

Cypress Semiconductor Corporation � 3901 North First Street � San Jose � CA 95134 � 408-943-2600
August 22, 2001

Creating a USB to Serial Bridge Solution using
Cypress Low and Full-speed M8 USB Devices

1. Introduction

Peripheral manufacturers have historically used RS-
232 as a communications channel to control and to
pass data to and from their devices. The adoption of
the Universal Serial Bus (USB) as an industry
standard serial interface has, however, created an
interesting challenge for these manufacturers. The
inherent benefits associated with USB (improved
performance, reduced cabling, hot-plug capability
and better interoperability) dictate that systems
migrate support from RS-232 serial interfaces to
USB. In addition, customers expect manufacturers
to follow the technology curve to newer and better
solutions. As more system manufacturers move
away from legacy ports such as RS-232, peripheral
manufacturers are faced with the requirement to
replace their existing RS-232 solutions with USB.
The Cypress USB to Serial Reference design
provides a complete solution for replacing a legacy
serial interface with a USB interface on an existing or
new product.

1.1 Objectives
The primary objective of this reference design is to
provide OEMs who have RS232-based products with
a staged migration path from a pure RS232 product
to a USB-based product. Many such OEMs have a
large investment in PC application software that
interfaces with their associated peripheral over
RS232. The Cypress USB-Serial driver is designed
to allow the upgrade of hardware to USB, without
requiring the substantial investment required to
convert their PC software.

A further objective is to provide a staged migration
path from RS232 solution to USB solution, that will
allow the customer to get a USB version of the
product to market as quickly as possible, and then
allowing the customer to cost-reduce the product at
a later stage.

1.2 Capabilities
The Reference Design is comprised of 2 elements �
a Windows device driver and firmware for the
CY7C637xx and CY7C640/1xx USB microcontroller
families. The driver is universal � it transparently

converts Windows serial driver calls into USB
communications with the USB-Serial �bridge� device.
The driver implements USB communications with the
bridge device in a format compatible with the USB
HID specification. When the customer is ready to
convert the PC application software to communicate
directly over USB, the HID class driver (built into the
Windows operating system) can be used without any
changes being required to the bridge device.

The firmware component implements a general
purpose USB-RS232 bridge function, that will work
unmodified with �standard� RS232 implementations,
and also with many �non-standard� applications of
the PC serial port. However, because of the wide
variety of ingenious �non-standard� applications of
the serial port, it is not possible for this firmware to
work unmodified in every application.

However, the firmware can be readily modified to
interface with almost any serial device, no matter
how non-standard its characteristics. The firmware
source code is included in the Reference Design Kit,
and customers are encouraged to make
enhancements to the firmware to optimize
performance for their specific applications.

It is also possible to write firmware for other Cypress
USB microcontrollers to meet the requirements of
specific applications that cannot be served by the
included firmware � for example the EZ-USB family.

1.3 Features
The following is a summary of the features of the
reference design:

• Software PC serial port emulation is achieved by
creating a virtual COM port which can be
accessed by any user-mode Windows
application software exactly as if it were a �real�
PC serial port.

• Driver supports Windows 98, Windows Me,
Windows 2000 and Windows XP.

• Firmware supports all standard baud rates in the
range 600 � 57.6k baud (dynamically variable via
serial port driver calls). By customizing the
firmware to suit specific applications, baud rates
of up to 192k baud may be achieved.

• Firmware supports half-duplex serial
communication. By customizing the firmware to

Creating a USB to Serial Bridge Solution using
Cypress Low and Full-speed M8 USB Devices

2

suit specific applications, full duplex serial
communication may be accommodated.

• Supports RTS, CTS, DRT, DSR, RI, CD control
and monitoring directly from user-mode software
using Windows serial port device driver calls.

• Supports word lengths of 5, 6, 7 and 8 bytes
(dynamically variable via serial port driver calls).

• Supports odd, even and no parity (dynamically
variable via serial port driver calls).

• Can sustain data throughputs in excess of 4000
bytes per second for full-speed USB
implementations (CY7C640/1xx) and 800 bytes
per second for low-speed USB signaling
(CY7C637xx).

1.4 Limitations
As previously mentioned, the supplied firmware is
general purpose in scope, and this results in some
limitations � most notably the half-duplex capability
and the 600 - 57.6k baud rate range. Where many of
the general purpose features are not required, timing
efficiencies may allow the customization of the
firmware to support full duplex communications and
higher baud rates.

1.5 Scope
This document explains the implementation of a
low/medium bandwidth USB to serial bridge. The low
bandwidth solution utilizes the CY7C63743 Low-
Speed USB microcontroller and the medium
bandwidth solution is based on the CY7C64013 Full-
Speed USB microcontroller.

The document begins with an overview of the
migration path from RS-232 to USB. It then follows
up with a description of the RS-232 and USB proto-
cols as well as an introduction to the Cypress USB
parts. Finally, this is followed by a discussion of the
actual implementation, which includes a description
of the firmware, the hardware and interaction with
the host driver.

2. USB to Serial Migration Path

Historically, serial devices have been connected to
hosts via an RS-232 serial connection. This
connection provides an interface for control of the
device as well as a data path for data being sent to
and/or received from the device. This application is
illustrated in Figure 1.

RS232
Host

RS232
Device

RS232

Figure 1. Legacy RS232 application

Conceptually, the USB to Serial solution described
herein provides a �bridge� between a USB host and
an RS-232 device. Fundamentally, this bridge
performs two functions: (1) it receives USB data sent
from the host and manages the transmission of that
data over an RS-232 connection to the device. (2) It
receives RS-232 data sent from the device and
passes that data via USB to the host computer. In
addition, the bridge also provides transparent control
and monitoring of various RS-232 non-data signals.
The application of such a bridge is illustrated in
Figure 2.

USB
Host

RS232
Device

RS232 USB to
RS232

USB

Figure 2. USB to RS232 �Bridge�

While such a bridge solution might have value as a
stand-alone device, it is anticipated that a primary
application of this �bridge� will be to be embedded
within the RS-232 device itself, providing a drop-in
solution to implement USB support for an RS-232
device. This configuration is shown in Figure 3.

USB
Host

RS232
Device

RS232 USB to
RS232

USB

Figure 3. Adding USB support to a Legacy RS232

device

Creating a USB to Serial Bridge Solution using
Cypress Low and Full-speed M8 USB Devices

3

Finally, while the embedded bridge solution provides
an effective way to quickly add USB support to an
existing RS-232 device, it is expected that peripheral
manufacturers will ultimately choose to remove the
bridge function altogether, offering a solution that
implements a direct-to-USB method. The final step in
this migration path is shown in Figure 4.

USB
Host

USB
Device

USB

Figure 4. Upgrading Legacy devices to USB

3. RS-232 Overview

RS-232 is a serial data communications protocol.
This section describes the different features of the
protocol that are relevant to this design.

3.1 Signal Lines
The basic RS-232 protocol uses 9 signal lines. Each
signal and its traditional use is described below.

 Signal Name Description
TXD Transmit Data This line carries serial data that is

sent from host to device
RXD Receive Data This line carries serial data that is

sent from device to host
DTR Data Terminal

Ready
Indicates that the host is ready to
communicate

DSR Data Set Ready Indicates that the device is ready to
communicate

RTS Request To
Send

Signals to the device that the host is
ready to receive data

CTR Clear To Send Signals to the host that the device is
ready to receive data

RI Ring Indicator Signals to the host that there is an in-
coming call

CD Carrier Detect Signals to the host that a phone con-
nection has been made

SG Signal Ground Ground reference

Figure 5 provides a graphic illustration of the signal
connection and direction between an RS-232 host
and an RS-232 device.

RS-232
Host

RS-232
Device

TXD

RXD

RTS

CTS

DTR

DSR

CD

RI

GND

TXD

RXD

RTS

CTS

DTR

DSR

CD

RI

GND

Figure 5. Typical RS-232 Signal Direction

The use of these signal lines is not restricted to the
description given and in many applications the
signals are either unused or used for a different
purpose.

3.2 RS-232 Data Frames
When idle, the value on the data lines (TXD and
RXD) is a �1�. To indicate the beginning of a
transmission, a �0� start bit is driven on the line for a
bit time. The start bit is followed by multiple data bits
(typically 5 to 8), beginning with the least significant
bit and ending with the most significant bit. An error
checking, or parity, bit is optionally appended to the
end of the data. Finally, a �1� stop bit is sent to
indicate the end of the transmission. The duration of
the stop bit can be 1 or 2 bit times. This places the
line back in the idle state and available for a new
transmission.

The duration of each bit depends on the baud rate.
At a baud rate of 9600 the length of each bit is 0.1
milliseconds. At 57600 baud, this time is reduced to
1.7 microseconds.

Figure 6 illustrates a data frame with one start bit,
eight data bits, a parity bit and one stop bit being
sent at 9600 baud.

Cypress Semiconductor Corporation � 3901 North First Street � San Jose � CA 95134 � 408-943-2600
August 22, 2001

START D0 STOPD1 D2 D3 D4 D5 D6 D7 DPIDLE IDLE

0.1 mS

1.1 mS

Figure 6. Sample data transmission at 9600 baud

3.3 Flow Control
Flow control is not required in many RS-232
applications. It is usually used whenever large
amounts of data are being sent or received and it
becomes necessary to temporarily disable data
transmission and reception. Although there are
several forms of flow control, the most commonly
used method involves the use of RTS and CTS.

RTS is used to indicate whether the host is able to
receive data or not, and CTS is used to indicate
whether the device is able to receive data or not.

3.4 Error Checking
Error checking in RS-232 is an optional feature that
is done by appending a parity bit to the end of each
data transmission. Even parity means that the total
number of "1s" in the data frame, including the parity
bit, is an even number. Odd parity means that the
total number is an odd number.

3.5 Electrical Characteristics
RS-232 has voltage levels that range from -3V to -
15V for a logic 1, and +3V to +15V for a logic 0.

4. Design Discussion
The following sections discuss the details of the USB
to Serial design implementation.

The basic premise behind this design is to give the
microcontroller the functionality of an RS-232 port.
The microcontroller will be able to send and receive
data according to the RS-232 protocol as well as
perform all the functions required for flow control,
frame generation and parity generation and
checking.

The microcontroller will also communicate with the
host through USB, sending and receiving data, as

well as configuring and communicating information
about the serial communication settings.

4.1 Design Overview
The design enables the microcontroller to completely
implement the functionality of an RS-232 port, with
the ability to change settings like baud rate, parity
type, number of data bits and number of stop bits.
The application requires the ability to transfer three
types of data to/from the device: control/status data,
receive data and transmit data.

Control/status data is sent over the control pipe to
Endpoint 0. Receive data is sent to the host from
Endpoint 1. Transmit data is sent from the host to
Endpoint 2. This data scheme is illustrated in Figure
7.

ENDPOINT 0

ENDPOINT 1

ENDPOINT 2

FEATURE REPORT

INPUT REPORT

OUTPUT REPORT

(CONTROL ENDPOINT)

(DATA ENDPOINT)

(DATA ENDPOINT)

Figure 7. Endpoint Data Flow

4.2 Firmware Description
At the heart of the firmware are four routines: the
Main routine which checks what tasks are pending
and calls the appropriate routines, the Rx_Data
routine with is called whenever a start bit is detected
at the beginning of an RS-232 data reception, the
Tx_Data routine which is called whenever data is

Creating a USB to Serial Bridge Solution using
Cypress Low and Full-speed M8 USB Devices

5

sent from the host which needs to be transmitted to
the RS-232 device and the Setup_Serial routine
which is called whenever a feature report is sent.

There are a number of event flags that the Main
routine uses to detect the need for and schedule
various handler routines. These event flags are
shown in Figure 8.

Load Input
Report

Setup Serial

Get/Set
Report

Receive Data
Interrupt

Feature
Report

RS-232
Settings

Endpoint 1
Interrupt

Endpoint 2
Interrupt

Input
Report

Receive
Buffer

Output
Report

Transmit Data

Figure 8. Application Data Flow

Variable Description
setup_serial The flag indicates that a feature report has

been received over the control endpoint. When
this variable is true, the Main routine calls the
Setup_Serial routine, which configures the
serial communication settings.

tx_pending This flag indicates that data has been received
from the host via EP2. When this variable is
TRUE, the Main routine calls the Tx_Data
routine to transmit the data out over the RS-
232 interface.

load_ep1_fifo Indicates that the input report previously loaded
in the EP1 FIFO has been successfully
transmitted to the host and that the firmware
should build a new input report in the EP1
FIFO. When this variable is TRUE, the Main
routine calls the Load_Ep1_Fifo routine, which
builds a new input report in the EP1 FIFO.

4.3 Configuring the Serial Port
Endpoint 0 is the control endpoint and it is used for
USB enumeration. The control endpoint is also used
by the host to send and receive a �feature report�.
This report allows the host to control settings such
as the baud rate, number of bits, and parity. The
feature report can also be retrieved by the host to get
the setting information about the device. The feature
report is five bytes long. The first four bytes contain
the value of the baud rate. The final byte contains
the port setting information and is shown in Figure 9.

The Cypress COM port emulation driver begins
communication with the device by sending a feature

report that informs the microcontroller of the settings
at which the application would like to communicate
with the device.

This feature report is sent as a five byte HID Feature
Report. The first four bytes of the report contain
data about the baud rate. The last byte contains the
rest of the information about of the port settings, and
it is illustrated in Figure 10. This report is sent to
Endpoint 0 using a Set Report request.

Byte Function
Byte 0 Baud Rate Byte 0
Byte 1 Baud Rate Byte 1
Byte 2 Baud Rate Byte 2
Byte 3 Baud Rate Byte 3
Byte 4 Configuration Byte

Figure 9. Control Report

bit 7 bit 6 bit 5 bit 4 bit 3 Bit 2 bit 1 bit 0

Reset 0 Parity
Type

Parity
Enable

Stop
Bits

0 Data Bits

Figure 10. Configuration Byte

Field Description
Reset The Reset bit provides a mechanism for the host to

reset the USB to Serial controller. All serial variables
will be reset to their initial state.

Parity
Type

The Parity Type field indicates whether the parity
mode is odd or even. If Parity is not enabled (bit 4),
this field has no effect.

1 = Odd Parity
0 = Even Parity

Parity Type bit is �1�, parity is odd; if Parity Type is �0�,
even parity is selected.

Parity
Enable

The Parity Enable bit indicates whether parity is
included with each data byte transfer.

1 = Enable Parity
0 = Disable Parity

Stop
Bits

The Stop Bits field indicates the number of stop bits
included at the conclusion of each byte transfer.

0 = One Stop Bit
1 = Two Stop Bits

Data
Bits

The Data Bits field indicates the number of data bits
included in each data byte transfer. Data Bit counts
from 5 to 8 are supported. The number included in
this field represents the number of data bits minus 5.
(i.e., a count of 0 in this field selects 5 data bits; a
count of 3 in this field selects 8 data bits.)

When Endpoint 0 receives the data it stores it in a
buffer, and sets the value of the setup_serial flag to

Creating a USB to Serial Bridge Solution using
Cypress Low and Full-speed M8 USB Devices

6

TRUE. When the main routine detects the
setup_serial flag it calls the Setup_Serial routine.
The routine looks at the data sent in the feature
report and sets the values of a number of variables
accordingly.

Below is a list of these variables and what they are
used for:
Variable Description
bit_rate This variable depends on the baud rate. It is

used to determine the number of times that the
receive and transmit routines repeat the
software timing loops to achieve the correct
baud rate. The following equation was used to
determine the possible values of bit_rate:

 115200
bit_rate = ----------- - 1
 baud

The baud rates that are supported are 57600,
38400, 19200, 9600, 4800, 2400, 1200, 600 and
300 bps.

data_bits This holds the value of the word length.
tx_data_bits This contains the total number of bits to be sent,

including start, data, parity and stop bits.
parity_on This indicates whether parity checking and

generation are enabled (parity off = 0, parity on
= 1).

parity_type

This indicates whether the parity generation and
checking routines are based on odd or even
parity (even = 0, odd = 1).

After the Setup_Serial routine sets these variables
to their proper values, it then goes on to enable the
microcontroller for serial communication. At this
point the microcontroller is completely ready to
perform serial communication at the baud rate and
the port settings specified by the �control byte�.

Receiving Serial Data from the Host
The host sends transmit data to the device by means
of an output report over Endpoint 2. The format of
an output report is described in Figures 11 and 12.
(Figure 12 shows the 8-byte output report used with
the CY7C63743 and Figure 11 shows the 32-byte
output report used with the CY7C63413.) Figures 13
and 14 show the format of the control byte as well as
a description of the fields used in this byte.

Byte Description
0 Control
1 Transmit Byte Count
2 Transmit Data Byte 0
--- ---
31 Transmit Data Byte 29

Figure 11. 32-Byte Output Report

Byte Description
0 Control and Transmit Byte Count
1 Transmit Data Byte 0
--- ---
7 Transmit Data Byte 6

Figure 12. 8-Byte Output Report

bit 7 bit 6 bit 5 bit 4 bit 3 Bit 2 bit 1 bit 0

0 0 DTR RTS Reset 0 0 0

Figure 13. Control Byte

Field Description
DTR The DTR bit provides a mechanism for the host to

directly control the state of the DTR signal.
RTS The RTS bit provides a mechanism for the host to

directly control the state of the RTS signal.

Figure 14. Control Byte

Transmitting data to the device must be initiated by
the host. The host begins by sending an output
report to Endpoint 2. The output report causes an
interrupt to occur on Endpoint 2 and the microcon-
troller vectors to the corresponding ISR. The
Endpoint 2 ISR first checks if an ACK had occurred,
signaling a successful data transfer. If the EP2 FIFO
contains a valid output report, the number of data
bytes that are being sent is saved. The values of the
handshaking signals are also saved and written to
Port 1. If the output report contains any transmit
data (i.e., the count field is non-zero), the
tx_pending flag is set and the EP2 mode is set to
NAK_OUT. Alternatively, if the output report
contains no transmit data, the ACK bit is cleared and
the ISR simply exits.

4.4 Transmitting Serial Data to the Device
When the tx_pending flag is set, the Main routine
calls the Tx_Data routine, which is responsible for
transmitting the data to the device over the TXD line.

The Tx_Data routine is similar to the Rx_Data rou-
tine in the way that it performs the timing to send
data at the correct baud rate. The routine begins by
checking CTS and making sure that the device is
ready to receive. If the device is not ready to
receive, Tx_Data exits. If the device is ready to
receive, Tx_Data fetches a byte of data from the
output report and sends it out serially over the TXD
line. In doing so, it creates the appropriate bit timing,
generates the start bit, transmits the appropriate

Creating a USB to Serial Bridge Solution using
Cypress Low and Full-speed M8 USB Devices

7

number of data bits, optionally transmits the parity bit
and finally, allows for the correct number of stop bits.

4.5 Receiving Serial Data from the Device
Pin 7 of Port 0 corresponds to the RXD line of an
RS-232 port. To enable the microcontroller to
receive data from the device, a GPIO interrupt with
negative (falling edge) polarity is enabled for this pin.
Whenever a falling edge occurs on this line, a GPIO
interrupt occurs which causes the microcontroller to
vector to the Rx_Data interrupt service routine.

The Rx_Data routine is responsible for reading the
serial data at the correct rate. This is done through
the use of software timing loops. The Rx_Data
routine can be broken up into four parts.

The first section is a simple timing loop that stalls the
processing for around .5 bit-times. This is used to
ensure that the serial data is read at approximately
the middle of the bit.

The second section reads the incoming data bits at
the specified baud rate. Each bit is read from the
RXD port pin and then placed in a register. The data
is then shifted to the right in preparation for the next
incoming bit. This process is repeated until all of the
bits have been received. In the source code, the
value enclosed by �[]� in the comment field indicates
the number of CPU clock cycles it takes to execute
that instruction. Note that it is critical that this routine
not be modified unless the user has a clear
understanding of the timing aspects of the routine.

The third section is used only when parity is enabled.
This section basically looks like the previous one
except the data is not placed in a memory location, it
is only used to toggle the parity bit to check for
errors.

The fourth and final section does a number of things.
If the number of data bits is less than eight, it shifts
the data value to the right to right-justify the data. It
then checks if any parity errors had occurred. If an
error did occur then it saves the location of the error.
If no error had occurred, it goes on to save the data
in a circular buffer from which data will be retrieved
when it is to be sent to the host. Finally it checks
whether the buffer is full, and if so it de-asserts RTS
to signal to the device not to send any more data.

The circular data buffer, which is used to store the
incoming data, is important to the proper processing
of the data. There are two variables associated with
this buffer. The first variable, called rx_buffer_in
points to the location that the next data byte will be
placed. The other variable, called rx_buffer_out,
points to the next location that data will be retrieved
from when the data is to be sent to the host. Every
time new data is entered into the buffer, the
rx_buffer_in variable is incremented. Every time
data is removed from the buffer the rx_buffer_out
variable is incremented. When both the variables are
equal that means that the buffer is empty. When the
value of rx_buffer_in is one less than
rx_buffer_out, the buffer is full. This buffer could be
of any size, depending on the needs of the applica-
tion. The default is 32 bytes. Note that as it is
currently implemented, the buffer size must be a
power of 2 (i.e., the buffer must be 8, 16, 32 or 64
bytes).

The comments embedded in the code easily explain
the flow and the function of the firmware. It is
important to pay attention to the code at the end,
which pertains to flow control. This code will not be
included in the routine if the label
HW_FLOW_CONTROL is not defined.

4.6 Sending Serial Data to the Host
The host periodically requests an input report from
EP1 at a rate determined by the EP1 descriptor. For
the CY7C64013 implementation, the default value is
1ms, which is the minimum for full-speed USB. The
interval can be changed by simply changing the
corresponding value in the EP1 descriptor.

When an IN request occurs, it generates an EP1
interrupt, which causes the microcontroller to vector
to the Ep1_Isr interrupt service routine. The ISR first
checks if an ACK had occurred which signals that
the host has successfully removed the previous
report from the EP1 FIFO. If the previous report has
been successfully sent, the ISR sets the
load_ep1_fifo flag to indicate to the Main routine
that a new input report should be built in the EP1
FIFO.

The Main routine will detect the load_ep1_fifo flag
and call the Load_Ep1_Fifo routine to create a new
input report. The routine checks for data in the
receive buffer. If there is any data available in the
buffer, it fetches the data and loads it into the input
report. If an error has occurred, no more data is

Creating a USB to Serial Bridge Solution using
Cypress Low and Full-speed M8 USB Devices

8

loaded into the input report and the ERROR flag is
set accordingly. When the host requests the next IN
transaction from EP1, the input report will be sent to
the host.

The content and format of the input report is
illustrated in Figures 15 and 16. Figure 17 and 18
provide details of the status byte and Figure 19
describes in detail the fields of the status byte.

Byte Description
Byte 0 Status and Receive Count Byte
Byte 1 Receive Data Byte 0
--- ---
Byte 7 Receive Data Byte 6

Figure 15. 8-Byte Input Report (CY7C63743)

Byte Description
Byte 0 Status Byte
Byte 1 Receive Byte Count
Byte 2 Receive Data Byte 0
--- ---
Byte 7 Receive Data Byte 29

Figure 16. 32-Byte Input Report (CY7C64013)

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
RI CD DSR CTS Error Receive Count (0-7)

Figure 17. Status and Receive Count Byte

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
RI CD DSR CTS Error 0 0 0

Figure 18. Status Byte

Field Description
RI The RI bit provides a method for the host to

determine the state of the RI signal.
CD The CD bit provides a method for the host to

determine the state of the CD signal.
DSR The DSR bit provides a method for the host to

determine the state of the DSR signal.
CTS The CTS bit provides a method for the host to

determine the state of the CTS signal.
ERROR The ERROR bit�
Receive
Count

The Receive Count field provides an indication to
the host of the number of received data bytes
included in this report.

Figure 19. Status Field Descriptions

5. Design Options

5.1 Control Signals and Hardware
Handshaking

Before proceeding to discuss the details of sending
and receiving data it is important to discuss the use
of the control signals and hardware handshaking.
The firmware was written with the assumption that
the design will be used with a device that supports
RTS/CTS flow control. In cases where that is not
true then changes to the firmware should be made.

In the case where handshaking is not used, the
instructions in the firmware that pertain to
handshaking should not be included. To simplify the
task of enabling/disabling flow control, the firmware
includes an assembler directive that will either
enable or disable CTS/RTS flow control. To disable
flow control simply comment out the DEFINE
HW_FLOW_CONTROL line at the beginning of the
code. To keep CTS/RTS handshaking enabled,
keep that line as it is.

If the serial device implements another method of
flow control then changes to the firmware must be
made to support it. In most cases these changes will
not be difficult to put in place but will require reading
this application note thoroughly in order to gain a
complete understanding of the firmware structure
and how flow control fits into the picture.

It is also important to consider the initial condition of
the handshaking signals prior to enumeration and
before the control report comes in. When the device
is powered on, a reset occurs and sets all bits on
Port 1 to 0. The firmware must assign a value to
Port 1 that will not cause any strange behavior or
communicate any false information to the device.

5.2 Hardware Considerations
Interfacing the USB to Serial microcontroller with the
serial device can be done two ways. The first option
is to connect the signal lines of the microcontroller
directly to the corresponding pins of the serial device
at CMOS levels.

If this is not possible and it is necessary to interface
at RS-232 levels then the voltage levels of the
microcontroller need to be converted to and from
RS-232. Converting the voltages can be done
through the use a chip designed for this function
(there are a number of them on the market) or by
constructing a circuit to perform this using discrete

Creating a USB to Serial Bridge Solution using
Cypress Low and Full-speed M8 USB Devices

9

components. This will not be discussed in this
application note.

Figure 20 illustrates how the 63743 can interface
with a serial device at RS-232 voltages through the
use of a level converter.

RS-232 TRANSCEIVERCY7C63743

TXD

DTR

DSR

RXD

RTS

CTS

RI

CD

GND

P0.1

P0.2

P0.3

P0.4

P0.7

P1.0

P1.1

P1.2

VPP

VSS

D+

D-

VREG

VCC

D+

D-

VBUS

GND

Figure 20. CY7C63743 Implementation

6. Customization
The driver supplied with this Reference Design was
developed for Cypress Semiconductor by Industrial
Computing Ltd. Industrial Computing is authorized to
contract with Cypress customers to make changes
or add additional features to the driver, provided that
the resulting modified driver is redistributed
exclusively for use with products containing Cypress
USB devices.

Customers wishing to make changes to the driver
themselves should contact Cypress Semiconductor,
who may, in certain circumstances, for a fee,
disclose the source code of the driver. Industrial
Computing is not authorized to distribute the driver
source code.

Industrial Computing may be contacted as follows:

Industrial Computing Ltd,
4 The Footpath,
Harston,
Cambridge,
CB2 5NS
UK

Tel: +44 1223 871646
Fax: +44 1223 870914
Email sales@indcomp.co.uk
Website http://www.indcomp.co.uk/

mailto:will.dean@indcomp.co.uk
http://www.indcomp.co.uk/

Creating a USB to Serial Bridge Solution using
Cypress Low and Full-speed M8 USB Devices

10

Appendix A � USB to Serial Driver Overview
Overview
This Appendix describes a Windows driver system
that allows a USB device supporting the HID device
class to appear to Windows applications as a
standard serial port.

Driver structure
The core of the system is a single WDM driver
�HIDCOM.SYS�. This acts as a USB peripheral
driver, connecting to the top of USBD.SYS, the
standard system-provided USB driver. HIDCOM
also contains code to emulate a serial port, as per
the Windows NT/2000 specification for serial-port
drivers. Although the peripheral follows the HID
class specification, the HIDCOM driver does not use
the system-provided HID class drivers � it is not
possible to provide a Windows ME compatible HID
client that uses the CCPORT mechanism described
below.

On Windows NT/2000, this single driver is sufficient.
On the Windows 9x/ME family, serial port drivers
normally register with VCOMM.VXD (a system-
provided driver) to inform the system of their
presence. All user-mode communication with the
serial port is then via VCOMM.VXD. Because there
is no straightforward way for a WDM driver to
register with VCOMM, Microsoft has provided a
solution consisting of another WDM driver
CCPORT.SYS and a VxD WDMMDMLD.VXD.
These additional drivers allow a standard �NT-style�
WDM serial driver to appear as a serial port within
Windows 9x. (Their intended function is actually the
support of USB modems.)

Operating principles
General
When the emulated serial device is connected, the
HID characteristics of the device (basically, the in,
out and feature report sizes) are read and stored.
These are obtained by directly requesting descriptors
from the device. Operating system services are
used to parse the HID descriptors.

When the device is opened, the driver creates three
threads � read, write and config. All three of these
threads are normally blocked, waiting for events.
The threads are destroyed when the device is
closed.

Data flow
The read and write threads handle the serial data
flow. The read thread keeps a read pending on the
USB driver all the time. The size of this read is
based on the size of the IN report. Every time this
read is satisfied, the data in the packet is transferred
into an incoming FIFO buffer, then the read IRP is
recycled. The emulated control lines are extracted
from the packet at the same time. If there are any
comm-events waiting, checks are made to see if
these events can be satisfied. If there is no room in
the incoming buffer, the data is discarded, and the
queue-overrun error flag is set. After data has been
received, attempts are made to satisfy any read IRPs
that are queued by a user-mode application. An
IRP which arrives when there is already sufficient
data in the receive buffer is satisfied immediately.

The write thread sits blocked on an internal event.
Whenever another part of the driver requires that an
OUT packet is sent, this event is set, causing the
write thread to initiate a USB write. This event is
set whenever a write IRP is received or if the state of
the configuration data is sent. A small write FIFO
(100 bytes) is used to buffer data between write IRPs
and the USB writing system � each write IRP�s data
is copied into the buffer, before being extracted by
our USB write mechanism for transmission. This
FIFO allows small writes (e.g. single characters,
which are common) to be aggregated into the large
packets. Each time a write is completed, the write
thread checks if there is data in the write FIFO � if
there is, another packet is constructed. Where an
application writes more data than can be
accommodated in the write FIFO, write IRPs are
queued. The driver keeps track of the amount of
data in queued write IRPs, only signaling
TX_EMPTY when all IRPs have been satisfied.

IOCTLs
A large number of IOCTLs are defined for the
standard serial driver. Where these involve
changing control line states, a HID write is triggered
(this may well include no other data, if no write
transmission is waiting). Where they involve
changes to the configuration (e.g. baud rate, word
length, etc.), an event is set which triggers the config
thread into transmitting a configuration packet. In
the case of both control line changes and config
changes, the operation is asynchronous � i.e. the
driver completes the IRP immediately, quite possibly
before the relevant data packet has been sent.

Creating a USB to Serial Bridge Solution using
Cypress Low and Full-speed M8 USB Devices

11

Document Revision History

Revision # Date Who Comments
1.0B2 7/09/01 BEH Initial document created for Beta 2 release
1.0 8/22/01 DGW Driver overview added.

	Introduction
	Objectives
	Capabilities
	Features
	Limitations
	Scope

	USB to Serial Migration Path
	RS-232 Overview
	Signal Lines
	RS-232 Data Frames
	Figure 6. Sample data transmission at 9600 baud

	Flow Control
	Error Checking
	Electrical Characteristics

	Design Discussion
	Design Overview
	Figure 7. Endpoint Data Flow

	Firmware Description
	Configuring the Serial Port
	Figure 9. Control Report
	Figure 10. Configuration Byte
	Figure 11. 32-Byte Output Report
	Figure 12. 8-Byte Output Report
	Figure 13. Control Byte
	Figure 14. Control Byte

	Transmitting Serial Data to the Device
	Receiving Serial Data from the Device
	Sending Serial Data to the Host
	Figure 15. 8-Byte Input Report (CY7C63743)
	Figure 16. 32-Byte Input Report (CY7C64013)
	Figure 17. Status and Receive Count Byte
	Figure 18. Status Byte
	Figure 19. Status Field Descriptions

	Control Signals and Hardware Handshaking
	Hardware Considerations
	Figure 20. CY7C63743 Implementation

	Customization

