that operates at the end of the servo interrupt cycle with a frequency specified by variable 18
(every I8+1 servo cycles). This program is meant for a few time-critical tasks, and it should be kept
small, because its rapid repetition can steal time from other tasks.

Caution:

A PLC 0 that is too large can cause unpredictable behavior and can even trip the
PMAC Watchdog Timer by starving background tasks of time to execute.

PLC programs 1 through 31 operate continually in background as time allows, effectively in an infinite
loop. They get interrupted by the higher priority tasks of motor phasing, servo loop closure, more
planning, and PLC 0.

Entering a PLC Program

The PLC program statements are entered as buffered command lines into PMAC. In preparation, it is a
good idea to make sure no other buffers have been left open by issuing a CLOSE command. It is also
good practice to make sure that memory has not been tied up in data gathering or program trace buffers,
by issuing DELETE GATHER and DELETE TRACE commands.

Writing a PLC Program 233



PMAC User Manual

Opening the Buffer

For each PLC program, the next step is to open the buffer for entry with the OPEN PLC n statement,
where n is the buffer number. Next, if there is anything currently in the buffer that should not be kept, it
should be emptied with the CLEAR statement (PLC buffers may not be edited on the PMAC itself; they

must be cleared and re-entered). If the buffer is not cleared, new statements will be added onto the end of
the buffer.

Downloading the Program

Typically, in program development, the editing will be done in a host-based text editor, and the old buffer
is cleared every time the new version is downloaded to the card. When finished, close the buffer with the
CLOSE command. Opening a PLC program buffer disables that program automatically. After it is
closed, it remains disabled, but it can be re-enabled again with the ENABLE PLC n command, where n
is the buffer number (0—31). I5 must also be set properly for a PLC program to operate.

The general form for this technique is:

CLOSE

DELETE GATHER
DELETE TRACE
OPEN PLC n
CLEAR

{PLC statements}
CLOSE

ENABLE PIC n

Note:

Because all PLC programs in the PMAC memory are enabled at power-on/reset it
is good practice to have I5 saved as 0 in the PMAC memory when developing PLC
programs. This will allow PMAC to be reset without PLCs running (an enabled
PLC only runs if I5 is set properly) and more easily recover from a PLC
programming error.

Closing the Buffer

At the closing, PMAC checks to make sure all IF branches and While loops have been terminated
properly. If not, it reports an error, and the buffer is inoperable. Correct the PLC program in the host and
re-enter it (clearing the erroneous block in the process, of course). This process is repeated for all of the
PLC buffers in use.

Erasing the Program
To erase an uncompiled PLC program, open the buffer, clear the contents, then close the buffer again.
This can be done with three commands on one line, as in:

OPEN PLC 5 CLEAR CLOSE

Example
A quick example of a PLC block entry is shown below:

OPEN PLC 2
CLEAR
IF (M11=1)
I130=10000
ELSE
I130=8000
ENDIF
CLOSE
ENABLE PLC 2

234 Writing a PLC Program



PMAC User Manual

PLC Program Structure

The important thing to remember in writing a PLC program is that each PLC program is effectively in an
infinite loop; it will execute over and over again until told to stop. (These are called PLC because of the
similarity in how they operate to hardware Programmable Logic Controllers, the repeated scanning
through a sequence of operations and potential operations.)

Calculation Statements

Much of the action taken by a PLC is done through variable value assignment statements:
{variable}={expression}. The variables can be I, P, Q, or M types, and the action thus taken can
affect many things inside and outside the card.

As shown in the Getting Started section of the manual, perhaps the simplest PLC program consists of one
line:
Pl =P1 + 1

Every time the PLC executes, usually hundreds of times per second, P1 will increment by one. Of course,
these statements can get a lot more involved. The statement:

P2 = M162/I1108 32 10000)*COS (M262/ (I208 32 100))

could be converting radial (M162) and angular (M262) positions into horizontal position data, scaling at
the same time. Because it updates this very frequently, whoever needs access to this information (e.g.,
host computer, operator, motion program) can be assured of having current data.

Conditional Statements

Most action in a PLC program is conditional, dependent on the state of PMAC variables, such as inputs,
outputs, positions, counters, etc. The action can be level-triggered or edge-triggered; both can be done,
but the techniques are different.

Level-Triggered Conditions.
A branch controlled by a level- triggered condition is easier to implement. Taking the incrementing
variable example and making the counting dependent on an input assigned to variable M11:
IF (M11=1)
P1=P1l+1
ENDIF

As long as the input is true, P1 will increment several hundred times per second. When the input goes
false, P1 will stop incrementing.

Edge-Triggered Conditions
To increment P1 once for each time M11 goes true (triggering on the rising edge of M11 sometimes called
a one-shot or latched). To do this, there must be need a compound condition to trigger the action, then as
part of the action, set one of the conditions false, so the action will not occur on the next PLC scan. The
easiest way to do this is using a shadow variable, which will follow the input variable value. Action is
only taken when the shadow variable does not match the input variable. The code could become:
IF (M11=1)
IF (P11=0)
P1=P1+1
Pl11=1
ENDIF
ELSE
P11=0
ENDIF

Make sure that P11 can follow M11 both up and down. Set P11 to 0 in a level-triggered mode. This could
have been done this edge-triggered as well, but it does not matter as far as the final outcome of the routine
is concerned. It is about even in calculation time, and it saves program lines.

Writing a PLC Program 235



PMAC User Manual

Any SEND, COMMAND, or DISPLAY action statement should be done only on an edge-triggered condition,
because the PLC can cycle faster than these operations can process their information, and the
communications channels can get overwhelmed if these statements get executed on consecutive scans
through the PLC. More examples of how to program using these statements can be found in later sections.

IF (M11l=1) ; input is ON
IF (P11=0) ; input was not ON last time
COMMAND"#1J+" ; JOG motor
Pll=1 ; set latch
ENDIF
ELSE
P11=0 ; reset latch
ENDIF

WHILE Loops

Normally a PLC program executes all the way from beginning to end within a single scan. The exception
to this rule occurs if the program encounters a true WHILE condition. In this case, the program will
execute down to the ENDWHILE statement and exit this PLC. After cycling through all of the other
PLCs, it will re-enter this PLC at the WHILE condition statement, not at the beginning. This process will
repeat as long as the condition is true.

When the WHILE condition goes false, the PLC program will skip past the ENDWHILE statement and
proceed to execute the rest of the PLC program.

To increment the counter as long as the input is true, and prevent execution of the rest of the PLC
program, program:
WHILE (M11=1)
P1=P1+1
ENDWHILE

This structure makes it easier to hold up PLC operation in one section of the program, so other branches

in the same program do not have to have extra conditions and they do not execute when this condition is
true. Contrast this to using an IF condition (see above).

Some COMMAND action statements should be followed by a WHILE condition to ensure they have taken
effect before proceeding with the rest of the PLC program. This is true if a second COMMAND action
statement that requires the first COMMAND action statement to finish will follow. (Remember, COMMAND
action statements are processed only during the communications section of the background cycle.) To
have an input stop any motion in a Coordinate System and start motion program 10. The following PLC
could be used.

IF (M11l=1) ; input is ON
IF (P11=0) ; input was not ON last time
Pll=1 ; set latch
COMMAND" &1A" ; ABORT all motion
WHILE (M187=0) ; wait for motion to stop.
ENDW
COMMAND" &1B10R" ; start program 10
ENDIF
ELSE
P11=0 ; reset latch
ENDIF
Note:

M187 is the Coordinate System In-Position bit as defined in Example program 1.

236 Writing a PLC Program



PMAC User Manual

Precise Timing

Since PLCs 1 to 31 are the lowest computation priority on PMAC, the cycle time cannot be determined
precisely. To hold up an action for a fairly precise amount of time, use a WHILE loop, but instead of
incrementing a variable, use an on-board timer. PMAC has four 24-bit timers to write to, and count down
once per servo cycle. These timers are at registers X:$0700, Y:$0700, X:$0701, and Y:$0701. Usually a
signed M-variable is assigned to the timer; a value is written to it representing the desired time in servo
cycles (multiply milliseconds by 8,388,608/110); then the PLC waits until the M-variable is less than 0.
With M70->X:$0700,24,S:

M70=P1*8388608/I10 ; Set timer to 500 msec
WHILE (M70>0) ; Loop until counts to zero
ENDWHILE ; Exit PLC program here when true

For more timers, probably the best technique to use is in memory address X:0. This 24-bit register counts
up once per servo cycle. Store a starting value for this, then in each scan subtract the starting value from
the current value and compare the difference to the amount of time to wait. By subtracting into another
24-bit register, handle rollover of X:0 gracefully.

First, define the following M-variables with on-line commands:

MO0->X:$0,24 ; Servo counter register
M85->X:$07F0,24 ; Free 24-bit register
M86->X:$07F1,24 ; Free 24-bit register

Then we write as part of our PLC program:
M85=MO ; Start of timer

M86=M0-M85 ; Time elapsed so far

WHILE (M86<P86) ; Less than specified time?
M86=M0-M85 ; Time elapsed so far

ENDWHILE ; Exit PLC program here when true

Compiled PLC Programs

It is possible to compile PMAC PLC programs for faster execution. The faster execution of the compiled
PLCs comes from two factors: first, from the elimination of interpretation time, and second, from the
capability of the compiled PLC programs to execute integer arithmetic. Floating-point operations in
compiled PLC programs run 2 to 3 times faster than in interpreted PLC programs; integer (including
boolean) operations run 20 to 30 times faster in compiled form.

Note:

The size of the compiled code mentioned here refers to the space that the actual
compiled code will occupy in the PMAC memory. It does not refer to the size of
the compiler's output file on the PC's disk drive.

PMAC does not perform the compilation of the PLC programs itself. The compilation is done in a PC;
the resulting machine code is then downloaded to PMAC.

PMAC can store and execute up to 32 compiled PLC programs as well as 32 interpreted (uncompiled)
PLC programs for a total of 64 PLC programs. 15K (15,360) 24-bit words of PMAC memory are
reserved for compiled PLCs; or 14K (14,336) words if there is a user-written servo as well. No other task
may use this memory, and compiled PLCs may not use any other memory.

A compiled PLC program is labeled PLCC n (PLC-Compiled #n) on PMAC. This distinguishes it from
an interpreted PLC, which is simply labeled PLC n. There is no special relationship between the
interpreted and compiled PLCs of the same number.

Writing a PLC Program 237



PMAC User Manual

Execution of Compiled PLCs

Of the 32 compiled PLC programs (PLCC 0 to PLCC 31) only PLCC 0 operates in the foreground,

triggered by the real-time interrupt (RTI). PLCCs 1 to 31 operate as background tasks.

At each real-time interrupt, PMAC checks to see whether several user tasks need to be done. The real-

time interrupt occurs every (I8+1) servo cycles. PMAC checks the tasks in the following order:

e Motion program move planning: PMAC checks to see in each coordinate system whether it is time to
calculate the next move in the program.

e Interpreted PLC 0: PMAC checks to see if [5=1 or 3 and if PLC 0 is enabled. If so, it executes one
scan of PLC 0.

e Compiled PLC 0: PMAC checks to see if I5=1 or 3 and if PLCC 0 is enabled. If so, it executes one
scan of PLCC 0.

It is very important that the scan execution time of PLCC 0 and PLC 0 be kept less than one real-time

interrupt period. Otherwise, their repeated execution will starve the background for time, and probably

trip the watchdog timer.

In background, PMAC executes one scan of a single background interpreted PLC program uninterrupted by
any other background task (although higher-priority tasks will interrupt). In between each scan of each
individual background interpreted PLC program, PMAC will execute one scan of all active background
compiled PLCs. This means that the background compiled PLCs execute at a higher scan rate than the
background interpreted PLCs. For example, if there are seven active background interpreted PLCs, each
background compiled PLC will execute seven scans for each scan of a background interpreted PLC.

Preparing Compiled PLCs

Preparation of compiled PLCs is a multi-step process. The basic steps are as follows:
e  Write and debug the PLC programs in interpreted form.
e Change all references to PLCs to be compiled from PLC to PLCC.

e For integer arithmetic, define L-variables and substitute these for the old variable names in the
programs.

¢ Combine all of the PLC programs to be compiled into one file on the PC, substituting true PMAC
code for the macro names.

e  With the Compile on Download feature of the Executive program active, download the files to
PMAC using the Download function.

e Activate the compiled PLCs. If operation is not correct, return to step 1 or 2.
Each of the above steps is explained in detail below.

Preliminary Debugging

It is advisable to do most of the debugging of PLC program code in interpreted form. The ease of
repeated editing, downloading, and execution makes multiple trials fast and easy, using the PMAC
Executive program and the PMAC. Once debugging is substantially complete in interpreted form, it is
quite easy to change to compiled form.

Changing PLC References

All references to the PLC programs that are to be compiled must be changed from PLC to PLCC. Each
PLC program that is to be compiled must be headed with an OPEN PLCC n command. This is the
signal to the compiler that what follows (until the CLOSE command) is to be compiled. Any ENABLE
PLC and DISABLE PLC commands that refer to PLC programs to be compiled must be changed to
ENABLE PLCC and DISABLE PLCC commands, whether or not these commands themselves are in
PLC programs to be compiled.

238 Writing a PLC Program



PMAC User Manual

Executing Integer Arithmetic

The compiled PLCs have the capability to perform arithmetic and logical operations in 24-bit signed
integer form. By contrast, all arithmetic and logical operations in uncompiled PLC programs are
performed in 48-bit floating-point form, even if acting on integer variables. The short integer math
operations execute at least 10 times faster than the floating-point operations. Combined with the two to
three times improvement from compilation, this provides execution 20 to 30 times faster than uncompiled
floating-point operations.

A compiled PLC program can have some statements that are executed using integer arithmetic and other
statements that are executed using floating-point arithmetic. However, a given statement within the
compiled PLC is executed either entirely with integer arithmetic or entirely with floating-point arithmetic
(even if it is working with integer registers).

Using L-Variables

The use of L-variables in a PLC program statement is the sign to the compiler that the statement is to be
executed using integer operations instead of floating-point operations. L-variables can be used in two
types of statements in compiled PLCs: variable value assignment statements, and conditional statements
(IF, WHILE, AND, OR).

Creating L-Variables

To implement integer arithmetic in a compiled PLC, define any L-variables to be used and substitute
them in the programs for the variables that were used in the interpreted form (usually M-variables). The
compiler will interpret statements containing only L-variables (properly defined) and integer constants as
operations to be executed using integer arithmetic in compiled PLCs.

L-variables are defined like X- or Y-format M-variables, but they exist only for the compiler. PMAC
does not recognize L-variables or L-variable definitions, and PMAC will reject any uncompiled command
containing an L-variable that is sent to it. All L-variable definitions must precede the first PLC program
to be compiled in the file.

Legal L-variable names for the compiler contain the letter L followed by an integer in the range 0 to 1023,
for a total of 1024 possible L-variables (LO to L1023).

Put all of the L-variable definition statements in a separate file that will be combined with the main PLC
file using the #include statement (e.g. #include lvardef.pmc). This single line can be
commented out with a semicolon while debugging the programs in interpreted mode. Remember that if
using a standalone compiler, this definition file must be combined with the main file into a single file
before the compiler can run. A compiler running as part of the CNC Executive or the PMAC Executive
will combine these automatically, if using a single main load file, which includes all of the other files.

For variables referencing fixed locations in the PMAC memory and I/O space, the L-variables will simply
replace M-variables, and the L-variable definition will be made exactly like the M-variable definitions. It
is acceptable to retain the M-variable definition as well. Retain the M-variable definitions for debugging
purposes because PMAC will not accept a query command for the value or definition of an L-variable.

For example, Machine Output 1 and Machine Input 1 on the JOPTO port are typically referenced by the
following definitions in uncompiled programs:

M1->Y:$FFC2,8 ; Machine Output 1
M11->Y:$FFC2,0 ; Machine Input 1

For the compiled PLC programs, you could create equivalent M-variable definitions:
L1->Y:$FFC2,8 ; Machine Output 1
L11->Y:$FFC2,0 ; Machine Input 1

Writing a PLC Program 239



PMAC User Manual

A small routine in a compiled PLC to make Machine Output 1 follow Machine Input 1 would be:
IF (L11l=1)

Ll1=1
ELSE

L1=0
ENDIF
It is acceptable to access a register in one program statement with an L-variable, and then access the same
register, even the same part of the register, in another program statement with an integer M-variable or I-
variable. Mixing L-variable access and P- or Q-variable access to a P- or Q-variable register will yield
nonsensical results, because the P- and Q-variable access always treats the register as a floating-point
number.

For general-purpose integer variables, the L-variables will probably replace what was previously done
with P-variables in the program. Since L-variables must be defined to a specific address, it is important to
find open areas of PMAC memory to hold these variables. To make this easier, declare a User buffer on
PMAC with the DEFINE UBUFFER {size} command, where {size} represents the number of 48-
bit words of PMAC memory to be reserved for this buffer. The buffer starts at address $9FFF and
continues back toward the start of memory for the specified number of words. For example, the
command DEFINE UBUFFER 256 reserves addresses $9F00 to $9FFF, both X and Y registers, for user
use, including L-variables.

A user buffer cannot be created if there is already any buffer in PMAC that was created with a DEFINE
command (rotary program, leadscrew comp, etc.). It is easiest to create the user buffer immediately after
re-initializing the card with a $$$*** command.

Debug these programs using integer M-variables assigned to user buffer registers as the general-purpose
variables, instead of P-variables. This will make the changeover to compiled integer form easier.

If there are just a few general-purpose L-variables, use the open memory areas $0770 to $077F, and
$07F0 to $O7FF (both X and Y registers.)

Remember that because the L-variable definitions are used only at the time of compilation, it is not
possible to use the array indexing techniques with L-variables that can be performed using M-variables by
changing the definitions at run time.

Variable Value Assignment Statements

Variable value assignment statements are used by PMAC to write to any register, whether an output, a
general-purpose variable in memory, a memory register used for a specific purpose, such as a gain, or a
hardware register, such as a flag-control register. Many of these statements can be executed using integer
arithmetic.

Valid Values

In a given variable value assignment statement ({variable}={expression}), L-variables cannot
be combined with any other type of variable; that is, if there is any L-variable in the statement, all
variables in the statement, on both sides of the equals sign, must be L-variables. Any constants in the

23 23
statement must be integers in the range -8,388,608 to 8,388,607 (-2 to2 -1).

Any variable-value assignment statement in a compiled PLC containing an L-variable that also contains

. . . _ 23 3 _
another type of variable, a non-integer constant, or an integer constant outside the range -2 to 2 -1 will
be rejected by the compiler. The compiler will report the error and line number.

240 Writing a PLC Program



PMAC User Manual

Valid Operators

All of the mathematical operators (+, -, *, /, %) and bit-by-bit boolean operators (&, |, *) that can be
used in floating-point operations in uncompiled PMAC programs can also be used in integer operations in
compiled PLCs. The priorities of these operations are the same as for the floating-point operations.

Integer Division

The result of the integer divide is rounded toward the nearest integer, unlike the integer divide in the PCs
Intel 80x86, in which it is truncated toward zero. In the case where the fraction is exactly 0.5, it will
round to the next more positive integer (e.g. -7.5 to -7, and 7.5 to 8 ). In PMAC floating-point operations,
all intermediate values have floating-point resolution and range; if the final value is stored in an integer
register as an I- or M-variable; the rounding rules above apply for this final value.

The following table illustrates the effect of integer division round off:

Integer Division Round-Off Effect
Platform Statement Resulting value
PC x=10%*2/3 6
PMAC L1=10*2/3 7
PMAC M1=10*2/3 7
PC x=10%*(2/3) 0
PMAC L1=10%*(2/3) 10
PMAC M1=10* (2/3) 7

Bit Inversion

The logical NOT operation to invert bits can be executed by operating on the quantity with the »
exclusive-or operator and a constant value that contains all bits = 1. A single bit L-variable can be
toggled with ~ 1 (for example, L1=L141). All bits of a 24-bit L-variable can be changed with "$FFFFFF
(for example L356=L355*$FFFFFF).

No Functions
It is not acceptable to use any functions in integer variable value assignment statements (e.g.
L1=SIN(L2)).

Intermediate Values

All intermediate values of these integer calculations are signed 24-bit values. Make sure that no
intermediate value in the calculations goes outside of this range. For example, the statement:
L500=-1000000 20000000/4000000

would not execute properly because the product of the first two values is more than 24 bits in length.

The resulting value of the calculation in a variable value assignment statement must be written to an L-
variable. This variable may be less than 24 bits wide. For an L-variable N bits in length, only the low N
bits of the calculated value are written to the register; the rest of the bits are lost. These N bits do not
have to be lowest bits in the register.

For example, with the definition L102->Y:$C003,8,16,S (DACI register), in the high 16 bits of a
24-bit word, the statement L102=1000 shifts the value automatically to start at bit 8 in Y:$C003.

Examples:

Examples of legal integer statements:
L100=1

LO=L1-L2*L3+(L4/1024)
L5=L5%1000

L6=L1"*S$FF

Writing a PLC Program 241



PMAC User Manual

Examples of illegal integer statements:

L10=P10

P10=L10
L11=L11+P11
L13=16777216/L12
L253=L14*ATAN(L16)

Conditional Statements
In a conditional statement, any simple condition ({expression} {comparator}

. . . , 2323 .
{expression}) that contains only L-variables and integer constants in the range -2 to 2 -1 will be
evaluated using the faster integer arithmetic. Any simple condition in a compiled PLC containing an L-
variable that also contains another type of variable, a non-integer constant, or an integer constant outside

the range —223 to 223—1 will be rejected by the compiler. The compiler will report the error and line
number.

The integer simple condition always compares two 24-bit signed quantities against each other, and all
intermediate values in evaluating the conditions are held as 24-bit signed quantities as well, so all values

23 23
must be kept in the range -2 to 2 -1 for proper evaluation.

All of the mathematical operations permitted in integer variable value assignment statements are also
permitted in integer condition statements. All of the same rules and speed/memory benchmarks (see
below) apply.

Compound conditions, which are comprised of simple conditions separated by AND or OR logical
operators, may contain both simple conditions evaluated with integer arithmetic and simple conditions
evaluated with floating-point arithmetic.

All of the comparators that are permitted in PMAC floating-point programs, except the ~ (approximately
equal to) and !~ (not approximately equal to) comparators, are also permitted in integer-only conditions
in compiled PLCs. These valid comparators are =, '=,>, 1>, <, and !<.

Examples:

Examples of legal condition statements:

IF (L50 = 1)

WHILE (L75 < L76)

IF (L1&L2 | (L4+L5) > O AND P1 = Q2 OR L6 !'= 0)
OR (L3 & L5 = $11 AND P1 = P2 OR L1 = 0)

Examples of illegal condition statements:

IF (L50 = P1)

WHILE (L75 < 10000000)

IF (L1 + P2 = 0)

Optimization for Speed and Memory

L-Variables that are 24-bit signed values are the fastest to read and write. Unsigned 1- to 20-bit variables
without offset are next fastest, and signed 1- to 20-bit variables and those having an offset from bit 0 are
the slowest. The slower the operation, the more PLC program memory is used. However, 24-bit L-
variables will use more data memory than the smaller-width ones. Because speed is more of a concern
than data memory in most compiled PLC applications, usually all L-variables that do not have to be short
to point to a particular portion of a word (such as all the general-purpose L-variables in the user buffer)
are 24 bits wide, even if they do not require the full range.

A read or write operation on a signed 24-bit L-variable takes three DSP instruction cycles to execute and
two program memory locations to store.

242 Writing a PLC Program



PMAC User Manual

A read operation from a less-than-24-bit (1- to 20-bit) signed L-variable takes from six to eight DSP
instruction cycles and from five to seven program memory locations. A read operation from a less-than-
24-bit (1- to 20-bit) unsigned L-variable takes from 7 to 9 DSP instruction cycles and from six to eight
program memory locations.

A write operation to a less-than-24-bit (1- to 20-bit) signed or unsigned L-variable takes 12 to 14
instruction cycles and 10 to 12 program memory locations.

e The &, %, |, +, -, * operators take one or two DSP instruction cycles.
e The divide (/) operator takes nominally 82 DSP instruction cycles.
e The modulo ( % ) operator takes nominally 76 DSP instruction cycles.

Integrating PLC Files

Before using the standalone compiler (PLCC.EXE), all of the PL.C programs that are to be compiled must
be combined into one file. The CNC Executive program, and the new general PMAC Executive program
V3.x, can use multiple files if the main file references all of the other files to be used with #include
commands.

The standalone compiler will only operate on one file, assuming that it contains all of the PLC programs
to be compiled. It is acceptable to leave PLC programs that will not be compiled, and other commands, in
the file. The compiler will simply pass these through unchanged.

The standalone compiler cannot work with the #define macros and #include files that the PMAC
Executive program editor and download routines use. The substitutions into true PMAC code must be
performed before the compiler starts. The program PREPROC.EXE can be used to perform these
substitutions and integrate multiple files into a single file.

The preprocessor program PREPROC.EXE, or the compiler program PLCC.EXE can be obtained from
Delta Tau’s bulletin board system.

To execute the pre-processor program that performs the #define macro substitutions and integrates the
#include files, type PREPROC -F{filename} at the DOS prompt, where { filename} is the full
name of the main file, including the extension. This program creates an output file with the same name as
the input file, but with a . SRC output file. It also creates a . MAP file of the same name that contains the
cross-references between macro names and PMAC code.

Link Address File

In the same subdirectory that contains the cross-compiler, there must be a file called LISTLINK.TXT,
that the compiler will reference as it runs.. This file must contain the ASCII text returned by PMAC in
response to a LIST LINK command. This text contains the PMAC addresses of key subroutines to

which the cross-compiler must link the compiled PLC code. It is specific to a particular version of
PMAC firmware.

Any change in PMAC firmware, even a sub-version change for a bug fix (e.g. from V1.15A to V1.15B)
requires a new LISTLINK.TXT file, re-compilation of the PLCs, and re-downloading of the compiled
code.

Executing the Compiler

The standalone compiler is executed by typing PLCC -F{filename} at the DOS prompt, where
{filename} is the full name of the input file, including the extension. The compiler will then execute
either until successful completion, or until it finds an error.

In the PMAC Executive programs, the compiler is integrated into the download routine as long as the
Compile on Download option has been activated.

Writing a PLC Program 243



PMAC User Manual

If the compiler can compile the entire file successfully, it will create an output file containing the PMAC
machine code in form that can be directly downloaded to PMAC. This file has the same name as the
input file, but with a .56K extension. The following message displays on the screen:

*** PMAC PLC Compiler V1.2 04/28/94 *x*

*** PLC compile complete, no errors ***

*** Downloadable PLCC code in file MYPLCC.56K ***

*** PLCC program memory use: 7343 of 15360 words ***

If the compiler finds an error, no output file is created. The compiler stops on the first error that it finds.
The following message displays on the screen:

**% PMAC PLC Compiler V1.2 04/28/94 ***

**% Compilation aborted due to error ***

*** Compile error #: 35 ***
*** PLC source file line: 27 ***

Compiler Errors
The compiler can report the following errors:

Number Type of Error
33 Unable to pack floating point number
34 Unable to convert string to float number
35 Illegal Command or Format in string
36 Integer number out of range
37 Unmatching parenthesis
38 Illegal Else Cmd
39 Illegal EndIf Cmd
40 Illegal EndWhile Cmd
41 PLCC Output File Error
42 PLCC Input File Error
43 Unclosed If or While Cmd
44 PLCC 56k maximum memory exceeded
45 PLC 56k conversion stack exceeded
46 First pass of Tokens exceeded maximum
47 Far heap allocate error
48 String must be in quotes & < 255 char
49 L-Variable address not defined
50 Two L-Variables with same address definition or has
already been defined

Compiler Processing
The compiler observes the following rules in interpreting the input file:

e Comments — all characters from a semicolon (;) character to the end of a line — are ignored, and they
are not passed on to the output file

e The compiler recognizes and uses L-variable definitions, but does not pass them on to the output file.

e All statements between OPEN PLCC n and CLOSE, except comments, are compiled into DSP
machine code. The CLEAR command is not required after OPEN PLCC n, because the act of
downloading new compiled PLCCs erases the existing version automatically. However, there is no
need to remove the CLEAR command for the compiler.

e For each compiled PLC n that is created, the compiler will add the commands OPEN PLC n
CLEAR CLOSE to the output automatically. When sent to PMAC, this erases the uncompiled PLC

of this number automatically. The reason this is done is to prevent uncompiled and compiled versions
of the same PLC from trying to execute simultaneously.

244 Writing a PLC Program



PMAC User Manual

To use a different uncompiled PLC of the same number as a compiled PLC, include it in the input file to
the compiler after the text for the compiled PLC. The compiler will pass it through to the output and it
will be reloaded each time. Otherwise, do a separate download of this PLC after each compile/download
cycle. All other commands are passed through the compiler to the output file unchanged.

The compiler will tells how many words of PMAC memory the compiled code will occupy; it will note
an error if the compiled code exceeds the maximum permitted 15360 words of PMAC memory. If using
a user-written servo in PMAC, ascertain that the compiled code does not exceed 14336 words.

Downloading the Compiled Code to PMAC

The single output file from the compiler can be downloaded to PMAC by any program or routine that can
send files to PMAC, such as the PMAC Executive program’s Download file to PMAC menu selection. In
the CNC Executive program, the download occurs automatically after the compiling.

The act of downloading any new compiled PLC programs deletes all of the existing compiled PLC
programs in the PMAC active memory automatically. No other commands need to be used to delete
these.

In PMACs with battery-backed memory, the compiled PLC programs are retained by the battery
automatically through power-down cycles until they are explicitly deleted by the DELETE PLCC
command, or by the downloading of a new set of compiled PLCs.

In PMAC:s with flash memory backup, the SAVE command must be used after downloading in order for
the compiled PLCs to be retained through a power-down or reset of the card. The SAVE command copies
the programs from active memory to the non-volatile flash memory. At power-up/reset, the contents of
the flash memory are copied into active memory.

Running the Compiled PLCs

I-variable IS is the master control for both uncompiled and compiled PL.Cs. The PLC programs can be
individually enabled and disabled with the ENABLE PLC, ENABLE PLCC,DISABLE PLC, and
DISABLE PLCC commands. These can be given as on-line commands, or as buffered commands within
motion programs, uncompiled PLC programs, or compiled PLC programs. A PLC program can even
disable itself. Do not use the DISABLE PLCC command from within either PLC 0 or PLCC 0; they
cannot be guaranteed to work here.

It can be useful to think of the two bits of I5 as being like the master breakers for a house, and the
individual program enable/disable controls as being like light switches within the house. Both the master
breaker and the light switch must be in the ON setting for the light to work. The breakers and the light
switches are separately controllable.

When the compiled PLC programs are downloaded to PMAC, they are all individually enabled. They
will start running immediately if permitted by I5.

On power-up/reset, all existing PLC programs, compiled and uncompiled, are individually enabled. If 15
was saved to a value that permits a given PLC program to run, it will be ready to run on power-up. PLC

1 will be the first PLC to execute after power-up/reset (before even PLCC 1). Many people use this as
their reset PLC, executing once and disabling itself to prevent repeated execution. This PLC program can
be used to prevent other PLC programs from executing immediately on power up with DISABLE PLC
and DISABLE PLCC commands. In this way, power up can be done with only a choice of PLC
programs enabled.

Sending the <CONTROL-D> character is a quick way of disabling all PLC programs, compiled and
interpreted.

Writing a PLC Program 245



PMAC User Manual

Note:

It is never advisable to have PLC 0 or PLCC 0 running on power-up. Therefore,
do not save an 15 value of 1 or 3. Instead, save I5 as 2; then in PLC 1 reset PLC,
use a command sequence like:

DISABLE PLCC O

DISABLE PLC O
I5=3

The PLC 0 and/or PLCC 0 can then be enabled as needed.

246 Writing a PLC Program



PMAC User Manual

WRITING A HOST COMMUNICATIONS PROGRAM

Communicating From a Host Computer

If communicating from a host computer to PMAC in the actual application, write a host communications
program. The PMAC Executive program that was used in development is not intended as a host program
for an actual application; it was designed simply as a development tool.

At a fundamental level, the host communications routines that are written send and receive strings of
ASClII-coded characters to and from PMAC. Create some low-level routines to send and receive
individual characters and text lines; these will be called repeatedly, specifying the different text strings to
read or write.

The basic concepts of communications are covered in the Talking to PMAC section of this manual.

Communications to the PMAC will take place over one of three PMAC communications ports (each
version of PMAC has two of these ports). Every PMAC has a serial port that can connect to a COM port
on a host computer. The PMAC PC, -Lite, and -STD have a host port for bus communications to the
host. This port works the same on all three versions. The PMAC VME has mailbox registers for
communications over the VME bus to the host computer. Instructions for using each of these ports are
discussed in the following sections.

This section covers the communications of text commands and text responses. With the Option 2 dual-
ported RAM, completely binary methods of communications are possible, with the proper programs
written on both the host computer and PMAC.

Note:

Delta Tau provides several software libraries to make the development of host
communications programs easier. Most notably, the Acc-9P PCOMM library
handles all of the low-level issues described in this section. Much of the
discussion in this section is not required if you are using one of these
communications libraries.

Polled vs. Interrupt-Based Communications

Regardless of the port that is used, there are two fundamental methods for doing the handshaking on the
passing of characters. In the first method, the host can poll the PMAC interface, repeatedly if necessary,
to see if it is ready to send or receive the next character or line. In the second method, the PMAC
interface will interrupt the host when it is ready to send or receive the next character or line.

Polled communications handshaking is easier to write, but it is less efficient, because of the time, the
program can spend waiting for PMAC to be ready. Interrupt-based communications is more efficient,
because the host computer can be performing other tasks while PMAC is not ready, but it is much more
difficult to write. Initialize, vector, and unmask the interrupts, write the interrupt service routines, decide
which routines disable which other interrupts, and you must restore the interrupts when completed.

Serial Port Communications

When communicating to the PMAC through the PMAC serial port, typically one of the COM ports in the
host computer is used. In an IBM-PC or compatible, usually these are the built-in COM1 and COM2 RS-
232 ports, but they can be on expansion cards as well. Most COM ports, even on non-IBM-compatible
computers, use the same ICs, so usually they have the same registers on the host side.

Setting up the Interface

Every time the system is started up, the serial port of the host computer must be initialized to interface
properly with the settings of PMAC. This is done with some simple byte-write commands to the I/O
space of the computer.

Writing a Host Communications Program 247



PMAC User Manual

Base Address
The first thing to know is the base address of the COM port in the computer’s I/O space. In an IBM-PC, the
COMI1 port base address is at 3F8 hex (1016 decimal), and the COM2 port is at 2F8 hex (760 decimal).

Baud Rate

Set up the baud rate counter in the host computer to match the PMAC baud rate, which is determined by
the master clock and jumpers E40-E43. The baud rate counter must be given a value equal to 115,200
divided by the baud rate (e.g., for 9600 baud, the value is 115,200/9600 = 12).

The following program segment illustrates how this can be done:

outporthb (combase + 3, 131); /* Put COM port in setup mode */

baud _count = 115200/baud; /* Calculate counter value */

outportb (combase, baud_count); /* Write to low byte of counter */
outportb (combase + 1, baud count/256), /* Write to high byte of counter */
outportb (combase + 3, 3); /* Put COM port back in normal mode */

/* with 8 bits, 1 stop bit */

The command outportb is a byte-write command; combase is the base address; baud is the baud rate in
bits per second.

It is a good idea in the initial set up to compute a timeout value, related to both the baud rate and the host
computer’s speed. As the host polls PMAC to see if it is ready to communicate, a counter increments; if
the counter exceeds the timeout value, the host should give up on this attempt to talk to PMAC.
Depending on the circumstances, it should either just try again later (as when waiting for some
asynchronous communications) or assume there is an error condition. A good equation for the timeout
value is:

timeout = 7 - speed - (baudcount + 100)

where speed is 1 or 2 for a PC-XT, 3 or 4 for a 286-based computer, 5 to 6 for a 386-based computer, and
7 to 9 for a 486-based computer.

Sending a Character

In polled communications, the host must see two status bits (write-ready bits) in the serial interface
registers become one before it may write a character to the serial output port. These two bits are Bit 5 of
{base + 5}, and Bit 4 of {Base +6}. A sample C code segment to do this is:

i=0; /* Reset counter */

while (i++<timeout && (inportb(combase+5)&32==0); /* Loop until bit true */

while (i++<timeout && (inportb(combase+6)&16==0); /* Loop until bit true */

if (i < timeout)outportb(combase, outchar), /* Send character unless timed out */

Sending an entire line simply involves repeated calls to this routine, with a different outchar each time.

Reading a Character

To read a character from the serial port, the host must prepare the port to read (it may want to do this for
an entire line), then poll a status bit (read-ready bit) in a serial interface register; when this becomes one,
the character may be read. A sample C code segment to do this is:

i=0; /* Reset counter */
outportb(combase + 4, 2); /* Set port for input */

while (i++<timeout && (inportb(combase+5)==0), /* Loop until bit true */

if (i < timeout) inchar = inportb(combase); /* Get char. unless timed out */
disable(); /* Disable interrupts */
outportb(combase + 4, 0); /* Set port for output */
enable(); /* Re-enable interrupts */

To read an entire line in a single routine, turn around the port at the beginning and end of the line.

248 Writing a Host Communications Program



PMAC User Manual

Host Port Bus (PC/STDbus) Communications

Host Port Structure

The host port interface of PMAC, used for communications over the PC (ISA) and STD busses, occupies
11 consecutive addresses of a 16-address region in the I/O space of the host computer (it is not memory
mapped). On the host side, these registers are accessed with byte-write and byte-read commands, such as
outportb, inportb, outp, and inp. On the PMAC side, the PMAC firmware takes care of the direct access
to these registers, in response to commands from the host.

Base Address Selection

The location of the first of these 11 registers in the host computer's I/O space (the base address) is
selected by the settings of jumpers E91-E92, E66-E71 on the PMAC PC and PMAC Lite; by jumpers
W11 to W22 on the PMAC STD. Refer to the Jumper Descriptions section of the manual for actual
setting information. The addresses of these registers range from base address to base address +10.

Register Functions
Each of these 11 registers has a function for host communications, although only a few of them are used
commonly, and some are not used at all. The functions of the registers are:

Register Functions
Base Register Function

Base + 0: Interrupt Control Register
Base + 1: Command Vector Register
Base + 2: Interrupt Status Register
Base + 3: Interrupt Vector Register
Base + 4: (Unused)
Base + 5: High-Byte Data Transmit and Receive
Base + 6: Middle-Byte Data Transmit and Receive
Base + 7: Low-Byte Data Transmit and Receive
Base + 8: Interrupt Controller Command Word 0
Base + 9: Interrupt Controller Command Word 1
Base + 10: Interrupt Acknowledge Word

Registers for Simple Polled Communications

Basic polled communications can be accomplished with just two of these addresses. {Base + 7} holds
each byte (character) as it is passed to or from the PMAC. The read and write registers are separate, so do
not worry about overwriting a character sent in the other direction.

{Base + 2} holds the handshaking status bits; even though this is called the Interrupt Status Register, it
can be used for polled communications with the host: The Write-Ready Bit (bit 1) is true when PMAC is
ready to have the PC write it a character; and the Read-Ready Bit (bit 0) is true when PMAC is ready to
have the PC read a character.

Setting up the Port

No real setup is required for the host port, although it is advisable to write zero values to the high-byte
and middle-byte registers to clear them. The following sample C code segment does this:

outportb (combase + 5, 0); /* Clear high-byte register */

outportb (combase + 6, 0), /* Clear mid-btye register */

It is a good idea in the initial set up to compute a timeout value, related to the host computer's speed. As
the host polls PMAC to see if it is ready to communicate, a counter increments; if the counter exceeds the
timeout value, the host should give up on this attempt to talk to PMAC. Depending on the circumstances,
it should either just try again later (as when waiting for some asynchronous communications) or assume
there is an error condition. A good equation for the timeout value is:

timeout = 7 - speed - 100

Writing a Host Communications Program 249



PMAC User Manual

where speed is 1 or 2 for a PC-XT, 3 or 4 for a 286-based computer, 5 to 6 for a 386-based computer, and
7 to 9 for a 486-based computer.

Sending a Character
To send a character, the host simply waits for the Write-Ready Bit to go true, and then writes the
character to the output port, as this sample C code segment shows:

i=0; /* Reset counter */
while (i++<timeout && !(inportb(combase+2) & 2)), /* Loop until bit true */
if (i < timeout) outportb(combase+7, outchar); /* Write character */

Reading a Character
To read a character, the host waits for the Read-Ready Bit to go true, then reads the character from the
input port, as this sample C code segment shows:

i=0;
while (i++<timeout && !(inportb(combase+2) & 1)), /* Loop until bit true */
if (i < timeout) inchar = inportb(combase+7); /* Read character */

Using the PMAC PC/STD to Interrupt the Host Computer

The PMAC PC, PMAC Lite and PMAC STD motion control cards have the capability of interrupting the
host PC for any of a number of reasons. This capability can give additional speed, power, and flexibility
in the system, but using interrupts properly is one of the more demanding programming tasks on a PC. It
requires substantial programming experience and a lot of patience. Once done, the rewards can be
substantial in increasing the efficiency of the system.

These PMACs have an on-board Intel 8259 Programmable Interrupt Controller IC (PIC). This IC has
eight inputs that can cause it to send an interrupt signal to the PC. With a combination of hardware and
software, what signals, if any, can be selected that will cause an interrupt to the PC.

What Signals Can Be Used

The eight inputs to the PIC are labeled IR0 to IR7. IR0 has the highest priority; IR7 the lowest. The
PMAC design brings a variety of different signals into these inputs; on some of the inputs, what signal is
brought to the input is chosen with jumpers.

The following table shows which signals match to each input on the PMAC PC and PMAC Lite. Those
signals marked with an asterisk (*) are not available on the PMAC Lite:

IPOS is the coordinate system in-position signal. If the control panel is enabled (12=0), it reflects the
panel-selected coordinate system (by FDPn/ lines). If the control panel is disabled (I2=1), it reflects the
host-addressed coordinate system (by &n command). For a coordinate system to be in-position, three
conditions must be met: the desired velocity must be zero on all axes; no move timers can be active (in
any move, DWELL, or DELAY); and all motors must have a following error smaller than the in-position
band (Ix28).

BREQ is the buffer request signal. It is high when a regular buffer still has room for more lines to be
entered (you can define how much memory left means enough room with 118). When a rotary buffer is
open, it is high when less than a prescribed number of lines ahead of the executing line (set by [16 and
[17) have been loaded. It is low when buffers are closed. When a program line is sent to an open buffer,
it is always set low, then set high again if the conditions as explained above warrant. This rising edge can
generate an interrupt to tell the host to send the next program line.

250 Writing a Host Communications Program



PMAC User Manual

PMAC PC/PMAC Lite Input Signal Matching

PIC Input PMAC Signal
IR0 IPOS
IR1 BREQ
IR2 EROR
IR3 F1ER
IR4 HREQ
IR5 EQUI (thru E65)

EQUS (thru E64)*
AXEXP1 (thru E63)
MII (thru E62)

IR6 EQU2 (thru E61)
EQU6 (thru E60)*
AXEXPO (thru E59)
MI2 (thru E58)

IR7 EQUS3 (thru E57)
EQUY (thru E56)*
EQU4 (thru E55)
EQUS (thru E54)*

The following table shows which signals match to each input on the PMAC STD:

PMAC STD Input Signal Matching
Input Signal Input Signal
IR0 RESET IR4 BREQ
IR1 RESET/ IRS EROR
IR2 HREQ IR6 FEl
IR3 IPOS IR7 (Software)

EROR is the coordinate system fatal following error line. If the control panel is enabled (12=0), it
reflects the panel-selected coordinate system (by FDPn/ lines). If the control panel is disabled (I12=1), it
reflects the host-addressed coordinate system (by &n command). This signal goes high if any motor in
the coordinate system exceeds the Ix11 warning following error limit.

F1ER is the coordinate system warning following error line. If the control panel is enabled (12=0), it
reflects the panel-selected coordinate system (by FDPn/ lines). If the control panel is disabled (I12=1), it
reflects the host-addressed coordinate system (by &n command). This signal goes high if any motor in
the coordinate system exceeds the Ix12 warning following error limit.

HREQ is the host request line of the PMAC processor. This line can be used to do character-by-
character handshaking on communications with PMAC. This line can mean read-ready and/or write-
ready, depending on the value of the byte that has been written from the PC to the PMAC base address
register, the interrupt control register of the DSP (0 means neither, 1 means host read-ready generates an
interrupt, 2 means host write-ready generates an interrupt, 3 means both generate an interrupt).

EQUn is the compare-equals bit for PMAC encoder n. It goes true when the encoder position matches
the pre-loaded position- compare register value. If not using the position-compare feature for an encoder,
have the PMAC command this bit from a motion program or PLC program using an M-variable (by
changing its polarity with the EQU out invert enable bit, bit 13 of the DSPGATE status/control word,
Mx13 in the suggested M- variable definitions), thus allowing PMAC software to generate an interrupt
for the PC.

AXEXP0 and AXEXP1 bring in EQUn inputs from the PMAC Accessory-24 Axis Expansion Board.
Jumpers on the Acc-24 control which EQUn line is brought in on the line. These also may be set in
PMAC software.

Writing a Host Communications Program 251



PMAC User Manual

MI1 and MI2 are PMAC Machine Inputs 1 and 2, which usually come from the system under control.

(Software): This line in the PMAC STD can be toggled from a PMAC program after assigning an M-
variable to bit 7 of Y-register SFFED (e.g. M10-> Y:$FFED,7,1). Setting this M-variable to 1
triggers the interrupt; setting it to O clears it.

Selecting a Host Interrupt Line (PMAC PC or Lite)

Use one (and only one) of the PMAC PC or PMAC Lite jumpers E76 to E84 and E86 to select which of
the PC’s interrupt input lines (IRQn) will receive the signal generated by the PMAC PIC. Jumpers E81-
E84 and E86 are for IRQ lines on the original PC connector; jumpers E76-E80 are for IRQ lines on the
AT connector, which PC-XTs and their clones do not possess.

These lines feed into an 8259 PIC in the PC itself; each line is a separate input (interrupt level). The PC
must then be programmed to recognize this particular interrupt level (the interrupt level must be
unmasked and vectored) and react appropriately (through an interrupt service routine). These will be
explained below.

Selecting a Host Interrupt Line (PMAC STD)
The user should use one (and only one) of the PMAC STD CPU board jumpers W1, W2, and W3 to
select between STDbus interrupt lines INTRQ*, INTRQ1*, and INTRQ2*, respectively.

Interrupt Functions

The first and most common use of these interrupts is for basic communications. By using the HREQ line
into the PIC, PMAC can interrupt the host PC whenever it has something to say to the host, and/or
whenever it is ready to accept a character. This can eliminate the need for the host to poll PMAC
regularly to see if it is ready for communications. Refer to the Appendix or the Executive Program
diskette for demonstration PC programs.

252 Writing a Host Communications Program



PMAC User Manual

MI2 —* E58
AXEXPO —* E59
EQU6 —* Eg0
EQU2 —* k51

EQU8 —* E54

EQU4 — * E55
EQU7 —* E56

EQU3 —® E57

PMAC

o~ 1

E62 *— MI1

E63 *——AXEXP1

E64 ¢ EQU5
E65 * EQU1
[ R4

HREQ (Read-Ready/Write-Ready)

PC

IR5 IR3 Warnin,
g
F1ER (Following Error]
IR6 IR2 Fatal
PMAC < EROR | Following Error]
IR1
8259 “—BREQ (Buffer-Request)
IR7 IRO iy
P I C “——pos (In-Position)
v INT
E76E77E78E79 FBO é 470 ohm E'81E82E83I§84F86
I |
IRQ15‘ PC-AT v IRQ3 ‘
IRQ14 only IRQ4
IRQ12 * > IRQS5
IRQ7
IRQ11 IRQ2
lIRQ10 .
v v

PC-AT
8259
PIC

PC
8259
PIC

A\ 4

v

80x86 CPU

Figure 54 PMAC PC/PMAC Lite Interrupt Structure

Writing a Host Communicatio

ns Program

253



PMAC User Manual

EROR IR R4  greq
RS 1pos
e
Fep N6, «  R2  osTREQUEST
PMAC Ri
<« 'R"  BOARD EXITING RESET
8259 IE PUSHED BUTTON
IR7 IR0 BOARD ENTERING RESET
. IR7 < IR0
SOFTWARE PIC IE WATCHDOG TIMEOUT

vy INT

L

w3 w2 Wi
\ \ PMAC
INTRQZ* STD32
INTRQ1*
J’ INTRQ*
: .4

PC
8259
PIC

v

80x86 CPU

Figure 55 PMAC STD Interrupt Structure

In PMACINT.C note the setup particularly (unmasking and vectoring the PC interrupt properly), the
interrupt service routine, and the restoration of the old interrupt setup and the end of the program.

Note:

PMAC can also perform interrupt-based communications with the PC over the
serial data port (RS-232. on the PC). This interrupt capability is inherent in the
PC's RS-232 port and does not rely on the PMAC PIC in any way, but from the PC
end, it can be treated very much like the bus-communications interrupt scheme.
Files are provided for those interested in this technique.

There are other common uses of interrupts. Use of the BREQ line allows for an interrupt-driven line-by-
line handshaking in the downloading of program lines that is useful for fast real-time communications to
rotary program buffers.. The IPOS line can signal the host that the system has gotten to the proper
position and stabilized so that the desired action is ready to be taken. The F1ER line can tell the host that

an axis is not following well and that remedial action

needs to be taken.

254

Writing a Host Communications Program



PMAC User Manual

The EQUn lines can be used to signal the host that the actual position of an axis has reached a certain
point so that the appropriate action can be taken. Alternately, these are the best way to have a PMAC
motion or PLC program interrupt the host during the program flow.

Setting Up

Proper setup of the interrupt structure, both in hardware and software, is essential to a properly working
interrupt scheme. Some tasks need be done only once in development; others must be done every time
the system is powered on.

Finding an Open Interrupt Line

The first thing that must be done is to select an interrupt line on the PC that can be used. The important
thing is to find one that will not be used for other purposes during the time when the PC is working with
PMAC using this interrupt. PMAC can interrupt on lines IRQ2, IRQ3, IRQ4, IRQS5, and IRQ7 on all
PCs, and on lines IRQ10, IRQ11, IRQ12, IRQ14, and IRQ15 on PC-AT type computers. Different
versions of so-called compatible computers use these interrupts for different things; consult the users
manual for your own model to see what interrupt line is used for what function. Below is a table of
"standard" uses for these interrupt lines. It is often possible to borrow a COM or LPT interrupt for the
duration of a PMAC-interfacing program if that port will not be used.

Hardware Considerations

Once the line is chosen, the electrical properties of the interrupt line must be considered. Also here is an
area where compatible PCs often are not really compatible. Some use no pull-up resistors for these lines
on the backplane, and those that do use pull-up resistors use different values. PMAC PC is shipped
standard with a 470 ohm pull-down resistor (connecting D3 and R25, just above the AT connector).
While this is sufficient to achieve an adequate low state on most PCs and clones, on some varieties with
low-value pull-up resistors, a lower value pull-down may be required to get a valid low state. Obviously,
probing of the interrupt line may be required to verify proper operation — extender cards are a big help in
this regard.

Standard Uses for Open Interrupt Lines
Line Int # PC Use PC-AT Use
IRQ2 0AH LPT2 IRQ8-15
IRQ3 0BH CoM2 COoM2
IRQ4 0CH COM1 COM1
IRQ5 ODH Hard Disk LPT2
IRQ7 OFH LPT1 LPT1
IRQ10 72H XXX available
IRQI11 73H XXX available*
IRQ12 74H XXX available*
IRQ14 76H XXX Hard Disk
IRQ15 77H XXX available
*IBM has reserved these for as yet unimplemented functions

Initializing the PC’s PIC

In software, the PC’s 8259 PIC must be set up (each time the PMAC application program is run) to react
properly to an interrupt from PMAC. This setup consists of two parts: vectoring and unmasking. Vectoring
tells the PC where to go (at what address are the instructions to execute) when it receives the interrupt.
Unmasking enables the interrupt. The TurboC 2.0 environment provides useful tools to make this process
relatively easy and is used as an example here; there are, of course, many other ways to do this.

Writing a Host Communications Program 255



PMAC User Manual

Vectoring

In vectoring, usually the first step is to save the old vector so it can be restored on exiting the program. This

is essential if borrowing an interrupt line. In TurboC, this can be done using the getvect function, as in:
oldvect = getvect(0x0d)

This statement stores the existing interrupt vector for interrupt number 0d(hex) — IRQ5 — in the (long)
variable oldvect.

The next step is to enter an interrupt vector. Do this in TurboC with the setvect function, as in:
setvect (0x0d, pmac_comm);

The address of the interrupt service routine does not need to be specified, only the name of the routine —
in this case pmac_comm.

The unmasking step should wait until the PMAC has been set up properly.

Setting up the Host Request Function

To set up PMAC, first write a value to the DSP’s interrupt control register, which is at the PMAC base
address in the PC’s port space (this address is set by jumpers E66-E71 and E91-E92). This value will
determine what, if any, character-by-character handshake interrupts will be used. Refer to the HREQ
description, above, for the proper value. The TurboC command would be:

outportb (base, value),

(The equivalent Microsoft C command is outp [base, value].) This command, or its equivalent in other
languages, can also be used to perform the steps below.

Initializing the PMAC PIC

Next, write to the PMAC PIC’s Initialization Command Words (ICW5s) to set up the PIC properly.
Although this IC is on PMAC, it is mapped into the PC’s port space as two registers at the PMAC base
address plus 8 and 9.

To do this, perform the following steps:

e  Write a byte of 17(hex) to [PMAC base address + 8]. This sets up ICW1 for edge-triggered
interrupts.

e  Write a byte of 08(hex) to [PMAC base address + 9]. This sets up ICW2.

e  Write a byte of 03(hex) to [PMAC base address + 9]. This sets up ICW4 for 8086-mode operation.

e  Write a byte of FF(hex) to [PMAC base address + 9]. This writes to Operation Control Word 1 to
mask all eight interrupts into the PMAC PIC.

Unmasking Interrupts

When ready to accept interrupts from PMAC, unmask the interrupts into the PMAC PIC that will be
active. Write a one-byte argument in which every masked interrupt to the PMAC PIC is represented by a
1; and every unmasked interrupt is represented by a zero. For instance, to unmask IR4 alone, the argument
would be ef(hex); to unmask IR5 alone, the argument would be df(hex). The routines write this argument
to the PMAC PIC's Operation Control Word 1 (OCW1). Without the driver, use a command like:

outportb (base+9, Oxef); /* unmask IR4 only */

At this point, unmask the interrupt being used on the PC’s PIC. First, disable the PC interrupts (TurboC
command: disable(); ). Next, read the current mask word at I/O port address 21(hex) with a command
like:

ch = inportb(0x21)
Then unmask the new interrupt to be use by performing a bit-by-bit AND between the current mask word
and a mask word that would enable only the new interrupt line — ef(hex) for IRQ4, fe(hex) for IRQ3. The
C command for this is:

ch = ch & Oxef

256 Writing a Host Communications Program



PMAC User Manual

The resulting new mask word is written back to I/O port address 21(hex) with:
outportb (0x21, ch)
Finally, re-enable the PC interrupts (TurboC command: enable();). This completes the setup procedure.

Using the Interrupts

To react to an interrupt in actual use, write an interrupt service routine. TurboC has a special type of
routine that makes this relatively easy. In naming the routine, specify that it is an interrupt routine. The
routine header line is something like:

static void interrupt far pmac_comm (void)

Not all of these words are needed in the declaration. The first void says that the routine will not return a
value; interrupt specifies this as an interrupt service routine; far declares the address (referred to in
setvect) to be a far pointer; pmac_comm is the name of the routine (called in setvect); the second "void"
declares that this has no arguments (since it cannot).

The interrupt routine should first disable PC interrupts (for just long enough to make sure the necessary
tasks can be done). Then it should write an End-of-Interrupt byte to the PC PIC (I/O port address
20(hex)). This byte has a high nibble of six, and a low nibble with the IRQ line number. For instance, if
IRQ4 is used, the TurboC statment to do this is:

outportb (0x20, 0x64) ;

As soon as possible, the PC interrupts should be re-enabled. When this can occur depends on how the
program is structured.

Now write an End-of-Interrupt byte to the PMAC PIC. The byte is the same (six in the high nibble;
hardware input (IR) line number in the low nibble). For the PMAC PIC, this byte is written to the card’s
base address plus eight in the PC’s I/O port space. This could be done with an outportb command.

Of course, somewhere in here, take the action that needs to be taken on receiving the interrupt, whether it
is simply reading a character, sending a command line, or finding an error condition.

Restoring Previous Vectors
Before exiting the application program, remask the PC interrupt and restore the old vector and mask the
interrupts on the PMAC PIC. The following TurboC code does this:

setvect (0x0c, oldvect) ; /* Restore old IRQ4 vector */
disable () ; /* Disable PC interrupts */

ch = inportb (0x21) ; /* Get PC mask word */
ch=ch|0x10; /* Make bit 4 equal 1 */
outportb (0x21, ch) ; /* Send new PC mask word */
enable () ; /* Re-enable PC interrupts */
outportb (base+9, Oxff) ; /* Mask all PMAC interrupts */

VMEbus Communications

Setting up The Base Address for PMAC VME

PMAC VME communicates with the VME bus as a slave device through a set of 16 8-bit mailbox
registers., which are essentially 16 bytes of dual ported registers (not to be confused with Option 2V:
8Kx16 dual ported RAM). The mailbox registers occupy an address space on the VME bus, starting with
the base address plus 1.

Before communicating with PMAC VME over the VME bus, the base address of the mailbox registers
must be set up. Determine what memory space is available in the VME system, such that PMAC VME
will not conflict with other existing devices in the VME system. After selecting an address location, the
next thing to do is to tell PMAC what VME bus address it will reside at.

Writing a Host Communications Program 257



PMAC User Manual

This is done through software programming. In order to do this, an IBM-PC compatible computer
running the PMAC Executive Software is needed, (or some suitable terminal software) talking to PMAC
through the RS232/422 port (using, of course, an RS232/422 cable connected from the computer’s COM
port to the PMAC J4 connector on the front bezel).

Within the PMAC memory, there is a section of 10 registers or memory locations which contain the VME
bus base address information, address modifier and don’t care bits information, interrupt level and vector
number, and the VME bus base address for dual ported RAM (if used). These memory locations start a
the PMAC X memory location X:$0783 and continue up through location X:$078C.

Write values to these registers based upon the addresses and modes of operation selected for the PMAC
VME through the RS232/422 port by using either the PMAC write memory command (W), or by using the
VME Bus Address Configuration menu option in the PMAC Executive Software.

Before going through an example, the above registers need to be explained in some detail.

Address Modifier

The address modifier (AM) is simply a 5-bit code sent out on the bus by the host computer (or master
device) each time a read or write is performed. This AM informs slaves (cards on the VME bus listening to
the master) what type of address is being sent, i.e. whether it is a short (16-bit), standard (24-bit), or
extended (32-bit) address (for more information, consult a VME bus specification manual). Tell PMAC
(the slave) what AM to use. The factory default for this register is $39, specifying standard 24-bit
addressing. While there is many address modifiers possible, only three are commonly used with PMAC
VME:

PMAC VME Default Setup Register Values
PMAC Memory |Default | Description
Address Values
X:$0783 $39 | Address modifier (AM)
X:$0784 $04 | Address modifier Don’t care bits (In this example, address modifier bit 2 is a
do not care bit, thus allowing AM = $29 or AM = $2D.)
X:$0785 $FF | PMAC base address bits A31 - A24 (not used when using A16 or A24 address
bus)
X:$0786 $7F | PMAC base address bits A23 - A16 (not used when using A16 address bus)
X:$0787 $A0 [ PMAC base address bits A15 - A08. Selects base address with any address
bus width, which must be an even number (i.e. address bit A08 must be 0).
X:$0788 $02 | Interrupt level.
X:$0789 $A1 | Interrupt vector number, which is the upper number of a vector pair (in this
example, we have the vector pair AO-A1l).
X:$078A $00 [ Dual ported RAM starting address bits A23 - A20.
X:$078B $60 | Use $EO with DPRAM.
Use $60 without DPRAM.
X:$078C $10 | Address bus width select:
$30 selects A16 address bus*
$10 selects A24 address bus*
$00 selects A32 address bus*
*Add $80 to these values when using DPRAM.

258 Writing a Host Communications Program



PMAC User Manual

Address Modifier Do Not Care Bits

This register (X:$0784) simply states which bits of the address modifier are don't care bits. In other
words, this tells which bits of the AM are ignored. The factory default of $04 tells PMAC to ignore bit 2
(value of 4) of the AM, so for example, it will recognize both $39 and $3D as valid 24-bit AMs. There
should be no reason to change this from the default.

Address Modifiers Commonly Used With PMAC VME

Address Modifier | Function
$29 A16 16-bit addressing
$39 A24 24-bit addressing
$09 A32 32-bit addressing

PMAC Base Address Bits

The base address for PMAC VME is split into three values since there are three registers (X:$0785 -
$0787) here to contain the base address. The first register holds address bits A31 through A24, the
second holds bits A23 through A16, and the last holds bits A15 through A8 (the A8 bit must be 0).
Address bits A7 through A0 of the base address are not specified, and therefore are taken to be all 0. If
the base address in hex is written, it is easy to figure out which address bits are A31 - A24, etc.

Interrupt Level

When PMAC VME acknowledges the receipt of a command (valid or invalid) and/or has data to be read
by the host computer (or master), typically it generates (asserts) an interrupt on the VME bus. This
register (X:$0788) tells what interrupt level (from 1 to 7) will be used by PMAC. The factory default is a
value of $02 for interrupt level 2. Therefore, when the host detects an interrupt on interrupt level 2,
PMAC generated this interrupt. Be aware that the interrupt must be serviced or acknowledged by the host
computer before PMAC withdraws its interrupt assertion.

Interrupt Vector Number

When an interrupt is generated by PMAC VME, the host computer will also read an interrupt vector
which is sent with the interrupt. PMAC will send one of two interrupt vectors with each interrupt
generated, indicating a particular condition. The factory default is a value of $A1, which means PMAC
will send either an $A0 or $A1 interrupt vector every time it generates an interrupt. However, when does
PMAC send an $A0 vector and when does PMAC send an $A1 vector? We know that PMAC generates
an interrupt on the VME bus every time it has data to send, whether it is only one character (like a
linefeed <LF> character) or several characters (like the current position of a motor).

In this example (using the factory default), an $A0 vector will be sent every time PMAC receives a set of
characters from the mailbox registers, whether it is a partial or full command line. This is the PMAC way
of acknowledging the receipt of a command line such as: | 100=1<CR> or #1J+<CR>. An $Al
vector will be sent if there is data waiting to be read by the host. For example, if asking PMAC for the
value of a P-variable or asking to list a program in the PMAC memory, PMAC will generate an interrupt
accompanied by an $A1 vector indicating that there is data to be read in its mailbox registers. (A detailed
example of how to read and write to the mailbox registers is given in subsequent sections.)

Dual-Ported RAM Base Address

The dual-ported RAM, if used, has a different base address from that of the mailbox. This register
(X:$078A) is where specify address bits A23 through A20 of the dual ported RAM (DPRAM) starting
address. The first four bits of this register specify A23-A20 of the base address. The low four bits of this
register should be set to 0. For example, if the base address of the DPRAM is $780000, this register would
be set to $70, where the 7 in the high four bits of the byte represents the 7 in bits 23-20 of the base address.

If using A32 32-bit addressing, address bits A24-A31 of the DPRAM are the same as for the mailbox
base address, as specified in X:$0785.

Writing a Host Communications Program 259



PMAC User Manual

Bits A19-A14 of DPRAM base address must be specified by the host computer every time the system is
powered up or reset. The host computer does this by writing a byte to the mailbox IC at the mailbox base
address + $121. The low six bits of this byte represent bits A19-A14 of the DPRAM base address.

For example, with the mailbox base address at $7FA000 and the DPRAM base address at $780000, bits
19 to 14 of the DPRAM base address can be represented as 100000 binary, or $20hex, so the host
computer would write a byte value of $20 to bus address $7FA121.

(The VME controller IC on PMAC uses this IC to permit dynamic switching between multiple pages of
DPRAM. The DPRAM IC on PMAC VME has only one page, but this page must still be dynamically
selected by this operation.)

DPRAM Enable
This register (X:$078B) enables or disables the DPRAM. Write a $60 to this register if not using
DPRAM; write an $EO to this register if using DPRAM.

Address Bus Width
This register (X:$078C) states what size address bus being using, and whether DPRAM is installed or not.
Select the proper value from the following table.

Address Bus Width Register Setup Values
Bus Width No DPRAM DPRAM
16-bit $30 $B0
24-bit $10 $90
32-bit $00 $80

Saving These Setup Values

Once these settings have been made, save them to non-volatile memory. Then reset the card ($$$
command), because PMAC only copies these values into the working registers on power-up/reset.
Example:

If the VME address $7FA000 has been selected for the base address of the PMAC VME, the address
width is 24 bits and no DPRAM is installed. An AM of $39 is being used with a do not care bit value of
$04 and interrupt level 2 using interrupt vectors $A0 and $A1 (which happen to be the factory defaults).
The only real work to do is to break up the base address into four pieces. It is sometimes best to rewrite
the address in binary, and label the address bits, starting with A0 as the rightmost bit:

Address Bit A3l A24 A23 Al6 Al5 A8 A7 A0
Binary 0000 0000 0111 1111 1010 0000 0000 0000
Hex 00 7F A0 00

Clearly, there is a value of $00 for address bits A31 - A24, $7F for address bits A23 - A16, $AO for bits
A15 - A8 and $00 for bits A7 - A0. Now write these values into the appropriate PMAC registers using
the PMAC Executive Software or a suitable terminal communication program. The register values would

then be:

PMAC Address Value
X:$0783 $39
X:$0784 $04
X:$0785 $00
X:50786 $7F
X:$0787 $A0
X:50788 $02
X:50789 $A1
X:$078A $00
X:5078B $60
X:$078C $10

260

Writing a Host Communications Program



PMAC User Manual

A simple write command followed by a save command to PMAC will put these values into their
appropriate registers and make them permanent:
Wx$0783,5$39,%4,%$0,$7F,$A0,%$02,5A1,50,560,%10

SAVE

Remember that these values must be saved and then the card reset (with the $$$ command, the INIT/
input line pulled low, or power cycled) before these new values will take effect. If using the PMAC
Executive Program, set up these registers using the Configure| VME Communications menu.

Setting up VME Dual-Ported RAM (Option 2V)

If Option 2V is installed on the PMAC VME, configure the starting address. This setup is done entirely
through software in a manner similar to that of setting up the PMAC VME mailbox registers. There is no
hardware setup or connections for the Option 2V DPRAM on the PMAC VME or PMAC2-VME. It is
factory installed on the PMAC board itself.

Starting Address

Before choosing the DPRAM starting address, determine what memory space is available in the VME
system (so that the PMAC DPRAM does not interfere with existing RAM or other devices on the VME
bus). Just like setting up the base address of PMAC VME, the starting address of DPRAM is done
through software, but in a somewhat different manner. The best way to describe how to setup DPRAM is
to give an example.

Most will use the Configure] VME Communications window in the PMAC Executive program to set the
address for DPRAM. The following section explains how to perform this setup without the Executive
program.

Example:

Suppose a starting address of $1FC000 has been selected for the DPRAM. Just like what was done for
the base address of PMAC, it is best to rewrite this address in binary and label the address bits, starting
with A0 as the rightmost bit:

Address Bit A3l A24 A23 Al6 Al5 A8 A7 Al
Binary 0000 0000 0001 1111 1100 0000 0000 0000
Hex 00 IF Co 00

There is a value of $00 for address bits A31 - A24, $1F for address bits A23 - A16, $CO for bits A15 - A8
and $00 for bits A7 - A0. To tell PMAC where DPRAM should begin, break up this starting address into
two parts:

1. The first part will represent the value address bits A23 through A20.

2. The second part will represent the value address bits A19 through A14.

If using 32-bit addressing, address bits A31 through A24 for the dual-ported RAM are determined by the
PMAC memory location X:$0785, which is also used for the same address bits of the base address of the
mailbox registers.

First write the value of address bits A23 through A20 into bits 7 through 4 (high order nibble) of the
PMAC memory location X:$078A, i.e. the left hex digit (most significant bits) will be the value of
address bits A23 - A20, and the other digit (right digit & least significant bits) will always be $0. In this
example, the value for address bits A23 - A20 would be $1, therefore write a value of $70 into location
X:$078A. Now we have to write the value of address bits A19 through A14 into the PMAC base address
+ $121 (remember, from the previous examples, the PMAC base address is $7FA000). This needs to be
done every time PMAC is powered up or reset (either with the hardware reset line or use of the $$$
command). In this example, constructing a 6-bit hex number from bits A19 - A14 gives a value of $3F:

| Address Bits | A19 | A18 | A17 | A16 | A15 | A4 |

Writing a Host Communications Program 261



PMAC User Manual

Binary 1| 1 1 | 1 ] 1 ]
Hex 3 F

Therefore, we write $3F from the VME host computer (master) into VMEDbus location $7FA121 after
PMAC is powered up or reset.

At this point, the starting address of DPRAM is fully specified. However, check two more register
locations in the PMAC memory to make sure they have appropriate values. Location X:$078B must have
a value of $EO0 to enable the DPRAM chip installed on the PMAC VME and modify the value in location
X:$078C (the address width register) by adding $80 to the existing value. For this example, the PMAC
register values would be:

PMAC Address Value
X:$0783 $39
X:$0784 $04
X:$0785 $00
X:$0786 $7F
X:$0787 $A0
X:$0788 $02
X:$0789 $A1
X:$078A $10
X:$078B $EO
X:$078C $90

Note:

This dynamic addressing scheme provides the capability for addressing up to 1M
byte of DPRAM in 16K byte blocks, by changing the value of base + $121 on the
fly. However, PMAC VME currently utilizes only a single 16 Kbyte block (8K x
16), so the base + $121 register only has to be written to once every time PMAC is
powered up or reset.

The shaded registers above contained the values changed (from previous example) to enable DPRAM. A
simple write command followed by a SAVE command to PMAC will put these values into their
appropriate registers and make them permanent:
WX$0783,$39,54,%0,87F,$A0,%$02,%A1,$10,$E0,$90

SAVE

Remember that these values must be saved with the SAVE command and then the card reset (with the
$$$ command, the INIT/ input line pulled low, or power cycled) before these new values will take effect.
After writing $3F to $7FA121 (base + $121), the dual ported RAM is ready to be used. See the PMAC
Dual-Ported RAM User Manual for more information.

Talking to PMAC VME through the Mailbox Registers

Communicating with PMAC over the VME bus is different from talking over the RS232/422 port. When
reading and writing to PMAC VME over the VME bus, make use of the 16 mailbox registers. Mailbox
registers are simply a set of 16 8-bit registers which are addressable from the VME bus beginning at the
base address of the PMAC VME card plus 1. That is, if a PMAC base address of $7FA000 is selected,
the first mailbox register (mailbox register #0) can be accessed at location $7FA001. The second mailbox
register (mailbox register #1) is located $7FA003, the third at $7FA005, and so on up to $7FAO1F for the
16th mailbox register (mailbox register #15). The mailbox registers are located at odd addresses
beginning with the base address plus one of PMAC.

262 Writing a Host Communications Program



PMAC User Manual

Note:

Almost all PMAC VME users purchase the Option 2 DPRAM and use the ASCII
communications feature of the DPRAM rather than the ASCII mailbox
communications described in this section. The ASCII DPRAM communications is
casier and faster. Refer to PMAC Option 2, Dual-Ported RAM User manual for
details.

Sending Commands to PMAC VME through Mailbox Registers

When sending commands to PMAC, write to these mailbox registers. This is relatively straightforward,
although two rules must be followed:

1. Never write to mailbox register #1 (this would be location $7FA003 in the example above) when
sending commands to PMAC. This mailbox register has a special purpose which will be covered
later. Knowing this, the second character of the command will have to be written to mailbox register
#2 (the third mailbox register at location $7FA005), and so on.

2. Write the first character of the message (or group of 15 characters in a long message) last; i.e. write
all the other characters in the command first (beginning with mailbox register #2) and then write the
first character into mailbox register #0 (at location $7FA001). The reason for this is when writing to
mailbox #0, PMAC immediately reads in all the mailbox registers and begins to act upon the received
command line.

Note:

Do not forget to end all the ASCII messages (commands) with a carriage return
<CR>. Control character commands, which do not require a <CR>, should be
written directly into mailbox register #0.

Example:

To send the commands to select motor #1 and jog to it combine two commands to do this on one line:
#1J+<CR>. There are five ASCII characters, and thus write to five mailbox registers. To send this
command, issue five VME write commands. Keep the same base address of PMAC from the previous
example. The following tables show the contents of the mailbox registers:

Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA009 $7FA00B
Mailbox # 0 1 2 3 4 5
Character — 1

Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA009 $7FA00B
Mailbox # 0 1 2 3 4 5
Character — 1 J

Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA009 $7FA00B
Mailbox # 0 1 2 3 4 5
Character — 1 J +

Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA009 $7FA00B
Mailbox # 0 1 2 3 4 5
Character — 1 J + <CR>
Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA009 $7FA00B
Mailbox # 0 1 2 3 4 5
Character # — 1 J + <CR>

Writing a Host Communications Program

263



PMAC User Manual

First write an ASCII 1 to location $7FA005, then a J to $7FA007, then a + to $7FA009, then a carriage
return (ASCII code 13) to $7FA010, and finally a # to $7TFA001.

Example:

The above example works for a command line of 15 characters or less (including the <CR> that was
added to terminate the line). However, if the command line contains more than 15 characters (Remember
there are only 15 mailbox registers that can be written to, send the first 15 characters (do not send a <CR>
yet.), followed by the remaining characters in succession until all characters have been written. And after
the last character, send the <CR> which tells PMAC to act upon the command.

To download a motion program and if one the statements in the program happens to be the following line:
IF (P1=1)DISPLAY"DELTA TAU"<CR>. 27 characters are here to send, and thus 27 VMEwrite
commands must be performed. The following tables again show the contents of the mailbox registers.
After writing the first group of 14 characters (the characters F through Y in the above command line), the
mailbox registers look something like this:

Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA01D $7FAO1F

Mailbox # 0 1 2 3 14 15

Character — F ( A Y
Now, write the first character I:

Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA01D $7FAO1F

Mailbox # 0 1 2 3 14 15

Character I — F ( A Y

At this point, PMAC has taken these characters into its command queue, but has not done anything with
them yet since no <CR> has been encountered yet. It asserts the selected interrupt level (default is 2) and
provides the command a receipt interrupt vector (default is $A0), which must be acknowledged. Now we
send the next 11 characters (D through " followed by a<CR>):

Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA01D $7FAO1F

Mailbox # 0 1 2 3 11 12

Character — D E " <CR>
Finally, send the first character of this second (and last) group of characters, which is a ":

Address $7FA001 $7FA003 $7FA005 $7FA007 | $7FA01D $7FAOLF

Mailbox # 0 1 2 3 11 12

Character " — D E " <CR>

PMAC again asserts interrupt level 2 and provides the command receipt interrupt vector. Since a <CR>
has been included, PMAC knows that the command line has been sent. PMAC now inserts this line into
the program buffer previously opened (remember, in this example a motion program was being
downloaded to PMAC).

Reading Data from PMAC VME through Mailbox Registers

Now that data has been sent to PMAC VME using the mailbox registers, determine how to read data from
PMAC. Reading data will involve using the interrupts and interrupt vectors generated by PMAC VME
over the VME bus. In the following examples, the PMAC base address is at $7FA000 and the I-variable
I3 is set to 2 (the best setting of I3 for writing host communications routines).

264 Writing a Host Communications Program



PMAC User Manual

The key to reading data from PMAC through the mailbox registers is that writing to mailbox register #1
permits PMAC to place its data in the mailbox registers when it has something to say. This can be done
ahead of time; effectively pre-enabling the PMAC response. This is the strategy used in all of the
following examples.

If not pre-enabling, write to mailbox register #1 only when immediately expecting a response, which is
usually after acknowledging the $A0 interrupt (see examples). If this is not done, PMAC will not
interrupt with the $A1 vector. (The only real advantage in not pre-enabling is that the middle of a long
PMAC response can be broken to issue a command.) Note that if using the pre-enable strategy, pre-
enable once after power-up or reset. Refer to the flowchart in figure 3-1 after reading the following
examples.

Example 1:

This command line has been sent to PMAC: #1J+<CR>. This command line is not a request for any
data, so PMAC will not respond with any data except an acknowledge <ACK>, signifying an
acknowledgment of receipt of a valid command line (if an invalid command was sent, a <BELL>
character would be sent instead of <ACK>). In this case, PMAC will generate an interrupt, sending with
it an interrupt vector $A0 (as defined in PMAC register X:$0789). After seeing this interrupt and
accompanying interrupt vector, the VME master or host computer must properly service or acknowledge
this interrupt so that PMAC will withdraw its interrupt assertion. (Generally, when servicing any VME
interrupt, the interrupt vector will be available.)

PMAC will then interrupt again, this time with interrupt vector $A1, signifying there is new data in the
mailbox registers to be read. Now, read mailbox register #0 (at $7FA001) to pick up the <ACK>
character put there by PMAC, if desired, but this is only necessary to verify that the command line just
sent was received as a valid command by PMAC. Finally, write $00 into mailbox register #1 (location
$7FA003), allowing PMAC to write new data into the mailbox registers if necessary (also read the next
example to better understand this). The next example shows how to read data written in the mailbox
registers by PMAC.

Example 2:

Assume the command to ask for the position of motor 1 #1P<CR> has been sent: PMAC, of course, will
respond with data containing position information of motor 1. Motor 1 is currently at position 19.2. To
read the mailbox registers to obtain this information PMAC has waiting. The first thing to do is to send
the command line and service the interrupt PMAC generates (using an interrupt vector of $A0) as an
acknowledgment.

After PMAC has processed the command and put data into the mailbox registers, PMAC interrupts a
second time with an interrupt vector $A1. Remember, this second interrupt is sent because PMAC has
just now placed data in the mailbox registers, now ready to be read. Service this second interrupt and
note that the accompanying interrupt vector is $A 1, read the data in the mailbox registers.

Actually, these registers can be read in any order, but it is best to read these characters beginning with the
first mailbox until either:

a <CR> (signifying the end of that line) or

a <ACK> (valid command line received) is encountered or

a <BELL> (invalid command line received) is encountered or

all 16 mailbox registers (from $7FA001 to $7FAO01F) have been read.

These mailbox registers may be read as many times as needed because PMAC will not write new data
into the mailbox registers (if PMAC has more data to send) until a value of $00 is written to mailbox #1
(in this case, at $7FA003).

Writing a Host Communications Program 265



PMAC User Manual

In this example, PMAC will have six characters waiting to be read: 19.2<CR><ACK>. (Assume that I-
variable 13 is set to 2.) The data will be in the registers as follows:

Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA009
Mailbox # 0 1 2 3 4
Character 1 9 2 <CR>

Start reading the characters at $7FA001, mailbox register 0. There is a <CR> in mailbox register 4, so
stop reading, and write a $00 into mailbox register 1 to tell PMAC it is fine to send more. Since PMAC
must still send the final <KACK> it interrupts again, and it is in the mail box registers:

Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA009
Mailbox # 0 1 2 3 4
Character <ACK> 9 2 <CR>

Now start and stop at mailbox register 0, because it contains an <ACK>. Now, simply read in these
characters beginning with mailbox register #0 at $7FA001. Never write into mailbox register #1 when
sending data to PMAC VME. This is because PMAC will be allowed to write new data into the mailbox
registers as soon as we write to mailbox #1. (Incidentally, it actually does not matter what value is
written into mailbox register #1, it is a fact that this register is written to that counts. However, it is
recommended to write a value of $00 into mailbox register #1 for reasons given later.) After writing a
$00 into mailbox register #1, PMAC may or may not interrupt again, depending on whether or not PMAC
still has more data to be read.

Example

Again assume that the command to ask for the contents of memory locations X:$1000 through X:$1002
has been sent: RHX$1000, 3<CR>. These three locations contain the values $123456, $789012, and
$345678. To go and read the mailbox registers, send the above command line and service the interrupt
PMAC generates (using an interrupt vector of $A0).

After PMAC has processed the command and put data into the mailbox registers, PMAC interrupts a
second time with an interrupt vector $A1. Remember, this second interrupt is sent because PMAC has
just now placed data in the mailbox registers, which is now ready to be read.

Service the second interrupt and note that the accompanying interrupt vector is $A1. Read the data in the
mailbox registers. In this example, PMAC will have 22 characters to be read: 123456 789012
345678<CR> <ACK>, with the first 16 of them in the mailbox registers. (Assume that [-variable I3 is
set to 2 again.) The data will be in the registers as follows:

Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA01D $7FAOIF
Mailbox # 0 1 2 3 14 15
Character 1 2 3 4 3 4

Read the mailbox registers, beginning with the first one until a <CR>, <ACK>, <BELL> is encountered,
or all 16 registers have been read. In this case, the first 16 characters PMAC has does not contain a
<CR>, <ACK>, or <BELL>. Therefore read all 16 mailbox registers to obtain the first 16 characters of
the PMAC response, and then write $00 to mailbox register #1 (in this case, at $7FA003) to allow PMAC
to put the next chunk of data in the mailbox registers. PMAC interrupts again with vector $A1, and the

remainder of the characters in the mailbox registers are:

Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA01D $7FAO1F
Mailbox # 0 4 5 14 15
Character 5 <CR> 2 3 4

266

Writing a Host Communications Program




PMAC User Manual

Now we read again the mailbox registers, looking for <CR>, <ACK>, or <BELL>. The fifth character we
read in mailbox #4 ($7FA009) happens to contain a <CR>, so we stop reading and write $00 into mailbox
register #1. Because PMAC still has to send the final <ACK> character, it interrupts us again with vector
$A1 and we see in the mailbox registers:

Address $7FA001 $7FA003 $7FA005 $7FA007 $7FA01D $7FAO01F
Mailbox # 0 4 5 14 15
Character <ACK> <CR> 2 3 4

Now stop at the first character, <ACK>, which serves as the end-of-transmission character, and again
write $00 into mailbox register 1. Since PMAC does not having any more data to be read for now, there
will not be another interrupt (until another command is sent or one of our executing PLC or motion
programs puts out data via the CMD or SEND command).

The diagram on the following page summarizes communications over the VME bus using the mailbox
registers.

When PMAC is asked to list out a motion program or PLC with a command like: LIST PROG 10 or
LIST PLC 0, PMAC will have multiple lines of data to be read. Simply wait for the interrupt to occur,
read the mailbox registers, write $00 to mailbox register #1, and wait to be interrupted again, repeating
this procedure until all data from PMAC has been sent and read.

Dual-Ported RAM Communications

The PMAC Option 2 provides an 8K x 16 bit dual-ported RAM that allows PMAC and its host to share
an area of fast memory. For the PMAC PC and the PMAC Lite, Option 2 is a separate board that sits on
the PC bus and cables to PMAC. For the PMAC VME, Option 2(V) consists of ICs added to the main
board itself. Option 2 is not available for the PMAC STD. The dual-ported RAM can be used for
extremely fast communication of data and commands to and from PMAC.

Uses of DPRAM

The typical use in writing to PMAC is for a very fast repetitive downloading of position data and/or
rotary program information in real time. The typical use in reading from PMAC is getting very fast status
information repetitively.

Data such as motor status, position, velocity, following error, etc., can be continuously updated and
written to DPRAM by PLC programs or automatically by PMAC. Without using DPRAM, this data must
be accessed by sending PMAC on-line commands, such as ?, P, V, and F, through the VME mailbox
registers or over the PCbus. This same data may be obtained much faster via the DPRAM without the
time required to send the command through the communications port and wait for the response.

PMAC provides many facilities for using the dual-ported RAM (DPRAM) to pass information back and
forth between the host computer and PMAC. These facilities are comprised of the following functions:

DPRAM Control Panel Function (Host to PMAC)

DPRAM Servo Data Reporting Function (PMAC to Host)

DPRAM Background Fixed Data Reporting Function (PMAC to Host)

DPRAM Background Variable Data Reporting Function (PMAC to Host)

DPRAM ASCII Communications Buffer (Bidirectional)

DPRAM Binary Rotary Program Buffer (Host to PMAC)

DPRAM Data Gathering Buffer (PMAC to Host — already existing)

¢ DPRAM <CONTROL-W> ASCII Command Function (Host to PMAC — already existing)

In addition to these automatic functions, otherwise unused registers can be accessed in the DPRAM using
M-variables on the PMAC side, and through pointer variables on the host side, for sending data either
way between the host and PMAC. The M-variable formats likely to be used are X:, Y: (for 1 to 16 bits),

Writing a Host Communications Program 267



PMAC User Manual

DP: (for 32-bit fixed point), and F: (32-bit floating point). For sending data back to the host, the PMAC
data gathering function can also be used, directed to the dual-ported RAM rather than the regular RAM
(145 controls). See the PMAC DPRAM User manual (Option 2 manual) for details.

Using Multiple PMAC VME Cards on the VME bus

Install multiple PMAC VME cards on the VME bus. Up to 16 PMAC VME cards may be controlled by a
single host computer. Each card, or course, must have a unique base address and DPRAM starting
address (if installed) such that none of the cards overlaps each other (or any other device on the VME
bus) in memory. Also, set up each card to have unique interrupt levels with unique interrupt vector
numbers. Each PMAC VME card occupies 512 VME bus memory locations (not including the 8K of
memory space taken up by DPRAM). That is, if the first PMAC VME is base addressed at $7FA000, the
second PMAC card must be base addressed at $7FA200. If there are PMAC VME cards installed on the
VME bus, with the first card starting at $7FA000, the addresses of the mailbox registers (MB) of each
card could be set according to the following table.

Suggested Base Addresses For Multiple PMAC VMEs
Card 0 Card 1 Card 2 Card 3 Card 4 Card 5 Card 6 Card 7

Base 7FA000 7FA200 7FA400 7FA600 7FA800 7FAA00 | 7FACO00 TFAEO00

MB #0 7TFA001 TFA201 7TFA401 TFA601 TFAR01 TFAAQ1 TFACO1 7FAEO1

MB #1 7FA003 7FA203 7FA403 7TFA603 7FA803 TFAA03 TFACO03 7FAEO3

MB #2 TFA005 TFA205 TFA405 TFA605 TFA805 TFAAO05 TFACO05 TFAEOQ5

MB #3 7FA007 TFA207 TFA407 TFA607 TFA807 TFAAOQ7 TFACO7 TFAEQ7

MB #4 7FA009 TFA209 TFA409 TFA609 TFA809 TFAA09 | 7FAC09 TFAE09

MB #5 7FA00B 7FA20B 7FA40B 7FA60B 7FAR0B | 7FAAOB | 7FACOB | 7FAE(OB

MB #6 7FA00D | 7FA20D | 7FA40D | 7FA60D | 7FA80D | 7FAAOD | 7FACOD | 7FAEOD

MB #7 TFAOOF TFA20F TFA40F TFA60F TFA80F TFAAOF | 7FACOF TFAEOF

MB #8 7FA011 7TFA211 TFA411 TFA611 TFAS811 TFAAL1l TFACI1 TFAEI11

MB #9 7FA013 7FA213 TFA413 7FA613 TFA813 TFAA13 7FACI13 7FAEI13

MB #10 | 7FA015 TFA215 TFA415 TFA615 TFAR815 TFAA1S TFACI15 7FAELS

MB #11 | 7FA017 TFA217 TFA417 TFA617 TFA817 TFAA17 TFAC17 TFAEL7

MB #12 | 7FA019 7FA219 7FA419 TFA619 TFA819 7FAA19 | 7FACI9 7FAE19

MB #13 | 7FA01B 7FA21B 7FA41B 7FA61B 7FA81B | 7FAAIB | 7FACIB | 7FAEIB

MB #14 | 7FAO01D | 7FA21D | 7FA41D | 7FA61D | 7FA81D | 7FAAID | 7FACID | 7FAEID

MB #15 | 7FAOIF TFA21F 7FA41F TFAG61F 7FA8IF TFAAIF | 7FACIF TFAEIF

In addition to having unique addresses, each PMAC VME must also have unique interrupt vector
assignments. However, all the PMACs may use the same interrupt level (interrupt level 2 in the previous
examples). The table below shows suggested interrupt vector assignments for each PMAC VME card.

268 Writing a Host Communications Program



PMAC User Manual

Power up or
reset PMAC

Write to base + $121
(if using DPRAM)

Write $00 into
maibox reg #1

Send NO
aline to
PMAC?
Has an NO
YES interrupt

Send command line to PMAC ocurred?

(up to 16 characters)

YES All
characters

sent?

Read $A1 interrupt vector
and acknowledge interrupt

Wait for interrupt Read mailbox regs until:

1) <CR> encountered

2) <ACK> encountered

3) <BELL> encountered

4) All 16 regs have been read

Read $AO0 interrupt vector
and acknowledge interrupt

Write $00 into
maibox reg #1

Figure 56 PMAC VME Communications Flow Diagram

PMAC VME Interrupt Vector Assignments
PMAC VME Card Number | Interrupt Vector Pair
0 $A0,$A1
1 $A2,$A3
2 $A4,$A5
3 $A6,$A7
4 $A8,S$A9
5 $AR, SAB
6 $AC, $AD
7 SAE, SAF

Writing a Host Communications Program 269



PMAC User Manual

It is possible to keep all of the PMACSsS in a rack completely synchronized by sharing clock signals over
extra lines on the serial port. To do this, simply daisy chain a cable between all the PMAC VME J4
connectors in the rack. If this method is used, one PMAC VME must have jumpers E40 through E43
configured so it becomes card 0 (since card 0 outputs the synchronizing clock). All the other PMACs
must have E40 - E43 set for higher card numbers (card 1, 2, etc. which input the synchronizing clock).

If the PMAC:s are not sharing a common clock signal, all PMAC VMEs in the rack must have jumpers
E40 - E43 configured for card 0. Without the common clock signal, action on the different cards can drift
apart, since each card references time from its own crystal oscillator. However, the tolerances on the
oscillators are so tight that no drift would be noticed until after 10 or 15 minutes of continuous motion.

Data Integrity Checks
Serial Parity Check

PMAC has the capability to do parity checks on serial communications. If jumper E49 is removed,
PMAC will expect an odd parity bit on each character it receives from the host over the serial port, and it
will send an odd parity bit with each character it sends to the host over the serial port.

If PMAC detects a parity error in any character in the command, it sets a flag so that the entire command
line will be rejected with a syntax error after PMAC receives the <CR> character. If [4=0 or 1, PMAC
also immediately sends a <BELL> character to the host to notify it of the error on the character.

With 14=2 or 3, the host should just check for a <BELL> character at the end of the line. However, there
is no direct way to tell whether this was due to a parity error or a real syntax error. Also, if the parity
error occurred on the <CR> character itself, PMAC would not respond at all, since it never saw the end of
the line. In this case, the host must be prepared to time-out gracefully, and either resend the <CR>, or
send a <CTRL-X> to clear out the line.

With [4=0 or 1, the host can either check for the <BELL> character after every character it sends, or wait
until the end of the line. In either case, upon receiving the <BELL> character, the host should send a
<CTRL-X> command to clear out the PMAC communications buffers in both directions. The host
should then check for incoming characters for a period of time equivalent to the transmission time for
three characters, discarding any characters it receives, to ensure any characters already in transmission
have been eliminated. Then it can re-send the line.

If jumper E49 is ON, parity is disabled in both directions. PMAC will not be expecting a parity bit, and if
one is sent it will create a framing error (see below). PMAC will not send parity bits with the characters it
transmits.

Serial Framing Error Check

PMAC has the capability to check for framing errors on the serial port commands sent to it. This check is
always active. If PMAC detects a framing error in any character in the command, it reacts just as it would
for a parity error, including the 14 control of the response.

Serial Duplex Control

PMAC has the capability to confirm serial transmissions to it by immediately echoing back every
character it receives over the serial port. This mode, known as full duplex, can be turned on and off by
sending PMAC the <CTRL-T> command. PMAC powers up in half-duplex mode, not echoing received
characters, so the host must send PMAC a <CTRL-T> command to enable full duplex.

To perform the echoing, PMAC accepts the character, writes it to its input queue in memory, and then
copies it from memory to its transmission port. Therefore, this is a complete check of the command
cycle. If the host receives an echoed character different from the one it sent, it should send a <CTRL-X>
character to clear out the command line, then re-send the command line.

270 Writing a Host Communications Program



PMAC User Manual

Communications Checksum

PMAC is capable of performing checksum calculations on communications lines sent between it and the
host computer. This mode is enabled when 14=1, and disabled when 14=0. It will operate for serial, PC
bus, STD bus, or VME bus communications.

PMAC computes the checksum of the individual bytes (characters) in a communications line sent in
either direction between it and the host. It simply adds together the ASCII value of each character into an
accumulating sum.

At the appropriate time, it sends the checksum — at least the low byte — to the host. It is the host’s
responsibility to make the comparison between the checksum that PMAC has computed and the one that
it has computed itself. PMAC does not do this comparison. The host should never send a checksum byte
to PMAC.

The way the checksum works is subtly different between host-to- PMAC communications and PMAC-to-
host communications. Each case is explained in detail below:

Host-to-PMAC Checksum

After a full command line, including the terminating Carriage-Return (KCR>) byte has been sent to
PMAC, PMAC will parse the line to figure out what action it has to take. As it parses the line, it
computes an accumulating checksum of all the character bytes in the command line. The checksum does
not include any control characters, either those that may have been interjected into the middle of the line,
or the trailing <CR> character.

PMAC will return the checksum to the host immediately after it sends the acknowledging handshake
character, if any. (For 13.=0, there is no acknowledging character, for [3=1, PMAC uses <LF>, for [3=2
or 3, PMAC uses <ACK>.) If the command required a data response from PMAC, the acknowledging
character and the checksum are returned to the host after the data response to the command (and after the
checksum for the data response). If PMAC detects an error in the command line through its normal
syntax checking, it will respond with the <BELL> character (for all values of 13), but it will not follow
this with a checksum byte — the line has been thrown away.

PMAC-to-Host Checksum

PMAC will compute the checksum of any communications line it sends to the host. This checksum
includes control characters sent with the line, including leading line- feed <LEF> characters, if any, and the
final <CR> character. The checksum is sent immediately following the <CR> character. For a multiple-
line transmission, one checksum is sent for each line of the transmission, immediately following the
<CR> for that line.

If the PMAC-to-Host transmission was prompted by a host command, at the end of the full transmission
(which could be multiple lines), PMAC will send the acknowledging handshake character, if any,
followed by the checksum of the host command. If the transmission was prompted by a SEND or CMD
statement in a PMAC program, there is no acknowledging handshake character, or checksum of the
command (there is a checksum of the response).

Checksum Format

In general, the checksum of a line can be more than one byte long — as the byte values add up, the
checksum rolls over into a second byte. When using the serial port or the VME bus port, PMAC sends
only the low byte. The value in this byte is that of the full checksum modulo 256. When using the PCbus
or VMEbus, PMAC sends the low byte to the normal communications register (base address + 7), but
simultaneously sends the high byte to the adjacent register (base address + 6). There is the choice of
picking up just the low byte, or both bytes.

Writing a Host Communications Program 271



PMAC User Manual

Example

With [3=3 and 14=1, and assuming P100=35, Q10=0, Q11=1, and Q12=2:

Host sends: J+<CR>

PMAC sends: <ACK><117dec> (117=74[J] + 43[+])

Host sends: P100<CR>

PMAC sends: <LF>35<CR><127dec> (127=10+51+53+13)
<ACK><225dec> (225=80+49+48+48)

Host sends: Q10..12

PMAC sends: <LF>0<CR><71dec> (71=10+48+13)
<LF>1<CR><72dec> (72=10+49+13)
<LF>2<CR><73dec> (73=10+50+13)
<ACK><3690rll3dec> (369=81+49+48+46+46+49+50)
(113=369 modulo 256)

Data Gathering

PMAC has a general purpose data gathering function for repetitive on-the-fly storage of real-time data. In
this function, PMAC can store the contents of up to 24 memory locations at specified intervals up to the
servo interrupt frequency. This data is stored in a buffer in open PMAC memory for later transmission to
the host. This feature is useful for filter tuning and motion problem solving.

Executive Program Data Gathering

Usually, this feature is used in conjunction with the PMAC Executive Program on the PC, which handles
the details of this function automatically. Refer to the Executive Program manual for details. It is
possible (although not trivial) to write a custom host program to utilize this feature.

Gathering I-Variables

Specify up to 24 source addresses in [-variables 121 to 144. The low 16 bits of these variables represent
the word address itself. The top two bits control whether the X word, the Y word, or both (in fixed or
floating format) will be gathered. A mask is set in 120 to specify which of these addresses will be
collected, and the gathering period is defined in servo interrupt cycles with 119.

Gathering Commands

The buffer in the PMAC memory is set up with the on-line DEFINE GATHER [{constant}]
command. Ifno value is specified, the whole of the PMAC open memory is reserved for this buffer.
(This means that no new motion or PLC programs can be added to PMAC as long as this space is
reserved). The actual data gathering function is started with the GATHER command. When this has been
done, PMAC will store the specified data at the specified rate into the gather buffer until told to stop with
the ENDG, or until space runs out.

The stored data can be uploaded to the host with the LIST GATHER command. The data is sent to the
host in ASCII hexadecimal form, with six characters per item for the single (X or Y) words, and 12
characters per item for the double (L or D) words. The data is provided in twelve-character groupings. If
the data gathered for a sample leaves the last grouping with only six characters, this last grouping is filled
out with the contents of the servo cycle counter register.

It is the host program's responsibility to decode and process this data, for plotting, storage, analysis, or
other use.

The space reserved for the data gathering buffer can be freed with the DELETE GATHER command.

On-line Data Gathering

The <CONTROL-E> command is a sort of single-shot data gathering. On receipt of this command,
PMAC reports the contents of the registers specified by 120-144 to the host. Here, the contents are sent in
binary, not ASCII form, and without any handshaking characters. There are three bytes per short word,
and six bytes per long word. This command is useful for quick status and position querying.

272 Writing a Host Communications Program



PMAC User Manual

Real-Time Data Gathering through Dual-Ported RAM

Using the dual-ported RAM, it is possible to perform the PMAC data gathering function and upload the
gathered data to the host computer in real time. (The standard data gathering function — used by the
PMAC Executive Program to produce plots — performs the data gathering in real time, storing to open
regular RAM in PMAC, then uploads to the host afterwards.) This real-time uploading requires tight
handshaking between the host and PMAC to ensure that the data is passed reliably and efficiently.

Setting Up

The DPRAM data gathering function is set up the same way as for the standard data gathering function,
with PMAC I-Variables 119 to 144 controlling what data is to be gathered and how often. To specify data
gathering into the DPRAM, 145 should be set to 3 (it is set to O for the standard gathering).

The buffer for temporary storage of the gathered data is established by the DEFINE GATHER
{constant} command, where {constant} is the size of the buffer in PMAC words (each PMAC
word is 32 bits in the DPRAM). The buffer always starts at PMAC word address $D200, which from the
host side is DPRAM base address plus $0800 (2048) bytes.

Each short data source occupies one word in the buffer; each long data source (fixed-point or floating-
point) occupies two words.

Set the size of the buffer based on the number and length of the data sources, and the worst-case number
of gathering cycles that the host could fall behind in reading data from the DPRAM. This size must not
be greater than 3500 for the 8Kx16 DPRAM. Typical sizes are 20 to 100 words.

The DPRAM gathering function is started and stopped the same as for the standard gathering: either with
the GATHER and ENDGATHER (ENDG) commands, or by setting and clearing the data-gather control bits
directly through M-variables.

Getting the Data

Once the gathering function has begun, the host must monitor registers in the DPRAM that contain
pointers to the data that has been loaded into the DPRAM. There are two key registers, and only one of
these needs to be read repeatedly. At the DPRAM base address plus $O7FE (2046) is the pointer to the
end of the buffer. This value is determined by the DEFINE GATHER command and will be fixed for a
given application.

At the DPRAM base address plus $07FC (2044) is the pointer to the next address where gathered data
will be placed in DPRAM. It is this register that the host should monitor repeatedly to see if it has
changed — meaning that new data has been placed in the DPRAM — and if it has changed, how many
times data has been placed.

Both of these registers contain a PMAC memory word address (actually the offset from the start of the
gather buffer, $D200). To translate into a host memory byte address, the following equation should be
used:

Host_address = (DPRAM_base_address + $0800) + 4 * (Pointer_value)
The value of the storage pointer will wrap back to 0 (PMAC address $D200) when it becomes greater
than or equal to the value of the buffer-end pointer. No item will be stored in the DPRAM starting at the
PMAC word address shown by the buffer-end pointer, although if a long item would start to be stored in
the previous DPRAM word, the second half would be placed in the actual buffer-end word.

Data Format

Data is stored in the buffer in 32-bit sign-extended form. That is, each short (24-bit) word gathered from
PMAC is sign-extended and stored in 32-bits of DPRAM (LSByte first). The most significant byte is all
ones or all zeros, matching bit 23. Each long (48-bit) word is treated as two 24-bit words, with each short
word sign-extended to 32 bits. The host computer must re-assemble these words into a single value.

Writing a Host Communications Program 273



PMAC User Manual

To reassemble a long fixed-point word in the host, take the less significant 32-bit word, and mask out the
sign extension (top eight bits). In C, this operation could be done with a bit-by- bit AND: (LSW &
16777215). Treat this result as an unsigned integer. Next, take the more significant word and multiply it
by 16,777,216. Finally, add the two intermediate results together.

To reassemble a long floating-point value in the host, first split the 64-bit value into its pieces. Bits 0 to
11 of the 32-bit word at the lower address form the exponent. Bits 12-23 of this word form the low 12
bits of the 36-bit mantissa. Bits 0-23 of the 32-bit word form the high 24 bits of the mantissa; bits 24-31
are sign extension. The following code shows one way of creating these pieces (not the most efficient):
exp = first word & 0x00000FFFL; // Select low 12 bits for exponent

low mantissa = (first word >> 12) & OxO00FFFL;

// Select next 12 bits for mantissa

// shift right and mask high mantissa = second word;

The floating point value can then be reconstructed with:
mantissa = high mantissa * 4096.0 + low_mantissa;
value = mantissa * pow (2.0, exp - 2047 - 35);
2047 is subtracted from the exponent to convert it from an unsigned to a signed value; 35 is subtracted to
put the mantissa in the range of 0.5 to 1.0.
The following procedure in C performs the conversion efficiently and robustly:
double DPRFLoat (long first word, long second word) ({
// return mantissa/2735 * 2* (exp-2047)
double mantissa;
long int exp;
m = (double) (second word) * 4096.0 +
(double) ((first word>>12) & OxO0OFFFL) ;
if (m == 0.0) return (0.0);
exp = (first word & 0x00000FFFL) - 2082; // 2082=2047+35
return (mantissa * pow(2.0 * (double) exp))

}

To reassemble a long floating-point word in the host, treat the less significant word the same as for the
fixed-point case above. Take the bottom 12 bits of the more significant word (MSW & 4095), multiply
by 16,777,216 and add to the masked less significant word. This forms the mantissa of the floating-point
value. Now take the next 12 bits (MSW & 16773120) of the more significant word. This is the exponent
to the power of two, which can be combined with the mantissa to form the complete value.

24 BITS BIT # 23 16 15 87 0
PMAC WORD: s Bytt2 | Byte1 | Byte0 |
opram | |0 Byte 0
BYTE 1 Byte 1
NO. 2 [s| Byte2
(RELATIVE) | (s[ssSsSSSSS S = Sign bit
(SIGN EXTENSION)

48 BITS BIT# 23 16 15 87 0
PMAC Y: WORD S, Byte2 Byte 1 Byte 0
PMAC X: WORD S,| Byte5 B#e4 Byte 3

0 Byte 0
1 Byte 1
DPRAM | |2 S| Byte2
BYTE 3s S,8,8,8,8:8:S,
NO. 4(SIGN EXTENSION) Byte 3
(RELATIVE) | | 5 Byte 4

6 S| Byte5 = N
7[5,5,5.55,5,5.8 | Y S, = First word sign bit

S, = Second word sign bit
1= Exponent for floating point

Figure 57 Dual-ported RAM Data Gathering Format

(SIGN EXTENSION)

274 Writing a Host Communications Program



	Flexibility
	Configuration for a Task
	PMAC is a Computer
	Conventions Used in this Manual
	Warning
	Caution
	Note
	
	Keep Away from Live Circuits
	Live Circuit Contact Procedures
	Electrostatic Sensitive Devices
	Magnetic Media
	By Telephone
	By Fax and E-Mail
	Bulletin Board Service (BBS)


	Note:
	
	E-Point Jumpers
	Card Number Jumpers
	Communications Baud Rate Jumpers
	PCbus Address Jumpers
	STDbus Address Jumpers
	PMAC VME Interface Setup
	Encoder Jumpers


	Note:
	
	Analog Circuit Jumpers
	Isolated Setup
	Non-Isolated Setup

	Re-initialization Jumper
	Standard and Option 5 PMACs
	PMAC with Options 4A, 5A, and 5B
	Bus Connection


	Caution:
	
	Serial Port Connection


	Note:
	
	Installing the PMAC Executive Program
	Establishing Host Communications
	Terminal Mode Communications


	Note:
	
	Machine Connectors


	Note:
	
	Connecting the Analog Power Supply
	Incremental Encoder Connection
	Amplifier Connection
	Single-Ended Command Signal
	Differential Command Signal
	Sign and Magnitude Command Signal
	Motor Commutated by PMAC

	Auxiliary Connections
	Limit Signals (+LIMn and -LIMn)



	Note:
	
	
	Amplifier Enable Signal (AENAx/DIRn)
	Home Flag Signal (HMFLn)
	Amplifier fault signal (FAULTn)



	Note:
	
	Encoder I-Variables
	I900, I905, I910, Etc.
	I901, I906, I911, etc.
	I902, I907, I912, etc.
	I903, I908, I913, etc.

	Motor I-Variables
	Motor Activation
	For PMAC-Commutated Motors Only
	Analog Outputs
	Commutation Encoder
	Counts per Commutation Cycle
	Angle Between Phases
	Phase Search Parameters
	Slip Gain and Magnetization Current

	For Motors Not Commutated By PMAC
	DAC Output Address

	For All Types of Motors
	Position-Loop (Load) Feedback Address
	Velocity-Loop (Motor) Feedback Address
	Flag Address
	Reading Position
	Changing Position Direction
	Setting DAC Output Range

	Testing the Output and Polarity
	PMAC-Commutated Motors
	Permanent-Magnet Brushless Motors
	Induction Motors

	Non-PMAC Commutated Motors
	Overtravel Limit Polarity
	Setting up the Servo Loop


	Warning:
	
	Closing the Loop
	Weak Loop
	Oscillations
	Buzzing
	Extensive Servo Loop Tuning

	Jogging Moves
	Optimizing Jog Performance
	Velocity Feedforward Gain
	Integral Gain

	Power-Up Mode
	Homing Search Move
	Defining an Axis
	Scaling an Axis
	Multiple Axes


	Caution:
	
	Using the Program Editor
	Starting the Program
	Stopping the Program
	Refining the Program
	Starting the PLC Program
	Stopping the PLC Program
	Communicating With the Host
	Task Priorities


	Note:
	
	Active Response Port


	Caution:
	
	Serial Interface
	Hardware Configuration PMAC PC, -VME
	PMAC Lite
	PMAC STD
	PMAC 1.5 STD
	RS-422 vs. RS-232
	Baud Rate
	Signal Lines
	Data Format

	PC Bus Interface
	STD Bus Interface
	VME Bus Interface
	PMAC Processing of Commands


	Note:
	
	
	Control Characters

	Command Acknowledgement
	Data Response
	Data Integrity
	Data Response Format
	Types of On-Line Commands
	Motor-Specific Commands
	Motor Addressing



	Note:
	
	
	Motor Commands

	Coordinate-System-Specific Commands
	Coordinate System Addressing
	Coordinate System Commands



	Note:
	
	Global Commands
	Rotary Motion Program Buffer
	Bus Communications
	Simultaneous Commands
	Serial Communications
	Connections
	Multi-Drop Cable



	Note:
	
	Serial Card Addressing
	Setting Up the Addresses
	Multi-Card Mode Variable
	Addressed-Card Actions
	Simultaneous Addressing
	Handling Data Response
	Power-Up State
	Control-Character Commands
	<CTRL-M>
	<CTRL-H>
	<CTRL-T>

	PMAC Reset Actions
	PMAC Re-initialization Actions: Standard CPU
	PMAC Re-initialization Actions: Flash CPU
	Normal Re-initialization



	Note:
	
	Re-initialize Command
	General
	Bus Communications
	Serial Communications
	No Movement at All
	Movement, But Sluggish.
	Runaway Condition
	Brief Movement, Then Stop
	Single-Ended vs. Differential
	Single-Ended Encoders

	Differential Encoders
	Open-Collector Differential
	Differential Line Drivers
	Termination Resistors

	Analog Encoders
	Power Supply and Isolation
	Isolated Encoder Signals
	Simulated Encoder Signals

	Wiring Techniques
	Twisted Pairs

	Encoder Signal Sampling
	Digital Delay Filter
	Frequency Tradeoffs
	Bypassing the Filter

	Error Detection
	Count-Error Flag
	Once-per-Rev Check

	Flag Wiring
	Overtravel Limit Inputs
	Home Flag Input
	Amplifier Fault Input
	Flag Isolation
	Amplifier-Enable/Direction Output
	Amplifier Enable/Disable Use
	Transition
	Sinking Drivers
	Sourcing Drivers
	Polarity Control
	Failsafe Polarity

	Direction Bit Use
	General-Purpose Use
	Compare-Equals Outputs
	PMAC PC
	PMAC VME
	PMAC Lite
	PMAC STD

	Connections
	Isolation
	Drive Capability
	General-Purpose Use
	Software Access
	Standard Sinking Outputs
	Option for Sourcing Outputs
	Input Source/Sink Control
	Multiplexed Uses
	Port Accessories

	Non-Multiplexed Uses
	Discrete Inputs
	Command Inputs
	Selector Inputs

	Alternate Use
	Reset Input
	Handwheel Inputs
	Analog Input
	Frequency Decode
	Power Supply
	PMAC Lite Special Considerations
	Software Processing
	Status Outputs

	Motor I-Variables
	Does PMAC Commutate this Motor?
	Address I-Variables
	Hex vs. Decimal Reporting
	Selecting the Output(s)
	Pulse and Direction Output

	Selecting the Position Loop Feedback
	Selecting the Velocity Loop Feedback
	Dual Feedback Systems
	Selecting the Master Position Source
	Selecting the Flag Register
	Selecting the Power-Up Mode
	Quadrature Encoder Feedback
	1/T Sub-count Interpolation
	Parallel Sub-count Interpolation

	Hardware Changes
	Software Changes
	Parallel Position Feedback
	Parallel Absolute Feedback
	Sensor Rollover
	Parallel Incremental Feedback
	Software Capture on Homing

	Linear Displacement Transducer Feedback
	Analog Position Feedback
	Resolver Feedback
	Absolute Position Range
	Parallel-Data Position


	Note:
	
	Resolver Position
	Geared Resolvers

	Axis Offset
	Encoder Offset
	Conversion Methods
	Adding Entries



	Note:
	
	Incremental Encoder Entries
	1/T Interpolation
	Parallel-Bit Interpolation
	No Interpolation
	Acc-28 Analog-to-Digital Conversion Register Entries
	Integrated Analog
	Bias Term
	Result Format
	Uses of Integrated Analog
	Unsigned Analog

	Parallel Position Feedback Conversion
	Acc-14 Source Registers
	Bit-Enable Mask Word
	Filter Word
	Purpose of Filtering
	Converted Data
	Unshifted Conversion
	Uses
	Shift-Right Parallel Conversion

	Time-Base Conversion Entries
	Scale Factor
	Converted Data

	Triggered Time-Base Conversion Entries
	Entry Format
	Setting the Trigger State
	Example

	Exponential-Filter Entries
	Entry Format

	Setting up the Encoder Conversion Table
	Example
	Example

	Software Position Extension
	Axis Position Scaling
	Leadscrew Compensation
	Multiple Tables Per Motor
	Table Range
	Rollover
	Enabling and Disabling
	Uses of Cross-Axis Compensation
	Two-Dimensional Leadscrew Compensation

	Backlash Compensation
	Constant Backlash



	Note:
	
	
	Backlash Take-Up Rate
	Backlash Hysteresis
	Backlash Tables



	Note:
	
	Torque Compensation Tables
	Counts per Commutation Cycle
	Angle Between Phases
	Getting the Polarity Right
	Testing the Polarity
	Polarity Rule

	Power-on Phasing Search


	Warning:
	
	
	Two-Guess Phasing Search
	Stepper-Motor Phasing Search
	Custom Phasing Search Methods

	Phasing Referenced to Absolute Sensor
	I-Variables
	Set-up Phasing Search
	Final Preparations
	Trying Absolute Phasing
	Saving Values

	Phasing Referenced to Hall-Effect Sensor
	Hall Diagram

	Phase Advance
	Setting the Slip Gain
	Motor Information
	Amplifier Information
	Controller Information

	Setting the Magnetization Current


	Warning:
	
	Experimental Setting of Induction Motor Parameters


	Note:
	
	Open-Loop Microstepping Commutation
	Setting the I-Variables
	Using the Motor


	Note:
	
	Memory Space, Software Interface, and Program Restrictions
	Reasons to Increase Rate
	Reasons to Decrease Rate
	Ramifications of Changing the Rate
	Velocity-Mode Amplifiers
	Torque-Mode Amplifiers
	Voltage-Mode Amplifiers
	Sinusoidal-Input Amplifiers
	Pulse-and-Direction Amplifiers
	Hydraulic Servo Amplifiers
	How the PID Filter Works
	Tuning the PID Filter
	Actual PID Algorithm
	Automatic Notch Specification
	Manual Notch Specification
	DC Gain Correction

	Other Uses of the Notch Filter
	Lead-Lag
	Low-Pass Filter



	Note:
	
	What is needed to write the Filter
	Download and Enable Procedure
	Step 1
	Step 2
	Step 3
	Step 4

	Usable Data Spaces
	Interface to Other Firmware
	Restrictions
	Alternative Uses for User-Written Servo
	Simple User-Written Servo Example
	C Program to Convert .LOD File to PMAC Format


	Note:
	
	Fatal Following Error Limit
	Warning Following Error Limit
	Integrated Following Error Protection


	Note:
	Note:
	Note:
	Note:
	
	Firmware Checksum
	User-Program Checksum
	Jog Acceleration
	Jog Speed
	Jog Commands
	Indefinite Jog Commands
	Jogging To A Specified Position
	Jog Moves Specified By A Variable
	Jog-Until-Trigger

	Homing Acceleration
	Homing Speed
	Home Trigger Condition
	Specify Flag Set
	Software Capture Option
	Torque-Mode Triggering
	Merits of Dual Trigger
	Action on Trigger



	Note:
	
	On-Line Command
	Monitoring for Finish
	Monitoring for Errors
	Buffered Program Command

	Zero-Move Homing


	Note:
	
	Homing into a Limit Switch


	Note:
	
	Multi-Step Homing Procedures
	Which Direction to Home?
	Already Into Home?

	Storing the Home Position


	Note:
	
	
	Uses

	One-to-One Matching
	Multiple-Motor Axes
	Phantom Axes
	Matching Motor to Axis
	Scaling and Offset
	Cartesian Axis
	Rotary Axis
	Feedrate Axis
	What Is Coordinate System Time-Base?
	Internal Formats
	Receiving Values
	Examples
	Reporting Values
	I-Variables
	Value Assignment
	Limited Range
	Power-Down Storage
	Default Values

	Array Capabilities
	Array Reading
	Array Writing

	Special-Use P-Variable
	Allotting Q-Variables
	Addressing a Q-Variable Set
	Array Capabilities
	Array Reading
	Array Writing
	Q-Pointer Offsets

	Special-Use Q-Variables
	M-Variable Definitions.
	Limited Range
	Using M-Variables
	Arithmetic Operators
	Modulo Operator
	Logical Operators


	Note:
	Note:
	
	SIN
	COS
	TAN
	ASIN
	ACOS
	ATAN
	ATAN2


	Note:
	
	LN
	EXP


	Note:
	
	SQRT
	ABS
	INT


	Note:
	
	I-Variable Default Value Assignment
	Synchronous M-Variable Value Assignment
	Why Needed
	How They Work



	Note:
	Note:
	
	Syntax
	Execution
	Special Boolean Feature
	Limitations
	Valid Forms
	Stack Limits

	Simple Conditions
	Compound Conditions
	Single-Line Condition Actions
	Multiple-Line Conditions
	Flow Control
	G-Codes
	Modal Commands
	Move Commands
	Acceleration Parameters
	Acceleration Limit
	When too Effective



	Note:
	
	
	When not Effective Enough



	Note:
	
	Short Moves
	Long Moves
	Feedrate Axes


	Note:
	
	
	Example Vector Feedrate Calculations

	Velocity Limit


	Note:
	
	The Blending Function
	Rapid-Mode Moves


	Note:
	
	Specifying the Interpolation Plane
	Standard Planes
	Clockwise Direction Sense

	Circle Modes
	Center Vector


	Note:
	
	Radius Size Specification
	No Center Specification
	Feedrate Axes
	Circle Radius Errors
	Move Segmentation
	Mode Statement
	Move Statements
	PMAC Calculations
	Problems in Stepping
	Use to Create Arbitrary Profiles
	Use in Contouring
	How They Work
	Added Pieces
	Quantifying the Position Adjustment
	5-Point Spline Correction


	Note:
	
	Defining the Plane of Compensation
	Defining the Magnitude of Compensation
	Turning on Compensation
	Turning off Compensation
	How PMAC Introduces Compensation
	Inside Corner Introduction
	Outside Corner Introduction

	Treatment of Compensated inside Corners
	Treatment of Outside Corners
	Sharp outside Corner
	Shallow outside Corner

	Treatment of Full Reversal
	Note on Full Circles
	Speed of Compensated Moves
	Changes in Compensation
	Radius Magnitude Changes
	Compensation Direction Changes

	How PMAC Removes Compensation
	Inside Corner
	Outside Corner

	Failures in Cutter Compensation
	Inability to Calculate Through Corner
	Inside Corner Smaller than Radius
	Inside Arc Radius Smaller than Cutter Radius

	Single-Stepping While in Compensation
	Lookahead
	Setting Up the Matrices
	Using the Matrices
	Initializing the Matrix
	Absolute Displacement
	Incremental Displacement
	Absolute Rotation/Scaling
	Incremental Rotation/Scaling

	Examples
	Scaling Example
	Rotation Example
	Displacement Example
	Second Rotation Example
	Current Position Transformation

	Basic Move Specifications
	Defaults
	Controlling Parameters
	Simultaneous Moves on Multiple Axes
	Sequential Moves
	Adding Logic
	Line Labels
	GOTO Command
	Passing Arguments to Subroutines
	What Has Been Passed?
	PRELUDE Subprogram Calls
	Pointing to the Program
	Running the Program
	Stepping the Program
	What PMAC Checks For
	G, M, T, and D-Codes
	Standard G-Codes
	G00 — Rapid Point-to-Point Positioning
	G01 — Linear Interpolation Mode
	G02 — 2D Clockwise Arc Mode
	G03 — 2D Counterclockwise Arc Mode
	G04 — Dwell Command
	G09 — Exact Stop
	G17, G18, G19 — Select Plane
	G40, G41, G42 — Cutter Radius Compensation
	G90 — Absolute Move Mode
	G91 — Incremental Move Mode
	G92 — Position Set \(Preload\) Command
	G94 — Inches \(Millimeters\) per Minute Mode
	G95 — Inches \(Millimeters\) per Revolution Mo�
	G96 — Constant Surface Speed Mode Enable
	G97 — Constant Surface Speed Disable

	Spindle Programs
	Jogged Spindle
	Open-Loop Spindle
	Switching Between Spindle and Positioning
	Constant-Surface-Speed Spindle

	Standard M-Codes
	M00 — Programmed Stop
	M01 — Optional Stop
	M02 — End of Program
	M03 — Spindle on Clockwise
	M04 — Spindle on Counterclockwise
	M05 — Spindle Stop
	M07 — Low-Level \(Mist\) Coolant On
	M08 — High-Level \(Flood\) Coolant On
	M09 — Coolant Off
	M12 — Chip Conveyor On
	M13 — Chip Conveyor Off
	M30 — End of Program with Rewind

	Default Conditions
	Defining a Rotary Buffer
	Required Buffer State for Defining:

	Preparing to Run
	Opening for Entry
	Staying Ahead of Executing Line
	PR Command
	BREQ Interrupt
	I17 Stops Interrupts
	I16 Restarts Interrupts
	If the Buffer Runs Out

	Closing and Deleting Buffers
	Calculating Ahead


	Note:
	
	Starting Calculations
	Calculation of Subsequent Moves
	When No Calculation Ahead
	DWELL Commands
	HOME, RAPID Moves
	PSET Command
	Double-Jump-Back Rule
	Blending Stopped
	Nested Loops
	Looping to Wait

	Implications of Calculating Ahead
	Synchronous M-Variable Assignment

	Position Following I-Variables
	Changing Ratios on the Fly
	Superimposing Following on Programmed Moves
	What Is Time-Base Control?
	Real-Time Input Frequency
	Constraints on Selection of RTIF
	How It Works


	Note:
	
	Instructions for Using an External Time-Base Signal
	Step 1:  Signal Decoding
	Analog Source for Frequency
	Step 2:  Interpolation
	Step 3:  Time Base Calculation
	Step 4:  Using the Time-Base Calculation
	Step 5:  Writing the Program

	Time-Base Example
	Step 1:  Signal Decoding
	Step 2:  Interpolation
	Step 3: Time-Base Calculation
	Step 4:  Using the Time-Base Calculation
	Step 5:  Writing the Program

	Instructions for the Triggered Time-Base
	Step 1:  Signal Decode Setup
	Step 2:  Interpolation and Time-Base Setup
	Step 3:  Writing the Motion Program
	Step 4:  Arming the Trigger
	Step 5:  Starting on the Trigger

	Triggered Time-Base Example
	Set up and Definitions
	Motion Program
	PLC Program
	Clock Timing
	Sharing Clock Signals
	Connections
	External Time Base
	Motion Program Timing
	Initial Calculation Delay
	Time-Specification of Moves
	No-Drift Conditions

	Minimizing Initial Offset
	Setting the Trigger Condition
	Using for Homing
	Using in User Program
	Offset from Motor Position


	Note:
	
	Required M-Variables
	Preloading the Compare Position
	Compare Control Bits
	Interrupting the Host on a Compare-Equals
	Directly Triggering External Action

	Offset from Motor Position


	Note:
	
	When to Use
	Common Uses


	Caution:
	
	Entering a PLC Program
	Opening the Buffer
	Downloading the Program


	Note:
	
	Closing the Buffer
	Erasing the Program
	Calculation Statements
	Conditional Statements
	Level-Triggered Conditions.
	Edge-Triggered Conditions
	WHILE Loops


	Note:
	
	Precise Timing


	Note:
	
	Execution of Compiled PLCs
	Preparing Compiled PLCs
	Preliminary Debugging
	Changing PLC References
	Executing Integer Arithmetic
	Using L-Variables
	Creating L-Variables

	Variable Value Assignment Statements
	Valid Values
	Valid Operators
	Integer Division
	Bit Inversion
	No Functions
	Intermediate Values
	Conditional Statements
	Optimization for Speed and Memory

	Link Address File
	Executing the Compiler
	Compiler Errors
	Compiler Processing
	Running the Compiled PLCs


	Note:
	Note:
	
	Polled vs. Interrupt-Based Communications
	Serial Port Communications
	Setting up the Interface
	Base Address
	Baud Rate
	Sending a Character
	Reading a Character

	Host Port Structure
	Base Address Selection
	Register Functions
	Registers for Simple Polled Communications
	Setting up the Port
	Sending a Character
	Reading a Character
	What Signals Can Be Used
	Selecting a Host Interrupt Line (PMAC PC or Lite)
	Selecting a Host Interrupt Line (PMAC STD)
	Interrupt Functions


	Note:
	
	Setting Up
	Finding an Open Interrupt Line
	Hardware Considerations
	Initializing the PC’s PIC
	Vectoring
	Setting up the Host Request Function
	Initializing the PMAC PIC
	Unmasking Interrupts
	Using the Interrupts
	Restoring Previous Vectors
	Setting up The Base Address for PMAC VME
	Address Modifier
	Address Modifier Do Not Care Bits
	PMAC Base Address Bits
	Interrupt Level
	Interrupt Vector Number
	Dual-Ported RAM Base Address
	DPRAM Enable
	Address Bus Width
	Saving These Setup Values
	Starting Address


	Note:
	
	Talking to PMAC VME through the Mailbox Registers


	Note:
	
	Sending Commands to PMAC VME through Mailbox Registers


	Note:
	
	Reading Data from PMAC VME through Mailbox Registers
	Example
	Uses of DPRAM
	Using Multiple PMAC VME Cards on the VME bus
	Data Integrity Checks
	Serial Parity Check
	Serial Framing Error Check
	Serial Duplex Control
	Communications Checksum
	Host-to-PMAC Checksum
	PMAC-to-Host Checksum
	Checksum Format

	Data Gathering
	Executive Program Data Gathering
	Gathering I-Variables
	Gathering Commands
	On-line Data Gathering

	Real-Time Data Gathering through Dual-Ported RAM
	Setting Up
	Getting the Data
	Data Format




