CPM2C Programmable Controllers

Operation Manual

Produced June 1999

Notice:

OMRON products are manufactured for use according to proper procedures by a qualified operator and only for the purposes described in this manual.

The following conventions are used to indicate and classify precautions in this manual. Always heed the information provided with them. Failure to heed precautions can result in injury to people or damage to property.

- **DANGER** Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.
- **WARNING** Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.
- **Caution** Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury, or property damage.

OMRON Product References

All OMRON products are capitalized in this manual. The word "Unit" is also capitalized when it refers to an OMRON product, regardless of whether or not it appears in the proper name of the product.

The abbreviation "Ch," which appears in some displays and on some OMRON products, often means "word" and is abbreviated "Wd" in documentation in this sense.

The abbreviation "PC" means Programmable Controller and is not used as an abbreviation for anything else.

Visual Aids

The following headings appear in the left column of the manual to help you locate different types of information.

- **Note** Indicates information of particular interest for efficient and convenient operation of the product.
- 1, 2, 3... 1. Indicates lists of one sort or another, such as procedures, checklists, etc.

© OMRON, 1999

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of OMRON.

No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is constantly striving to improve its high-quality products, the information contained in this manual is subject to change without notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in this publication.

TABLE OF CONTENTS

PRE	CAUTIONS	xi
1 Inte	ended Audience	xii
2 Ger	neral Precautions	xii
3 Saf	Yety Precautions	xii
4 Op	erating Environment Precautions	xiii
5 Ap	plication Precautions	xiii
6 EC	Directives	xvi
SEC	TION 1	
Intro	oduction	1
1-1	CPM2C Features and Functions	2
1-2	System Configurations	6
1-3	Structure and Operation	7
1-4	Functions Listed by Usage	14
1-5	Comparison with the CPM1A and CPM2A	16
1-6	Preparation for Operation	22
SEC	TION 2	
Unit	Components and Specifications	25
2-1	Unit Components	26
2-2	Specifications	33
SEC	TION 3	
Inst	allation and Wiring	43
111516		H J
3-1	Design Precautions	44
3-2 3-3	Installing the CPM2C	43
3-3 3-4	Wiring and Connections	40 48
SEC		
SEC	$\frac{110}{2}$	75
Usin	g Programming Devices	/5
4-1	SYSMAC-CPT Support Software	76
4-2	SYSMAC Support Software (SSS)	83
4-3	Using a Programming Console	86
4-4 4-5	Programming Evample	92 114
CEC		114
SEC	TION 5	101
Test	Runs and Error Processing	121
5-1	Initial System Checks and Test Run Procedure	122
5-2	Self-diagnostic Functions	123
5-3	Programming Console Operation Errors	126
5-4	Programming Errors	126
5-5 5-6	I roubleshooting Flowcharts	128
5-0 5-7	Battery Replacement	130 137
•	1.	107
App	endices	
A Sta	andard Models	139
B Di	imensions	143
Inde	X	145
Revi	sion History	149

About this Manual:

The CPM2C is a compact, high-speed Programmable Controller (PC) designed for control operations in systems requiring from 10 to 120 I/O points per PC. There are two manuals describing the setup and operation of the CPM2C: The CPM2C Operation Manual (this manual) and the CPM1/CPM1A/CPM2A/ CPM2C/SRM1(-V2) Programming Manual (W353). (The CPM1/CPM1A/CPM2A/CPM2C/SRM1(-V2) Programming Manual is referred to as simply the Programming Manual in this manual.)

This manual describes the system configuration and installation of the CPM2C and provides a basic explanation of operating procedures for the Programming Consoles. It also introduces the capabilities of the SYSMAC Support Software (SSS) and SYSMAC-CPT Support Software. Read this manual first to acquaint yourself with the CPM2C.

The *Programming Manual* (W353) provides detailed descriptions of the CPM2C's programming functions. The *SYSMAC Support Software Operation Manuals: Basics* and *C-series PCs* (W247 and W248) provide descriptions of SSS operations for the CPM2C and other SYSMAC C-series PCs. The *SYSMAC-CPT Support Software Quick Start Guide* (W332) and *User Manual* (W333) provide descriptions of ladder diagram operations in the Windows environment.

Please read this manual carefully and be sure you understand the information provided before attempting to install and operate the CPM2C.

Section 1 gives a brief overview of the steps involved in developing of a CPM2C System, describes the possible system configurations, and describes the CPM2C's special features and functions.

Section 2 provides the technical specifications of the Units that go together to create a CPM2C PC and describes the main components of the Units.

Section 3 describes how to install and wire a CPM2C PC.

Section 4 describes SYSMAC and SYSMAC-CPT Support Software capabilities, how to connect the Programming Console, and how to perform the various programming operations.

Section 5 describes how to perform a test run and how to diagnose and correct the hardware and software errors that can occur during PC operation.

Appendix A provides tables of CPM2C Units and related products.

Appendix B provides the dimensions of CPM2C Units.

WARNING Failure to read and understand the information provided in this manual may result in personal injury or death, damage to the product, or product failure. Please read each section in its entirety and be sure you understand the information provided in the section and related sections before attempting any of the procedures or operations given.

PRECAUTIONS

This section provides general precautions for using the Programmable Controller (PC) and related devices.

The information contained in this section is important for the safe and reliable application of the Programmable Controller. You must read this section and understand the information contained before attempting to set up or operate a PC system.

1 Intended Audience	xii
2 General Precautions	xii
3 Safety Precautions	xii
4 Operating Environment Precautions	xiii
5 Application Precautions	xiii
6 EC Directives	xvi

1 Intended Audience

This manual is intended for the following personnel, who must also have knowledge of electrical systems (an electrical engineer or the equivalent).

- Personnel in charge of installing FA systems.
- Personnel in charge of designing FA systems.
- Personnel in charge of managing FA systems and facilities.

2 General Precautions

The user must operate the product according to the performance specifications described in the operation manuals.

Before using the product under conditions which are not described in the manual or applying the product to nuclear control systems, railroad systems, aviation systems, vehicles, combustion systems, medical equipment, amusement machines, safety equipment, and other systems, machines, and equipment that may have a serious influence on lives and property if used improperly, consult your OMRON representative.

Make sure that the ratings and performance characteristics of the product are sufficient for the systems, machines, and equipment, and be sure to provide the systems, machines, and equipment with double safety mechanisms.

This manual provides information for programming and operating the Unit. Be sure to read this manual before attempting to use the Unit and keep this manual close at hand for reference during operation.

WARNING It is extremely important that a PC and all PC Units be used for the specified purpose and under the specified conditions, especially in applications that can directly or indirectly affect human life. You must consult with your OMRON representative before applying a PC System to the above-mentioned applications.

3 Safety Precautions

WARNING Do not attempt to take any Unit apart while the power is being supplied. Doing so may result in electric shock.

WARNING Do not touch any of the terminals or terminal blocks while the power is being supplied. Doing so may result in electric shock.

- **WARNING** Do not attempt to disassemble, repair, or modify any Units. Any attempt to do so may result in malfunction, fire, or electric shock.
- **WARNING** Provide safety measures in external circuits (i.e., not in the Programmable Controller), including the following items, in order to ensure safety in the system if an abnormality occurs due to malfunction of the PC or another external factor affecting the PC operation. Not doing so may result in serious accidents.
 - Emergency stop circuits, interlock circuits, limit circuits, and similar safety measures must be provided in external control circuits.
 - The PC will turn OFF all outputs when its self-diagnosis function detects any error or when a severe failure alarm (FALS) instruction is executed. As a countermeasure for such errors, external safety measures must be provided to ensure safety in the system.

3

- The PC outputs may remain ON or OFF due to deposition or burning of the output relays or destruction of the output transistors. As a countermeasure for such problems, external safety measures must be provided to ensure safety in the system.
- /! WARNING When handling the Memory Backup Battery, never drop, disassemble, distort, short-circuit, recharge, heat to a temperature exceeding 100°C, or throw into fire. Otherwise the Battery may explode, catch fire, or leak fluid.
- /!\WARNING When transferring programs to other nodes, or when making changes to I/O memory, confirm the safety of the destination node before transfer. Not doing so may result in injury.

Operating Environment Precautions 4

Do not operate the control system in the following places:

- Locations subject to direct sunlight.
- Locations subject to temperatures or humidity outside the range specified in the specifications.
- Locations subject to condensation as the result of severe changes in temperature.
- Locations subject to corrosive or flammable gases.
- Locations subject to dust (especially iron dust) or salts.
- Locations subject to exposure to water, oil, or chemicals.
- Locations subject to shock or vibration.
- $/! \ Caution$

Take appropriate and sufficient countermeasures when installing systems in the following locations:

- Locations subject to static electricity or other forms of noise.
- Locations subject to strong electromagnetic fields.
- Locations subject to possible exposure to radioactivity.
- Locations close to power supplies.

/!\ Caution

The operating environment of the PC System can have a large effect on the longevity and reliability of the system. Improper operating environments can lead to malfunction, failure, and other unforeseeable problems with the PC System. Be sure that the operating environment is within the specified conditions at installation and remains within the specified conditions during the life of the system.

5 **Application Precautions**

Observe the following precautions when using the PC System.

- /!\WARNING Always heed these precautions. Failure to abide by the following precautions could lead to serious or possibly fatal injury.
 - Always connect to a ground such that the grounding resistance does not exceed 100 Ω when installing the Units. Not connecting to the correct ground may result in electric shock.

- Always turn OFF the power supply to the PC before attempting any of the following. Not turning OFF the power supply may result in malfunction or electric shock.
 - Assembling the Units.
 - Connecting or disconnecting the Expansion I/O Units
 - Connecting or wiring the cables.
 - Connecting or disconnecting the connectors.
 - Setting DIP switches.
 - Replacing the battery
- Caution

Failure to abide by the following precautions could lead to faulty operation of the PC or the system, or could damage the PC or PC Units. Always heed these precautions.

- Fail-safe measures must be taken by the customer to ensure safety in the event of incorrect, missing, or abnormal signals caused by broken signal lines, momentary power interruptions, or other causes.
- Emergency stop circuits, interlock circuits, limit circuits, and similar safety measures must be provided in external control circuits.
- Construct a control circuit so that power supply for the I/O circuits does not come ON before power supply for the Unit. If power supply for the I/O circuits comes ON before power supply for the Unit, normal operation may be temporarily interrupted.
- If the operating mode is changed from RUN or MONITOR mode to PROGRAM mode, with the IOM Hold Bit ON, the output will hold the most recent status. In such a case, ensure that the external load does not exceed specifications. (If operation is stopped because of an operation error (including FALS instructions), the values in the internal memory of the CPU Unit will be saved, but the outputs will all turn OFF.)
- For models with only the super-capacitor installed, the contents of the READ/ WRITE enable area of the DM area, HR area, AR area, and CNT data area may be damaged if the power is turned OFF for a long time. To prevent such damage, provide ladder program that will check AR 1314 in order to ensure proper operation of the system.
- The life of relays largely varies depending on switching conditions. Be sure to test operating conditions using actual Units and use the product within the specified number of switchings so as not to cause any performance problems. Using the product with performance problems may result in defective insulation between circuits or burning of the relays.
- Install the Units properly so that they will not fall off.
- Be sure that all the mounting screws, terminal screws, and cable connector screws are tightened to the torque specified in the relevant manuals. Incorrect tightening torque may result in malfunction.
- Be sure that the terminal blocks, Memory Units, expansion cables, and other items with locking devices are properly locked into place. Improper locking may result in malfunction.
- Be sure that terminal blocks and connectors are connected in the specified direction with the correct polarity. Not doing so may result in malfunction.
- Use the Unit with the battery housing cover in place to prevent dust or foreign matter from entering inside the Unit. Not doing so may result in malfunction.
- Install the Expansion I/O Unit connector cover to the last Expansion I/O Unit to prevent dust or foreign matter from entering inside the Unit. Not doing so may result in malfunction.

- Be sure to attach the labels supplied with the CPM2C or provide other protective covers when wiring in order to prevent dust or wiring cuttings from entering the Unit.
- Remove the label after the completion of wiring to ensure proper heat dissipation. Leaving the label attached may result in malfunction.
- Be sure to perform wiring in accordance with the CPM2C Operation Manual. Incorrect wiring may result in burning.
- Use specified connectors and wiring materials (connector models: C500-CE241/C500-CE242/C500-CE243; terminal block models: AWG24-12 with stripped length of 7 mm).
- Do not apply voltages to the input terminals in excess of the rated input voltage. Excess voltages may result in burning.
- Do not apply voltages or connect loads to the output terminals in excess of the maximum switching capacity. Excess voltage or loads may result in burning.
- Install external breakers and take other safety measures against short-circuiting in external wiring. Insufficient safety measures against short-circuiting may result in burning.
- Always use the power supply voltage specified in the operation manuals. An incorrect voltage may result in malfunction or burning.
- Check the user program for proper execution before actually running it on the Unit. Not checking the program may result in an unexpected operation.
- Double-check all wiring and switch settings before turning ON the power supply. Incorrect wiring or switch settings may result in burning.
- Confirm that no adverse effect will occur in the system before attempting any of the following. Not doing so may result in an unexpected operation.
 - Changing the operating mode of the PC.
 - Force-setting/force-resetting any bit in memory.
 - Changing the present value of any word or any set value in memory.
- Before touching the Unit, be sure to first touch a grounded metallic object in order to discharge any static built-up. Not doing so may result in malfunction or damage.
- Do not pull on the cables or bend the cables beyond their natural limit. Doing either of these may break the cables.
- Do not apply forces exceeding 50 N•m to connector sections.
- Do not place objects on top of the cables. Doing so may break the cables.
- Resume operation only after transferring to the new CPU Unit the contents of the DM and HR Areas required for resuming operation. Not doing so may result in an unexpected operation.
- Install the Unit properly as specified in the operation manual. Improper installation of the Unit may result in malfunction.
- When transporting the Units, use special packing boxes. Be careful not to apply excessive vibration or shock during transportation and not to drop the product.
- Store the Units within the following temperature and humidity ranges: Storage temperature: -20°C to 75°C, storage humidity: 10 to 90% (with no icing or condensation)

6 EC Directives

6-1 Applicable Directives

- EMC Directives
- Low Voltage Directive

6-2 Concepts

EMC Directives

OMRON devices that comply with EC Directives also conform to the related EMC standards so that they can be more easily built into other devices or the overall machine. The actual products have been checked for conformity to EMC standards (see the following note). Whether the products conform to the standards in the system used by the customer, however, must be checked by the customer.

EMC-related performance of the OMRON devices that comply with EC Directives will vary depending on the configuration, wiring, and other conditions of the equipment or control panel on which the OMRON devices are installed. The customer must, therefore, perform the final check to confirm that devices and the overall machine conform to EMC standards.

Note Applicable EMC (Electromagnetic Compatibility) standards are as follows:

EMS (Electromagnetic Susceptibility):EN61131-2EMI (Electromagnetic Interference):EN50081-2

(Radiated emission: 10-m regulations)

Low Voltage Directive

Always ensure that devices operating at voltages of 50 to 1,000 VAC and 75 to 1,500 VDC meet the required safety standards for the PC (EN61131-2).

6-3 Conformance to EC Directives

The CPM2C PCs comply with EC Directives. To ensure that the machine or device in which the CPM2C PC is used complies with EC Directives, the PC must be installed as follows:

- 1, 2, 3... 1. The CPM2C PC must be installed within a control panel.
 - 2. Reinforced insulation or double insulation must be used for the DC power supplies used for the communications and I/O power supplies.
 - 3. CPM2C PCs complying with EC Directives also conform to the Common Emission Standard (EN50081-2). Radiated emission characteristics (10-m regulations) may vary depending on the configuration of the control panel used, other devices connected to the control panel, wiring, and other conditions. You must therefore confirm that the overall machine or equipment complies with EC Directives.

6-4 Relay Output Noise Reduction Methods

The CPM2C PCs conform to the Common Emission Standards (EN50081-2) of the EMC Directives. However, the noise generated when the PC is switched ON or OFF using the relay output may not satisfy these standards. In such a case, a noise filter must be connected to the load side or other appropriate countermeasures must be provided external to the PC.

Countermeasures taken to satisfy the standards vary depending on the devices on the load side, wiring, configuration of machines, etc. Following are examples of countermeasures for reducing the generated noise.

Countermeasures

(Refer to EN50081-2 for more details.)

Countermeasures are not required if the frequency of load switching for the whole system with the PC included is less than 5 times per minute.

Countermeasures are required if the frequency of load switching for the whole system with the PC included is 5 times or more per minute.

Countermeasure Examples

When switching an inductive load, connect a surge protector, diodes, etc., in parallel with the load or contact as shown below.

Circuit	Current		Characteristic	Required element	
	AC	DC			
CR method	Yes	Yes	If the load is a relay or solenoid, there is a time lag between the moment the circuit is opened and the moment the load is reset. If the supply voltage is 24 to 48 V, insert the surge protector in parallel with the load. If the supply voltage is 100 to 200 V, insert the surge protector between the contacts.	The capacitance of the capacitor must be 1 to $0.5 \ \mu\text{F}$ per contact current of 1 A and resistance of the resistor must be 0.5 to 1 Ω per contact voltage of 1 V. These values, however, vary with the load and the characteristics of the relay. Decide these values from experiments, and take into consideration that the capacitance suppresses spark discharge when the contacts are separated and the resistance limits the current that flows into the load when the circuit is closed again.	
				The dielectric strength of the capacitor must be 200 to 300 V. If the circuit is an AC circuit, use a capacitor with no polarity.	
Diode method	No	Yes	The diode connected in parallel with the load changes energy accumulated by the coil into a current, which then flows into the coil so that the current will be converted into Joule heat by the resistance of the inductive load.	The reversed dielectric strength value of the diode must be at least 10 times as large as the circuit voltage value. The forward current of the diode must be the same as or larger than the load current.	
			This time lag, between the moment the circuit is opened and the moment the load is reset, caused by this method is longer than that caused by the CR method.	The reversed dielectric strength value of the diode may be two to three times larger than the supply voltage if the surge protector is applied to electronic circuits with low circuit voltages.	
Varistor method	Yes	Yes	The varistor method prevents the imposition of high voltage between the contacts by using the constant voltage characteristic of the varistor. There is time lag between the moment the circuit is opened and the moment the load is reset.		
			If the supply voltage is 24 to 48 V, insert the varistor in parallel with the load. If the supply voltage is 100 to 200 V, insert the varistor between the contacts.		

SECTION 1 Introduction

This section describes the CPM2C's special features and functions, shows the possible system configurations, and outlines the steps required before operation. Read this section first when using the CPM2C for the first time.

Refer to the *CPM1/CPM1A/CPM2A/CPM2C/SRM1(-V2)* Programming Manual (W353) for details on programming operations.

1-1	CPM2C	C Features and Functions	2			
	1-1-1	CPM2C Features	2			
	1-1-2	Overview of CPM2C Functions	5			
1-2	System	Configurations	6			
	1-2-1	Stand-alone CPU Units	6			
	1-2-2	CPU Unit and Expansion I/O Unit	6			
1-3	Structu	re and Operation	7			
	1-3-1	CPU Unit Structure	7			
	1-3-2	Operating Modes	8			
	1-3-3	Operating Mode at Startup	9			
	1-3-4	PC Operation at Startup	9			
	1-3-5	Cyclic Operation and Interrupts	11			
1-4	Functio	ns Listed by Usage	14			
1-5	Comparison with the CPM1A and CPM2A					
1-6	Preparation for Operation					

1-1 CPM2C Features and Functions

1-1-1 CPM2C Features

The CPM2C PCs incorporate a variety of features in a compact Unit, including synchronized pulse control, interrupt inputs, pulse outputs, and a clock function. The CPM2C CPU Unit is a stand-alone Unit that can handle a broad range of machine control applications and it is small enough to be incorporated as the control unit in almost any free-standing machine.

The full complement of communications functions provide communications with personal computers, other OMRON PCs, and OMRON Programmable Terminals. These communications capabilities allow the user to design a low-cost distributed production system.

The two communications ports (peripheral and RS-232C) can be used simultaneously. The peripheral port supports Programming Devices, Host Link, and no-protocol communications. The RS-232C port supports Host Link, no-protocol (serial), 1:1 Link, and 1:1 NT Link communications.

CPU Units with 10 I/O points (relay or transistor outputs) or 20 I/O points (transistor outputs only) are available. Expansion I/O Units can be connected to increase capacity to 140 I/O points.

Basic Functions

CPU Unit Variations	The CPM2C PCs are one-piece PCs with 10 or 20 I/O points in I/O terminals or a connector port. in the built-in connectors. There are 3 types of outputs available (relay outputs, sinking transistor outputs, and sourcing transistor outputs). All CPM2C PCs require a 24-VDC power supply.
Expansion I/O Units	Up to 5 Expansion I/O Units can be connected to the CPU Unit to increase the PC's I/O capacity to a maximum of 140 I/O points. There are 2 types of Expansion I/O Units available: one with 24 I/O points and the other with 10 I/O points. The maximum I/O capacity of 140 I/O points is achieved by connecting five 24-point Expansion I/O Units to a CPU Unit with 20 built-in I/O points.
Share Programming Devices	The same Programming Devices, such as Programming Consoles and Support Software, can be used for the C200H, C200HS, C200HX/HG/HE, CQM1, CPM1, CPM1A, CPM2A, and SRM1(-V2) PCs, so existing ladder program re- sources can be used effectively.

Built-in Motor Control Capability

Synchronized Pulse Control (Transistor Outputs Only) Synchronized pulse control provides an easy way to synchronize the operation of a peripheral piece of equipment with the main equipment. The output pulse frequency can be controlled as some multiple of the input pulse frequency, allowing the speed of a peripheral piece of equipment (such as a supply conveyor) to be synchronized with the speed of the main piece of equipment.

Pulses are output as a fixed multiple of the input frequency.

High-speed Counters and Interrupts Easy Position Control	The CPM2C has a two kinds of high-speed counter inputs. The high-speed counter input has a response frequency of 20 kHz/5 kHz and the interrupt inputs (in counter mode) have a response frequency of 2 kHz. The single high-speed counter can be used in any one of the four input modes: differential phase mode (5 kHz), pulse plus direction input mode (20 kHz), up/ down pulse mode (20 kHz), or increment mode (20 kHz). Interrupts can be triggered when the count matches a set value or falls within a specified range. The interrupt inputs (counter mode) can be used for incrementing counters or decrementing counters (2 kHz) and trigger an interrupt (executing the interrupt program) when the count matches the target value. Four interrupt inputs can be used in the 20-point CPU Units and two interrupt inputs can be used in the 10-point CPU Units.
with Pulse Outputs (Transistor Outputs Only)	10 kHz pulses (single-phase outputs). When used as single-phase pulse outputs, there can be two outputs with a fre- quency range of 10 Hz to 10 kHz with a fixed duty ratio or 0.1 to 999.9 Hz with a variable duty ratio (0 to 100% duty ratio). When used as pulse plus direction or up/down pulse outputs, there can be just one output with a frequency range of 10 Hz to 10 kHz.
High-speed Input Capab	ilities for Machine Control
High-speed Interrupt Input Function	The 20-point CPU Units have 4 inputs that can be used as interrupt inputs and the 10-point CPU Units have 2 inputs that can be used as interrupt inputs. These inputs are shared with quick-response inputs and interrupt inputs in counter mode and have a minimum input signal width of 50 μ s and response time of 0.3 ms. When an interrupt input goes ON, the main program is stopped and the interrupt program is executed.
Quick-response Input Function	Regardless of the cycle time, the 20-point CPU Units have 4 inputs that can be used as quick-response inputs and the 10-point CPU Units have 2 inputs that can be used as quick-response inputs. These inputs are shared with interrupt inputs and interrupt inputs in counter mode; they can reliably read input signals with a signal width as short as 50 μ s.
Stabilizing Input Filter Function	The input time constant for all inputs can be set to 1 ms, 2 ms, 3 ms, 5 ms, 10 ms, 20 ms, 40 ms, or 80 ms. The effects of chattering and external noise can be reduced by increasing the input time constant.
Other Functions	
Interval Timer Interrupts	The interval timer can be set between 0.5 and 319,968 ms and can be set to generate just one interrupt (one-shot mode) or periodic interrupts (scheduled inter-

rupt mode).

Commands

Calendar/Clock

In CPU Units with a built-in clock, the clock (accuracy within 1 minute/month) can be read from the program to show the current year, month, day, day of the week, and time. The clock can be set from a Programming Device (such as a Programming Console) or the time can be adjusted by rounding up or down to the nearest minute.

Long-term Timer TIML(--) is a long-term timer that accommodates set values up to 99,990 seconds (27 hours, 46 minutes, 30 seconds). When combined with the SECONDS TO HOURS conversion instruction (HMS(--)), the long-term timer provides an easy way to control equipment scheduling.

Complete Communications Capabilities

Host Link

A Host Link connection can be made through the PC's RS-232C port or Peripheral port. A personal computer or Programmable Terminal connected in Host Link mode can be used for operations such as reading/writing data in the PC's I/O memory or reading/changing the PC's operating mode.

(Up to 32 PCs can be connected.)

No-protocol Communications

The TXD(48) and RXD(47) instructions can be used in no-protocol mode to exchange data with standard serial devices. For example, data can be received from a bar code reader or transmitted to a serial printer. The serial devices can be connected to the RS-232C port or Peripheral port.

High-speed 1:1 NT Link Communications

In a 1:1 NT Link, an OMRON Programmable Terminal (PT) can be connected directly to the CPM2C. The PT must be connected to the RS-232C port; it cannot be connected to the Peripheral port.

One-to-one PC Link

A CPM2C can be linked directly to another CPM2C, CQM1, CPM1, CPM1A, CPM2A, SRM1(-V2), or a C200HS or C200HX/HE/HG PC. The 1:1 PC Link allows automatic data link connections. The PC must be connected through the RS-232C port; it cannot be connected through the Peripheral port.

1-1-2 Overview of CPM2C Functions

Main function	Variations/Details			
Interrupts	Interrupt inputs 2 inputs in CPU Units with 10 I/O points, 4 inputs in CPU Units with 20 I/O points			
	Response time: 0.3 ms			
	Interval timer interrupts 1 input	Scheduled interrupts		
	Set value: 0.5 to 319,968 ms Precision: 0.1 ms	One-shot interrupt		
High-speed counters	High-speed counter	No interrupt		
	Differential phase mode (5 kHz)	Count-check interrupt		
	Pulse plus direction input mode (20 kHz) Up/down input mode (20 kHz) Increment mode (20 kHz)	(An interrupt can be generated when the count equals the set value or the count lies within a preset range.)		
	Interrupt inputs (counter mode) 2 inputs in CPU Units with 10 I/O points, 4 inputs in CPU Units with 20 I/O points	No interrupt		
	Incrementing counter (2 kHz) Decrementing counter (2 kHz)	Count-up interrupt		
Pulse outputs	2 outputs: Single-phase pulse output without acceleration/deceleration (See note 2.) 10 Hz to 10 kHz			
2 outputs: Variable duty ratio pulse output (See note 2.) 0.1 to 999.9 Hz. duty ratio 0 to 100%				
	1 output: Pulse output with trapezoidal acceleration/deceler Pulse plus direction output, up/down pulse output	eration (See note 2.) ut, 10 Hz to 10 kHz		
Synchronized pulse control	1 point, see notes 1 and 2.			
	Input frequency range: 10 to 500 Hz, 20 Hz to 1 kHz, or 300 Hz to 20 kHz Output frequency range: 10 Hz to 10 kHz			
Quick-response input	2 inputs in CPU Units with 10 I/O points, 4 inputs in CPU Units with 20 I/O points			
	Minimum input signal width: 50 μs			
Input time constant	Determines the input time constant for all inputs. (Settings: 1, 2, 3, 5, 10, 20, 40, or 80 ms)			
Calendar/Clock	Shows the current year, month, day of the week, day of the month, hour, minute, and second.			

- **Note** 1. This input is shared by the high-speed counter and synchronized pulse control functions.
 - 2. This output is shared by the pulse output and synchronized pulse control functions. These functions can be used with transistor outputs only.

1-2 System Configurations

1-2-1 Stand-alone CPU Units

CPU Unit with 10 I/O Points (transistor outputs)

CPU Unit with 20 I/O Points (transistor outputs)

CPU Unit		Inputs	Outputs	Clock	Model
10 I/O points	I/O terminal block	6 inputs (24 VDC)	4 relay outputs	No	CPM2C-10CDR-D
(6 inputs,				Yes	CPM2C-10C1DR-D
4 00(puis)	I/O connector	6 inputs (24 VDC)	4 transistor outputs	No	CPM2C-10CDTC-D
			(sinking)	Yes	CPM2C-10C1DTC-D
			4 transistor outputs (sourcing)	No	CPM2C-10CDT1C-D
				Yes	CPM2C-10C1DT1C-D
20 I/O points	I/O connector	12 inputs (24 VDC)	8 transistor outputs (sinking)	No	CPM2C-20CDTC-D
(12 inputs, 8 outputs)				Yes	CPM2C-20C1DTC-D
			8 transistor outputs (sourcing)	No	CPM2C-20CDT1C-D
				Yes	CPM2C-20C1DT1C-D

1-2-2 CPU Unit and Expansion I/O Unit

Up to 5 Expansion I/O Units can be connected to the Expansion Connector. There are three models of Expansion Units available: the Expansion I/O Unit, Analog I/O Unit, and CompoBus/S I/O Link Unit.

A PC with 140 I/O points (the maximum) can be assembled by connecting five Expansion I/O Units to a CPU Unit with 20 I/O points.

CPM2C-20CDTC-D (12 inputs, 8 outputs) × 1 Unit + CPM2C-24EDTC (16 inputs, 8 outputs) × 5 Units = 92 inputs, 48 outputs

Note Be sure that the power supply requirements of the CPU Unit and Expansion I/O Units do not exceed the available capacity. Only three Expansion I/O Units can be connected when the NT-AL001 Adapter connected to the RS-232C port.

Expansion I/O Units

Unit		Inputs	Outputs	Model
10 I/O points	I/O terminals	6 inputs (24 VDC)	4 relay outputs	CPM2C-10EDR
6 inputs, 4 outputs				
24 I/O points 16 inputs 8 outputs	4 I/O points I/O connector 16 inputs (24 VDC) 8 transistor output (sinking)		8 transistor outputs (sinking)	CPM2C-24EDTC
		8 transistor outputs (sourcing)	CPM2C-24EDT1C	

Note Be sure that the power supply requirements of the CPU Unit and Expansion I/O Units do not exceed the available capacity. Only three Expansion I/O Units can be connected when the NT-AL001 Adapter connected to the RS-232C port.

1-3 Structure and Operation

1-3-1 CPU Unit Structure

The following diagram shows the internal structure of the CPU Unit.

I/O Memory

The program reads and writes data in this memory area during execution. Part of the I/O memory contains the bits that reflect the status of the PC's inputs and outputs. Parts of the I/O memory are cleared when the power is turned ON and other parts are retained.

Note Refer to *Section 3 Memory Areas* in the *Programming Manual* (W353) for more details on I/O memory.

Structure and Operation	Section 1-3
Program	This is the program written by the user. The CPM2C executes the program cyclically. (Refer to <i>1-3-5 Cyclic Operation and Interrupts</i> for details.)
	The program can be divided broadly into two parts: the "main program" that is executed cyclically and the "interrupt programs" that are executed only when the corresponding interrupt is generated.
PC Setup	The PC Setup contains various startup and operating parameters. The PC Set- up parameters can be changed from a Programming Device only; they cannot be changed from the program.
	Some parameters are accessed only when PC's power supply is turned ON and others are accessed regularly while the power is ON. It will be necessary to turn the power OFF and then ON again to enable a new setting if the parameter is accessed only when the power is turned ON.
Not	e Refer to <i>Section 1 PC Setup</i> in the <i>Programming Manual</i> (W353) for more details.
Communications Switches	The Communications Switches determine whether the peripheral port and RS-232C port operate with the standard communications settings or the communications settings in the PC Setup.
1-3-2 Operating Mo	odes
	CPM2C CPU Units have 3 operating modes: PROGRAM, MONITOR, and RUN.

 PROGRAM Mode
 The program cannot be executed in PROGRAM mode. This mode is used to perform the following operations in preparation for program execution.

- Changing initial/operating parameters such as those in the PC Setup
- Writing, transferring, or checking the program
- Checking wiring by force-setting and force-resetting I/O bits
- **Caution** The PC continues to refresh I/O bits even if the PC is in PROGRAM mode, so devices connected to output points on the CPU Unit or Expansion I/O Units may operate unexpectedly if the corresponding output bit is turned ON by changing the contents of I/O memory.

MONITOR Mode

The program is executed in MONITOR mode and the following operations can be performed from a Programming Device. In general, MONITOR mode is used to debug the program, test operation, and make adjustments.

- Online editing
- Monitoring I/O memory during operation
- Force-setting/force-resetting I/O bits, changing set values, and changing present values during operation
- RUN Mode The program is executed at normal speed in RUN mode. Operations such as online editing, force-setting/force-resetting I/O bits, and changing set values/ present values cannot be performed in RUN mode, but the status of I/O bits can be monitored.

1-3-3 Operating Mode at Startup

The operating mode of the CPM2C when the power is turned ON depends upon the PC Setup settings and the Programming Console's mode switch setting if a Programming Console is connected.

PC Setup setting			Operating mode
Word	Bits	Setting	
DM 6600	08 to 15	00	See note.
		01	Startup mode is the same as the operating mode before power was interrupted.
		02	Startup mode is determined by bits 00 to 07.
	00 to 07	00	PROGRAM mode
		01	MONITOR mode
		02	RUN mode

Note The startup mode depends upon the setting of Communications Switch 2 and the Programming Device connected to the peripheral port.

Programming Device	Switch 2 OFF	Switch 2 ON
None	PROGRAM mode	RUN mode (see note 2)
Programming Console	Operating mode set on the Programming Console's mode switch	PROGRAM mode (see note 1)
Other device	PROGRAM mode (see note 1)	PROGRAM mode

Note 1. The CPM2C will not be able to communicate with the Programming Device in these cases.

2. When the power is turned ON, the CPM2C will start in the RUN mode only when the RS-232C cable is connected to the communications port with switch 2 set to ON.

1-3-4 PC Operation at Startup

The time required for startup initialization depends on several factors, such as the operating conditions (including power supply voltage, system configuration, and ambient temperature) and the program contents.

Power OFF Operation

Time Required for

Initialization

Minimum Power Supply Voltage

The PC will stop and all outputs will be turned OFF if the power supply voltage falls below 85% of the rated value.

Momentary Power Interruption

A power interruption will not be detected and CPU Unit operation will continue if the power interruption lasts less than 2 ms.

A power interruption may or may not be detected for power interruptions somewhat longer than 2 ms.

When a power interruption is detected, the CPU Unit will stop operating and all outputs will be turned OFF.

Automatic Reset

Operation will restart automatically when the power supply voltage is restored to more than 85% of the rated voltage.

Timing Chart of Power OFF Operation

The power interruption detection time is the time required for a power interruption to be detected after the power supply voltage drops below 85% of the rated value.

1, 2, 3... 1. Minimum power interruption detection time

Power interruptions that are shorter than 2 ms will not be detected.

2. Undetermined additional time

Power interruptions only slightly longer than the minimum power interruption time may not be detected.

Note If the power supply voltage fluctuates around 85% of the PC's rated voltage, PC operation may stop and restart repeatedly. When repeated stopping and starting will cause problems with the controlled system, set up a protective circuit such as a circuit that shuts OFF the power supply to sensitive equipment until the power supply voltage returns to the rated value.

1-3-5 Cyclic Operation and Interrupts

Basic CPU Operation

Initialization processing is performed when the power is turned ON. If there are no initialization errors, the overseeing processes, program execution, I/O refreshing, and communications port servicing are performed repeatedly (cyclically).

The cycle time can be read from a Programming Device.

AR 14 contains the maximum cycle time and AR 15 contains the present cycle time in multiples of 0.1 ms.

Program Execution in

Cyclic Operation

The cycle time will vary slightly depending on the processing being performed in each cycle, so the calculated cycle time will not always match the actual cycle time.

The following diagram shows the cyclic operation of the CPM2C when the program is being executed normally.

Normally, the results of program execution are transferred to I/O memory just after program execution (during I/O refreshing), but IORF(97) can be used to refresh a specified range of I/O words during program execution. The specified range of I/O words will be refreshed when IORF(97) is executed.

The cycle time is the sum of the time required for program execution, I/O refreshing, and communications port servicing.

A minimum cycle time (1 to 9,999 ms) can be set in the PC Setup (DM 6619). When a minimum cycle time has been set, CPU operation is paused after program execution until the minimum cycle time is reached. CPU operation will not be paused if the actual cycle time is longer than the minimum cycle time set in DM 6619.

Note A fatal error will occur and PC operation will stop if a maximum cycle time has been set in the PC Setup (DM 6618) and the actual cycle time exceeds that setting.

The default settings for RS-232C port servicing and Peripheral port servicing are 5% of the cycle time, but these settings can be changed (between 0% and 99%) in the PC Setup. The RS-232C port's setting is in DM 6616 and the Peripheral port's setting is in DM 6617.

Refer to *Section 7 PC Operations and Processing Time* in the *Programming Manual* (W353) for more details and precautions on the cycle time.

Interrupt Program Execution

When an interrupt is generated during execution of the main program, main program execution is interrupted immediately and the interrupt program is executed. The following diagram shows the cyclic operation of the CPM2C when an interrupt program is executed.

Normally, the results of interrupt program execution are transferred to I/O memory just after program execution (during I/O refreshing), but IORF(97) can be used to refresh a specified range of I/O words during execution of the interrupt program. The specified range of I/O words will be refreshed when IORF(97) is executed.

The normal cycle time is extended by the time required for execution of the interrupt program.

Refer to *Section 7 PC Operations and Processing Time* in the *Programming Manual* (W353) for more details and precautions on the cycle time.

Immediate Refreshing

IORF(97) can be executed in the program to refresh a specified range of I/O words. The specified I/O words will be refreshed when IORF(97) is executed.

IORF(97) can be used to refresh I/O from the main program or the interrupt program. When IORF(97) is used, the cycle time is extended by the time required to refresh the specified I/O words.

1-4 Functions Listed by Usage

Machine Control Functions

Usage		Function	Refer to
Receive high-speed count inputs (For example, calculating length or position with an encoder).	Max. count frequency of 2 kHz (single-phase)	Use interrupt input (counter mode) to read the present value without interrupts.	W353
	Max. count frequency of 5 kHz (differential phase) or 20 kHz (single-phase)	Use high-speed counter to read the present value without interrupts.	
Generate a pulse output based on a multiple of an input pulse to synchronize control of a peripheral process with the main process.		Pulse synchronization	
The multiple for the peripheral process (such as tool feed rate) can be changed during operation by calculating the multiple from another input value (such as an encoder) in the peripheral process.			
This method can be used to change the process for different products or models without stopping the equipment.			
Reliably receive input pulses with an ON-time shorter than the cycle time (such as inputs from a photomicrosensor).		Quick-response input function	

	Usage	Function	Refer to
Interrupt functions	Execute a special process very quickly when an input goes ON. (For example, operating a cutter when an interrupt input is received from a Proximity Switch or Photoelectric Switch.)	Interrupt input (interrupt input mode)	W353
	Count input ON pulses and execute a special process very quickly when the count reaches the preset value. (For example, stopping the supply feed when a preset number of workpieces have passed through the system.)	Interrupt input (counter mode)	
	Execute a special process at a preset count value. (For example, cutting material very precisely at a given length.)	High-speed counter interrupt generated when the count matches the set value.	
	Execute a special process when the count is within a preset range. (For example, sorting material very quickly when it is within a given length range.)	High-speed counter interrupt generated when the count is within the set range.	
	Execute a special process when a timer times out. (For example, stopping a conveyor at very precise time (independent of the cycle time) after the workpiece is detected.)	Interval timer interrupt (One-shot mode)	
	Repeat a special process at regular intervals. (For example, the speed of a sheet feeder can be monitored by measuring the input signal from an encoder at regular intervals and calculating the speed.)	Interval timer interrupt (Scheduled interrupt mode)	
Perform simple positioning by outputting pulses to a motor driver that accepts pulse-train inputs.		Pulse output function	

Basic Functions

Usage	Function	Refer to
Set the cycle time to a fixed interval.	Set a minimum (fixed) cycle time in the PC Setup.	W353
Stop PC operation when the cycle time exceeds a maximum setting.	Set a maximum (watch) cycle time in the PC Setup.	
Keep all outputs ON when PC operation stops.	Turn ON the IOM Hold Bit (SR 25212).	
Retain the contents of I/O memory when starting operation.	Turn ON the IOM Hold Bit (SR 25212).	
Retain the contents of I/O memory when the PC is turned ON.	Turn ON the IOM Hold Bit (SR 25212) and set the PC Setup (DM 6601) so that the status of the IOM Hold Bit is maintained at startup.	
Eliminate effects from chattering and external noise.	Set a longer input time constant in the PC Setup.]

Maintenance Functions

Usage	Function	Refer to
Record data with time-stamp.	Clock/calendar function	W353
Establish user-defined errors for desired input conditions. (Fatal and non-fatal errors can be defined.)	FAL(06) defines non-fatal errors. (PC operation continues.)	
	FALS(07) defines fatal errors. (PC operation stops.)	
Read the number of power interruptions.	The number of power interruptions is stored in AR 23.	
Set the startup operating mode.	Set the startup operating mode in the PC Setup (DM 6600).	

Communications Functions

Usage	Function	Refer to
Read/write I/O memory data and change the operating mode from a host computer.	Host Link communications (Set the communications mode to Host Link in the PC Setup.)	W353
Connect to a serial device such as a bar code reader or serial printer.	No-protocol communications (Set the communications mode to no-protocol in the PC Setup.)	
Make a high-speed connection with an OMRON Programmable Terminal.	1:1 NT Link (Set the communications mode to 1:1 NT Link in the PC Setup.)	
Make a PC-PC data link connection with another CPM2C, or a CPM1A, CPM2A, SRM1, CQM1, or C200HX/HG/HE PC.	1:1 PC Link (Set the communications mode to 1:1 PC Link in the PC Setup.)	
Connect a Programming Console.	Connect the Programming Console to the Peripheral port. (Turn OFF Communications Switch 2.)	Page 86
Connect a personal computer running SYSMAC Support Software (SSS) or SYSMAC-CPT Support Software.	The computer can be connected to the Peripheral port or RS-232C port. (Turn OFF Communications Switch 2.)	Page 80
Monitor equipment with a Programmable Terminal and program the PC with a Programming Device.	The RS-232C port and Peripheral port can be used simultaneously.	W353 Page 80, 86

1-5 Comparison with the CPM1A and CPM2A

Item		CPM2C	CPM2A	CPM1A
Instruction set	Basic instructions	14	Same as CPM2C.	Same as CPM2C.
	Special instructions	105 instructions, 185 variations	Same as CPM2C.	79 instructions, 139 variations
Instruction	Basic instructions	LD: 0.64 µs	Same as CPM2C.	LD: 1.72 µs
execution times	Special instructions	MOV(21): 7.8 μs	Same as CPM2C.	MOV(21): 16.3 μs
Program capacity	4	4,096 words	Same as CPM2C.	2,048 words
Maximum number of I/O points	Stand-alone CPU Unit	10 or 20 points	30, 40, or 60 points	10, 20, 30, or 40 points
	CPU Unit with Expansion I/O Units	130 or 140 points max.	90, 100, or 120 points max.	90 or 100 points max.
Expansion Units	Maximum number of Units	A maximum of 5 Units can be connected to any of the CPU Units.	A maximum of 3 Units can be connected to any of the CPU Units.	A maximum of 3 Units can be connected to the 30-point and 40-point CPU Units.
	Available models	Expansion I/O Units	Expansion I/O Units, Analog I/O Unit, and CompoBus/S I/O Link Unit	Same as CPM2A.

Item		CPM2C	CPM2A	CPM1A	
I/O memory	Input bits		IR 00000 to IR 00915	Same as CPM2C.	Same as CPM2C.
	Output bits		IR 01000 to IR 01915	Same as CPM2C.	Same as CPM2C.
	Work bits		928 bits: IR 02000 to IR 04915, IR 20000 to IR 22715	Same as CPM2C.	512 bits: IR 20000 to IR 23115
	SR (Special Re	elay) area	448 bits: SR 22800 to SR 25515	Same as CPM2C.	384 bits: SR 23200 to SR 25515
	TR (Temporary	Relay) area	8 bits: TR0 to TR7	Same as CPM2C.	Same as CPM2C.
	HR (Holding Re	elay) area	320 bits: HR 0000 to HR 1915		Same as CPM2C.
	AR (Auxiliary R	elay) area	384 bits: AR 0000 to AR 2315	Same as CPM2C.	256 bits: AR 0000 to AR 1515
	LR (Link Relay) area	256 bits: LR 0000 to LR 1515	Same as CPM2C.	Same as CPM2C.
	Timer/Counter	area	256 bits: TIM/CNT 000 to TIM/CNT 255	Same as CPM2C.	128 bits: TIM/CNT 0 to TIM/CNT 127
	DM (Data Memory) area	Read/write area	2,048 words (DM 0000 to DM 2047)	Same as CPM2C.	1,024 words (DM 0000 to DM 1023)
		Read-only area	456 words (DM 6144 to DM 6599)	Same as CPM2C.	Same as CPM2C.
		PC Setup	56 words (DM 6600 to DM 6655)	Same as CPM2C.	Same as CPM2C.
Memory backup	Memory backup Program area, read-only DM area Read/write DM area, HR area, AR area, and counters		Flash memory backup	Same as CPM2C.	Same as CPM2C.
			CPU Unit with clock: Internal battery backup (2-year lifetime at 25°C, replaceable)	Internal battery backup (5-year lifetime at 25°C, replaceable)	Capacitor backup (20-day backup at 25°C)
			CPU Unit without clock: Capacitor backup (10-day backup at 25°C) or optional battery backup (5 years at 25°C, replaceable)		
Interrupt inputs (i	Interrupt inputs (interrupt input mode)		4 (20-point CPU Unit), 2 (10-point CPU Unit)	4	4
Interrupt inputs Counter mode (counter mode)		Incrementing counter Decrementing counter	Same as CPM2C.	Decrementing counter	
	Counter upper	limit	2 kHz	Same as CPM2C.	1 kHz
	SR 244 to SR 2	247	Contains counter PV.	Same as CPM2C.	Contains counter PV-1.
	Method(s) to read counter PV		Read SR 244 to SR 247. Execute PRV(62).	Same as CPM2C.	Read SR 244 to SR 247. (Counter PV - 1)
	Method to char PV	nge counter	Execute INI(61).	Same as CPM2C.	Not supported.
Interval timer	One-shot mode)	Yes	Same as CPM2C.	Same as CPM2C.
	Scheduled inte	rrupt mode	Yes	Same as CPM2C.	Same as CPM2C.

ltem		CPM2C/CPM2A	CPM1A
Quick-response inputs	Setting the quick-response function	PC Setup	PC Setup and INT(89) (Unmask interrupt input.)
	INT(89) (Mask)	Not supported (ignored)	Supported.
	INT(89) (Read mask)	Reads mask status.	Reads result of mask setting.
	INT(89) (Clear)	Not supported (ignored)	Supported.
	Minimum pulse width	50 μs min.	200 μs min.
High-speed counter	Count mode	Differential-phase (up/down) mode Pulse plus direction mode Up/down pulse mode Increment mode	Differential-phase (up/down) mode Increment mode
	Max. counter frequency	5 kHz in differential-phase (up/down) mode20 kHz in pulse plus direction mode, up/down pulse mode, and increment mode	2.5 kHz in differential-phase (up/down) mode, 5 kHz in increment mode
	Counter PV range	-8,388,608 to 8,388,607 in differential-phase (up/down) mode, pulse plus direction mode, and up/down pulse mode	-32,768 to 32,767 in differential-phase (up/down) mode 0 to 65,535 in increment
		0 to 16,777,215 in increment mode	mode
	Check when registering target value match table	Same direction, same SV not possible	Same direction, same SV possible
	Method used to reference the target value match interrupt table	Comparison of all values in the table, regardless of order of appearance in table	Comparison in order of appearance in table
	Reading range-comparison results	Check AR 1100 to AR 1107 or execute PRV(62).	Check AR 1100 to AR 1107.
	Reading status	Check AR 1108 (comparison in progress), check AR 1109 (high-speed counter PV overflow/underflow), or execute PRV(62).	
Pulse synchroniz	ation	Supported.	Not supported.
Pulse output control	Trapezoidal acceleration/ deceleration	Supported with ACC(). The initial frequency can be set.	Not supported.
	PWM() output	Supported.	Not supported.
	Number of simultaneous pulse outputs	2 max.	1 max.
	Maximum frequency	10 kHz max.	2 kHz max.
	Minimum frequency	10 Hz	20 Hz
	Pulse output quantity	-16,777,215 to 16,777,215	0 to 16,777,215
	Direction control	Supported.	Not supported.
	Positioning to absolute positions	Supported.	Not supported.
	Bit status while pulses are being output	No effect	Turned ON/OFF by pulse output
	Reading PV	Read SR 228 through SR 231 or execute PRV(62).	Not supported.
	Resetting PV	Supported.	Not supported.
	Status outputs	Accelerating/decelerating PV overflow/underflow Pulse quantity set Pulse output completed Pulse output status	Pulse output status

ltem		CPM2C	CPM2A	CPM1A
Analog controls		None	2	2
Clock function		Internal or none	Internal	None
	Words containing time info.	AR 17 to AR 21	AR 17 to AR 21	
Communications switch		This switch determines whether communications are governed by the standard settings or PC Setup settings. Also sets the Programming Device connection.	This switch determines whether communications are governed by the standard settings or PC Setup settings.	None
Battery	Battery	CPU Unit with clock: Internal lithium battery backup CPU Unit without clock: Capacitor backup or optional lithium battery backup	Lithium	None (capacitor backup only)
	Battery replacement	Possible	Possible	
	Life expectancy/ backup time	CPU Unit with clock: 2-year lifetime at 25°C	5-year lifetime at 25°C	20-day backup at 25°C
		CPU Unit without clock (capacitor): 10-day backup at 25°C CPU Unit without clock (lithium battery): 5-year lifetime at 25°C		
	Battery error detection	Supported.	Same as CPM2C.	
Communications (in CPU Unit)	Peripheral port	Programming Console (Set with Communications Switch.) Peripheral bus (Set with Communications Switch.) Host Link (with Slave-initiated communications) No-protocol	Programming Console (auto-detect) Peripheral bus (auto-detect) Host Link (with Slave-initiated communications) No-protocol	Programming Console (auto-detect) Peripheral bus (auto-detect) Host Link 1:1 PC LInk 1:1 NT Link
	RS-232C port	Peripheral bus (Set with Communications Switch.) Host Link No-protocol 1:1 PC LInk 1:1 NT Link	Peripheral bus (auto-detect) Host Link No-protocol 1:1 PC LInk 1:1 NT Link	None
Input time constant		Can be set to 1, 2, 3, 5, 10, 20, 40, or 80 ms. (Default: 10 ms)	Same as CPM2C.	Can be set to 1, 2, 4, 8, 16, 32, 64, or 128 ms. (Default: 8 ms)

Note An optional battery (CPM2C-BAT01) can be mounted to CPU Units without clocks.

Differences in Instruction Sets

Instructions added to the CPM2C

Mnemonic	Name
TXD(48)	TRANSMIT
RXD(47)	RECEIVE
SCL(66)	SCALING
SCL2()	SIGNED BINARY TO BCD SCALING
SCL3()	BCD TO SIGNED BINARY SCALING
SRCH()	DATA SEARCH
MAX()	FIND MAXIMUM
MIN()	FIND MINIMUM
SUM()	SUM CALCULATION
FCS()	FCS CALCULATE
HEX()	ASCII-TO-HEXADECIMAL
AVG()	AVERAGE VALUE
PWM()	PULSE WITH VARIABLE DUTY RATIO
PID()	PID CONTROL
ZCP()	AREA RANGE COMPARE
ZCPL()	DOUBLE AREA RANGE COMPARE
NEG()	2'S COMPLEMENT
ACC()	ACCELERATION CONTROL
STUP()	CHANGE RS-232C SETUP
SYNC()	SYNCHRONIZED PULSE CONTROL
BINL(58)	DOUBLE BCD TO DOUBLE BINARY
BCDL(59)	DOUBLE BINARY TO DOUBLE BCD
TMHH()	VERY HIGH-SPEED TIMER
TIML()	LONG TIMER
SEC()	HOURS-TO-SECONDS
HMS()	SECONDS-TO-HOURS

Instructions with Changed Specifications

Mnemonic	Name	CPM2C	CPM1A
INI(61)	MODE CONTROL	Supports the interrupt input (counter mode) PV change operation.	Does not support these operations.
		Supports the pulse output PV change operation.	
		Supports the pulse synchronization control stop operation.	
PRV(62)	HIGH-SPEED COUNTER PV READ	Supports the interrupt input (counter mode) PV read operation.	Does not support these operations.
		Supports the pulse output PV read operation.	
CTBL(63)	COMPARISON TABLE LOAD	The count is compared with all of the target values in the target value comparison table.	The count is compared with each target value in the order that they appear in the target value comparison table.
PULS(65)	SET PULSES	Supports absolute pulse specification, but the coordinate system must be set to absolute coordinates.	Does not support absolute pulse specification.
INT(89)	INTERRUPT CONTROL	Supports a count-up interrupt for incrementing counters.	Does not support this interrupt function.

<u>/!</u> Caution

on Before using a CPM1A program containing one or more of the instructions in the table above, check the program to be sure that it will operate properly and edit the program if necessary. The CPM2C may not operate properly if a CPM1A program with these instructions is transferred and executed unchanged.

Added Function Code Allocations

The following three instructions are allocated function codes that were not used in the CPM1A.

Instruction	CPM2C	CPM1A
RXD(47)	RECEIVE	Not allocated. (NOP(00))
TXD(48)	TRANSMIT	
SCL(66)	SCALING	

Differences in I/O Memory

SR Area Differences

The following table shows differences in the SR area. (PV is the abbreviation for present value.)

Function	CPM2C	CPM1A
Pulse output 0 PV	SR 228 to SR 229	Not
Pulse output 1 PV	SR 230 to SR 231	supported.
Pulse output 0 PV Reset Bit	SR 25204	
Pulse output 1 PV Reset Bit	SR 25205	
RS-232C Port Reset Bit	SR 25209	
Battery Error Flag	SR 25308	
Changing RS-232C Port Setup Flag	SR 25312	

AR Area Differences

The following table shows differences in the AR area.

Function	CPM2C	CPM1A
Clock/calendar data	AR 17 to AR 21	Not
RS-232C Communications Error Code	AR 0800 to AR 0803	supported.
RS-232C Error Flag	AR 0804	
RS-232C Transmission Enabled Flag	AR 0805	
RS-232C Reception Completed Flag	AR 0806	
RS-232C Reception Overflow Flag	AR 0807	
Peripheral Port Reception Completed Flag	AR 0814	
Peripheral Port Reception Overflow Flag	AR 0815	
RS-232C Reception Counter	AR 09	
High-speed Counter Comparison Flag	AR 1108	
High-speed Counter Overflow/Underflow Flag	AR 1109	
Pulse Output 0 Output Condition	AR 1111	
Pulse Output 0 PV Overflow/Underflow Flag	AR 1112	
Pulse Output 0 Pulse Quantity Set Flag	AR 1113	
Pulse Output 0 Output Completed Flag	AR 1114	
Pulse Output 1 PV Overflow/Underflow Flag	AR 1212	
Pulse Output 1 Pulse Quantity Set Flag	AR 1213	
Pulse Output 1 Output Completed Flag	AR 1214	
Pulse Output 1 Output Status	AR 1215	
Power OFF Counter	AR 23 (See note.)	AR 10

Note CPM1A programs that use AR 10 (the Power OFF Counter) cannot be used in the CPM2C without editing the program. In the CPM2C, the Power OFF Counter is in AR 23.

DM Area Differences

The following table shows differences in the DM area other than the PC Setup.

Function	CPM2C	CPM1A
Error Log Area	DM 2000 to DM 2021	DM 1000 to DM 1021

Note CPM1A programs that use the Error Log Area cannot be used in the CPM2C without editing the program to change the location of the Error Log Area.

The following table shows differences in the PC Setup.

Function	CPM2C	CPM1A
RS-232C Port Servicing Time Setting	DM 6616 bits 00 to 07	Not
RS-232C Port Servicing Time Enable	DM 6616 bits 08 to 15	supported
Pulse Output 0 Coordinate System	DM 6629 bits 00 to 03	
Pulse Output 1 Coordinate System	DM 6629 bits 04 to 07	
RS-232C Communications Settings Selector	DM 6645 bits 00 to 03	
RS-232C Port CTS Control Settings	DM 6645 bits 04 to 07	
RS-232C Port Link Words for 1:1 PC Link	DM 6645 bits 08 to 11	
RS-232C Port Communications Mode	DM 6645 bits 12 to 15	
RS-232C Port Baud Rate	DM 6646 bits 00 to 07	
RS-232C Port Frame Format	DM 6646 bits 08 to 15	
RS-232C Port Transmission Delay	DM 6647	
RS-232C Port Host Link Node Number	DM 6648 bits 00 to 07	
RS-232C Port No-protocol Start Code Enable	DM 6648 bits 08 to 11	
RS-232C Port No-protocol End Code Enable	DM 6648 bits 12 to 15	
RS-232C Port No-protocol Start Code Setting	DM 6649 bits 00 to 07	
RS-232C Port No-protocol End Code Setting or Number of Bytes Received	DM 6649 bits 08 to 15	
Peripheral Port No-protocol Start Code Enable	DM 6653 bits 08 to 11	
Peripheral Port No-protocol End Code Enable	DM 6653 bits 12 to 15	
Peripheral Port No-protocol Start Code Setting	DM 6654 bits 00 to 07	
Peripheral Port No-protocol End Code Setting or Number of Bytes Received	DM 6654 bits 08 to 15	
Battery Error Detect Setting	DM 6655 bits 12 to 15	

1-6 Preparation for Operation

Follow the steps listed below when setting up a CPM2C system.

- 1, 2, 3... 1. System Design
 - Select a CPM2C CPU Unit and Expansion Units with the specifications required in the controlled system.
 - Design external fail-safe circuits such as interlock circuits and limit circuits.

Refer to 2-2 Specifications and 3-1 Design Precautions for details.

- 2. Installation
 - Connect the Expansion Unit(s).
 - Install the CPU Unit. (DIN-track installation)

Refer to *3-3 Installing the CPM2C* and *3-4 Wiring and Connections* for details.

- 3. Wiring
 - \bullet Wire the power supply and I/O devices.
 - Connect communications devices if necessary.
 - Connect the Programming Console.

Refer to *3-4 Wiring and Connections, 4-3 Using a Programming Console,* for details.

- 4. Initial Settings
 - Set the Communications Switches on the front of the CPU Unit, if necessary. (The switches must be set when a device other than the Programming Console is connected or the standard communications settings are not used.)
 - Connect the Programming Console, set the mode switch to PROGRAM mode, and turn ON the PC.
 - Check the CPU Unit's LED indicators and the Programming Console's display.
 - Clear the PC's memory. (All Clear)
 - Make PC Setup settings.

Refer to *3-3 Installing the CPM2C* and *4-3-4 Preparation for Operation* for details.

- 5. Create Ladder Program
 - Create a ladder program to control the system.

Refer to *Section 4 Using Programming Devices* and the *Programming Manual* for details.

- 6. Write Ladder Program in PC
 - Write the ladder program in the PC with the Programming Console or transfer the program to the PC from the Support Software.

Refer to Section 4 Using Programming Devices, to the SYSMAC Support Software Operation Manuals and to the CPT User Manual for details.

- 7. Test Run
 - Check I/O wiring in PROGRAM mode.
 - Check and debug program execution in MONITOR mode.

Refer to Section 5 Test Runs and Error Processing for details.

SECTION 2 Unit Components and Specifications

This section describes the main components of the Units that go together to create a CPM2C PC and provides the technical specifications of the Units.

2-1	Unit Co	mponents	26
	2-1-1	CPU Unit Components	26
	2-1-2	Expansion I/O Unit Components	30
2-2	Specific	cations	33
	2-2-1	General Specifications	33
	2-2-2	Characteristics	33
	2-2-3	I/O Specifications	36

Unit Components 2-1

2-1-1 CPU Unit Components

CPU Unit Component Names

Front View (CPU Unit with Relay Outputs)

Top View

Bottom View

10. Low battery detection switch

Right Side (CPU Unit with Relay Outputs)

Right Side (CPU Unit with Transistor Outputs)

CPU Unit Component Descriptions

1, 2, 3... 1. Power Supply Connector

Connect the power supply (24 VDC) to this connector.

2. Input Terminals/Connector

Connects the CPU Unit to external input devices.

- 3. Output Terminals/Connector
- Connects the CPU Unit to external output devices.
- 4. PC Status Indicators

These indicators show the operating status of the PC, as shown in the following table.

Indicator	Status	Meaning
PWR	ON	Power is being supplied to the PC.
(green)	OFF	Power isn't being supplied to the PC.
RUN	ON	The PC is operating in RUN or MONITOR mode.
(green)	OFF	The PC is in PROGRAM mode or a fatal error has occurred.
COMM (yellow)	Flashing	Data is being transferred via the Peripheral port or RS-232C port.
	OFF	Data isn't being transferred via the Peripheral port or RS-232C port.
ERR/ALARM	ON	A fatal error has occurred. (PC operation stops.)
(red)	Flashing	A non-fatal error has occurred. (PC operation continues.)
	OFF	Indicates normal operation.
PRO (green)	ON	The CPU Unit is set for Programming Console connection.
	OFF	The CPU Unit is not set for Programming Console connection.

5. Input Indicators

The input indicators are lit when the corresponding input terminal is ON. The status of an input indicator will reflect the status of the input even when that input is being used for a high-speed counter.

- **Note** a) When interrupt inputs are used in interrupt input mode, the indicator may not light even when the interrupt condition is met if the input is not ON long enough.
 - b) Input indicators will reflect the status of the corresponding inputs even when the PC is stopped, but the corresponding input bits will not be refreshed.
- 6. Output Indicators

The output indicators are lit when the corresponding output terminal is ON. The indicators are lit during I/O refreshing. The status of an output indicator will also reflect the status of the corresponding output when the output is being used as a pulse output.

7. Communications Port

Connects the PC to a Programming Device (including Programming Consoles), host computer, or standard external device. Use a proper Connecting Cable (CPM2C-CN111, CS1W-CN114, or CS1W-CN118).

- **Note** a) A C200H-PRO27-E Programming Console can be connected directly to the PC with a CS1W-CN224/CN624 Connecting Cable.
 - b) Use a CPM2C-CN111 or CS1W-CN114 Connecting Cable to connect to the Peripheral port. The Peripheral port and RS-232C port can be used simultaneously with the CPM2C-CN111.

- c) Use a CPM2C-CN111 or CS1W-CN118 Connecting Cable to connect to the RS-232C port. The Peripheral port and RS-232C port can be used simultaneously with the CPM2C-CN111.
- 8. Communications Switches

The Communications Switches control the communications settings for the peripheral port and RS-232C port. (The standard settings are 1 start bit, 7 data bits, 2 stop bits, even parity, and 9,600 bps baud rate.)

Switch settings		Peripheral port communications	RS-232C port communications	
SW1	SW2			
OFF	OFF	Programming Console connection	The settings in the PC	
OFF	ON	Other Programming Device: The settings in the PC Setup (DM 6650 to DM 6654) are used.	Setup (DM 6645 to DM 6649) are used.	
ON	OFF	Programming Console connection	The standard settings are	
ON	ON	Other Programming Device: The standard settings are used.	used.	

Be sure that Communications Switch 2 is OFF when connecting a Programming Console. The green PRO indicator on the front of the CPU Unit will be lit.

9. Battery

This battery backs up memory in CPU Units with an internal clock. The battery is connected when the Unit is shipped.

- **Note** A battery is not included in CPU Units without an internal clock, but a CPM2C-BAT01 Battery can be purchased separately and connected to backup memory.
- 10. Low Battery Detection Switch

This switch enables or disables the detection of a low-battery error. When a battery is not connected, disable low-battery detection by sliding the switch back (toward the battery).

Switch position	Low-battery detection
Forward (away from battery)	Error detection enabled
Back (toward battery)	Error detection disabled

11. Expansion I/O Connector

Connects the PC's CPU Unit to an Expansion I/O Unit. Up to 5 Expansion Units can be connected to a CPU Unit. A cover for the Expansion I/O Connector is included with the CPU Unit.

I/O Terminal and Connector Pin Allocation

CPU Unit with 10 I/O Points (Relay Outputs)

CPU Unit with 10 I/O Points (Transistor Outputs)

CPU Unit with 20 I/O Points

2-1-2 Expansion I/O Unit Components

Expansion I/O Unit with Relay Outputs

Expansion I/O Unit with Transistor Outputs

1, 2, 3... 1. Input Terminals/Connector

Connects the CPU Unit to external input devices.

2. Output Terminals/Connector

Connects the CPU Unit to external output devices.

3. Input Indicators

The input indicators are lit when the corresponding input terminal is ON.

- **Note** Input indicators will reflect the status of the corresponding inputs even when the PC is stopped, but the corresponding input bits will not be refreshed.
- 4. Output Indicators

The output indicators are lit when the corresponding output terminal is ON.

5. Expansion I/O Connector (Input)

Connects the Expansion I/O Unit to the CPU Unit or the last Expansion I/O Unit connected.

- **Note** The indicators are lit during I/O refreshing. The status of an output indicator will also reflect the status of the corresponding output when the output is being used as a pulse output.
- 6. Expansion I/O Connector (Output)

Connects the Expansion I/O Unit to the next Expansion I/O Unit, if necessary. Up to 5 Expansion I/O Units can be connected to a CPU Unit.

A cover for the Expansion I/O Connector is not included with the Expansion I/O Unit. Use the cover included with the CPU Unit to cover the unused Expansion I/O Connector on the last Expansion I/O Unit in the PC.

I/O Terminal and Connector Pin Allocation

Expansion I/O Unit with 10 I/O Points

Expansion I/O Unit with 24 I/O Points

2-2 Specifications

2-2-1 General Specifications

ltem	CPU Units with 10 I/O points		CPU Units with	Expansion I/O Units	
	Relay outputs	Transistor outputs	20 I/O points Transistor outputs	10 I/O points (Relay outputs)	24 I/O points (Transistor outputs)
Supply voltage	24 VDC	24 VDC			
Operating voltage range	20.4 to 26.4 VD	C			
Power consumption	4 W			1 W	
Inrush current	25 A max.				
Insulation resistance	20 M Ω min. (at 500 VDC) between the external AC terminals and protective earth terminals				
Dielectric strength	1,500 VAC for 1 min (between insulated circuits)				
Noise immunity	1,500 Vp-p, pulse width: 0.1 to 1 µs, rise time: 1-ns pulse (via noise simulator)				
Vibration resistance	10 to 57 Hz, 0.075-mm double amplitude, 57 to 150 Hz, acceleration: 9.8 m/s ² in X, Y, and Z directions for 80 minutes each (Time coefficient; 8 minutes \times coefficient factor 10 = total time 80 minutes)				
Shock resistance	147 m/s ² three t	147 m/s ² three times each in X, Y, and Z directions			
Ambient temperature	Operating: 0° to 55°C Storage: -20° to 75°C (except for the battery)				
Humidity	10% to 90% (with no condensation)				
Atmosphere	Must be free from corrosive gas				
I/O interface	Terminal block Connector Terminal block Connector			Connector	
Power interrupt time	2 ms min.				
Weight	200 g max.	200 g max.	200 g max.	150 g max.	150 g max.

2-2-2 Characteristics

Item		CPU Unit Specification				
		10 I/O points (Relay outputs)	10 I/O points (Transistor outputs)	20 I/O points (Transistor outputs)		
Control m	ethod	Stored program method	Stored program method			
I/O contro	l method	Cyclic scan with direct output	(Immediate refreshing can be p	performed with IORF(97).)		
Programn	ning language	Ladder diagram				
Instruction	n length	1 step per instruction, 1 to 5 w	ords per instruction			
Instructions		Basic instructions: 14 Special instructions: 105 ins	tructions, 185 variations			
Execution time		Basic instructions:0.64 μs (LD instruction)Special instructions:7.8 μs (MOV instruction)				
Program	capacity	4,096 words				
Max. I/O	CPU Unit only	10 points		20 points		
capacity	With Expansion I/O Units	ion 130 points max. 140 po		140 points max.		
Input bits		IR 00000 to IR 00915 (Words not used for input bits can be used for work bits.)				
Output bit	s	IR 01000 to IR 01915 (Words not used for output bits can be used for work bits.)				
Work bits		928 bits: IR 02000 to IR 04915 and IR 20000 to IR 22715				
Special bits (SR area)		448 bits: SR 22800 to SR 25515				
Temporary bits (TR area)		8 bits (TR0 to TR7)				
Holding bits (HR area)		320 bits: HR 0000 to HR 1915 (Words HR 00 to HR 19)				
Auxiliary b	oits (AR area)	384 bits: AR 0000 to AR 2315 (Words AR 00 to AR 23)				

Item	CPU Unit Specification		
	10 I/O points	10 I/O points	20 I/O points
	(Relay outputs)	(Transistor outputs)	(Transistor outputs)
Link bits (LR area)	256 bits: LR 0000 to LR 1515 (Words LR 00 to LR 15)		
Timers/Counters	256 timers/counters (TIM/CNT 000 to TIM/CNT 255)		
	1-ms timers: TMHH() 10-ms timers: TIMH(15) 100-ms timers: TIM 1-s/10-s timers: TIML() Decrementing counters: CNT Reversible counters: CNTR(12)		
Data memory	Read/Write: 2,048 words (DM 0000 to DM 2047)* Read-only: 456 words (DM 6144 to DM 6599) PC Setup: 56 words (DM 6600 to DM 6655)		
	*The Error Log is contained in	DM 2000 to DM 2021.	
Interrupt processing	2 interrupts	2 interrupts	4 interrupts
	Shared by the external interru	pt inputs (counter mode) and t	he quick-response inputs.
Interval timer interrupts	1 (Scheduled Interrupt Mode of	or Single Interrupt Mode)	
High-speed counter	One high-speed counter: 20 k	Hz single-phase or 5 kHz two-	phase (linear count method)
	Counter interrupt: 1 (set value	comparison or set-value range	e comparison)
Interrupt Inputs	2 inputs	2 inputs	4 inputs
(Counter mode)	Shared by the external interru	pt inputs and the quick-respon	se inputs.
Pulse output	Two points with no acceleration/deceleration, 10 Hz to 10 kHz each, and no direction control. One point with trapezoid acceleration/deceleration, 10 Hz to 10 kHz, and direction control. Two points with variable duty-ratio outputs.		
	outputs.)		
Synchronized pulse control	A pulse output can be created multiplying the frequency of th	d by combining the high-speed he input pulses from the high-sp	counter with pulse outputs and beed counter by a fixed factor.
	(This output is possible with tr	ansistor outputs only, it cannot	be used with relay outputs.)
Quick-response inputs	2 inputs	2 inputs	4 inputs
	Shared by the external interrul Min. input pulse width: 50 μ s r	pt inputs and the interrupt inpumax.	its (counter mode).
Input time constant (ON response time = OFF response time)	Can be set for all input points. (1 ms, 2 ms, 3 ms, 5 ms, 10 ms, 20 ms, 40 ms, or 80 ms)		
Clock function	Shows the year, month, day of the week, day, hour, minute, and second. (Battery backup) The following CPU Units have a built-in clock: CPM2C-10C1DR-D, CPM2C-10C1DTC-D, CPM2C-10C1DT1C-D, CPM2C-20C1DTC-D, and CPM2C-20C1DT1C-D.		
Communications functions	A CPM2C-CN111, CS1W-CN2 connect to the CPM2C's com	114, or CS1W-CN118 Connecti munications port.	ng Cable is required to
	Peripheral port: Supports Host Link, peripheral bus, no-protocol, or Programming Console connections.		
	RS-232C port: Supports Host Link, no-protoc connections.	col, 1:1 Slave Unit Link, 1:1 Ma	ster Unit Link, or 1:1 NT Link
Memory protection (See notes 1 and 2.)	HR area, AR area, program contents, read/write DM area contents, and counter values maintained during power interruptions.		

ltem	CPU Unit Specification		
	10 I/O points (Relay outputs)	10 I/O points (Transistor outputs)	20 I/O points (Transistor outputs)
Memory backup (See notes 1 and 2.)	Flash memory: Program, read-only DM area, and PC Setup		
	Memory backup: The read/write DM area, HR area, AR area, and counter values are backed up.		
	CPU Unit with clock (battery): 2-year lifetime at 25°C		
	CPU Unit without clock (capacitor): 10-day backup at 25°C		
	CPU Unit without clock (lithiun	n battery): 5-year lifetime at 25°	C
Self-diagnostic functions	CPU Unit failure (watchdog timer), I/O bus error, battery error, and memory failure		
Program checks	No END instruction, programming errors (checked when operation is started)		

- **Note** 1. The DM area, HR area, AR area, and counter values are backed up. If the backup battery or capacitor is discharged, the contents of these areas will be lost and the data values will revert to the defaults.
 - 2. The contents of the program area, read-only DM area (DM 6144 to DM 6599), and PC Setup (DM 6600 to DM 6655) are stored in flash memory. The contents of these areas will be read from flash memory the next time the power is turned ON, even if the backup battery or capacitor is discharged.

When data has been changed in any of these areas, write the new values to flash memory by switching the CPM2C to MONITOR or RUN mode, or by turning the power OFF and then ON again.

2-2-3 I/O Specifications

CPU Unit Input Specifications

Item	Inputs	Specification	
Input voltage	All	24 VDC ^{+10%} / _{-15%}	
Input impedance	IN00000 to IN00001	2.7 kΩ	
	IN00002 to IN00006	3.9 kΩ (IN00002 to IN00004 for CPU Units with 10 I/O points)	
	IN00007 and up	4.7 kΩ (IN00005 for CPU Units with 10 I/O points)	
Input current	IN00000 to IN00001	8 mA typical	
	IN00002 to IN00006	6 mA typical (IN00002 to IN00004 for CPU Units with 10 I/O points)	
	IN00007 and up	5 mA typical (IN00005 for CPU Units with 10 I/O points)	
ON voltage/current	IN00000 to IN00001	17 VDC min., 5 mA	
	IN00002 and up	14.4 VDC min., 3.5 mA	
OFF voltage/current	All	5.0 VDC max., 1.1 mA	
ON delay	All	1 to 80 ms max. Default: 10 ms (See note.)	
OFF delay	All	1 to 80 ms max. Default: 10 ms (See note.)	
Circuit configuration	IN00000 to IN00001 IN00002 to IN00006 (IN00002 to IN0004 for CPU Units with 10 I/O points)	$IN \bigcirc 2.7 \text{ K}\Omega \bigcirc 1 \text{ K}\Omega \bigcirc 0.01 \mu\text{F} $	
	IN00007 and up (IN00005 for CPU Units with 10 I/O points)	Input LED Σ IN O 4.7 kΩ 750 Ω Input LED Σ Input LED Σ	

Note The input time constant can be set to 1, 2, 3, 5, 10, 20, 40, or 80 ms in the PC Setup.

High-speed Counter Inputs

The following CPU Unit input bits can be used as high-speed counter inputs. The maximum count frequency is 5 kHz in differential phase mode and 20 kHz in the other modes.

Input	Function			
	Differential phase mode	Pulse plus direction input mode	Up/down input mode	Increment mode
IN00000	A-phase pulse input	Pulse input	Increment pulse input	Increment pulse input
IN00001	B-phase pulse input Direction input Decrement pulse		Decrement pulse input	Normal input
IN00002	Z-phase pulse input or hardware reset input (IN00002 can be used as a normal input when it is not used as a high-speed counter input.)			

The minimum pulse widths for inputs IN00000 (A-phase input) and IN00001 (B-phase input) are as follows:

The minimum pulse width for input IN00002 (Z-phase input) is as follows:

Interrupt Inputs

CPM2C PCs are equipped with inputs that can be used as interrupt inputs (interrupt input mode or counter mode) and quick-response inputs. The minimum pulse width for these inputs is $50 \ \mu$ s.

In CPU Units with 10 I/O points, inputs IN00003 and IN00004 can be used as interrupt inputs. In CPU Units with 20 I/O points, inputs IN00003 through IN00006 can be used as interrupt inputs.

Expansion I/O Unit Input Specifications

Item	Specification	
Input voltage	24 VDC ^{+10%} / _{-15%}	
Input impedance	4.7 kΩ	
Input current	5 mA typical	
ON voltage/current	14.4 VDC min., 3.5 mA	
OFF voltage/current	5.0 VDC max., 1.1 mA	
ON delay	1 to 80 ms max. Default: 10 ms (See note.)	
OFF delay	1 to 80 ms max. Default: 10 ms (See note.)	
Circuit configuration		

Note The input time constant can be set to 1, 2, 3, 5, 10, 20, 40, or 80 ms in the PC Setup.

CPU Unit and Expansion I/O Unit Output Specifications

Relay Outputs

ltem	Specification
Max. switching capacity	2 A, 250 VAC (cos\u03c6 = 1) 2 A, 24 VDC (4 A/common)
Min. switching capacity	10 mA, 5 VDC
Service life of relay (See note.)	Electrical:150,000 operations (24-VDC resistive load) 100,000 operations (240-VAC inductive load, $\cos\phi = 0.4$)Mechanical:20,000,000 operations
ON delay	15 ms max.
OFF delay	15 ms max.
Circuit configuration	Since Com Since Com Since Com Output LED Output LED

Note The service life of relay output contacts shown in the table assumes the worst conditions. The following graph shows the results of OMRON's service life tests at a switching rate of 1,800 times/hour.

Transistor Outputs (Sinking or Sourcing)

ltem		Specification	
Max. switching capacity	40 mA/4.5 VDC to 300 mA/20.4 VDC, 300 mA (20.4 VDC to 26.4 VDC)		
	When using OUT01000 or OUT01001 as a pulse output, connect a dummy resistor as required to bring the load current between 10 and 150 mA. If the load current is below 10 mA, the ON/OFF response time will be longer and high-speed pulses will not be output.		
	The transistor will heat if used	at 150 mA or higher, possibly damaging elements.	
Min. switching capacity	0.5 mA		
Max. inrush current	0.9 A for 10 ms (charging and	discharging waveform)	
Leakage current	0.1 mA max.		
Residual voltage	0.8 V max.		
ON delay	OUT01000 and OUT01001: OUT01002 and up:	20 μs max. 0.1 ms max.	
OFF delay	OUT01000 and OUT01001:	40 μs max. 10 to 300 mA 0.1 ms max. 0.5 to 10 mA	
	OUT01002 and up:	1 ms max.	
Fuse	1 fuse for each 2outputs (can	not be replaced by user)	

Note The following graph shows the maximum switching capacity.

on Do not apply voltage in excess of the maximum switching capacity to an output terminal. It may result in damage to the product or fire.

SECTION 3 Installation and Wiring

This section provides information on installing and wiring a CPM2C PC. Be sure to follow the directions and precautions in this section when installing the CPM2C in a panel or cabinet, wiring the power supply, or wiring I/O.

3-1	-1 Design Precautions				
	3-1-1	Power Supply Wiring	44		
	3-1-2	Power Supply Voltage	44		
	3-1-3	Interlock and Limit Circuits	44		
3-2	Selectin	g an Installation Site	45		
	3-2-1	Installation Site Conditions	45		
	3-2-2	Panel/Cabinet Installation	45		
3-3	Installir	ng the CPM2C	46		
	3-3-1	Connecting Units	46		
	3-3-2	CPM2C Installation	48		
3-4	Wiring and Connections				
	3-4-1	General Precautions for Wiring	49		
	3-4-2	Power Supply Wiring	50		
	3-4-3	Removing and Wiring I/O Terminal Blocks	51		
	3-4-4	Removing and Wiring I/O Connectors	52		
	3-4-5	Using I/O Terminals and Relay Terminals	55		
	3-4-6	Connecting Input Devices	57		
	3-4-7	Connecting Output Devices	62		
	3-4-8	Programming Device Connections	69		
	3-4-9	No-Protocol Communications	72		
	3-4-10	OMRON PT Connections	73		
	3-4-11	One-to-one PC Link Connections	74		

3-1 Design Precautions

Observe the following precautions when designing a system incorporating a CPM2C PC.

3-1-1 Power Supply Wiring

Separate the power supply wiring from the control system, CPM2C system, and DC I/O system wiring. Separate the control circuits that supply power to the main Unit from the main circuits using dedicated circuit protectors and fuses.

3-1-2 Power Supply Voltage

```
Caution
```

Use the power supply voltages indicated in *Section 2 Unit Specifications and Components*. Failure to adhere to the specifications may result in fire. If the power supply voltage falls below 85% of the rated voltage, the CPM2C will stop and all outputs will be turned OFF. If low voltage affects the equipment, etc., provide a protection circuit which shuts OFF the output until the supply voltage returns to the rated value.

In places where power supply conditions are poor, take steps to ensure that power is supplied at the rated voltage. Be sure to adhere to safety precautions, such as providing breakers to prevent short circuits in external wiring. When conducting any of the following operations, turn OFF the power to the PC. Electrocution, product damage and malfunction may result.

- Connecting or disconnecting Expansion I/O Units and CPU Units.
- Assembling Units.
- Connecting cables and wiring.
- Connecting or disconnecting connectors.
- Replacing the battery.

3-1-3 Interlock and Limit Circuits

WARNING Emergency stop circuits, interlock circuits, limit circuits, and similar safety measures must be provided in external control circuits (i.e., not in the Programmable Controller) to ensure safety in the system if an abnormality occurs due to malfunction of the PC or another external factor affecting the PC operation. Not providing proper safety measures may result in serious accidents.

The following diagram shows an example of an interlock circuit.

In the interlock circuit above, MC1 and MC2 can't be ON at the same time even if CPM2C outputs 01005 and 01006 are both ON (an incorrect PC operation).

3-2 Selecting an Installation Site

The CPM2C is resistant to harsh conditions and highly reliable, but installing the PC in a favorable site will maximize its reliability and operating lifetime.

on Be sure to install the CPM2C correctly, as outlined in this manual. Failure to do so may result in Unit malfunction.

3-2-1 Installation Site Conditions

Note Do not install the CPM2C under any of the following conditions.

- Locations subject to direct sunlight.
- Locations subject to a temperature below 0°C or over 55°C.
- Locations subject to a humidity below 10% or over 90%.
- Locations subject to condensation as the result of severe changes in temperature.
- Locations subject to corrosive or flammable gases.
- Locations subject to dust (especially iron dust) or salts.
- Locations subject to shock or vibration.
- Locations subject to exposure to water, oil, or chemicals.

Be sure that the conditions at the installation site conform to the CPM2C's general specifications. Refer to *2-2-1 General Specifications* for details.

- Note Provide proper shielding when installing in the following locations:
 - Locations subject to static electricity or other sources of noise.
 - Locations subject to strong electromagnetic fields.
 - Locations subject to possible exposure to radiation.
 - Locations near to power supply lines.

3-2-2 Panel/Cabinet Installation

Consider PC operation, maintenance, and surrounding conditions when installing the CPM2C in a panel or cabinet.

Overheating

- The operating temperature range for the CPM2C is 0°C to 55°C. Be sure that there is adequate ventilation for cooling.
- Allow enough space for air circulation.
- Do not install the CPM2C above equipment that generates a large amount of heat, such as heaters, transformers, or large resistors.
- Install a cooling fan or system when the ambient temperature exceeds 55°C.

• Orient the CPM2C as shown below when installing it.

Electrical Noise

- Power lines and high-voltage equipment can cause electrical noise in the PC.
- Do not install the CPM2C in a panel or cabinet with high-voltage equipment.
- Allow at least 200 mm between the CPM2C and nearby power lines.

Accessibility

Ensure that the CPM2C can be accessed for normal operation and maintenance.

- Provide a clear path to the CPM2C for operation and maintenance. High-voltage equipment or power lines could be dangerous if they are in the way during routine operations.
- The PC will be easiest to access if the panel or cabinet is installed about 1 to 1.6 m above the floor.
- Separate the CPM2C by at least 100 mm from other devices.

3-3 Installing the CPM2C

This section describes how to install the CPM2C and connect Expansion Units. Refer to *Appendix B* for diagrams showing the dimensions of the Units.

3-3-1 Connecting Units

Up to 5 Expansion I/O Units can be connected to a CPM2C CPU Unit. Use the following procedure when connecting an Expansion I/O Unit.

1, 2, 3...1. Remove the cover from the CPU Unit's or the Expansion I/O Unit's Expansion I/O Unit Connector. If the cover is difficult to remove, use a flat-blade screwdriver to pry the cover from the Expansion I/O Connector.

2. Align the Expansion I/O Unit and CPU Unit (or previous Expansion I/O Unit) so that the catches (top and bottom) on the Expansion I/O Unit and the connectors fit together. Press the Units together to connect them.

3. Lock the Units together by closing the locks (top and bottom) on the CPU Unit (or previous Expansion I/O Unit). Place the cover (included with the CPU Unit) on the last Expansion I/O Unit's Expansion I/O Connector.

3-3-2 CPM2C Installation

The CPM2C can be installed on a 35-mm DIN track.

Installation

Lower the CPM2C so that the notch on the back of the PC catches the top of the DIN Track. Push the PC forward until the lock snaps into place.

Be sure that the DIN Track is installed horizontally. Installing the Track vertically will inhibit the airflow that cools the CPM2C and could cause overheating.

Removal

Pry the lock down with a flat-blade screwdriver and pivot the PC upward to remove it.

3-4 Wiring and Connections

This section provides basic information on wiring the Power Supply Unit and Expansion I/O Units, and on connecting Programming Devices.

3-4-1 General Precautions for Wiring

Leave the protective label in place while wiring. The Unit may malfunction if strands of wire get inside the Unit. After completing wiring be sure to remove the label to avoid overheating.

I/O Line Noise

Do not run CPM2C I/O lines in the same duct or conduit as power lines.

Hanging Ducts

Leave at least 300 mm between the power cables and the I/O or control wiring, as shown in the following diagram.

Floor Ducts

Leave at least 200 mm between the wiring and the top of the duct, as shown in the following diagram.

Conduits

Separate the CPM2C I/O lines, power and control lines, and power cables, as shown in the following diagram.

3-4-2 Power Supply Wiring

The following procedure explains how to connect the CPU Unit to a 24-VDC power supply with the power supply connector (included). Use a DC power supply with sufficient capacity and low ripple.

Red lead: +24 VDC Black lead: 0 VDC Lead length: 1 m

Power supply connector (included with the Unit)

1, 2, 3... 1. Align the power supply connector with the socket on the bottom of the CPM2C and insert the connector.

- To remove the power supply connector, grasp the power supply connector (not the wires), release the lock tab on the connector, and remove the connector.
- **Note** 1. Do not perform a voltage withstand test on the DC power supply terminals on the CPU Unit. The test might damage the PC's internal components.
 - 2. When equipment must conform to the EC Directives (Low-voltage Directives), use a power supply with double insulation or reinforced insulation.
 - Use the following part when constructing a power supply cable. Housing: 51103-02 (Molex)
 Terminals: 50351 (two required) (Molex)

3-4-3 Removing and Wiring I/O Terminal Blocks

The following tables provide I/O terminal block specifications.

Terminal Block Specifications

Recommended Wire a Terminals

Item			Specification
	Screw size		M2
	Recommended tightening torque		0.22 to 0.25 N-m
and	Item		Specification
	Solid wire	0.14	4 to 1.5 mm (AWG 28 to AWG 16) (Strip 7 mm.)
	Stranded wire (See notes.) 0.		4 to 1.5 mm (AWG 28 to AWG 16) (Strip 7 mm.)
	Pin terminal 0.25		5 to 1.5 mm, 7-mm terminal length
Note	1 When using stranded wire t		be sure to avoid strav wire strands that might

- e sure to avoid stray wire strands that might short-circuit an adjacent terminal.
 - 2. Do not solder the ends of stranded wires. Solder can break and cause wiring problems. Also, the solder can cause corrosion on the contact surface.

Removing and Wiring a Terminal Block

1, 2, 3...

- Use the following procedure when wiring a terminal block.
- 1. Loosen the screws at the top and bottom of the terminal block as shown in the following diagram.

2. Pull the terminal block out of the Unit.

3. Insert each lead wire into the terminal block and tighten that terminal's screw.

4. After wiring the terminal block, insert the block into the Unit and tighten the screws at the top and bottom of the terminal block.

3-4-4 Removing and Wiring I/O Connectors

The following tables provide specifications of compatible I/O connectors.

Compatible Connector Specifications (OMRON)

Connector		Specifications	Model number
	24-pin soldered connector and cover	Connector: Fujitsu FCN-361J024-AU equivalent Cover: Fujitsu FCN-360C024-J2 equivalent	C500-CE241
	24-pin crimp connector and cover	Housing: Fujitsu FCN-363J024 equivalent Contacts: Fujitsu FCN-363J-AU equivalent Cover: Fujitsu FCN-360C024-J2 equivalent	C500-CE242
	24-pin pressure connector	Connector: Fujitsu FCN-367J024-AU/F equivalent	C500-CE243

Connector Specifications (Fujitsu)

Item			Specifications	Model number
Soldered jack			24-pin gold-plated terminals	FCN-361J024-AU
Crimp Crimp jack housing		ousing	24-pin	FCN-363J024
connector	Crimp contacts		For wire gauges 24 AWG to 28 AWG	FCN-363J-AU
	Hand crimp tool			FCN-363T-T005/H
	Contact removal tool			FCN-360T-T001/H
Pressure	Pressure jac	k with closed	24-pin gold-plated terminals	FCN-367J024-AU/F
connector	end cover		24-pin silver-plated terminals	FCN-367J024-AG/F
	Pressure jack with open end cover		24-pin gold-plated terminals	FCN-367J024-AU/H
			24-pin silver-plated terminals	FCN-367J024-AG/H
Pressing Hand press		Hand press	General purpose	FCN-707T-T101/H
	tools	Cable cutter	General purpose	FCN-707T-T001/H
		Locator plate	For the 360-series connectors	FCN-367T-T012/H
Connector cover			Thin slanted cover for 24-pin connector	FCN-360C024-J2
(Not compatible with the closed-end cover pressure jack.)			With slotted screws for 24-pin connector (Can be turned by hand.)	FCN-360C024E
			With Phillips-head screws for 24-pin connector	FCN-360C024B
			With intermediate Phillips-head screws for 24-pin connector	FCN-360C024C

Connecting I/O Connectors (Pressure Connectors)

Use the following procedure when connecting a pressure connector.

1, 2, 3... 1. Align the connector and insert it into the Unit.

2. Use a flat-blade screwdriver to tighten the connector's fastening screws.

Flat-blade screwdriver

Connecting I/O Connectors (Soldered Connectors)

Use the following procedure when connecting a soldered connector.

1, 2, 3... 1. Align the connector and insert it into the Unit.

2. Use a Phillips screwdriver to tighten the connector's fastening screws.

Phillips screwdriver

Assembling Soldered Connectors

- Use the following procedure when wiring and assembling a soldered connector (OMRON C500-CE241).
- *1, 2, 3...* 1. Slide heat-shrink tubing over the power supply wires and solder the wires to the appropriate pins on the socket.

2. After soldering all of the pins, slide the heat-shrink tubing over the soldered power supply pins and shrink the tubing by heating it with a heat gun.

3. Assemble the socket and connector as shown in the following diagram.

3-4-5 Using I/O Terminals and Relay Terminals

We recommend using the following I/O Terminals and Relay Terminals to wire devices to the CPM2C's I/O connector.

3-4-6 Connecting Input Devices

Wire inputs to the CPM2C's CPU Unit and Expansion I/O Units as shown in the following diagrams.

Note When equipment must conform to the EC Directives (Low-voltage Directives), use a power supply with double insulation or reinforced insulation.

Input Configuration

The following diagrams show the input configurations.

CPU Units with 10 I/O Points, Relay Outputs (CPM2C-10CDR-D/10C1DR-D)

CPU Units with 10 I/O Points, Transistor Outputs (CPM2C-10CDTC-D/10CDT1C-D/10C1DTC-D/10C1DT1C-D)

CPU Units with 20 I/O Points, Transistor Outputs (CPM2C-20CDTC-D/20C1DTC-D/20C1DTC-D/20C1DT1C-D)

Expansion I/O Unit with 10 I/O Points, Relay Outputs (CPM2C-10EDR)

Expansion I/O Units with 24 I/O Points, Transistor Outputs (CPM2C-24EDTC/24EDT1C)

24 VDC	B 12 11 10 9 8 7 6 5 4 3 2 1	$ \begin{array}{c} A \\ 12 \\ 11 \\ 10 \\ 9 \\ \hline 00007 \\ \hline 0 \\ 00006 \\ \hline 0 \\ \hline 0 \\ 00005 \\ \hline 0 \\ \hline 0 \\ 00005 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ 0 \\ \hline \hline \hline \hline 0 \\ \hline \hline \hline \hline \hline 0 \\ \hline \hline$

Wiring and Connections

Input Devices

The following table shows how to connect various input devices.

Device	Circuit diagram
Relay output	The second secon
NPN open collector	+ Output 5 mA/6 mA/8 mA 0 V CPM2C COM (+)
NPN current output	Constant Constant Current Circuit Constant Constant Constant Constant Current Constant
PNP current output	+ 5 mA/6 mA/8 mA Output 0 V CPM2C COM (-)
Voltage output	+ Output 0 V Sensor power supply

Note Do not use the following wiring with voltage-output devices:

High-speed Counter Inputs

Using IR 00000 to IR 00002 as High-speed Counter Inputs

In these examples, Encoders with an external 24-VDC open-collector output are connected.

Using IR 00003 to IR 00006 as Interrupt Inputs (Counter Mode)

In these examples, an Encoder with an external 24-VDC open-collector output is connected.

PC Setup Settings

The input bits shown in the following tables can operate as normal inputs or they can be assigned special functions in the PC Setup.

Special functions for input bits IR 00000 through IR 00002 are set in DM 6642:

Bit	PC Setup setting (DM 6642 bits 08 to15)				
address	00	01	02, 03, or 04		
IR 00000	Used as normal	Used as high-speed	Used as inputs for		
IR 00001	inputs.	counter inputs.	control.		
IR 00002			Used as a normal input.		

Special functions for input bits IR 00003 through IR 00006 are set in DM 6628:

Bit	Bits in	PC Setup setting (in DM 6628)			
address	DM 6628	0	1	2	
IR 00003	00 to 03	Used as normal	Used as interrupt	Used as	
IR 00004	04 to 07	inputs.	inputs (including	quick-response	
IR 00005	08 to 11*		counter mode).	mputs.	
IR 00006	12 to 15*				

Note *These inputs must be set as normal inputs (setting: 0) when a CPU Unit with 10 I/O points is being used.

High-speed Counter Input Connection Examples

Leakage Current

A leakage current can cause false inputs when using 2-wire sensors (proximity switches or photoelectric switches) or limit switches with LEDs. False inputs won't occur if the leakage current is less than 1.0 mA. If the leakage current exceeds these values, insert a bleeder resistor in the circuit to reduce the input impedance, as shown in the following diagram.

The equations above were derived from the following equations:

$$I \times \frac{R \times \frac{\text{Input voltage (24)}}{\text{Input current (I_C)}}}{R + \frac{\text{Input voltage (24)}}{\text{Input current (I_C)}}} \leq \text{ OFF voltage (E_C : 5.0)}$$
$$W \geq \frac{\text{Input voltage (24)}}{R} \times \text{Input voltage (24)} \times \text{tolerance (4)}$$

Refer to 2-2-3 I/O Specifications for details on the values L_C, I_C, and E_C. The input impedance, input current, and OFF voltage may vary depending on the input being used. (IN00000 through IN00002 have different values.)

Inductive Loads

When connecting an inductive load to an input, connect a diode in parallel with the load. The diode should satisfy the following requirements:

- *1, 2, 3...* 1. Peak reverse-breakdown voltage must be at least 3 times the load voltage.
 - 2. Average rectified current must be 1 A.

3-4-7 Connecting Output Devices

Wire the outputs to the CPM2C's CPU Unit and Expansion I/O Unit as shown in the following diagrams.

Don't exceed the output capacity or the maximum common current shown in the following table.

WARNING The PC outputs may remain ON or OFF due to deposits on or burning of the output relays or destruction of the output transistors. External safety measures must be provided to ensure safety in the system. Not providing proper safety measures may result in serious accidents.

Output Configurations

CPU Units with 10 I/O Points, Relay Outputs (CPM2C-10CDR-D/10C1DR-D)

Output capacity	Max. common capacity	
2 A (250 VAC or 24 VDC)	4 A/common	

CPU Units with 10 I/O Points, Sinking Transistor Outputs (CPM2C-10CDTC-D/10C1DTC-D)

Output capacity	Max. common capacity
300 mA (24 VDC)	1.2 A/common

CPU Units with 10 I/O Points, Sourcing Transistor Outputs (CPM2C-10CDT1C-D/10C1DT1C-D)

Output capacity	Max. common capacity
300 mA (24 VDC)	1.2 A/common

CPU Units with 20 I/O Points, Sinking Transistor Outputs (CPM2C-20CDTC-D/20C1DTC-D)

Output capacity	Max. common capacity
300 mA (24 VDC)	2.4 A/common

CPU Units with 20 I/O Points, Sourcing Transistor Outputs (CPM2C-20CDT1C-D/20C1DT1C-D)

Output capacity	Max. common capacity
300 mA (24 VDC)	2.4 A/common

Expansion I/O Unit with 10 I/O Points, Relay Outputs (CPM2C-10EDR)

Output capacity	Max. common capacity
2 A (250 VAC or 24 VDC)	4 A/common

Expansion I/O Unit with 24 I/O Points, Sinking Transistor Outputs (CPM2C-24EDTC)

Output capacity	Max. com	mon ca	pacity
mA (24 VDC)	2.4 A/commo	on	
	01000 ad 01001 ad 01002 ad 01003 ad 01004 ad 01005 ad 01006 ad 01007 cOM 24V	Output or A 1 2 3 4 5 6 7 8 9 10 11 12	B 1 2 3 4 5 6 7 8 9 10 11 12

300

Expansion I/O Unit with 24 I/O Points, Sourcing Transistor Outputs (CPM2C-24EDT1C)

Output capacity	Max. common capacity
300 mA (24 VDC)	2.4 A/common

		r	
		Output	connector
		Α	в
	01000	1	1
	01001	2	
	01002		2
	01003		3
	01004		5
	01005		
	01006		
	01007		
	СОМ		
24 VDC	ov	9	3
			10
		11	11
		12	12

Using Pulse Outputs

The following diagrams show example applications of sink-type transistor outputs using output bits IR 01000 and IR 01001. Use the PULS(65), SPED(--), ACC(--), PWM(--), and SYNC(--) instructions to produce pulse outputs (rather than normal outputs) from output bits IR 01000 and IR 01001.

Output Wiring Precautions Observe the following precautions to protect the PC's internal components.

Output Short Protection

The output or internal circuitry might be damaged when the load connected to an output is short-circuited, so it is recommended to install a protective fuse in each output circuit.

Inductive Loads

When connecting an inductive load to an input, connect a surge protector or diode in parallel with the load.

The surge protector's components should have the following ratings:

The diode should satisfy the following requirements:

Peak reverse-breakdown voltage must be at least 3 times the load voltage. Average rectified current must be 1 A.

Inrush Current Considerations

When switching a load with a high inrush current in the CPM2C relay output or transistor output model, such as an incandescent lamp, suppress the inrush current as shown below.

Fuse Insertion

The CPM2C with transistor output may burn if the load is short-circuited, therefore, insert a protective fuse in series to the load.

3-4-8 Programming Device Connections

Programming Console

Use one of the connecting cables shown in the following diagram to connect a Programming Console to the CPM2C.

One-to-one Computer Connection Use one of the connecting cables shown in the following diagram to connect a personal computer with Support Software to the CPM2C's RS-232C port for 1:1 Host Link communications or no-protocol (serial) communications.

RS-232C Port Connection

A personal computer can be connected to the CPU Unit's RS-232C port with an XW2Z- \square 00S or XW2Z- \square 00S-V Connecting Cable. The XW2Z- \square 00S Cables have a D-sub 25-pin connector and the XW2Z- \square 00S-V Cables have a D-sub 9-pin connector.

Peripheral Port Connection

A personal computer can be connected to the CPU Unit's Peripheral port through a CQM1-CIF01 or CPM1-CIF01 RS-232C Adapter. The XW2Z- \square 00S Cables have a D-sub 25-pin connector and the XW2Z- \square 00S-V Cables have a D-sub 9-pin connector.

- Note 1. The CS1W-CN226/626 Connecting Cables can be used, but the CS1W-CN225/625 and CS1W-CN227/627 Connecting Cables cannot be used.
 - The CQM1-CIF11 Connecting Cable cannot be used. (If one is connected, the CPM2C will not recognize it; the PC will enter RUN mode at startup if the PC Setup (DM 6600) is set so that the Programming Console's mode switch controls the startup mode.)
 - 3. Refer to *Section 4 Using Programming Devices* for details on the Support Software that can be used with the CPM2C.

- Up to 32 PCs
- Note 1. The NT-AL001 must be supplied externally with 5 VDC. When an NT-AL001 is connected to a CPM2C PC, pin 6 of the CPM2C's RS-232C port supplies +5 VDC and an external power supply is not necessary.
 - 2. The CPM1-CIF11 is supplied +5 VDC from the Peripheral port, so an external power supply is not necessary.
 - 3. The B500-AL004 requires an external AC power supply (110 VAC or 220 VAC).
 - 4. Be sure that the power supply requirements of the CPU Unit and Expansion I/O Units does not exceed the available capacity. Only three Expansion I/O Units can be connected when the NT-AL001 Adapter connected to the RS-232C port.

3-4-9 No-Protocol Communications

The TXD(48) and RXD(47) instructions can be used in no-protocol mode to exchange data with standard serial devices. For example, data can be received from a bar code reader or transmitted to a serial printer. The serial devices can be connected to the RS-232C port or Peripheral port, as shown in the following diagrams.

Note See *One-to-one Computer Connections* on page 69 for details on the system configurations that can be assembled for serial communications.

3-4-10 OMRON PT Connections

In a 1:1 NT Link, a CPM2C can be connected directly to a Programmable Terminal. The direct connection with a Programmable Terminal is possible through the RS-232C port only; a PT cannot be connected directly through the Peripheral port.

A Programmable Terminal can also be connected by a Host Link connection. Either the RS-232C port or Peripheral port can be used for the Host Link.

Note The Programmable Terminal cannot be connected directly through the Peripheral port.

3-4-11 One-to-one PC Link Connections

A CPM2C can be linked to another CPM2C, a CQM1, CPM1, CPM1A, CPM2A, SRM1(-V2), C200HS, or C200HX/HE/HG PC. The PC must be connected through the RS-232C port; it cannot be connected through the Peripheral port.

SECTION 4 Using Programming Devices

This section outlines the operations possible with the SYSMAC-CPT, SYSMAC Support Software (SSS) and the Programming Consoles. Actual CPT operating procedures are provided in the *CPT User Manual*. Actual SSS operating procedures are provided in the *SSS Operation Manuals: Basics* and *C-series PCs*.

Refer to 3-4-8 Programming Device Connections and 4-3-1 Connecting the Programming Console for details on connecting a Programming Console or personal computer to the CPM2C.

4-1	SYSMA	AC-CPT Support Software	76
	4-1-1	Introduction	76
	4-1-2	Limitations and Precautions	76
	4-1-3	Using the SYSMAC-CPT Support Software	78
4-2	SYSMA	AC Support Software (SSS)	83
	4-2-1	Introduction	83
	4-2-2	Limitations and Precautions	84
4-3	Using a	a Programming Console	86
	4-3-1	Connecting the Programming Console	86
	4-3-2	Compatible Programming Consoles	88
	4-3-3	Changing the CPM2C's Mode with the Mode Switch	90
	4-3-4	Preparation for Operation	91
	4-3-5	Entering the Password	92
4-4	Program	mming Console Operations	92
	4-4-1	Overview	92
	4-4-2	Clearing Memory	93
	4-4-3	Reading/Clearing Error Messages	94
	4-4-4	Buzzer Operation	95
	4-4-5	Assigning Expansion Instruction Function Codes	96
	4-4-6	Setting and Reading a Program Memory Address	96
	4-4-7	Entering or Editing Programs	97
	4-4-8	Instruction Search	100
	4-4-9	Bit Operand Search	100
	4-4-10	Inserting and Deleting Instructions	101
	4-4-11	Checking the Program	102
	4-4-12	Bit, Digit, Word Monitor	103
	4-4-13	Differentiation Monitor	104
	4-4-14	Binary Monitor	105
	4-4-15	3-Word Monitor	106
	4-4-16	Signed Decimal Monitor	106
	4-4-17	Unsigned Decimal Monitor	107
	4-4-18	3-Word Data Modification	107
	4-4-19	Changing Timer, Counter SV	108
	4-4-20	Hexadecimal, BCD Data Modification	109
	4-4-21	Binary Data Modification	109
	4-4-22	Signed Decimal Data Modification	110
	4-4-23	Unsigned Decimal Data Modification	111
	4-4-24	Force Set, Reset	111
	4-4-25	Clear Force Set/Reset	112
	4-4-26	Hex-ASCII Display Change	113
	4-4-27	Displaying the Cycle Time	113
	4-4-28	Reading and Setting the Clock	113
4-5	Program	mming Example	114
	4-5-1	Preparatory Operations	114
	4-5-2	Example Program	115
	4-5-3	Programming Procedures	116
	4-5-4	Checking the Program	119
	4-5-5	Test Run in MONITOR Mode	120

4-1 SYSMAC-CPT Support Software

4-1-1 Introduction

The SYSMAC-CPT Support Software is a complete programming and control package. It provides not only programming capabilities, but also advanced debugging, monitoring, and program/data management. The software is compatible with Windows 3.1, Windows 95, Windows 98, and Windows NT 3.5/4.0.

Any version of the SYSMAC-CPT Support Software can be used to program CPM2C PCs with the limitations described later in this section. For further information and actual operating procedures, please refer to the SYSMAC-CPT Support Software Quick Start Guide (W332) and User Manual (W333).

Refer to *3-4-8 Programming Device Connections* for details on connecting a personal computer to the CPM2C.

4-1-2 Limitations and Precautions

When programming a CPM2C PC with the SYSMAC-CPT Support Software, set the PC model to "CQM1" and the CPU model to "CPU43." There are some software limitations because of differences between the CPM2C and CQM1-CPU43 CPUs.

Program Input and
Program CheckCQM1 data areas are larger than the corresponding CPM2C data areas, so the
data area addresses that don't actually exist in the CPM2C or instructions not
supported by the CPM2C can be input and won't be detected in the program
check. Be sure that the word and bit addresses are within the specified ranges
and that all instructions are supported.

If a program contains a data area address that exceeds the range of a CPM2C data area, a memory error will be generated when the program is executed and the Memory Area Specification Error Flag (AR 1308) will be turned ON.

Da	ata area	CQM1 range	CPM2C range	
Input words		IR 000 to IR 011	IR 000 to IR 009	
Output	t words	IR 100 to IR 111	IR 010 to IR 019	
Work words and dedicated words		IR 012 to IR 099 IR 112 to IR 227	IR 020 to IR 049/IR 200 to IR 227 (IR 050 to IR 199 cannot be used.)	
SR are	ea	SR 228 to SR 255	SR 228 to SR 255	
HR area		HR 00 to HR 99	HR 00 to HR 19 (HR 20 to HR 99 cannot be used.)	
AR area		AR 00 to AR 27	AR 00 to AR 23 (AR 24 to AR 27 cannot be used.)	
LR area		LR 00 to LR 63	LR 00 to LR 15 (LR 16 to LR 63 cannot be used.)	
Timer/Counter area		TIM/CNT 000 to 511	TIM/CNT 000 to 255 (TIM/CNT 256 to 511 cannot be used.)	
DM area	Read/write	DM 0000 to DM 6143	DM 0000 to DM 1999, DM 2022 to DM 2047 (DM 2048 to DM 6143 cannot be used.)	
	Read-only	DM 6144 to DM 6568	DM 6144 to DM 6599	
	Error Log	DM 6569 to DM 6599	DM 2000 to DM 2021	
	PC Setup	DM 6600 to DM 6655	DM 6600 to DM 6655	

Since the PC model is set to "CQM1," a program that will run properly in the CQM1 will pass the program check even if it won't run properly in the CPM2C.

An error message will be displayed and the values will not be accepted if a data area address that exceeds the range of a CPM2C data area is entered for monitoring, an instruction operand, or a timer/counter SV.

Monitoring, Online Editing, and Set Values

Available Program Memory	The program capacity of the CQM1 (7,200 words) is greater than that of the CPM2C (4,096 words), and so the display will show more free space than is actually available. Be sure to keep the actual program capacity in mind while programming.
Program Transfer	When the program is transferred from the PC to the CPT with the default function code assignments, FUN18, FUN19, FUN87, and FUN88 will be displayed as TKY, MCMP, DSW, and 7SEG. The instructions, however, will be transferred correctly.
	An error will occur if any instructions not supported by the CPT are transferred from the CPM2C.
	When the program is transferred from the CPT to the PC, TKY, MCMP, DSW, and 7SEG will be displayed on the CPT, but will not be executed in the CPU Unit. They will be treated as NOP(00).
	If expansion instructions are transferred to the PC with DM 6602 is set to the "de- fault settings" or if instructions not supported by the CPM2C are transferred to the PC, a message saying that expansion instructions cannot be written be- cause DIP switch pin 4 is OFF will be displayed. Change the setting of DM 6602 to enable user settings to use expansion instructions.
Expansion Instructions	It will not be possible to transfer the program if the function codes assigned to expansion instructions (18 instructions) have been changed from their default settings. A message to turn ON the DIP switch of the PC and execute again will be displayed. Change the function code assignments to the CQM1 defaults

shown in the following table before programming.

Function code	Default CPM2C Assignments	Default CQM1 Assignments
17	ASFT	ASFT
18		ТКҮ
19		МСМР
47	RXD	RXD
48	TXD	TXD
60	CMPL	CMPL
61	INI	INI
62	PRV	PRV
63	CTBL	CTBL
64	SPED	SPED
65	PULS	PULS
66	SCL	SCL
67	BCNT	BCNT
68	BCMP	BCMP
69	STIM	STIM
87		DSW
88		7SEG
89	INT	INT

There are three CPM2C instructions (SYNC(--), TIML(--), and TMHH(--)) that are not supported by the CQM1 and cannot be used. If one of these instructions is used in the program, an error will occur when the program is transferred from the PC to the computer.

The input word for the frequency for PWM must be between IR 000 and IR 049, or between IR 200 and IR 252.

If a CQM1 instruction that is not supported by the CPM2C is used in the program, an error will occur when the program is transferred from the computer to the PC.

Error Log The error log cannot be displayed. If data has been written to DM 6569 to DM 6599, however, this data will be incorrectly displayed as the error log. Do not use the information that is displayed.

PC Setup Some of the CPM2C's PC Setup settings are different from those in the CQM1, so not all settings can be made from the menus. These settings have to be made by writing data directly to the word containing the setting.

4-1-3 Using the SYSMAC-CPT Support Software

This section shows how to perform basic SYSMAC-CPT Support Software operations with the CPM2C PC. (The software is operating in a Windows 95 environment in these examples.)

Starting the SoftwareThe SYSMAC-CPT Support Software is a Windows 3.1/Windows 98/Windows
NT (3.5/4.0) application. Refer to the SYSMAC-CPT Support Software User
Manual (W333) for details on computer requirements and the software installa-
tion procedure.

1, 2, 3... 1. Select "Programs (<u>P</u>)" from the Start Menu, "SYSMAC-CPT," and then "SYSMAC-CPT" to start the software.

2. Read the notes provided in the startup messages and click "OK."

SYSHIO-CPT	8
Melcone to SYSNAC World	2
1	
	06

3. The SYSMAC-CPT Support Software will start.

NAMES OF A DESCRIPTION OF A DESCRIPTIONO		
For Bolp, press F1	CAP NUM	

Note To exit from the SYSMAC-CPT Support Software, select "File (\underline{F})" from the menu bar and "Exit (\underline{X})" from the File menu.

Creating a New Project

Follow this procedure when using SYSMAC-CPT Support Software for the first time or creating a new project. Specify the PC model and CPU version of the PC being used.

1, 2, 3... 1. Select "File (<u>F</u>)" from the menu bar and "New (<u>N</u>)" from the File menu.

2. Input the name of the new project, set the PC model to "CQM1," set the CPU version to "CPU43," and click "OK."

a) Input the project name.	Dam Projent Projent H.ann 	Cancel Halo	— d) Click OK.
	-PLC Modet C Capen E		
b) Set the PC mo	del to COM1 c) Set the PC model	to COM1

3. The new project's ladder diagram will be displayed.

MASYSMAC-CF	ग - PU	OPROJ	LOPT									. IC ×
Cor Day An	en (2	n-line	Peqqe.	₩ndo	н Цир							
	关注	1 E		21		의티	13	3 Å.	H ?			
	54 4	+	: Z	01 28	L X	8	ne or	na	488P		END	
EPICPost -	PLOPE	o.J.CP	T (Ledde	Vierd	- [16	n Dog	, net		_			
]									-		
										- 8		
										1.0		
										1.0		
					-					-1		
Mnomenic:		_		_		_		_	_			
011-lane	Mo	CO No.	ie D		COMI	-	_	_	_	_	_	
I I A PLOP	10j1 /			_		_						
							CA	P INUS	0			

Writing and Editing the Ladder Program

The SYSMAC-CPT Support Software can display programs in ladder-diagram format or mnemonic format. To switch the display/editing format, select "View (\underline{V})" from the menu bar, "Program editor (\underline{P})," and then "Ladder (L)" or "Mnemonic (M)."

Ladder-diagram format

Mnemonic format

Transferring the Program

Refer to *3-4-8 Programming Device Connections* for details on connecting the CPM2C to a personal computer.

Turn ON Communications Switch 2 before connecting the CPM2C to a personal computer running the SYSMAC-CPT Support Software.

Communications Switch 2 (Turn ON when using SYSMAC-CPT Support Software.)

Note Do not turn ON Communications Switch 2 if the CPM2C is connected to a Programming Console or other device such as a CPM1-CIF01/11 or CQM1-CIF01/02. If the switch is turned ON, communications will be interrupted and a communications error will occur. A Programming Console will become unresponsive, key inputs won't be received, and the display will not change.

Operating Modes

The operating mode of the CPM2C when the power is turned ON depends upon the PC Setup settings and the Programming Console's mode switch setting if a Programming Console is connected. See *1-3-3 Operating Mode at Startup* for details.

The CMP2C has three operating modes: PROGRAM, MONITOR, and RUN. When the CPT is offline, the CPM2C will operate in PROGRAM mode. When the CPT is online, the CPM2C operating mode can be controlled from the CPT.

PROGRAM Mode

The CPM2C program isn't executed in PROGRAM mode. Use PROGRAM mode to create and edit the program, clear memory, or check the program for errors.

MONITOR Mode

The CPM2C program is executed in MONITOR mode and I/O is processed just as it is in RUN mode. Use MONITOR mode to test system operations, such as monitoring CPM2C operating status, force-setting and resetting I/O bits, changing the SV/PV of timers and counters, changing word data, and online editing.

RUN Mode

This is the CPM2C's normal operating mode. The CPM2C's operating status can be monitored from a Programming Device, but bits can't be force-set/force-reset and the SV/PV of timers and counters can't be changed.

Switching to Online Operation

The SYSMAC-CPT Support Software must make an online connection in order to communicate with the CPM2C, transfer the program, or change the CPM2C's operating mode.

1, 2, 3...
 Select "Online (<u>O</u>)" from the menu bar and "Go online (<u>G</u>)" from the Online menu.

2. A confirmation message will be displayed. Click "OK" to go online.

3. The ladder-diagram display will change to indicate the online connection.

		N R	N #				LEEP -	±	10 🛓	SFT 🛃
11		10000000 1000			ann Prag		124		12	
	172							1 =	-	
14						_				
								1		
									12	
Mnemo	nic: U	UT 0100	10							
Progra		Net 0 N	ode:0	CONT						
P P	CProj	1 / F1		_			CAP 2	TIME		

Changes to "Program," showing the PC's operating mode.

Transferring the Program

Use the following procedure to transfer a program to the PC. Before attempting to transfer the program, make sure that the SYSMAC-CPT Support Software is online and that the CPM2C is in PROGRAM mode. The program cannot be transferred unless the PC is in PROGRAM mode.

1, **2**, **3**... 1. Check that the PC is in PROGRAM mode, select "Online (<u>O</u>)" from the menu bar, and "Transfer (Computer \rightarrow PC (<u>T</u>))" from the Online menu.

NASIDI	C Go Official	Chile Set	- bi en	1.1.60		
			· 13 EB	a co		
	Password Broteens	en -	 1 24 (25) 	KEEP	END 🛨	SET
PLONU - I	NC Division Services		• 1	80		
F.3	I a T DA	() + + + + +		970	는 ID 도	
	Toppare To PLC.	ChileAler				
- Filter-	Transfer Ersen P10	DeP-AB+P			77	
11	Tata Marina			CHARGE CO.	44	
	Ever Lon				19	
	Oysia Time.				FF	
	Remainstication Co.	i Kome			- 1A	
	Construction 24	inder.				
					2 - N	
Manageric:	0UT 01000					
Pressor	Net 0 Node 0	COMI				
	THE STREET	24711				

Make sure that the CPM2C is in PROGRAM mode before attempting to transfer the program.

2. Select "Program" and click "Transfer (Computer \rightarrow PC)" to begin transfer the program.

Checking Operation in MONITOR Mode

Use the following procedure to switch the CPM2C to MONITOR mode.

 Make sure that the SYSMAC-CPT Support Software is online. Select "Online (<u>O</u>)" from the menu bar, select "Mode (<u>M</u>)," and then "MONITOR (<u>M</u>)."

	Addition front Sector 2 (addar gradient Sector 2) Sector 2) Se	Dele (brinklen) Drinklen) Drinklen) Drinklen Drinklen		
Macazale: 14 Program 1 Al 15, PLCProgram Section PLC to D	F 1:000 Kott 0 Kode (0 0	Q41	SAF MIK	_

A confirmation message will be displayed. Click "OK" to switch to MONITOR mode.

STEMPO	CPT		×
Q	OK to share P	UC made to Munitar	•
E	OK I	Cancel	

Starting Operation in RUN Mode

Use the following procedure to switch the CPM2C to RUN mode.

 Make sure that the SYSMAC-CPT Support Software is online. Select "Online (<u>O</u>)" from the menu bar, select "Mode (<u>M</u>)," and then "RUN (<u>R</u>)."

	Consecution particle Spatiali	Sele Colmains Colmains Colmains Colmains Colmains Colmains	Birnis, iso Dese forme see serve gauge serve be serve		
Married Co.				1	
Master 1 1 - Martin Paral Series PLC to R	Ret E Rode 10 0 / im mode	00M1	0	JF MM	

A confirmation message will be displayed. Click "OK" to switch to RUN mode.

SISMAC-	CPT X
Q	OIC to sharpe PEC mode to $Rer^{\rm p}$
	Cancel

4-2 SYSMAC Support Software (SSS)

4-2-1 Introduction

The SSS is a complete programming and control package designed for C-series and CVM1 PCs. It provides not only programming capabilities, but also advanced debugging, monitoring, and program/data management. For further information and actual operating procedures, please refer to the SYSMAC Support Software Operation Manuals: Basics and C Series. CPM2C programming can be performed with any version of the SSS.

Refer to *3-4-8 Programming Device Connections* for details on connecting a personal computer to the CPM2C.

4-2-2 Limitations and Precautions

When programming a CPM2C PC with the SSS, set the PC model to "CQM1." There are some software limitations because of differences between the CPM2C and CQM1 CPUs.

Program Input and Program Check

CQM1 data areas are larger than the corresponding CPM2C data areas, so the data area addresses that don't actually exist in the CPM2C or instructions not supported by the CPM2C can be input and won't be detected in the program check. Be sure that the word and bit addresses are within the specified ranges and that all instructions are supported.

If a program contains a data area address that exceeds the range of a CPM2C data area, a memory error will be generated when the program is executed and the Memory Area Specification Error Flag (AR 1308) will be turned ON.

Da	ata area	CQM1 range	CPM2C range		
Input v	vords	IR 000 to IR 011	IR 000 to IR 009		
Output	t words	IR 100 to IR 111	IR 010 to IR 019		
Work \	words	IR 012 to IR 099 IR 112 to IR 227	IR 020 to IR 049/IR 200 to IR 227 (IR 050 to IR 199 cannot be used.)		
SR are	ea	SR 228 to SR 255	SR 228 to SR 255		
HR area		HR 00 to HR 99	HR 00 to HR 19 (HR 20 to HR 99 cannot be used.)		
AR area		AR 00 to AR 27	AR 00 to AR 23 (AR 24 to AR 27 cannot be used.)		
LR area		LR 00 to LR 63	LR 00 to LR 15 (LR 16 to LR 63 cannot be used.)		
Timer/ area	Counter	TIM/CNT 000 to 511	TIM/CNT 000 to 255 (TIM/CNT 256 to 511 cannot be used.)		
DM area	Read/write	DM 0000 to DM 6143	DM 0000 to DM 1999, DM 2022 to DM 2047 (DM 2048 to DM 6143 cannot be used.)		
	Read-only	DM 6144 to DM 6568	DM 6144 to DM 6599		
	Error Log	DM 6569 to DM 6599	DM 2000 to DM 2021		
	PC Setup	DM 6600 to DM 6655	DM 6600 to DM 6655		

Since the PC model is set to "CQM1," a program that will run properly in the CQM1 will pass the program check even if it won't run properly in the CPM2C.

An error message will be displayed and the values will not be accepted if a data area address that exceeds the range of a CPM2C data area is entered for monitoring, time charts, an instruction operand, or a timer/counter SV.

Monitoring, Online Editing, and Set Values

Transferring and Verifying DM Area Data	DM Area addresses not supported by the CPM2C cannot be transferred or mon- itored. DM 1024 to DM 6143 are not checked for DM Area verification.					
Available Program Memory	Since the program capacity of the CQM1 (7,200 words) is greater than that of the CPM2C (4,096 words), the display will show more free space than is actually available. Be sure to keep the actual program capacity in mind while program ming.					
Program Transfer	 When the program is transferred from the PC to the SSS with the default funct code assignments, FUN18, FUN19, FUN87, and FUN88 will be displayed TKY, MCMP, DSW, and 7SEG. The instructions, however, will be transfer correctly. "???" will be displayed if any instructions not supported by the SSS are trafferred from the CPM2C. Mnemonics will be displayed, however, if any here the formula of the transfer of the t					
	When the progra and 7SEG will be They will be trea	am is transferred from the SSS displayed on the SSS, but will r ted as NOP.	to the PC, TKY, MCMP, DSW, not be executed in the CPU Unit.			
	If expansion instr fault settings," a because DIP sw DM 6602 to enal not supported by expansion instru	ructions are transferred to the Per message saying that expansion vitch pin 4 is OFF will be dis ble user settings to use expans the CPM2C are transferred to t ctions will be displayed, and tra	C with DM 6602 is set to the "de- n instructions cannot be written played. Change the setting of sion instructions. If instructions he PC, a message saying to set ansfer will not be possible.			
Expansion Instructions	It will not be possible to transfer the program if the function codes as expansion instructions have been changed from their default settings sage to turn ON the DIP switch of the PC and execute again will be of Change the function code assignments to the CQM1 defaults shown lowing table before programming.					
	Function code	Default CPM2C Assignments	Default CQM1 Assignments			
	17	ASFT	ASFT			
	18		ТКҮ			
	19		MCMP			
	47	RXD	RXD			
	48	TXD	TXD			
	60	CMPL				
	61					
	62	PRV	PKV			

CTBL

SPED

PULS

BCNT

BCMP

STIM

---INT

SCL

63

64

65

66

67

68

69 87

88

89

If a CQM1 instruction that is not supported by the CPM2C is used in the program, an error will occur when the program is transferred from the computer to the PC. There are three CPM2C instructions (SYNC(--), TIML(--), and TMHH(--)) that are not supported by the CQM1. These instructions can be used by transferring the expansion instructions from the CPM2C to the SSS. This procedure is outlined in the following.

CTBL

SPED

PULS

BCMP

STIM

DSW

7SEG

INT

SCL BCNT

- 1, 2, 3... 1. Select "Transfer Instr" from the "Utility" menu.
 - Confirm the transfer by pressing "Y" when the confirmation pop-up is displayed.

CIMI (SWALT >	Well FROMMENT After light US Say Lightree
	Lincility 3
	1 Wer expension instructions 1 Transfer from PC to computer Confirm 12/407
	I UP toplapy Net Clock 0 Descript Descript - Cantan data - Cantan data - Cantan data - Cantan data - Chantan Cantan - Chantan - Chant

3. The "Utility" menu will be displayed again when the transfer is completed.

PC Setup

Since some of the CPM2C's PC Setup settings are different from those in the CQM1, not all settings can be made from the menus. These settings have to be made by writing data directly to the word containing the setting.

4-3 Using a Programming Console

This section provides information on connecting and using a Programming Console. Refer to *5-3 Programming Console Operation Errors* for details on errors that might occur during Programming Console operations.

4-3-1 Connecting the Programming Console

A Programming Console can be connected to the CPM2C's communications port or the Peripheral port on a CPM2C-CN111 Connecting Cable; it cannot be connected to the CPM2C-CN111 Connecting Cable's RS-232C port.

Before connecting the Programming Console, turn OFF Communications Switch 2 on the front of the CPM2C CPU Unit. The green "PRO" indicator on the CPU Unit will light.

Communications Switch 2

- Note 1. When Communications Switch 2 is OFF, the Programming Console functions of an OMRON PT connected to the RS-232C port cannot be used. Turn ON Communications Switch 2 to use the PT's Programming Console functions.
 - 2. Do not change the setting of Communications Switch 2 if a Programming Console or other device such as a CPM1-CIF01/11 or CQM1-CIF01/02 is connected. Changing the setting will interrupt communications and cause a communications error. If a Programming Console is connected, it will become unresponsive, key inputs won't be received, and the display will not change.
 - 3. If the Programming Console's cable is disconnected and then reconnected within 2 seconds, it won't be necessary to reenter the password and the previous display status will remain. In some cases, it won't be necessary to reenter the password if the Programming Console's cable is disconnected while a time-consuming operation (such as a program check) is being performed.

Connecting a CQM1-PRO01-E

Connect the Programming Console to the CPM2C as shown below.

Connecting a C200H-PRO27-E

Connect the Programming Console to the CPM2C as shown below.

Panel Installation

The C200H-PRO27-E Programming Console can be installed in a control panel as shown in the following diagram. (The C200H-ATT01 Mounting Bracket is sold separately.)

Allow at least 80 mm for the cable connector above the Programming Console.

4-3-2 Compatible Programming Consoles

There are two Programming Consoles that can be used with the CPM2C: The CQM1-PRO01-E and the C200H-PRO27-E. The key functions for these Programming Consoles are identical.

Press and hold the Shift Key to input a letter shown in the upper-left corner of the key or the upper function of a key that has two functions. For example, the CQM1-PRO01-E's AR/HR Key can specify either the AR or HR Area; press and release the Shift Key and then press the AR/HR Key to specify the AR Area.

CQM1-PRO01-E

C200H-PRO27-E

The following table shows the connecting cables that can be used to connect the C200H-PRO27-E to the CPM2C.

Model number	Connection	Length
C200H-CN222	Connect to the Peripheral port of a CPM2C-CN111 or	2 m
C200H-CN422	CS1W-CN114 Connecting Cable.	4 m
CS1W-CN224	Connect directly to the CPM2C's communications port.	2 m
CS1W-CN624		6 m

Different Keys

The following keys are labeled differently on the CQM1-PRO01-E and the C200H-PRO27-E, but the operation of the keys in each pair is identical.

CQM1-PRO01-E Keys	C200H-PRO27-E Keys
EM LR	LR
AR HR	HR
SET	PLAY SET
RESET	REC RESET

Note To specify the AR area, use SHIFT + HR Keys for the C200H-PRO27-E and use SHIFT + AR/HR Keys for the CQM1-PRO01-E.

A shift symbol will be displayed in the upper-right corner of the screen when the Shift Key is pressed. The shift input can be cleared by pressing the Shift Key again.

Mode Switch

The mode switch controls the CPM2C's operating mode. The key can be removed when the switch is set to RUN or MONITOR but it cannot be removed when the switch is set to PROGRAM.

Contrast Control

The display contrast can be adjusted with the control on the right side of the Programming Console.

Buzzer Volume

The C200H-PRO27-E's buzzer volume can be adjusted with the lever on the right side of the Programming Console. The CQM1-PRO01-E's buzzer volume cannot be adjusted.

- C200H-FRO27-E
- **Note** The buzzer volume can be turned ON and OFF with a key operation. See *4-4-4 Buzzer Operation* for details.

4-3-3 Changing the CPM2C's Mode with the Mode Switch

Once the Programming Console has been connected, its mode switch can be used to change the CPM2C's operating mode. The mode display (<PRO-GRAM>, <MONITOR>, or <RUN>) will appear on the Programming Console screen.

- No key operations can be performed while the mode display is displayed on the Programming Console screen. Press CLR to clear the display so that key operations can be performed.
- If the SHIFT Key is pressed while the mode switch is turned, the original display will remain on the Programming Console's screen and the mode display won't appear.

Operating Modes

PROGRAM Mode

The CPM2C program isn't executed in PROGRAM mode. Use PROGRAM mode to create and edit the program, clear memory, or check the program for errors.

MONITOR Mode

The CPM2C program is executed in MONITOR mode and I/O is processed just as it is in RUN mode. Use MONITOR mode to test system operations, such as monitoring CPM2C operating status, force-setting and resetting I/O bits, changing the SV/PV of timers and counters, changing word data, and online editing.

RUN Mode

This is the CPM2C's normal operating mode. The CPM2C's operating status can be monitored from a Programming Device, but bits can't be force-set/force-reset and the SV/PV of timers and counters can't be changed.

Caution Check the system thoroughly before changing the operating mode of the PC to prevent any accidents that might occur when the program is first started.

/! Caution Never change the mode while pressing any of the keys.

Startup Operating Mode

The operating mode of the CPM2C when the power is turned ON depends upon the PC Setup settings and the Programming Console's mode switch setting if a Programming Console is connected. See *1-3-3 Operating Mode at Startup* for details.

4-3-4 Preparation for Operation

This section describes the procedures required to begin Programming Console operation when using the Programming Console for the first time.

Caution Always confirm that the Programming Console is in PROGRAM mode when turning ON the PC with a Programming Console connected unless another mode is desired for a specific purpose. If the Programming Console is in RUN mode when PC power is turned ON, any program in Program Memory will be executed, possibly causing a PC-controlled system to begin operation.

The following sequence of operations must be performed before beginning initial program input.

- 1, 2, 3... 1. Be sure that the PC is OFF.
 - 2. Connect the Programming Console to the CPU Unit's Peripheral port. See 4-3-1 Connecting the Programming Console for details.
 (The CPU Unit's Communications Switch setting has no effect on communications with the Programming Console.)
 - 3. Set the mode switch to PROGRAM mode.
 - 4. Turn ON the PC.
 - 5. Enter the password. See 4-3-5 Entering the Password for details.
 - 6. Clear (All Clear) the PC's memory. See 4-4-2 Clearing Memory for details.
 - 7. Read and clear all errors and messages. See 4-4-3 Reading/Clearing Error Messages for details.
 - 8. Start programming.

4-3-5 Entering the Password

To gain access to the PC's programming functions, you must first enter the password. The password prevents unauthorized access to the program.

The PC prompts you for a password when PC power is turned ON or, if PC power is already ON, after the Programming Console has been connected to the PC. To gain access to the system when the "Password!" message appears, press CLR and then MONTR. Then press CLR to clear the display.

If the Programming Console is connected to the PC when PC power is already ON, the first display below will indicate the mode the PC was in before the Programming Console was connected. **Ensure that the PC is in PROGRAM mode before you enter the password.** When the password is entered, the PC will shift to the mode set on the mode switch, causing PC operation to begin if the mode is set to RUN or MONITOR. The mode can be changed to RUN or MON-ITOR with the mode switch after entering the password.

Indicates the mode set by the mode selector switch.

4-4 Programming Console Operations

4-4-1 Overview

The following table lists the programming and monitoring operations that can be performed from a Programming Console. Refer to the rest of this section for details on operational procedures.

Name	Function	Page
Clearing memory	Clears all or part of the Program Memory and any data areas that are not read-only, as well as the contents of the Programming Console's memory.	93
Reading/clearing error messages	Displays and clears error messages and displays MESSAGE instruction messages.	94
Buzzer operation	Turns ON and OFF the buzzer that sounds when Programming Console keys are pressed.	95

Name	Function	Page					
Assigning expansion instruction function codes	Reads or changes the function codes assigned to expansion instructions	96					
Setting a program memory address	Sets the specified program memory address when reading, writing, inserting and deleting programs.	96					
Reading a program memory address	Reads the contents of the Program Memory. Displays the status of the currently displayed bit in PROGRAM and MONITOR modes.	96					
Instruction search	Finds occurrences of the specified instruction in the program.	100					
Bit operand search	Finds occurrences of the specified operand bit in the program.						
Inserting and deleting instructions	Inserts or deletes instructions from the program.	101					
Entering or editing programs	Overwrites the contents of the current Program Memory to either input a program for the first time or to change a program that already exists.	97					
Checking the program	Checks for programming errors and displays the program address and error when errors are found.	102					
Bit, digit, word monitor	Monitors the status of up to 16 bits and words, although only 3 can be shown on the display at one time.	103					
Multiple address monitor	Monitors the status of up to 6 bits and words simultaneously.	104					
Differentiation monitor	Monitors the up or down differentiation status of a particular bit.	104					
Binary monitor	Monitors the ON/OFF status of any word's 16 bits.	105					
3-word monitor	Monitors the status of three consecutive words.						
Signed decimal monitor	Converts the contents of the specified word from signed hexadecimal (two's complement format) to signed decimal for display.	106					
Unsigned decimal monitor	Converts hexadecimal data in a word to unsigned decimal for display.	107					
3-word data modification	Changes the contents of one or more of the 3 consecutive words displayed in the 3-Word Monitor operation.	107					
Changing timer, counter SV 1	Changes the SV of a timer or counter.	108					
Changing timer, counter SV 2	Makes fine adjustment changes to the SV of the timer or counter.	108					
Hexadecimal, BCD data modification	Changes the BCD or hexadecimal value of a word being monitored.	109					
Binary data modification	Changes the status of a word's bits when the word is being monitored.	109					
Signed decimal data modification	Changes the decimal value of a word being monitored as signed decimal data, within a range of -32,768 to 32,767. The contents of the specified word are converted automatically to signed hexadecimal (two's complement format.)	110					
Unsigned decimal data modification	Changes the decimal value of a word being monitored as unsigned decimal data, within a range of 0 to 65,535. A change into hexadecimal data is made automatically.	111					
Force set/reset	Forces bits ON (force set) or OFF (force reset.)	111					
Clear force set/reset	Restores the status of all bits which have been force set of reset.	112					
Hex-ASCII display change	Converts word data displays back and forth between 4-digit hexadecimal data and ASCII.	113					
Displaying the cycle time	Displays the current average cycle time (scan time.)	113					
Reading and setting the clock	Reads or sets the internal clock.	113					

4-4-2 Clearing Memory

This operation is used to clear all or part of the Program Memory and data areas, as well as the contents of the Programming Console's memory. This operation is possible in PROGRAM mode only.

RUN	MONITOR	PROGRAM
No	No	OK

Before beginning to program for the first time or when installing a new program, clear all areas.

All Clear		The following procedure is used to clear memory completely, including the pro- gram, all data areas, counter PVs, Data Memory, and the PC Setup (DM 6600 to DM 6655).
	1 <i>, 2,</i> 3	1. Bring up the initial display by pressing the CLR Key repeatedly.
		2. Press the SET, NOT, and then the RESET Key to begin the operation.
		SET NOT RESET BOOODEMORY CLR? HR CNT DM
		3. Press the MONTR Key to clear memory completely.
		MONTR 2000MEMORY CLR END HR CNT DM
L	Caution	The PC Setup (DM 6600 through DM 6655) will be cleared when this operation is performed.
Partial Clear		It is possible to retain the data in specified areas or part of the Program Memory. To retain the data in the HR, TC, or DM Areas, press the appropriate key after pressing SET, NOT, and RESET. Any data area that still appears on the display will be cleared when the MONTR Key is pressed.
		The HR Key is used to specify both the AR and HR Areas, the CNT Key is used to specify the entire timer/counter area, and the DM Key is used to specify the DM Area.
		It is also possible to retain a portion of the Program Memory from the first memory address to a specified address. After designating the data areas to be retained, specify the first Program Memory address to be cleared. For example, input 030 to leave addresses 000 to 029 untouched, but to clear addresses from 030 to the end of Program Memory.
		As an example, follow the procedure below to retain the timer/counter area and Program Memory addresses 000 through 122:
	1 <i>, 2,</i> 3	1. Press the CLR Key to bring up the initial display.
		2. Press the SET, NOT, and then the RESET Key to begin the operation.
		3. Press the CNT Key to remove the timer/counter area from the data areas shown on the display. (Counter PVs will not be cleared.)
		CNT 88880MEMORY CLR? HR DM
		4. Press 123 to specify 123 as the starting program address.
		B1C2D300123MEMORY CLR? HR DM
		5. Press the MONTR Key to clear the specified regions of memory.
		MONTR 8000MEMORY CLR END HR DM
112 Doodi	na/Class	ing Error Maccagos

4-4-3 Reading/Clearing Error Messages

Programming Console Operations

All Clear

This operation is used to display and clear error messages. It is possible to display and clear non-fatal errors and MESSAGE instruction messages in any mode, but fatal errors can be cleared in PROGRAM mode only.

Section

4-4

RUN	MONITOR	PROGRAM
OK	OK	OK

Before inputting a new program, any error messages recorded in memory should be cleared. It is assumed here that the causes of any of the errors for which error messages appear have already been taken care of. If the buzzer sounds when an attempt is made to clear an error message, eliminate the cause of the error, and then clear the error message. (Refer to Section 5 Test *Runs and Error Processing* for troubleshooting information.)

Key Sequence

- Follow the procedure below to display and clear messages.
- 1, 2, 3... 1. Press the CLR Key to bring up the initial display.
 - 2. Press the FUN and then the MONTR Key to begin the operation. If there are no messages, the following display will appear:

If there are messages, the most serious message will be displayed when the MONTR Key is pressed. Pressing MONTR again will clear the present message and display the next most serious error message. Continue pressing MONTR until all messages have been cleared. These are some examples of error messages:

A memory error:

	MONTR	ΜE	MO	R	Ŷ	I	ΞR	R			
A system error:											
	MONTR	SY	S	F	Ĥ	II		F	AL.	0	L
A message (display	ed wit	h MS	SG(4	16))):						

A message

ONTR	M	Ĥ	T	E	R	I	Ĥ	I	Ľ	S	E	D	U	P
J														

All messages cleared:

u.				
MONTR	ERR/MSG	СНК	ΟK	

4-4-4 Buzzer Operation

This operation is used to turn ON and OFF the buzzer that sounds when Programming Console keys are pressed. This buzzer will also sound whenever an error occurs during PC operation. Buzzer operation for errors is not affected by this setting.

This operation is possible in any mode.

RUN	MONITOR	PROGRAM					
OK	OK	OK					

Key Sequence

Follow the procedure below to turn the key-input buzzer ON and OFF.

1, 2, 3... 1. Press the CLR, SHIFT, and then the CLR Key to bring up the mode display. In this case the PC is in PROGRAM mode and the buzzer is ON.

2. Press the SHIFT and then the 1 Key to turn OFF the buzzer.

	<	MO	Ν	I	Т	OR	
--	---	----	---	---	---	----	--

3. Press the SHIFT and then the 1 Key again to turn the buzzer back ON.

4-4-5 Assigning Expansion Instruction Function Codes

This operation is used to display or change the expansion instructions assigned to expansion instruction function codes. The assignments can be displayed in any mode, but can be changed in PROGRAM mode only.

Operation	RUN	MONITOR	PROGRAM
Read assignment	OK	OK	OK
Change assignment	No	No	OK

Assign expansion instruction function codes before inputting the program. The CPM2C will not operate properly if expansion instructions aren't assigned correctly. An expansion instruction can be assigned to one function code only.

The PC Setup must be set for user-defined expansion instruction assignments. Set bits 8 to 11 of DM 6602 to 1 and turn the PC's power OFF and then ON again to enable the new setting.

There is a table on page 77 showing the default function code assignments in the CPM2C.

- *1, 2, 3...* 1. Press the CLR Key to bring up the initial display.
 - 2. Press the EXT Key to display the assignment for the first function code (17).

3. Press the Up and Down Arrow Keys to scroll through the expansion instruction function codes.

4. Press the CHG Key to assign a different expansion instruction to the selected function code.

	INST '	TBL	CHG?
CHG	FUN018	3:FUN	÷????

5. Press the Up and Down Arrow Keys to scroll through the expansion instructions that can be assigned to the selected function code.

\downarrow	INST TBL Fun018:Fun	CHG? →HEX

6. Press the WRITE Key to assign the displayed instruction to the function code.

I	ŀ·	S	Т		Т	В	L		R	Ε	Ĥ	D	
F	U	Ν	0	1	8	:	HE	×					

4-4-6 Setting and Reading a Program Memory Address

This operation is used to display the specified program memory address and is possible in any mode.

RUN	MONITOR	PROGRAM
OK	OK	OK

When inputting a program for the first time, it is generally written to Program Memory starting from address 000. Because this address appears when the display is cleared, it is not necessary to specify it.

When inputting a program starting from other than 000 or to read or modify a program that already exists in memory, the desired address must be designated.

- *1, 2, 3...* 1. Press the CLR Key to bring up the initial display.
 - 2. Input the desired address. It is not necessary to input leading zeroes.

3. Press the Down Arrow Key.

- **Note** The ON/OFF status of any displayed bit will be shown if the PC is in RUN or MONITOR mode.
- 4. Press the Up and Down Arrow Keys to scroll through the program.

4-4-7 Entering or Editing Programs

This operation is used enter or edit programs. It is possible in PROGRAM mode only.

RUN	MONITOR	PROGRAM
No	No	OK

The same procedure is used to either input a program for the first time or to change a program that already exists. In either case, the current contents of Program Memory is overwritten.

The program shown in the following diagram will be entered to demonstrate this operation.

- *1, 2, 3...* 1. Press the CLR Key to bring up the initial display.
 - 2. Specify the address where the program will begin.
 - 3. Input the address where the program will begin and press the Down Arrow Key. It is not necessary to input leading zeroes.

$ \begin{bmatrix} C \\ 2 \end{bmatrix} \begin{bmatrix} A \\ 0 \end{bmatrix} \begin{bmatrix} A \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ \end{bmatrix} \begin{bmatrix} 0 \\ \end{bmatrix} \end{bmatrix} \begin{bmatrix} 0 \\ \end{bmatrix} \begin{bmatrix} 0 \\ \end{bmatrix} \end{bmatrix} $	0200 READ OP (000)
--	-----------------------

4. Input the first instruction and operand.

5. Press the WRITE Key to write the instruction to Program Memory. The next program address will be displayed.

If a mistake was made inputting the instruction, press the Up Arrow Key to return to the previous program address and input the instruction again. The mistaken instruction will be overwritten

6. Input the second instruction and operand. (In this case it isn't necessary to enter the timer number, because it's 000.) Press the WRITE Key to write the instruction to Program Memory.

7. Input the second operand (123 to specify 12.3 seconds) and press the WRITE Key. The next program address will be displayed.

(B)				0020	I2RE	AD	
	$\lfloor 2 \rfloor$	3	WRITE	NOP	(00	0)	

If a mistake was made inputting the operand, press the Up Arrow Key to return to display the mistaken operand and input the operand again.

- **Note** a) Counters are input in the same basic way as timers except the CNT Key is pressed instead of the TIM Key.
 - b) Timer and counter SVs are input in BCD, so it isn't necessary to press the CONT/# Key.
- 8. Input the third instruction and its operands. First input the instruction by pressing the FUN Key and then the function code (21 in this case).

To input the differentiated version of an instruction, press the NOT Key after the function code (FUN 2 1 NOT). The "@" symbol will be displayed next to differentiated instructions. Press the NOT Key again to change back the instruction back to a non-differentiated instruction. The "@" symbol will disappear.

To change an instruction after it has been entered, simply scroll through the program until the desired instruction is displayed and press the NOT Key. The "@" symbol should be displayed next to the instruction.

9. Press the WRITE Key to write the instruction to Program Memory. The input display for the first operand will be displayed.

\neg	00202	MOU	DATA	Ĥ
WRITE			ØI	30

• Writing Hexadecimal, BCD Constant

10. Input the first operand.

00202	MOV	DATA A
		#0100

Press the WRITE Key to write the instruction to Program Memory. The input display for the second operand will appear.

Note The operands of MOV(21) can be word addresses, so the CONT/# Key must be pressed to input a constant.
Writing a Word Address

11. Input the second operand.

00202	MOV	DAT	Р В]
	L	R	10	

Press the WRITE Key to write the instruction to Program Memory. The next program address will be displayed.

Note It isn't necessary to press the Shift + CONT/# Keys or Shift + CH/# when inputting an IR area bit or word address.

12. Input the next instruction.

[[™]][⁵][⁰] ADB (050)
--

Press the WRITE Key to write the instruction to Program Memory.

WRITE 00203 ADB DATA F

Writing an Unsigned Decimal Number

13. The first operand is input as an unsigned integer.

CONT # SHIFT TR NOT	00203	ADB	DATA A #00000
------------------------	-------	-----	------------------

Input the value of the operand from 0 to 65535.

	(F_	\square	00203	ADB	DATA A
$\lfloor 2 \rfloor$	5	6			#00256

Note If an erroneous input is made, press the CLR Key to restore the status prior to the input. Then enter the correct input.

14. Restore the hexadecimal display.

SHIFT TR	00203	ADB	DAT #0	A A
			77 C.	

Note If an input is made outside of the permissible range, a buzzer will sound and the hexadecimal display will not be displayed.

15. The second operand is input as a signed integer.

CONT		0	02	Ø	3	AD	B		D	Ĥ	Т	Ĥ		В
	SHIFT							#	÷	0	0	0	0	0

Input the value of the operand from -32,768 to 32,767. Use the SET Key to input a positive number, and use the RESET Key to input a negative number.

Note If an erroneous input is made, press the CLR Key to restore the status prior to the input. Then enter the correct input.

16. Restore the hexadecimal display.

• Writing a Word Address (DM 0000)

17. Input the final operand and then press the WRITE Key. (It isn't necessary to input leading zeroes.)

4-4-8 Instruction Search

This operation is used to find occurrences of the specified instruction in the program and is possible in any mode.

RUN	MONITOR	PROGRAM
OK	OK	OK

The ON/OFF status of any displayed bit will be shown if the PC is in RUN or MONITOR mode.

- *1, 2, 3...* 1. Press the CLR Key to bring up the initial display.
 - 2. Input the address from which the search will begin and press the Down Arrow Key. It is not necessary to input leading zeroes.

B			00100READ	
$\lfloor 1 \rfloor$	$\bigcirc \bigcirc$	JL↓J	ТІМ	001

3. Input the instruction to be found and press the SRCH Key. In this case, the search is for OUT 01000.

In this case, the next OUT 01000 instruction is at address 200, as shown below.

- 4. Press the Down Arrow Key to display the instruction's operands or press the SRCH Key to search for the next occurrence of the instruction.
- 5. The search will continue until an END instruction or the end of Program Memory is reached. In this case, an END instruction was reached at address 397.

4-4-9 Bit Operand Search

This operation is used to find occurrences of the specified operand bit in the program and is possible in any mode.

RUN	RUN MONITOR	
OK	OK	OK

The ON/OFF status of any displayed bit will be shown if the PC is in RUN or MONITOR mode.

- 1, 2, 3... 1. Press the CLR Key to bring up the initial display.
 - 2. Input the operand address. It is not necessary to input leading zeroes.

000000CONT	SRCH
LD	00005

3. Press the SRCH Key to begin the search.

4. Press the SRCH Key to search for the next occurrence of the operand bit.

5. The search will continue until an END instruction or the end of Program Memory is reached. In this case, an END instruction was reached.

	0039	7CONT	SRCH
SRCH	END	(001)	00.4KW

4-4-10 Inserting and Deleting Instructions

This operation is used to insert or delete instructions from the program. It is possible in PROGRAM mode only.

RUN	MONITOR	PROGRAM
No	No	OK

To demonstrate this operation, an IR 00105 NO condition will be inserted at program address 00206 and an IR 00103 NO condition deleted from address 00205, as shown in the following diagram.

Insertion

Follow the procedure below to insert the IR 00105 NO condition at address 00206.

- 1, 2, 3... 1. Press the CLR Key to bring up the initial display.
 - 2. Input the address where the NO condition will be inserted and press the Down Arrow Key. It is not necessary to input leading zeroes.

\bigcirc			<u> </u>	002	96RE	AD		
$\lfloor 2 \rfloor$	[]	$\lfloor 6 \rfloor \lfloor$	<u>↓</u>	AND	NOT	I	001	04

3. Input the new instruction and press the INS Key.

00206INSERT?
AND 00105

4. Press the Down Arrow Key to insert the new instruction.

	0	0	2	0	7	Ι	Ņ	5	E	R	T		E	Ņ	D	
↓	Ĥ	Ы	D		Ņ	0	T					0	0	1	0	4

Note For instructions that require more operands (such as set values), input the operands and then press the WRITE Key.

Deletion

Follow the procedure below to delete the IR 00103 NO condition at address 00205.

1, 2, 3...

- 1. Press the CLR Key to bring up the initial display.
 - 2. Input the address where the NO condition will be deleted and press the Down Arrow Key. It is not necessary to input leading zeroes.

3. Press the DEL Key.

4. Press the Up Arrow Key to delete the specified instruction.

If the instruction has more operands, the operands will be deleted automatically with the instruction.

After completing the insertion and deletion procedures, use the Up and Down Arrow Keys to scroll through the program and verify that it has been changed correctly, as shown in the following diagram.

Corrected Program

Address	Instruction	Operands
I	I	1
ı.	1	1
Т	I.	I.
00205	AND	00105
00206	AND NOT	00104
00207	OUT	01000
00208	END(01)	-

4-4-11 Checking the Program

This operation checks for programming errors and displays the program address and error when errors are found. It is possible in PROGRAM mode only.

RUN	MONITOR	PROGRAM
No	No	OK

1, 2, 3...

- 1. Press the CLR Key to bring up the initial display.
 - 2. Press the SRCH Key. An input prompt will appear requesting the desired check level.

3. Input the desired check level (0, 1, or 2). The program check will begin when the check level is input, and the first error found will be displayed.

	001	78C	IRCU	ΙĪ	Ē	RR
\bigcup	OUT			e	902	00

Note Refer to *5-4 Programming Errors* for details on check levels and the errors that may be detected when the program is checked.

4. Press the SRCH Key to continue the search. The next error will be displayed. Continue pressing the SRCH Key to continue the search.

The search will continue until an END instruction or the end of Program Memory is reached. A display like this will appear if the end of Program Memory is reached:

L J END	SRCH	003 End	30NO	END	II	NST
---------	------	------------	------	-----	----	-----

A display like this will appear if an END instruction is reached:

If errors are displayed, edit the program to correct the errors and check the program again. Continue checking the program until all errors have been corrected.

4-4-12 Bit, Digit, Word Monitor

This operation is used to monitor the status of up to 16 bits and words, although only 3 can be shown on the display at any one time. Operation is possible in any mode.

RUN	MONITOR	PROGRAM
OK	OK	OK

Program Read then Monitor

When a program address is being displayed, the status of the bit or word in that address can be monitored by pressing the MONTR Key.

- 1, *2*, 3...
- 1. Press the CLR Key to bring up the initial display.
 - 2. Input the desired program address and press the Down Arrow Key.

$\begin{bmatrix} C \\ 2 \end{bmatrix} \begin{bmatrix} A \\ 0 \end{bmatrix} \begin{bmatrix} A $	00200READ TIM	000
--	------------------	-----

3. Press the MONTR Key to begin monitoring.

	Т	0	0	0	
IONTR	1	2	3	4	

If the status of a bit is being monitored, that bit's status can be changed using the Force Set/Reset operation. Refer to 4-4-24 Force Set, Reset for details.

If the status of a word is being monitored, that word's value can be changed using the Hexadecimal/BCD Data Modification operation. Refer to *4-4-21 Binary Data Modification* for details.

4. Press the CLR Key to end monitoring.

Bit Monitor

- Follow the procedure below to monitor the status of a particular bit.
- 1, 2, 3...
- 1. Press the CLR Key to bring up the initial display.2. Input the bit address of the desired bit and press the MONTR Key.

The Up or Down Arrow Key can be pressed to display the status of the previous or next bit.

The displayed bit's status can be changed using the Force Set/Reset operation. Refer to *A-4-24 Force Set, Reset* for details.

3. Press the CLR Key to end monitoring.

CLR 00000	00001
-----------	-------

Word Monitor

Follow the procedure below to monitor the status of a particular word.

- *1, 2, 3...* 1. Press the CLR Key to bring up the initial display.
 - 2. Input the word address of the desired word.

3. Press the MONTR Key to begin monitoring.

MONTR

The Up or Down Arrow Key can be pressed to display the status of the previous or next word.

The displayed word's status can be changed using the Hexadecimal/BCD Data Modification operation. Refer to Refer to *4-4-21 Binary Data Modifica-tion* for details.

4. Press the CLR Key to end monitoring.

Multiple Address Monitoring The status of up to six bits and words can be monitored simultaneously, although only three can be shown on the display at any one time.

- *1, 2, 3...* 1. Press the CLR Key to bring up the initial display.
 - 2. Input the address of the first bit or word and press the MONTR Key.

	0 1	00	0 0	
--	--------	----	--------	--

3. Repeat step 2 up to 6 times to display the next addresses to be monitored.

If 4 or more bits and words are being monitored, the bits and words that do not appear on the display can be displayed by pressing the MONTR Key. If the MONTR Key is pressed alone, the display will shift to the right.

If more than six bits and words are input, monitoring of the bit or word input first will be canceled.

4. Press the CLR Key to stop monitoring the leftmost bit or word and clear it from the display.

	00	001	T000	
CLR	~	OFF	0100	

5. Press the SHIFT+CLR Keys to end monitoring altogether.

Note Press the SHIFT + CLR Keys and then the CLR Key to return to the initial Programming Console display with the multiple address monitoring state unchanged. Press the SHIFT + MONTR Keys from the initial display to return to the multiple address monitoring state. The monitoring states can be retained for 6 bits and words.

4-4-13 Differentiation Monitor

This operation is used to monitor the up or down differentiation status of a particular bit. When detected, the up or down differentiation will be displayed and the buzzer will sound. It is possible in any mode.

	RUN	MONITOR	PROGRAM				
(OK	OK	OK				

1. Monitor the status of the desired bit according to the procedure described in 4-4-12 Bit, Digit, Word Monitor. If 2 or more bits are being monitored, the desired bit should be leftmost on the display.

In this case the differentiation status of LR 00 will be monitored.

2. To specify up-differentiation monitoring, press the SHIFT and then the Up Arrow Key. The symbols "U@" will appear.

		0	0	0	0	0	0	0	0	1	Н	0	0	0	0	
SHIFT	U	a	Û	F	F	.·•.		0	F	F	.··.		0	F	F	

To specify down-differentiation monitoring, press the SHIFT and then the Down Arrow Key. The symbols "D@" will appear.

3. The buzzer will sound when the specified bit goes from OFF to ON (for updifferentiation) or from ON to OFF (for down-differentiation).

L	0	0	0	0	0	0	0	0	1	Н	0	0	0	0
.·•.			0	ŀŀ	<i>.</i>		0	F	F	.·•.		0	F	F

Note The buzzer will not sound if it has been turned OFF.

4. Press the CLR Key to end differentiation monitoring and return to the normal monitoring display.

LØ	00	000	001	Нө	300
~	0F	F۸	OFF	~ I	OFF

4-4-14 Binary Monitor

This operation is used to monitor the ON/OFF status of any word's 16 bits. It is possible in any mode.

RUN	MONITOR	PROGRAM
OK	OK	OK

 1. Monitor the status of the desired word according to the procedure described in 4-4-12 Bit, Digit, Word Monitor. The desired word should be leftmost on the display if 2 or more words are being monitored.

(Word	monitor)

-00	30
000	30

2. Press the SHIFT and then the MONTR Key to begin binary monitoring. The ON/OFF status of the selected word's 16 bits will be shown along the bottom of the display. A 1 indicates a bit is ON, and a 0 indicates it is OFF.

		C	00	0	МC	IN T	R
SHIFT	0000	00	00	00	00	100	00

The status of force-set bits is indicated by "S," and the status of a force-reset bits is indicated by "R," as shown below.

- **Note** a) The status of displayed bits can be changed at this point. Refer to 4-4-21 Binary Data Modification for details.
 - b) The Up or Down Arrow Key can be pressed to display the status of the previous or next word's bits.
- 3. Press the CLR Key to end binary monitoring and return to the normal monitoring display.

4-4-15 3-Word Monitor

This operation is used to monitor the status of three consecutive words. It is possible in any mode.

RUN	MONITOR	PROGRAM
OK	OK	OK

1, 2, 3... 1. Monitor the status of the first of the three words according to the procedure described in *4-4-12 Bit, Digit, Word Monitor.*

If 2 or more words are being monitored, the desired first word should be leftmost on the display.

(Word monitor)

c00) 89AI	3

2. Press the EXT Key to begin 3-word monitoring. The status of the selected word and the next two words will be displayed, as shown below. In this case, DM 0000 was selected.

The Up and Down Arrow Keys can be used to shift one address up or down.

The status of the displayed words can be changed at this point. Refer to *4-4-18 3-word Data Modification*.

3. Press the CLR Key to end 3-word monitoring and return to the normal monitoring display. The rightmost word on the 3-word monitor display will be monitored.

c888
89AB

4-4-16 Signed Decimal Monitor

This operation converts the contents of the specified word from signed hexadecimal (two's complement format) to signed decimal for display. The operation can be executed while using I/O monitoring, multiple address monitoring or 3-word monitoring.

RUN	MONITOR	PROGRAM
OK	OK	OK

1, 2, 3... 1. Monitor the word that is to be used for decimal monitor with sign. During multiple address monitoring, the leftmost word will be converted.

(Multiple address monitor)

 ØF	0 F	0 0	с 0	L 0	0 0	00	2	0	0 0	ØF	ØF	

2. Press the SHIFT+TR Keys to display the leftmost word as signed decimal.

SHIFT TR 000	20 16
--------------	----------

At this point, the contents of the displayed word can be changed with a signed-decimal input. Refer to *4-4-22 Signed Decimal Data Modification*.

3. Press the CLR Key or the SHIFT+TR Keys to end the unsigned decimal display and return to normal monitoring.

4-4-17 Unsigned Decimal Monitor

This operation is used to convert hexadecimal data in a word to unsigned decimal for display. The operation can be executed while using I/O monitoring, multiple address monitoring or 3-word monitoring.

RUN	MONITOR	PROGRAM
OK	OK	OK

Multiple address monitoring

1. Monitor the word that is to be used for decimal monitor without sign. During multiple address monitoring, the leftmost word will be converted.

 0	0	Ø		L	0	0	2	0	0	0	0	
 F	F	Ø	0	0	0	0	.··.		0	F	F	

2. Press the SHIFT+TR+NOT Keys to display the leftmost word as unsigned decimal.

SHIFT	TR	NOT	c000 65520
-			

At this point, the contents of the displayed word can be changed with an unsigned-decimal input. Refer to *4-4-23 Unsigned Decimal Data Modifica-tion*.

3. Press the CLR Key or the SHIFT+TR Keys to end the unsigned decimal display and return to normal monitoring.

4-4-18 3-Word Data Modification

This operation is used to change the contents of one or more of the 3 consecutive words displayed in the 3-Word Monitor operation. It is possible in MONITOR or PROGRAM mode only.

RUN	MONITOR	PROGRAM
No	OK	OK

In the changing the contents of I/O memory, be sure that the changes will not cause equipment to operate unexpectedly or dangerously. In particular, take care when changing the status of output bits. The PC continues to refresh I/O bits even if the PC is in PROGRAM mode, so devices connected to output points on the CPU Unit or Expansion I/O Units may operate unexpectedly.

- *1, 2, 3...* 1. Monitor the status of the desired words according to the procedure described *4-4-15 3-Word Monitor*.
 - (3-word monitor)

DI	3	Ø	Ø	2	D	0	Ø	0	1	D	Ø	0	0	Ø	
I	3	1	2	ੋ		4	5	6	7		8	9	Ĥ	В	

2. Press the CHG Key to begin 3-word data modification. The cursor will appear next to the contents of the leftmost word.

	D00	02	3CH	CHG?
CHG	B 01	23 4	567	89AB

3. Input the new value for the leftmost word on the display and press the CHG Key if more changes will be made.

(Input the new value and press the WRITE Key to write the changes in memory if no more changes will be made.)

4. Input the new value for the middle word on the display and press the CHG Key if the rightmost word will be changed. Input the new value and press the WRITE Key to write the changes in memory if the rightmost word will not be changed. (In this case, it will not.)

Note If the CLR Key is pressed before the WRITE Key, the operation will be cancelled and the 3-word monitor display will return without any changes in data memory.

4-4-19 Changing Timer, Counter SV

There are two operations that can be used to change the SV of a timer or counter. They are possible in MONITOR or PROGRAM mode only. In MON-ITOR mode, the SV can be changed while the program is being executed.

RUN	MONITOR	PROGRAM
No	OK	OK

The timer or counter SV can be changed either by inputting a new value or by incrementing or decrementing the current SV.

Inputting a New SV Constant This operation can be used to input a new SV constant, as well as to change an SV from a constant to a word address designation and vice versa. The following examples show how to input a new SV constant and how to change the SV from a constant to an address.

- *1, 2, 3...* 1. Press the CLR Key to bring up the initial display.
 - 2. Display the desired timer or counter.

	00	1
--	----	---

3. Press the Down Arrow Key and then the CHG Key.

U CHG 00201DATA? Т001 #0134 #????

- 4. At this point a new SV constant can be input or the SV constant can be changed to a word address designation
 - a) To input a new SV constant, input the constant and press the WRITE Key.

b) To change to a word address designation, input the word address and press the WRITE Key.

Incrementing and Decrementing a Constant This operation can be used to increment and decrement an SV constant. It is possible only when the SV has been entered as a constant.

- 1, 2, 3... 1. Press the CLR Key to bring up the initial display.
 - 2. Display the desired timer or counter.

TIM SRCH 00201SRCH

3. Press the Down Arrow, CHG, and then the EXT Key.

\downarrow	CHG	EXT	0020: T000	LDAT #01	A ? 23 #	U/D 0123

The constant on the left is the old SV and the constant on the right will become the new SV constant in step 5.

4. Press the Up and Down Arrow Keys to increment and decrement the constant on the right. (In this case the SV is incremented once.)

5. Press the CLR Key twice to change the timer's SV to the new value.

	00201	TIM	DATA #0122
--	-------	-----	---------------

4-4-20 Hexadecimal, BCD Data Modification

This operation is used to change the BCD or hexadecimal value of a word being monitored using the procedure described in *4-4-12 Bit, Digit, Word Monitor*. It is possible in MONITOR or PROGRAM mode only.

RUN	MONITOR	PROGRAM				
No	OK	OK				

Words SR 253 to SR 255 cannot be changed.

Caution Before changing the contents of I/O memory, be sure that the changes will not cause equipment to operate unexpectedly or dangerously. In particular, take care when changing the status of output bits. The PC continues to refresh I/O bits even if the PC is in PROGRAM mode, so devices connected to output points on the CPU Unit or Expansion I/O Units may operate unexpectedly.

1. Monitor the status of the desired word according to the procedure described in 4-4-12 Bit, Digit, Word Monitor. If two or more words are being monitored, the desired word should be leftmost on the display.

(Word monitor)

2. Press the CHG Key to begin hexadecimal, BCD data modification.

		PR	Ε	S	Ų	Ĥ	L	?		
СНБ	D0000	0	1	1	9		?	?	?	?

3. Input the new PV and press the WRITE Key to change the PV.

The operation will end and the normal monitoring display will return when the WRITE Key is pressed.

|--|--|

4-4-21 Binary Data Modification

This operation is used to change the status of a word's bits when the word is monitored using the procedure described in *4-4-14 Binary Monitor*. It is possible in MONITOR or PROGRAM mode only.

RUN	MONITOR	PROGRAM
No	OK	OK

Bits SR 25300 to SR 25507 and timer/counter flags cannot be changed.

Before changing the contents of I/O memory, be sure that the changes will not cause equipment to operate unexpectedly or dangerously. In particular, take care when changing the status of output bits. The PC continues to refresh I/O bits even if the PC is in PROGRAM mode, so devices connected to output points on the CPU Unit or Expansion I/O Units may operate unexpectedly.

1, 2, 3... 1. Monitor the status of the desired word according to the procedure described *4-4-14 Binary Monitor*.

(BInary monitor)

2. Press the CHG Key to begin binary data modification.

C010 MONTR

100001010101010101

A flashing cursor will appear over bit 15. The cursor indicates which bit can be changed.

- 3. Three sets of keys are used to move the cursor and change bit status:
 - a) Use the Up and Down Arrow Keys to move the cursor to the left and right.

b) Use the 1 and 0 Keys to change a bit's status to ON or OFF. The cursor will move one bit to the right after one of these keys is pressed.

в					<u>.</u>	Ø	1	0			С	Н	G	?	
[1]	1	0	1	8 0	1	0	1	0	1	0	1	0	1	Ø	1

c) Use the SHIFT+SET and SHIFT+RESET Keys to force-set or force-reset a bit's status. The cursor will move one bit to the right after one of these keys is pressed. The NOT Key will clear force-set or force-reset status.

Note Bits in the DM Area cannot be force-set or force-reset.

4. Press the WRITE Key to write the changes in memory and return to the binary monitor.

						с.	0	1	Ø			M	0	N	Т	R
VRITE	1	Ø	1	0	0	1	0	1	0	1	0	1	0	1	0	1

4-4-22 Signed Decimal Data Modification

This operation is used to change the decimal value of a word being monitored as signed decimal data, within a range of -32,768 to 32,767. The contents of the specified word are converted automatically to signed hexadecimal (two's complement format).

Words SR 253 to SR 255 cannot be changed.

(Signed decimal monitor)

RUN	MONITOR	PROGRAM
No	OK	OK

n Before changing the contents of I/O memory, be sure that the changes will not cause equipment to operate unexpectedly or dangerously. In particular, take care when changing the status of output bits. The PC continues to refresh I/O bits even if the PC is in PROGRAM mode, so devices connected to output points on the CPU Unit or Expansion I/O Units may operate unexpectedly.

1, 2, 3... 1. Monitor (signed decimal) the status of the word for which the present value is to be changed.

- 200 10016 2. Press the CHG Key to begin decimal data modification.

 Input the new PV and press the WRITE Key to change the PV. The operation will end and the signed-decimal monitoring display will return when the WRITE Key is pressed.

The PV can be set within a range of -32,768 and 32,767. Use the SET Key to input a positive number, and use the RESET Key to input a negative number.

If an erroneous input has been made, press the CLR Key to restore the status prior to the input. Then enter the correct input.

4-4-23 Unsigned Decimal Data Modification

This operation is used to change the decimal value of a word being monitored as unsigned decimal data, within a range of 0 to 65,535. A change into hexadecimal data is made automatically.

Words SR 253 to SR 255 cannot be changed.

RUN	MONITOR	PROGRAM
No	OK	OK

Caution

tion Before changing the contents of I/O memory, be sure that the changes will not cause equipment to operate unexpectedly or dangerously. In particular, take care when changing the status of output bits. The PC continues to refresh I/O bits even if the PC is in PROGRAM mode, so devices connected to output points on the CPU Unit or Expansion I/O Units may operate unexpectedly.

1, 2, 3... 1. Monitor (unsigned decimal) the status of the word for which the present value is to be changed.

2. Press the CHG Key to begin decimal data modification.

(Unsigned decimal monitor)

3. Input the new PV and press the WRITE Key to change the PV. The operation will end and the decimal-without-sign monitoring display will return when the WRITE Key is pressed.

The PV can be set within a range of 0 to 65,535.

If an erroneous input has been made, press the CLR Key to restore the status prior to the input. Then enter the correct input.

4-4-24 Force Set, Reset

This operation is used to force bits ON (force set) or OFF (force reset) and is useful when debugging the program or checking output wiring. It is possible in MONITOR or PROGRAM mode only.

RUN	MONITOR	PROGRAM
No	OK	OK

/!\ Caution Before changing the contents of I/O memory, be sure that the changes will not cause equipment to operate unexpectedly or dangerously. In particular, take care when changing the status of output bits. The PC continues to refresh I/O bits even if the PC is in PROGRAM mode, so devices connected to output points on the CPU Unit or Expansion I/O Units may operate unexpectedly. 1, 2, 3... 1. Monitor the status of the desired bit according to the procedure described in 4-4-12 Bit, Digit, Word Monitor. If two or more words are being monitored, the desired bit should be leftmost on the display. 0000020000 ^ OFF^ ΟN (Multiple address monitor) 2. Press the SET Key to force the bit ON or press the RESET Key to force the bit OFF. 20000 00000 SET ΟN *.*^. ΟN The cursor in the lower left corner of the display indicates that the force set/ reset is in progress. Bit status will remain ON or OFF only as long as the key is held down; the original status will return one cycle after the key is released. Press the SHIFT+SET or SHIFT+RESET Keys to maintain the status of the bit after the key is released. In this case, the force-set status is indicated by an "S" and the force-reset status is indicated by an "R." To return the bit to its original status, press the NOT Key or perform the Clear Force Set/Reset operation. Refer to 4-4-25 Clear Force Set/Reset for

details.

Forced status will also be cleared in the following cases:

- a) When the PC's operating mode is changed (although the forced status will not be cleared when the mode is changed from PROGRAM to MONI-TOR if SR 25211 is ON)
- b) When the PC stops because a fatal error occurred
- c) When the PC stops because of a power interruption

4-4-25 Clear Force Set/Reset

This operation is used to restore the status of all bits which have been force set or reset. It is possible in MONITOR or PROGRAM mode only.

RUN	MONITOR	PROGRAM
No	OK	OK

n Before changing the contents of I/O memory, be sure that the changes will not cause equipment to operate unexpectedly or dangerously. In particular, take care when changing the status of output bits. The PC continues to refresh I/O bits even if the PC is in PROGRAM mode, so devices connected to output points on the CPU Unit or Expansion I/O Units may operate unexpectedly.

- *1, 2, 3...* 1. Press the CLR Key to bring up the initial display.
 - 2. Press the SET and then the RESET Key. A confirmation message will appear.

Note If you mistakenly press the wrong key, press CLR and start again from the beginning.

3. Press the NOT Key to clear the force-set/reset status of bits in all data areas.

	0	Θ	0	0	0	F	0	R	С	E	R	E	L	E	
NOT	Ε	Ы	D												

4-4-26 Hex-ASCII Display Change

This operation is used to convert word data displays back and forth between 4-digit hexadecimal data and ASCII. It is possible in any mode.

RUN	MONITOR	PROGRAM		
OK	OK	OK		

1, 2, 3... 1. Monitor the status of the desired word(s) according to the procedure described in *4-4-12 Bit, Digit, Word Monitor.*

D0000D0001 4142 3031

2. Press the TR Key to switch to ASCII display. The display will toggle between hexadecimal and ASCII displays each time the TR Key is pressed.

TR	D0000 D0001 "AB" 3031
TR	D0000D0001 4142 3031

4-4-27 Displaying the Cycle Time

This operation is used to display the current average cycle time (scan time). It is possible only in RUN or MONITOR mode while the program is being executed.

RUN	MONITOR	PROGRAM		
OK	OK	No		

1, 2, 3... 1. Press the CLR Key to bring up the initial display.

(Multiple address monitor)

2. Press the MONTR Key to display the cycle time.

There might be differences in displayed values when the MONTR Key is pressed repeatedly. These differences are caused by changing execution conditions.

4-4-28 Reading and Setting the Clock

This operation is used to read or set the CPU's clock in CPM2C CPU Units that are equipped with an internal clock. The clock can be read in any mode, but can be set in MONITOR or PROGRAM mode only.

Operation	RUN	MONITOR	PROGRAM
Read clock	OK	OK	OK
Set clock	No	ОК	ОК

- 1, 2, 3... 1. Press the CLR Key to bring up the initial display.
 - 2. Press the FUN Key, SHIFT Key, and then the MONTR Key to display the date and time.

3. Press the CHG Key to change the date and/or time.

The digit that can be changed will flash. If necessary, input a new value with the Up and Down Arrow Keys or Numeric Keys. Press the CHG Key to move the cursor to the next digit. The following table shows the setting ranges for each value.

Year	Month	Day	Hour	Minute	Second	Day-of-week
00 to 99	01 to 12	01 to 31	00 to 23	00 to 59	00 to 59	0 to 6 (SUN to SAT)

4. Press the WRITE Key to write the new value.

WRITE	INST TEL READ
	FUNØ18:HEX

Press the CLR Key to return to the initial display.

4-5 Programming Example

This section demonstrates all of the steps needed to write a program with the Programming Console.

4-5-1 Preparatory Operations

Use the following procedure when writing a program to the CPM2C for the first time.

 Set the Programming Console's mode switch to PROGRAM mode and turn ON the CPM2C's power supply. The password input display will appear on the Programming Console.

2. Enter the password by pressing the CLR and then the MONTR Key.

 Clear the CPM2C's memory by pressing the CLR, SET, NOT, RESET, and then the MONTR Key. Press the CLR Key several times if memory errors are displayed.

4. Display and clear error messages by pressing the CLR, FUN, and then the MONTR Key. Continue pressing the MONTR Key until all error messages have been cleared.

5. Press the CLR Key to bring up the initial programming display (program address 00000). The new program can be written at this point.

n Check the system thoroughly before starting or stopping the CPM2C to prevent any accidents that might occur when the program is first started.

4-5-2 Example Program

The following ladder program will be used to demonstrate how to write a program with the Programming Console. This program makes output IR 01000 flicker ON/OFF (one second ON, one second OFF) ten times after input IR 00000 is turned ON.

Address Instruction Data Programming example procedures in 4-5-3 **Programming Procedures** 00000 LD 00000 (1) Self-holding bit 00001 OR 20000 00002 AND NOT С 000 00003 OUT 20000 00004 LD 20000 (2) 1-second timer 00005 AND NOT Т 002 00006 TIM 001 0010 # 00007 20000 (3) 2-second timer LD 00008 AND NOT Т 002 00009 TIM 002 # 0020 00010 LD 20000 (4) 10-count counter 00011 AND Т 001 00012 LD NOT 20000 00013 CNT 000 # 0010 LD (5) Flicker output (10 counts) 00014 20000 00015 AND NOT Т 001 00016 OUT 01000 00017 END (01) ---(6) END(01) instruction

The mnemonic list for the example program is shown in the following table. The steps required to enter this program from a Programming Console are described in *4-5-3 Programming Procedures*.

4-5-3 Programming Procedures

The example program will be written to the CPM2C according to the mnemonic list in *4-5-2 Example Program*. The procedure is performed beginning with the initial display. (Clear the memory before entering a new program.)

Note If an error occurs while inputting the program, refer to *5-3 Programming Console Operation Errors* for details on correcting the error. Refer to the relevant *Support Software Operation Manual* for details on errors that appear when operating the SSS or SYSMAC-CPT Support Software.

(1) Inputting the Self-holding Bit

1, **2**, **3**... 1. Input the normally open condition IR 00000. (It isn't necessary to input leading zeroes.)

2. Input the OR condition IR 20000.

3. Input the normally closed AND condition C000. (It isn't necessary to input leading zeroes.) 00002 AND CNT NOT ⊣⊢ AND NOT CNT 000 00003READ WRITE NOP (000) 4. Input the OUT instruction IR 20000. 00003 ^с2 ^A0 OUT 0 °0 °0 OUT 20000 00004READ WRITE NOP (000) (2) Inputting the One-second Timer 1, 2, 3... 1. Input the normally open condition IR 20000. 00004 LD 0 0 °0 2 0 H LD 20000 00005READ WRITE NOP (000) 2. Input the normally closed AND condition T002. (It isn't necessary to input leading zeroes.) ^C2 00005 AND NOT ТІМ AND NOT ΤΙΜ 002 ⊣⊢ 00006READ WRITE NOP (000)3. Input the 1-second timer T001. 00006 В ТІМ 1 ΤIΜ 001 DATA 00006 TIM WRITE #0000 4. Input the SV for T001 (#0010 = 1.0 s). (^в1 00006 ΤIΜ DATA ^A0 #0010 00007READ WRITE NOP (000) (3) Inputting the Two-second Timer The following key operations are used to input the 2-second timer. 1, 2, 3... 1. Input the normally open condition IR 20000. 00007 LD 0 2 0 0 Ò HH LD 20000 00008READ WRITE NOP (000) 2. Input the normally closed AND condition T002. (It isn't necessary to input leading zeroes.) 00008 ^c2 AND ТІМ NOT TIM 002 ⊣⊢ AND NOT 00009READ WRITE

NOP

(000)

3. Input the 2-second timer T002.

4. Input the SV for T002 (#0020 = 2.0 s).

(4) Inputting the 10-count Counter

The following key operations are used to input the 10-count counter.

1, 2, 3... 1. Input the normally open condition IR 20000.

2. Input the normally open AND condition T001. (It isn't necessary to input leading zeroes.)

	-				
	0001 AND	1	ΤI	М	001
WRITE	0001 Nop	2READ (000)			

3. Input the normally closed condition IR 20000.

4. Input the counter 000.

5. Input the SV for counter $000 \ (\#0010 = 10 \ \text{counts})$.

(5) Inputting the Flicker Output

1, 2, 3... 1. Input the normally open condition IR 20000.

2. Input the normally closed AND condition T001. (It isn't necessary to input leading zeroes.)

3. Input the OUT instruction IR 01000. (It isn't necessary to input leading zeroes.)

(6) Inputting the END(001) Instruction Input END(01). (The display shows three digits in the function code, but only the last two digits are input for CPM2C PCs.)

4-5-4 Checking the Program

Check the program syntax in PROGRAM mode to make sure that the program has been input correctly.

1, 2, 3... 1. Press the CLR Key to bring up the initial display.

CLR 00000

2. Press the SRCH Key. An input prompt will appear requesting the desired check level.

3. Input the desired check level (0, 1, or 2). The program check will begin when the check level is input, and the first error found will be displayed. If no errors are found, the following display will appear.

Note Refer to *5-4 Programming Errors* for details on check levels and the programming errors that may be displayed during a program check.

4. Press the SRCH Key to continue the search. The next error will be displayed. Continue pressing the SRCH Key to continue the search.

The search will continue until an END(01) instruction or the end of Program Memory is reached.

If errors are displayed, edit the program to correct the errors and check the program again. Continue checking the program until all errors have been corrected.

4-5-5 Test Run in MONITOR Mode

Switch the CPM2C in MONITOR mode and check the operation of the program.

1, 2, 3... 1. Set the Programming Console's mode switch to MONITOR mode.

2. Press the CLR Key to bring up the initial display.

3. Force-set the start input bit (IR 00000) from the Programming Console to start the program.

The cursor in the lower left corner of the display indicates that the force set is in progress. The bit will remain ON as long as the Set Key is held down.

 The output indicator for output IR 01000 will flash ten times if the program is operating correctly. The indicator should go OFF after ten one-second flashes.

There is a mistake in the program if the output indicator doesn't flash. In this case, check the program and force set/reset bits to check operation.

SECTION 5 Test Runs and Error Processing

This section describes procedures for test runs of CPM2C operation, self-diagnosis functions, and error processing to identify and correct the hardware and software errors that can occur during PC operation.

5-1	Initial System Checks and Test Run Procedure			
	5-1-1	Initial System Checks	122	
	5-1-2	Flash Memory Precautions	122	
	5-1-3	CPM2C Test Run Procedure	122	
5-2	Self-dia	gnostic Functions	123	
	5-2-1	Identifying Errors	123	
	5-2-2	User-defined Errors	124	
	5-2-3	Non-fatal Errors	124	
	5-2-4	Fatal Errors	125	
	5-2-5	Communications Errors	125	
5-3	Program	nming Console Operation Errors	126	
5-4	Programming Errors			
5-5	Troubleshooting Flowcharts			
5-6	Maintenance Inspections 13			
5-7	Battery Replacement			

5-1 Initial System Checks and Test Run Procedure

5-1-1 Initial System Checks

Check the following items after setting up and wiring the CPM2C, but before performing a test run.

Item	Points to check
Power supply and I/O connections	Is the wiring correct? Are the terminals securely tightened? Are there any shorts between crimp terminals or wires?
	Refer to 3-4 Wiring and Connections for details.
Connecting cables	Are the cables all connected correctly and locked?
	Refer to 3-4 Wiring and Connections for details.
Protective label	Has the protective label been removed?

- **Note** 1. Always clear memory before beginning to program the CPM2C. Although memory is cleared before the CPU Unit is shipped, the contents of the DM, HR, AR, and counter areas may change in transit. See *4-4-2 Clearing Memory* for details on the All Clear operation.
 - 2. See *1-3-3 Operating Mode at Startup* to determine what mode the CPM2C will enter when the power is turned ON.

5-1-2 Flash Memory Precautions

Observe the following precautions to protect the flash memory and ensure proper operation.

I. If changes are made in the read-only DM area (DM 6144 through DM 6599) or PC Setup (DM 6600 through DM 6655), the PC's operating mode must be changed to write the new contents to flash memory. If backup battery is changed before the changes are written to flash memory, the changes will be lost.

The changes can be saved by switching the CPM2C to RUN or MONITOR mode or turning the CPM2C OFF and then ON again.

- 2. When contents of the program, read-only DM (DM 6144 through DM 6599), or PC Setup (DM 6600 through DM 6655) have been changed, startup processing will take up to 1,200 ms longer than usual. Be sure to take this onetime startup delay into account if it may affect operations.
- 3. If one of the following three operations is performed in MONITOR or RUN mode, the CPM2C's cycle time will be extended by up to 1,200 ms and interrupts will be disabled while the program or PC Setup is being overwritten.
 - Program changes with the online edit operation
 - Changes to the read-only DM area (DM 6144 through DM 6599)
 - Changes to the PC Setup (DM 6600 through DM 6655)

A "SCAN TIME OVER" error won't occur during these operations. Be sure to take this delay in the CPM2C's I/O response times into account when performing online editing.

5-1-3 CPM2C Test Run Procedure

- 1, 2, 3... 1. Power Supply Application
 - a) Check the CPM2C's power supply voltage and terminal connections.
 - b) Check the I/O devices' power supply voltage and terminal connections.
 - c) Turn ON the power supply and check that the "PWR" indicator lights.
 - d) Use a Programming Device to set the CPM2C to PROGRAM mode.

- 2. I/O Wiring Checks
 - a) With the CPM2C in PROGRAM mode, check the output wiring by turning ON the output bits with the force set and force reset operations. Refer to *4-4-24 Force Set, Reset* for details.
 - b) Check the input wiring with the CPM2C's input indicators or a Programming Device's monitor operations.
- 3. Test Run
 - a) Use a Programming Device to set the CPM2C to RUN or MONITOR mode and check that the "RUN" indicator lights.
 - b) Check the sequence of operation with the force set/reset operations, etc.
- 4. Debugging
 - Correct any programming errors that are detected.
- 5. Saving the Program
 - a) Use a Programming Device to write the program to a backup floppy disk.
 - b) Print out a hard copy of the program with a printer.
- **Note** Refer to *Section 4 Using Programming Devices* for details on the Support Software and Programming Console operations.

5-2 Self-diagnostic Functions

The CPM2C is equipped with a variety of self-diagnostic functions to help identify and correct errors and reduce down time.

5-2-1 Identifying Errors

	An error can be identified by the error message displayed on a Programming Device, error flags in the AR and SR areas, and the error code output to SR 253.
Fatal and Non-fatal Errors	PC errors are divided into 2 categories based on the severity of the errors. The status of the ERR/ALM indicator (lit or flashing) shows which type of error has occurred.
	ERR/ALM Lit (Fatal Error) Fatal errors are serious errors which stop CPM2C operation. There are two ways to restart operation:
	 Turn the PC OFF and then ON again.
	• Use a Programming Device to switch the PC to PROGRAM mode, and read/ clear the error.
	ERR/ALM Flashing (Non-fatal Error) Non-fatal errors are less serious errors which don't stop CPM2C operation.
Error Messages	When an error is detected, a corresponding error message will be displayed on the Programming Console or other Programming Device connected to the PC.
Error Flags	When a hardware error is detected, the corresponding error flag in the AR or SR area will be turned ON.
Error Code	When an error is detected, a specific 2-digit hexadecimal error code is output to SR 25300 to SR 25307. The error code and time of occurrence are also output to the Error Log Area (DM 2000 to DM 2021).
<u>/</u> !\WARNING	Emergency stop circuits, interlock circuits, limit circuits, and similar safety measures must be provided in external control circuits (i.e., not in the Programmable Controller) to ensure safety in the system if an abnormality occurs due to malfunction of the PC or another external factor affecting the PC operation. Not providing proper safety measures may result in serious accidents.

<u>(</u>] WARNING	The PC will turn OFF all outputs when its self-diagnosis function detects any error or when a severe failure alarm (FALS) instruction is executed. External safety measures must be provided to ensure safety in the system. Not providing proper safety measures may result in serious accidents.
5-2-2 User-defined E	rrors
	There are three instructions that can be used to define errors or messages. FAL(06) causes a non-fatal error, FAL(07) causes a fatal error, and $MSG(46)$ sends a message to the Programming Console or host computer connected to the PC.
FAILURE ALARM - FAL(06)	FAL(06) is an instruction that causes a non-fatal error. The following will occur when an FAL(06) instruction is executed:
<i>1, 2, 3</i>	 The ERR/ALM indicator on the CPU Unit will flash. PC operation will con- tinue.
	2. The instruction's 2-digit BCD FAL number (01 to 99) will be written to SR 25300 to SR 25307.
	The FAL numbers can be set arbitrarily to indicate particular conditions, but the same number should not be used as both an FAL number and an FALS number. To clear an FAL error, correct the cause of the error and then execute FAL 00 or use a Programming Device to clear the error.
SEVERE FAILURE ALARM - FALS(07)	FALS(07) is an instruction that causes a fatal error. The following will occur when an FALS(07) instruction is executed:
1, 2, 3	 Program execution will be stopped and all outputs will be turned OFF. The ERR/ALM indicator on the CPU Unit will be lit.
	3. The instruction's 2-digit BCD FALS number (01 to 99) will be written to SR 25300 to SR 25307.
	The FALS numbers can be set arbitrarily to indicate particular conditions, but the same number should not be used as both an FAL number and an FALS number. To clear an FALS error, use a Programming Device to switch the PC to PRO-GRAM Mode, correct the cause of the error, and then clear the error.
MESSAGE - MSG(46)	MSG(46) is used to display a message on a Programming Device connected to the CPM2C. The message, which can be up to 16 characters long, is displayed when the instruction's execution condition is ON.
5-2-3 Non-fatal Error	'S

PC operation and program execution will continue after one or more of these errors have occurred. Although PC operation will continue, the cause of the error should be corrected and the error cleared as soon as possible.

When one of these errors occurs, the POWER and RUN indicators will remain lit and the ERR/ALM indicator will flash.

Message	FAL No.	Meaning and appropriate response
SYS FAIL FAL** (** is 01 to 99 or 9B.)	01 to 99	An FAL(06) instruction has been executed in the program. Check the FAL number to determine conditions that would cause execution, correct the cause, and clear the error.
	9B	An error has been detected in the PC Setup. Check flags AR 1300 to AR 1302, and correct as directed.
		AR 1300 ON: An incorrect setting was detected in the PC Setup (DM 6600 to DM 6614) when power was turned ON. Correct the settings in PROGRAM Mode and turn ON the power again.
		AR 1301 ON: An incorrect setting was detected in the PC Setup (DM 6615 to DM 6644) when switching to RUN or MONITOR mode. Correct the settings in PROGRAM Mode and switch to RUN or MONITOR mode again.
		AR 1302 ON: An incorrect setting was detected in the PC Setup (DM 6645 to DM 6655) during operation. Correct the settings and clear the error.

Message	FAL No.	Meaning and appropriate response
SCAN TIME OVER	F8	The cycle time has exceeded 100 ms. (SR 25309 will be ON.)
		This indicates that the program cycle time is longer than recommended. Reduce cycle time if possible. (The CPM2C can be set so that this error won't be detected.)
Battery error (no message)	F7	If the Low Battery Detection Switch is ON and the voltage of the CPM2C-BAT01 backup battery is below the minimum level, the ERR/ALM indicator will flash and SR 25308 will be turned ON. (See page 28 for details on the Low Battery Detection Switch.) Replace the battery. (See <i>5-7 Battery Replacement</i> for details.)

5-2-4 Fatal Errors

PC operation and program execution will stop and all outputs from the PC will be turned OFF when any of these errors have occurred. CPM2C operation can't be restarted until the PC is turned OFF and then ON again or a Programming Device is used to switch the PC to PROGRAM mode and clear the fatal error.

All CPU Unit indicators will be OFF for the power interruption error. For all other fatal operating errors, the POWER and ERR/ALM indicators will be lit. The RUN indicator will be OFF.

Message	FALS No.	Meaning and appropriate response
Power interruption (no message)	None	Power has been interrupted for more than 10 ms (2 ms for DC power types.) Check power supply voltage and power lines. Try to power-up again.
MEMORY ERR	F1	AR 1308 ON: There is a non-existent bit or word address in the user program. Check the program and correct errors.
		AR 1309 ON: An error has occurred in flash memory. Replace the CPU Unit.
		AR 1310 ON: A checksum error has occurred in read-only DM (DM 6144 to DM 6599). Check and correct the settings in the read-only DM area.
		AR 1311 ON: A checksum error has occurred in the PC Setup. Initialize the PC Setup and input the settings again.
		AR 1312 ON: A checksum error has occurred in the program. Check the program and correct any errors detected.
		AR 1313 ON: A checksum error has occurred in the expansion instructions data and all function codes have been set the their default values. Reset the expansion instructions.
		AR 1314 ON: Data was not maintained in an area specified for holding. Clear the error, check the data in the areas specified for holding, and try again.
NO END INST	F0	END(01) is not written in the program. Write END(01) at the end of the program.
I/O BUS ERR	C0	An error has occurred during data transfer between the CPU Unit and an Expansion I/O Unit. Check the Expansion I/O Unit's connecting cable.
I/O UNIT OVER	E1	Too many Expansion Units have been connected. Check the Expansion Unit configuration.
SYS FAIL FALS** (** is 01 to 99 or 9F.)	01 to 99	A FALS(07) instruction has been executed in the program. Check the FALS number to determine the conditions that caused execution, correct the cause, and clear the error.
	9F	The cycle time has exceeded the Maximum (Watch) Cycle Time setting (DM 6618). Check the cycle time and adjust the Maximum Cycle Time setting if necessary.

5-2-5 Communications Errors

The COMM indicator will be turned OFF and AR 0812 will be turned ON if an error occurs in communications through the Peripheral port or AR 0804 will be turned ON if an error occurs in communications through the RS-232C port. Check the connecting cables and restart.

There are no error messages or error codes generated by this error and the ERR/ALM indicator is not affected.

5-3 Programming Console Operation Errors

The following error messages may appear when performing operations on the Programming Console. Correct the error as indicated and continue operation.

Message	Meaning and appropriate response
REPL ROM	An attempt was made to write to write-protected memory. Set bits 00 to 03 of DM 6602 to "0."
PROG OVER	The instruction at the last address in memory is not NOP(00). Erase all unnecessary instructions after END(01).
ADDR OVER	An address was set that is larger than the highest memory address in Program Memory. Input a smaller address.
SETDATA ERR	FALS 00 has been input, and "00" cannot be input. Reinput the data.
I/O NO. ERR	A data area address has been designated that exceeds the limit of the data area, e.g., an address is too large. Confirm the requirements for the instruction and re-enter the address.

Note Refer to the relevant Support Software Operation Manual for details on errors that may appear when operating the SSS or SYSMAC-CPT Support Software.

5-4 Programming Errors

These errors in program syntax will be detected when the program is checked using the Program Check operation.

Three levels of program checking are available. The desired level must be designated to indicate the type of errors that are to be detected. The following table provides the error types, displays, and explanations of all syntax errors. Check level 0 checks for type A, B, and C errors; check level 1, for type A and B errors; and check level 2, for type A errors only.

Туре	Message	Meaning and appropriate response
A	?????	The program has been damaged, creating a non-existent function code. Re-enter the program.
	CIRCUIT ERR	The number of LD instructions (LD or LD NOT) does not match the number of logic block instructions (OR LD or AND LD).Check your program.
	OPERAND ERR	A constant entered for the instruction is not within defined values. Change the constant so that it lies within the proper range.
	NO END INSTR	There is no END(01) in the program. Write END(01) at the end of the program.
•	LOCN ERR	An instruction is in the wrong place in the program. Check instruction requirements and correct the program.
	JME UNDEFD	A JME(04) instruction is missing for a JMP(05) instruction. Correct the jump number or insert the proper JME(04) instruction.
	DUPL	The same jump number or subroutine number has been used twice. Correct the program so that the same number is only used once for each.
	SBN UNDEFD	An SBN(92) has not been programmed with the same subroutine number as an SBS(91) instruction in the program.
	STEP ERR	STEP(08) with a section number and STEP(08) without a section number have been used incorrectly. Check STEP(08) programming requirements and correct the program.

Туре	Message	Meaning and appropriate response
В	IL-ILC ERR	IL(02) and ILC(03) are not used in pairs. Correct the program so that each IL(02) has a unique ILC(03). Although this error message will appear if more than one IL(02) is used with the same ILC(03), the program will executed as written. Make sure your program is written as desired before proceeding.
	JMP-JME ERR	JMP(04) and JME(05) are not used in pairs. Make sure your program is written as desired before proceeding.
	SBN-RET ERR	RET(93) has not been used properly or the relationship between SBN(92) and RET(93) is not correct. Correct the program.
С	COIL DUPL	The same bit is being controlled (i.e., turned ON and/or OFF) by more than one instruction (e.g., OUT, OUT NOT, DIFU(13), DIFD(14), KEEP(11), SFT(10)). Although this is allowed for certain instructions, check instruction requirements to confirm that the program is correct or rewrite the program so that each bit is controlled by only one instruction.
	JMP UNDEFD	JME(05) has been used with no JMP(04) with the same jump number. Add a JMP(04) with the same number or delete the JME(05) that is not being used.
	SBS UNDEFD	A subroutine exists that is not called by SBS(91). Program a subroutine call in the proper place, or delete the subroutine if it is not required.

5-5 Troubleshooting Flowcharts

Use the following flowcharts to troubleshoot errors that occur during operation.

Main Check

Power Supply Check

Fatal Error Check

Non-fatal Error Check

The I/O check flowchart is based on the following ladder diagram section.

Troubleshooting Flowcharts

Environmental Conditions Check

Memory Error Check

5-6 Maintenance Inspections

In order for your SYSMAC system to operate in optimum condition, be sure to carry out daily or periodical inspections.

Inspection Items

The main system components of a SYSMAC system are semiconductors, and it contains few components with limited lifetimes. Poor environmental conditions, however, can lead to deterioration of the electrical components, making regular maintenance necessary.

The standard period for maintenance checks is 6 months to 1 year, but more frequent checks are required if the PC is operated in more demanding conditions.

Inspection items	Details	Criteria	Remarks
Power supply	Determine whether the voltage fluctuation at the power supply terminals is within specifications.	20.4 to 26.4 VDC	Tester
Environmental conditions	Is the ambient temperature inside the panel appropriate?	0 to 55°C	Thermometer
	Is the ambient humidity inside the panel appropriate?	10% to 90% RH with no condensation	Hygrometer
	Has dirt or dust collected?	None	Visual inspection
I/O power supply	Is the voltage fluctuation measured at the I/O terminals within the standard range?	Each I/O terminal must conform to the specifications	Tester
Installation status	Are all units securely installed?	Nothing is loose	Phillips screwdriver
	Are all connection cables and connectors inserted completely and locked?	Nothing is loose	Visual inspection
	Are any of the external wiring screws loose?	Nothing is loose	Phillips screwdriver
	Are any of the external wiring cables frayed?	No external abnormalities	Visual inspection
Product service life	Contact output relay	Electrical: Resistance load: 150,000 operations Inductive load: 100,000 operations	
		Mechanical: 20,000,000 operations	
	Battery (CPM2C-BAT01)	2 years at 25°C	

If the criteria are not met, adjust to within the specified ranges.

Required Tools

Standard Tools (Required)

- Screwdrivers (Phillips and flat-blade)
- Voltage tester or digital voltage meter
- Industrial alcohol and a cotton cloth

Measurement Devices (May be Needed)

- Synchroscope
- Cathode-ray oscilloscope
- Thermometer, hygrometer
- **Note** Do not attempt to disassemble, repair, or modify the PC in any way.

5-7 Battery Replacement

WARNING The backup battery may explode, catch fire, or leak if dropped, broken apart, crushed, short-circuited, recharged, heated to 100°C or higher, or burned.

If power has not been supplied to the PC for some time, turn ON the power supply for at least 5 minutes to charge the backup capacitor before replacing the battery.

Turn OFF the power supply to the PC before replacing the battery. To protect the contents of memory, this procedure must be completed within 5 minutes.

A label has been included to remind the user when the battery needs to be replaced. After replacing the battery, write the next date that the battery should be replaced on the label and affix the label in a visible place such as the inside of the communications port cover.

Be sure to dispose of the old battery in accordance with local laws and regulations.

A CPM2C-BAT01 Backup Battery is built into CPU Units that are equipped with an internal clock. Replace the battery within two years when used under 25°C. When the battery voltage drops, the ERR/ALM indicator will flash and SR 25308 will be turned ON. (Refer to page 125.) In this case, replace the battery within seven days. Use the procedure below when replacing the battery.

- 1, 2, 3... 1. Stop CPM2C operation and turn OFF the power supply.
 - 2. Remove the battery cover with a flat-blade screwdriver.

3. Remove the battery and disconnect the battery connector.

4. Install the new battery. Be sure that the connector is aligned correctly and the wires are not pinched or kinked when the battery is inserted.

5. To enable the detection of low battery errors, slide the Low Battery Detection Switch towards the front of the Unit and set bits 12 to 15 of DM 6655 to "0."

- 6. Replace the battery cover.
- 7. Write the next date that the battery should be replaced on the reminder label. The battery lifetime of the CPU Unit with clock is 2 years at 25°C and that of the CPU Unit without clock is 5 years at 25°C.

Appendix A Standard Models

CPU Units

Description	Input Output		Internal		Model number		
	points points	clock	clock Relay outputs	Transistor outputs			
					Sinking	Sourcing	
CPU Units with relay outputs	6 points	4 points		CPM2C-10CDR-D			
			Yes	CPM2C-10C1DR-D			
CPU Units with transistor outputs	6 points	4 points			CPM2C-10CDTC-D	CPM2C-10CDT1C-D	
			Yes		CPM2C-10C1DTC-D	CPM2C-10C1DT1C-D	
	12 points	8 points			CPM2C-20CDTC-D	CPM2C-20CDT1C-D	
0 D			Yes		CPM2C-20C1DTC-D	CPM2C-20C1DT1C-D	

Expansion I/O Units

Description	Input	Output		Model number	r	
	points	points	Relay outputs	Transistor outputs		
				Sinking	Sourcing	
Expansion I/O Unit with relay outputs	6 points	4 points	CPM2C-10EDR			
Expansion I/O Units with transistor outputs	16 points	8 points		CPM2C-24EDTC	CPM2C-24EDT1C	

I/O Connectors (OMRON Products)

Connector		Description
C500-CE241		24-pin soldered connector with cover
	C500-CE242	24-pin crimp connector with cover
	C500-CE243	24-pin pressure connector

Communications Port Connecting Cables

Connector		Description	Cable length
	CPM2C-CN111 Connecting Cable	Converts the CPM2C CPU Unit's communications port to a Peripheral port and RS-232C port.	0.1 m (about 4")
	CS1W-CN114 Connecting Cable	Converts the CPM2C CPU Unit's communications port to a Peripheral port.	0.05 m (about 2")
	CS1W-CN118 Connecting Cable	Converts the CPM2C CPU Unit's communications port to an RS-232C port.	0.05 m (about 2")

Peripheral Devices

Name	Appearance	Model Number	Specifications		
Programming Console		CQM1-PRO01-E	2-m Connecting Cable attached		
			C200H-PRO27-E	Hand-held, w/backlight; requires one of Connecting Cables listed below.	the
		C200H-CN222	Connects the C200H-PRO27-E to a 2 Peripheral port. 4	2-m cable	
		C200H-CN422		4-m cable	
		CS1W-CN224	Connects the C200H-PRO27-E	2-m cable	
		CS1W-CN624	communications port.	6-m cable	
SYSMAC Support Software		C500-ZL3AT1-E	3.5", 2HD for IBM PC/AT compatible		
SYSMAC-CPT		WS01-CPTB1-E	For IBM PC/AT or compatible computer (3.5" disks (2HD) and CDROM)	S	

Maintenance Accessories

Name	Appearance	Model Number	Specifications
Backup Battery		CPM2C-BAT01	

Adapters and Connecting Cables

CPM2C port	Name	Appearance	Model number	Comments	Cable length
Peripheral	RS-232C Adapter		CQM1-CIF01	For a 25-pin computer serial port	3.3 m
			CQM1-CIF02	For a 9-pin computer serial port	3.3 m
			CPM1-CIF01 (+ XW2Z-⊡00S)	For a 25-pin computer serial port	3.3 m (+ □ m)
RS-232C	RS-232C		XW2Z-200S	For a 25-pin computer serial port	2 m
	Cable	-	XW2Z-500S		5 m
			XW2Z-200S-V	For a 9-pin computer serial port	2 m
			XW2Z-500S-V		5 m
RS-232C Cables (For use with the			XW2Z-070T-1	Use for CPM2C RS-232C port to N connection. (70-cm cable)	IT-AL001
NT-AL001.)	-		XW2Z-070T-1	Use for CPM2C RS-232C port to N connection. (2-m cable)	IT-AL001

Adapters (1:N Connections)

Name	Appearance	Model number	Specifications
RS-422 Adapter		NT-AL001	Use for CPM2C RS-232C port to RS-422A conversion. Requires a 5-VDC, 150 mA power supply which is supplied through the CPM2C connection. (Can also be connected to a personal computer, but this connection requires an external 5-VDC power supply.)
Link Adapter		B500-AL004	Use for personal computer RS-232C port to RS-422A. (Can also be connected to a CPM2C.)
RS-422 Adapter		CPM1-CIF11	Use for CPM2C Peripheral port to RS-422A conversion.

Appendix B Dimensions

All dimensions are in millimeters.

CPU Units

CPU Units with Relay Outputs (CPM2C-10CDR-D, CPM2C-10C1DR-D)

Expansion I/O Units

CPU Units with Transistor Outputs (CPM2C-_OCDTC-D, CPM2C-_OC1DTC-D, CPM2C-_OCDT1C-D, CPM2C-_OC1DT1C-D)

Units with Transistor Outputs (CPM2C-24EDTC, CPM2C-24EDTC)

CPM2C Units with Connectors Attached

Units with Relay Outputs

Units with Transistor Outputs (Using pressure connectors)

Units with Transistor Outputs (Using soldered connectors)

Index

Numbers

1:N communications, 71

Α

arc killer, examples, xvii ASCII, converting displays, Programming Console, 113 atmosphere, 33

В

battery, replacing, 137 binary data, modifying, Programming Console, 109 bit status, force-set/reset, Programming Console, 111 bits, searching, Programming Console, 100 buzzer operation, Programming Console, 95

С

cabinet installation, precautions, 45 Programming Console installation, 88 cables, available models, 141 characteristics, 33 check levels, program checks, 126 checking, program syntax, Programming Console, 102 circuit configuration inputs, 36 outputs, relay, 39 clearing, memory areas, Programming Console, 93 clock, reading and setting the clock, 113 communication errors, 125 communications capabilities, 16 overview, 4 components CPU Unit, 26 Expansion I/O Unit, 30 conduit installation, 49 counters changing SV, Programming Console, 108 example of inputting, 118 CPM1A, function comparison, 16 CPM2A, function comparison, 16

CPU Units available models, 6, 139 cyclic operation, 11 dimensions, 143 internal structure, 7 standard models, 139 cycle time, displaying, Programming Console, 113 cyclic operation, 11

D

data, modifying, Programming Console, 107–108, 109, 110, 111 data link, 5, 74 date. See clock decimal data with sign. See signed decimal data decimal data without sign. See unsigned decimal data dielectric strength, 33 differentiated instructions, entering, 98 dimensions, 143 DIN Track installation, 48 displays converting between hex and ASCII, Programming Console, 113 cycle time, Programming Console, 113 duct installation, 49

Ε

EC Directives, precautions, xvi electrical noise, preventing, 46, 49 ERR/ALM indicator flashing, 124 lit, 125 errors communications, 125 error processing, 121 fatal, 125 identifying, 123 non-fatal, 124 programming, 126 Programming Console operations, 126 reading/clearing messages, Programming Console, 94 user-defined errors, 124 Expansion I/O Units available models, 7, 139 components, 30 connection, 46 dimensions, 143 standard models, 139

Index

expansion instructions, reading and changing function code assignments, 96

Expansion Units, available models, 139

F-H

FAL numbers, 124 FAL(06), 124 FALS numbers, 125 FALS(07), 124 false inputs, 61 fatal errors, troubleshooting, 130 features, 2 flash memory, precautions, 122 flicker output, example, 118 force-set/reset clearing, Programming Console, 112 Programming Console, 111 function codes, reading and changing expansion instruction assignments, 96 function comparison, 16

functions, 5

hexadecimal data, converting displays, Programming Console, 113

- I/O capacity, 33
- I/O connector, wiring, 52
- I/O connector pin allocation CPU Unit, 29 Expansion I/O Unit, 32

I/O errors, troubleshooting, 132

I/O line noise, preventing, 49

I/O points

allocation of terminals/connector pins (CPU Unit), 29 allocation of terminals/connector pins (Expansion I/O Unit), 32

I/O refreshing, immediate refreshing, 13

I/O terminal allocation CPU Unit, 29 Expansion I/O Unit, 32

I/O terminal block, wiring, 51

I/O Terminals, connecting, 55

immediate refreshing, 13

indicators flashing ERR/ALM indicator, 124 lit ERR/ALM indicator, 125 PC status indicators, 27

inductive loads, 62, 68

input devices, connecting, 59
input specifications, 36, 38
inputs, wiring, 57
configuration, 57
inrush current, suppressing, 68
inspections, 136
installation, 48
site, selecting, 45
instructions
inserting and deleting, Programming Console, 101
searching, Programming Console, 100
insulation resistance, 33
interlocks, 44

initialization, time required, 9

interrupt program execution, in cyclic operation, 13

L

leakage current, 61 LED indicators, 27 limit switches, preventing false inputs, 61

Μ

machine control functions, list, 14 maintenance, 136 memory backup, 35 protection, 34 memory areas clearing, Programming Console, 93 partial clear, 94 messages, reading/clearing, 94 mode, changing the PC mode, 90 model numbers, 139 modes, operating modes, 8 modifying binary data, Programming Console, 109 data, Programming Console, 107 hexadecimal/BCD data, Programming Console, 109 signed decimal data, Programming Console, 110 SV, Programming Console, 108 unsigned decimal data, Programming Console, 111 MONITOR mode description, 81, 91 example test run, 120 monitoring 3-word monitor, Programming Console, 106 binary monitor, Programming Console, 105 differentiation monitor, Programming Console, 104-105 signed decimal monitor, Programming Console, 106 status, Programming Console, 103 unsigned decimal monitor, Programming Console, 107

motor control, capabilities, 3 MSG(46), 124

Ν

no-protocol communications, 72 noise, preventing electrical noise, 46, 49 noise immunity, 33 non-fatal errors, troubleshooting, 131 NPN current output, connecting, 59 NPN open collector, connecting, 59 NT Link, connections, 73

0

operating conditions, troubleshooting, 134 operating modes, 8 operating mode at startup, 9 operation, preparations, 91 output short protection, 67 output specifications relay output, 39 transistor output, 40 output wiring configuration, 62 relay output, 62, 65

Ρ

transistor output

sinking, 63, 64, 65

sourcing, 63, 64, 66

panel, Programming Console installation, 88 panel installation, precautions, 45 password, entering on Programming Console, 92 PC mode, changing, 90 PC Status, indicators, 27 Peripheral Devices, 140 available models, 140 photoelectric switches, preventing false inputs, 61 PNP current output, connecting, 59 position control, 3 power, consumption, 33 power cables, 49 power interruption, detection, 9 Index

power supply interrupt time, 33 precautions, 44 troubleshooting, 129, 135 wiring, 50 precautions design precautions, 44 general, xi output wiring, 67 SYSMAC Support Software, 84 program, programming example, 114 program capacity, 33 program execution, in cyclic operation, 12 program memory, setting address and reading content, Programming Console, 96-97 PROGRAM mode, description, 81, 91 Programmable Terminal, connections, 73 programming checking the program, 119 checks for syntax, Programming Console, 102-103 errors, 126 inserting and deleting instructions, Programming Console, 101-102 preparation for, 114 searching, Programming Console, 100-101 setting and reading a memory address, Programming Console, 96 Programming Console connecting, 86 keys, 88 models, 88 operation errors, 126 operations, 92 using, 86 Programming Devices connecting, 69 using, 75 programming example, 114 programs checking, check levels, 126 entering and editing, Programming Console, 97 proximity switches, preventing false inputs, 61 PT connections, 73 pulse control, 3 pulse outputs, 3 wiring, 67 Q-R quick-response inputs, 3

relay outputs, connecting, 59 Relay Terminals, connecting, 55

RUN mode, description, 81, 91

Index

S

search instruction, Programming Console, 100 operands, Programming Console, 100–101

self-diagnosis functions, 35

self-holding bit, example, 116

self-diagnostic functions, 123

serial communications, 72

shock resistance, 33

signed decimal data modifying, Programming Console, 110 monitoring, 106

specifications characteristics, 33 general specifications, 33 I/O connector, 52 input specifications, 36, 38 output specifications relay output, 39 transistor output, 40 terminal block, 51

SSS, 83

status, monitoring, Programming Console, 103

Support Software, 76

SV, modifying, Programming Console, 108

syntax, checking the program, Programming Console, 102

SYSMAC Support Software. See SSS SYSMAC-CPT Support Software, 76 precautions, 76

system, checks, 122 system configuration, 6

T

temperature, operating, storage, 33

temperature, ambient, 33

terminal block, specifications, 51

test run example, 120 procedure, 122

time. See clock

timers changing SV, Programming Console, 108 example of inputting, 117

troubleshooting, 128 fatal errors, 130 I/O errors, 132 non-fatal errors, 131 operating conditions, 134 power supply, 129, 135

U–V

unsigned decimal data modifying, Programming Console, 111 monitoring, 107

vibration resistance, 33

voltage operating voltage range, 33 supply voltage, 33

voltage output, connecting, 59

W

weight CPU Unit, 33 Expansion I/O Unit, 33

wiring, 48 I/O connector, 52 I/O terminal block, 51 power supply, 50

Revision History

A manual revision code appears as a suffix to the catalog number on the front cover of the manual.

Cat. No. W356-E1-1

- Revision code

The following table outlines the changes made to the manual during each revision. Page numbers refer to the previous version.

Revision code	Date	Revised content
1	June 1999	Original production