ThinApp User’s Guide

ThinApp 4.0.4

EN-000117-04

vmware

ThinApp User’s Guide

You can find the most up-to-date technical documentation on the VMware Web site at:
http://www.vmware.com/support/

The VMware Web site also provides the latest product updates.

If you have comments about this documentation, submit your feedback to:

docfeedback@vmware.com

Copyright © 2009 VMware, Inc. All rights reserved. This product is protected by U.S. and international copyright and
intellectual property laws. VMware products are covered by one or more patents listed at
http://www.vmware.com/go/patents.

VMware is a registered trademark or trademark of VMware, Inc. in the United States and/or other jurisdictions. All other marks
and names mentioned herein may be trademarks of their respective companies.

VMware, Inc.

3401 Hillview Ave.
Palo Alto, CA 94304
www.vmware.com

2 VMware, Inc.

http://www.vmware.com/support/
http://www.vmware.com/support
mailto:docfeedback@vmware.com
http://www.vmware.com/go/patents
http://www.vmware.com/go/patents

Contents

About This Book 9

1 Installing ThinApp 11

ThinApp Requirements 11
Operating Systems, Applications, and Systems That ThinApp Supports
Applications That ThinApp Cannot Virtualize 12

Recommendations for Installing ThinApp 12
Using a Clean Computer 12
Using the Earliest Operating System Required For Users 13

Install ThinApp 13

Locating ThinApp Installation Files 13

2 Capturing Applications 15

Reviewing the Capture Process 15
Assessing Application Dependencies Before the Capture Process 15
Closing Applications Before the Capture Process 15

Capture an Application with the Setup Capture Wizard 16
Initiate the Capture Process with Prescan and Postscan Images 16
Specify Application Shortcuts and Tracking Names 16
Specify User Groups and Sandbox Data Locations 18
Specify File System Access 18
Specify Application Delivery Settings 20
Build Virtual Applications 21

Advanced Package Configuration 22
Modifying Settings in the Package.ini File 22
Modifying Settings in the ##Attributes.ini File 23
Modifying Isolation Modes 23

3 Deploying Applications 25

ThinApp Deployment Options 25
Deploying ThinApp With Deployment Tools 25
Deploying ThinApp in the VMware View Environment 25
Deploying ThinApp on Network Shares 26
Deploying ThinApp Using Executable Files 26

Establishing File Type Associations with the thinreg.exe Utility 26
Application Sync Effect on the thinreg.exe Utility 26
Run the thinreg.exe Utility 27
Optional thinreg.exe Parameters 27

Building an MSI Database 29
Customizing MSI Files with Package.ini Parameters 29
Modify the Package.ini File to Create MSI Files 30

Controlling Application Access with Active Directory 31
Package.ini Entries for Active Directory Access Control 31

Using ThinApp Packages Streamed from the Network 32
How ThinApp Application Streaming Works 32
Requirements and Recommendations for Streaming Packages 33
Stream ThinApp Packages from the Network 34

VMware, Inc.

11

ThinApp User’s Guide

Using Captured Applications with Other System Components 34
Performing Paste Operations 34
Accessing Printers 34
Accessing Drivers 34
Accessing the Local Disk, the Removable Disk, and Network Shares 35
Accessing the System Registry 35
Accessing Networking and Sockets 35
Using Shared Memory and Named Pipes 35
Using COM, DCOM,, and Out-of-Process COM Components 35
Starting Services 35
Using File Type Associations 35

Sample Isolation Mode Configuration Depending on Deployment Context 36
View of Isolation Mode Effect on the Windows Registry 36

4 Updating Applications 39

Application Updates That the End User Triggers 39
Application Sync Updates 39
Application Link Updates 41

Application Updates That the Administrator Triggers 45
Forcing an Application Sync Update on Client Machines 45
Updating Applications with Runtime Changes 45

Automatic Application Updates 47
Dynamic Updates Without Administrator Rights 47

Upgrading Running Applications on a Network Share 48
File Locks 48
Upgrade a Running Application 48

Sandbox Considerations for Upgraded Applications 49

5 Monitoring and Troubleshooting ThinApp 51

Providing Information to Technical Support 51

Log Monitor Operations 51
Troubleshoot Activity with Log Monitor 52
Perform Advanced Log Monitor Operations 52
Log Format 54

Troubleshooting Specific Applications 58
Troubleshoot Registry Setup for Microsoft Outlook 58
Viewing Attachments in Microsoft Outlook 58
Starting Explorer.exe in the Virtual Environment 59
Troubleshooting Java Runtime Environment Version Conflict 59

A Configuring Package Parameters 61
Package.ini File Structure 62
Package.ini Parameter Placement 62
Parameters that Apply to Package.ini or ##Attributes.ini Files 62
Configuring the ThinApp Runtime 62
NetRelaunch 62
RuntimeEULA 63
VirtualComputerName 63
Wow64 64
Configuring File System and Registry Isolation 64
DirectorylsolationMode 64
RegistrylsolationMode 65
Configuring File and Protocol Associations 65
FileTypes 65
Protocols 65

VMware, Inc.

Contents

Configuring Build Output 66
OutDir 66
ExcludePattern 66

Configuring Permissions and Security 66
AccessDeniedMsg 66
AddPageExecutePermission 67
PermittedGroups 67
UACRequestedPrivilegesLevel 68
UACRequestedPrivilegesUIAccess 68

Configuring Objects and DLL Files 69
External COMObjects 69
ExternalDLLs 69
IsolatedMemoryObjects 69
IsolatedSynchronizationObjects 70
ObjectTypes 70
SandboxCOMObjects 71
VirtualizeExternal OutOfProcessCOM 71

Configuring Storage 72
CachePath 72
UpgradePath 72
VirtualDrives 73

Configuring Processes and Services 74
AllowExternalProcessModifications 74
AllowUnsupportedExternalChildProcesses 74
AutoShutdownServices 74
AutoStartServices 75
ChildProcessEnvironmentDefault 75
ChildProcessEnvironmentExceptions 75

Configuring File and Block Sizes 76
BlockSize 76
CompressionType 76

Configuring Icons 77
Icon 77
RetainAlllcons 78

Configuring Logging 78
DisableTracing 78
LogPath 78

Configuring Versions 79
CapturedUsingVersion 79
StripVersionInfo 79
Version. XXXX 79

Configuring Locale Information 80
AnsiCodePage 80
Localeldentifier 80
LocaleName 80

Configuring Individual Applications 80
CommandLine 80
Disabled 81
ReadOnlyData 81
ReserveExtraAddressSpace 82
Shortcut 82
Shortcuts 82
Source 83
WorkingDirectory 83

VMware, Inc. 5

ThinApp User’s Guide

Configuring Dependent Applications with Application Link 84
Application Link Path Name Formats 84
RequiredAppLinks 84
OptionalAppLinks 85

Configuring Application Updates with Application Sync 85
AppSyncClearSandboxOnUpdate 86
AppSyncExpireMessage 86
AppSyncExpirePeriod 86
AppSyncURL 87
AppSyncUpdateFrequency 87
AppSyncUpdatedMessage 87
AppSyncWarningFrequency 87
AppSyncWarningMessage 88
AppSyncWarningPeriod 88

Configuring MSI Files 88
MSIArpProductlcon 88
MSIDefaultInstallAllUsers 88
MSIFilename 89
MSIInstallDirectory 89
MSIManufacturer 89
MSIProductCode 90
MSIProductVersion 90
MSIRequireElevatedPrivileges 90
MSIUpgradeCode 91
MSIUseCabs 91

Configuring Sandbox Storage and Inventory Names 91
InventoryName 91
RemoveSandboxOnExit 92
SandboxName 92
SandboxNetworkDrives 93
SandboxPath 93
SandboxRemovableDisk 93

B ThinApp Sandbox 95
Search Order for the Sandbox 95
Controlling the Sandbox Location 97
Store the Sandbox on the Network 97
Store the Sandbox on a Portable Device 97
Sandbox Structure 98
Making Changes to the Sandbox 98
Listing Virtual Registry Contents with vregtool 98

C Snapshot Commands and Customization 99

Methods of Using the snapshot.exe Utility 99
Creating Snapshots of Machine States 99
Creating the Template Package.ini file from Two Snapshot Files 100
Creating the ThinApp Project from the Template Package.ini File 100
Displaying the Contents of a Snapshot File 101

Sample snapshot.exe Commands 101

Create a Project Without the Setup Capture Wizard 101

Customizing the snapshot.ini File 102

VMware, Inc.

Contents

D ThinApp Virtual File System 103
Virtual File System Formats 103
Merged and Virtual Views of the File System 103
Using Folder Macros 104
List of Folder Macros 104
Processing %SystemRoot% 105

E ThinApp Scripts 107

Callback Functions 107

Use Scripts in a ThinApp Environment 108
.bat Example 108
Timeout Example 108
Modify the Virtual Registry 109
.reg Example 109
Stopping a Service Example 109
Copying a File Example 109
Add a Value to the System Registry 110

API Functions 111
AddForcedVirtualLoadPath 111
ExitProcess 111
ExpandPath 112
ExecuteExternalProcess 112
ExecuteVirtualProcess 113
GetBuildOption 113
GetFileVersionValue 113
GetCommandLine 114
GetCurrentProcessName 114
GetOSVersion 115
GetEnvironmentVariable 116
RemoveSandboxOnExit 116
SetEnvironmentVariable 116
SetfileSystemlIsolation 117
SetRegistrylsolation 117
WaitForProcess 117

Glossary 119

Index 123

VMware, Inc. 7

ThinApp User’s Guide

8 VMware, Inc.

About This Book

The ThinApp User’s Guide provides information about how to install ThinApp, capture applications, deploy
applications, and upgrade applications. You can refer to this guide to customize parameters and perform
scripting.

Intended Audience

This book is intended for anyone who installs ThinApp and deploys captured applications. Typical users are
system administrators responsible for the distribution and maintenance of corporate software packages.

Document Feedback

VMware welcomes your suggestions for improving our documentation. If you have comments, send your
feedback to docfeedback@vmware.com.

Technical Support and Education Resources

The following sections describe the technical support resources available to you. To access the current version
of this book and other books, go to http://www.vmware.com/support/pubs.

Online and Telephone Support

To use online support to submit technical support requests, view your product and contract information, and
register your products, go to http://www.vmware.com/support.

Customers with appropriate support contracts should use telephone support for the fastest response on
priority 1 issues. Go to http://www.vmware.com/support/phone_support.

Support Offerings

To find out how VMware support offerings can help meet your business needs, go to
http://www.vmware.com/support/services.

VMware Professional Services

VMware Education Services courses offer extensive hands-on labs, case study examples, and course materials
designed to be used as on-the-job reference tools. Courses are available onsite, in the classroom, and live
online. For onsite pilot programs and implementation best practices, VMware Consulting Services provides
offerings to help you assess, plan, build, and manage your virtual environment. To access information about
education classes, certification programs, and consulting services, go to http://www.vmware.com/services.

VMware, Inc. 9

http://www.vmware.com/support/pubs
http://www.vmware.com/support
http://www.vmware.com/support/phone_support.html
http://www.vmware.com/support/services
mailto:docfeedback@vmware.com
http://www.vmware.com/services/

ThinApp User’s Guide

10 VMware, Inc.

Installing ThinApp

The ThinApp software isolates and contains applications, simplifies application customization and

deployment to different operating systems, and eliminates application conflict.

This information includes the following topics:

“ThinApp Requirements” on page 11
“Recommendations for Installing ThinApp” on page 12
“Install ThinApp” on page 13

“Locating ThinApp Installation Files” on page 13

ThinApp Requirements

Review the requirements for operating systems and captured applications before installing ThinApp.

Operating Systems, Applications, and Systems That ThinApp Supports

ThinApp supports the following operating systems, applications, and systems:

32-bit platforms include Windows NT, Windows 2000, Windows XP, Windows XPE, Windows 2003
Server, Windows Vista, Windows Server 2008

64-bit platforms include Windows XP 64 bit, Windows 2003 64 bit, Windows Vista 64 bit,
Windows Server 2008 64 bit

16-bit applications running on 32-bit Windows operating systems
32-bit applications running on 32-bit and 64-bit Windows operating systems

Terminal Server and Citrix Xenapp

ThinApp supports Japanese applications captured and run on Japanese operating systems.

ThinApp does not support these operating systems and applications:

VMware, Inc.

16-bit or non-x86 platforms such as Windows CE
64-bit applications running on 32-bit or 64-bit Windows operating systems

16-bit applications running on 64-bit Windows operating systems

"

ThinApp User’s Guide

Applications That ThinApp Cannot Virtualize

ThinApp cannot convert some applications into virtual applications and might block certain application functions.
You must use traditional installation technologies to deploy the following types of applications:
B Applications requiring installation of kernel-mode device drivers
ODBC drivers work because they are user mode drivers.
B Antivirus and personal firewalls
® Scanner drivers and printer drivers

®m Some VPN cdlients

Device Drivers

Applications that require device drivers do not work when packaged with ThinApp. You must install those
device drivers in their original format on the host computer. Because ThinApp does not support virtualized
device drivers, you cannot use ThinApp to virtualize antivirus, VPN clients, personal firewalls, and disk and
volume mounting-related utilities.

If you capture Adobe Acrobat, you can open, edit, and save PDF files, but you cannot see or use the PDF printer
driver that allows you to save documents to PDF format.

Shell Integration

Some applications that provide shell integration have reduced functions when they exist in a ThinApp
package. For example, a virtual application that integrates with Windows Explorer cannot add specific entries
to the Windows Explorer context menus.

DCOM Services that are Accessible on a Network

ThinApp isolates COM and DCOM services. Applications that install DCOM services are accessible on the
local computer only by other captured applications running in the same ThinApp sandbox. ThinApp supports
virtual DCOM and COM on the same computer but does not support network DCOM.

Global Hook DLLs

Some applications use the SetWindowsHookEx API function to add a DLL to all processes on the host
computer. The added DLL intercepts Windows messages to capture keyboard and mouse input from other
applications. ThinApp ignores requests from applications that use the SetWindowsHookEx function to try to
install global hook DLLs. ThinApp might reduce the application functions.

Recommendations for Installing ThinApp

12

When you install ThinApp, keep in mind the recommendations and best practices.

Using a Clean Computer

VMware recommends using a clean computer to install ThinApp because the environment affects the
application capture process. A clean computer is a physical or virtual machine with only a Windows operating
system. In a corporate environment where you have a base desktop image, the base desktop image is your
clean computer. The desktop computer might already have some components and libraries installed.

Application installers skip files that already exist on the computer. If the installer skips files, the ThinApp
package does not include them during the application capture process. The application might fail to run on
other computers where the files do not exist. A clean computer allows the capture process to scan the computer
file system and registry quickly.

If you install ThinApp and capture an application on a computer that has Microsoft .NET 2.0 already installed,
.NET 2.0 is not included in the ThinApp package. The captured application runs only on computers that have
.NET 2.0 already installed.

VMware, Inc.

Chapter 1 Installing ThinApp

Using Virtual Machines for Clean Computers

The easiest way to set up a clean computer is to create a virtual machine. You can install Windows on the
virtual machine and take a snapshot of the entire virtual machine in its clean state. After you capture an
application, you can restore the snapshot and revert it to a clean virtual machine state that is ready for the next
application capture.

You can use VMware Workstation or other VMware products to create virtual machines. For information
about VMware products, see the VMware Web site.

Using the Earliest Operating System Required For Users

Install ThinApp on a clean machine with the earliest version of the operating system you plan to support.

In most cases, the earliest platform is Windows 2000 or Windows XP. Most packages captured on Windows XP
work on Windows 2000. In some cases, Windows XP includes some DLLs that Windows 2000 does not have.
ThinApp excludes these DLLS from the captured application package if the application typically installs these
DLLs.

After you create a ThinApp application package, you can overwrite files in the package with updated versions
and rebuild the application without the capture process.

Install ThinApp

Use the ThinApp executable file to install ThinApp.

To install ThinApp software

1 Download ThinApp to a clean physical or virtual Windows machine.
Double-click the ThinApp executable file.

In the Patent Lists dialog box, click Next.

= W DN

Accept the license, enter the serial number, and enter a license display name that appears when you start
applications that ThinApp captures.

5 Click Install.

ThinApp is installed.

Locating ThinApp Installation Files

The ThinApp installation generates the VMware ThinApp directory in C: \Program Files\VMware. You might
need to locate files in this directory to view license information or perform operations such as starting the Log
Monitor utility to view recent activity.

The following key files in the VMware ThinApp directory affect ThinApp operations:

B AppSync.exe — Keeps captured applications up to date with the latest available version.
® logging.dll — Generates . trace files.

® dll_dump.exe - Lists all captured applications that are currently running on a system.
B log_monitor.exe — Displays the execution history and errors of an application.

B sbmerge.exe — Merges runtime changes recorded in the application sandbox with the ThinApp project
and updates the captured application.

B Setup Capture.exe — Captures and configures applications through a wizard.

B snapshot.exe — Compares the preinstallation environment and postinstallation environment during the
application capture process.

ThinApp starts this utility during the setup capture process.

VMware, Inc. 13

ThinApp User’s Guide

B snapshot.ini — Stores entries for the virtual registry and virtual file system that ThinApp ignores during
the process of capturing an application.

The snapshot. exe file references the snapshot. ini file. Advanced users might modify the
snapshot.ini file to ensure ThinApp does not capture certain entries when creating an application
package.

B template.msi — Builds the MSI files.

You can customize this template to ensure the .ms1 files generated by ThinApp adhere to company
deployment procedures and standards. For example, you can add registry settings that you want
ThinApp to add to client computers as part of the installation.

B thinreg.exe — Registers captured applications on a computer.

This registration includes setting up shortcuts and the Start menu and setting up file type associations
that allow you to start applications.

®m tlink.exe — Links key modules during the build process of the captured application.
m vftool.exe - Compiles the virtual file system during the build process of the captured application.

B vregtool.exe — Compiles the virtual registry during the build process of the captured application.

14 VMware, Inc.

Capturing Applications

You can capture applications with the Setup Capture wizard. The capture process packages an application into
a virtual environment and sets initial application parameters. For information about capturing applications
from the command line, see Appendix C, “Snapshot Commands and Customization,” on page 99.

This information uses Mozilla Firefox as a key example for application capture and includes the following

topics:

B “Reviewing the Capture Process” on page 15

B “Capture an Application with the Setup Capture Wizard” on page 16
|

“Advanced Package Configuration” on page 22

Reviewing the Capture Process

The capture process involves the following phases:

Scan of a baseline image of the clean machine.
Installation of the application that ThinApp needs to capture.
Configuration of settings specific to the application.

For example, setting Firefox as a default browser, setting a home page, and setting default security
settings.

Scan of the machine after the application installation.
ThinApp assesses the differences between the initial baseline image and this image.

Configuration of ThinApp parameters to customize such areas as executable file compression, sandbox
location, and domain user access to applications.

Build of the virtual application package for distribution.

Assessing Application Dependencies Before the Capture Process

Before capturing an application, assess whether the application has any dependencies on other applications,
libraries, or frameworks and whether to capture these dependencies. VMware recommends using the
Application Link utility to link separate components at runtime. See Chapter 4, “Updating Applications,” on
page 39.

Closing Applications Before the Capture Process

To protect the file system, VMware recommends shutting down applications, such as virus scans, that might
change the file system while ThinApp takes snapshots.

VMware, Inc.

15

ThinApp User’s Guide

Capture an Application with the Setup Capture Wizard

16

The Setup Capture process packages an application and sets initial application parameters. If you use a virtual
machine, consider taking a snapshot before you run the wizard. A snapshot of the original clean state allows
you to revert to the snapshot when you want to capture another application.

Initiate the Capture Process with Prescan and Postscan Images

The Setup Capture wizard starts the capture process by taking multiple scans of the system to assess the
environment before and after the application installation.

To start the capture process with prescan and postscan images

1

Download the applications to capture.

For example, download Firefox Setup 2.0.0.3.exe and copy it to the clean machine you are
working with.

From the desktop, select Start > Programs > VMware > ThinApp Setup Capture.

(Optional) In the Prescan System dialog box, click Advanced scan locations to select the drives and
registry hives to scan.

You might want to scan a particular location other than the C:\ drive if you install applications to a
different drive. In rare cases, you might want to avoid scanning a registry hive if you know that the
application installer does not modify the registry.

Click Scan to establish a baseline system image of the hard drive and registry files.
The scanning process takes about 10 seconds for Windows XP.

When the Install Application page appears, minimize the Setup Capture wizard and install the
applications to capture.

For example, double-click Firefox Setup 2.0.0.3.exe to install Firefox. If the application needs to
reboot after the installation, reboot the system. The reboot restarts the Setup Capture wizard.

Make any necessary configuration changes to comply with your company policies, such as using specific
security settings or a particular home page.

If you do not make configuration changes at this time, each user must make changes.

(Optional) Start the application and respond to any prompts for information before you continue with the
Setup Capture wizard.

If you do not respond to any prompts at this time, each user who uses the application must do so during
the initial start.

Close the application.

Maximize the Setup Capture wizard, click Postscan to proceed with another scan of the machine, and
click OK to confirm the postscan operation.

ThinApp stores the differences between the first baseline image and this image in a virtual file system and
virtual registry.

Specify Application Shortcuts and Tracking Names

Entry points are the executable files that start and provide access to the virtual application. The entry points

you can choose from depend on the executable files that your captured application creates during installation.
For example, if you install Microsoft Office, you can select entry points for Microsoft Word, Microsoft Excel,
and other applications that are installed during a Microsoft Office installation. If you install Firefox, you might
selectMozilla Firefox.exe and Mozilla Firefox (SafeMode).exe if users require safe mode access.

VMware, Inc.

Chapter 2 Capturing Applications

During the build process that occurs at the end of the Setup Capture wizard, ThinApp generates one executable
file for each selected entry point. If you deploy the application as an MSI file or use the thinreg. exe utility, the
desktop and Start menu shortcuts created on end-user desktops point to these entry points.

ThinApp provides the following entry points to troubleshoot or debug your environment:
B cmd.exe - Starts a command prompt in a virtual context that allows you to view the virtual filesystem.
B regedit.exe - Starts the registry editor in a virtual context that allows you to view the virtual registry.

B iexplore.exe —Starts iexplore.exe in a virtual context that allows you to test virtualized
ActiveX controls.

Entry points start native executable files in a virtual context. Entry points do not create virtual packages of
cmd . exe, regedit.exe, or iexplore.exe.

If you cannot predict the need for debugging or troubleshooting the environment, you can instead use the
Disabled parameter in the Package. ini file at a later time to active these entry points. See “Disabled” on
page 81.

Unlike entry points, the primary data container is the only file that contains the read-only virtual file system
and virtual registry. You can determine the primary data container file by selecting an entry point or by
entering a name for the container. This name appears in the Package. ini file followed by a ReadOnlyData
parameter line. See “ReadOnlyData” on page 81.

The inventory name facilitates internal tracking of the application in the Package. ini file.

To specify application shortcuts and tracking names in the Setup Capture wizard
1 Inthe Select Application Access Shortcuts page, select the check boxes for user-accessible entry points.

The wizard populates the list with executable files that ThinApp installed during the capture process, and
automatically selects the executable files that were directly accessible through the desktop or Start menu
shortcuts.

2 (Optional) If you want to debug your environment, select the Show entry points used for debugging
check box to select the iexplore.exe, regedit.exe, and cmd.exe entry points in the list.

3 Select the primary data container, the file that stores virtual files and registry information, from the list
based on the selected entry points.

m [f the size of the primary container is smaller than 200MB, ThinApp creates a . exe file as the primary
container. For a small application such as Firefox, any .exe file can serve as the main data container.

m [f the size of the primary container is larger than 200MB, ThinApp creates a separate. dat file as the
primary container because Windows XP and Windows 2000 cannot show shortcut icons for large
. exe files. Generating separate small .exe files along with the . dat file fixes the problem.

m [f the size of the primary container is between 200MB and 1.5GB, ThinApp creates the default .dat
file unless you select a . exe file to override the default . dat file.

4 Ifyou select a .exe file to override the default . dat file when size of the primary container is between
200MB and 1.5GB, ignore the generated warning.

Selecting a . exe file allows all applications to work properly but might prevent the proper display of icons.
5 If you cannot select a primary data container, type a primary data container name.

If you plan to use the Application Sync utility to update a captured application, ThinApp uses the primary
data container name during the process. You must use the same name across multiple versions of the
application. You might not be able to select the same primary data container name from the list.

For example, Microsoft Office 2003 and Microsoft Office 2007 do not have common entry point names.

6 (Optional) Change the inventory name that ThinApp uses for internal tracking of the application in the
Package.ini file.

Using the thinreg. exe utility or deploying the captured application as an MSI file causes the inventory
name to appear in the Add or Remove Programs dialog box for Windows.

VMware, Inc. 17

ThinApp User’s Guide

18

Specify User Groups and Sandbox Data Locations

ThinApp can use Active Directory groups to authorize access to the application and sandbox location.

For example, you might restrict access to an application to ensure users do not pass it to unauthorized users.
ThinApp does not support nested Active Directory groups. For example, if a user is a member of group A, and
group A is a member of group B, ThinApp can only detect the user as a member of group A rather than
group A and group B.

The sandbox is the directory where all changes that the captured application makes are stored. The next time
you launch the application, those changes are incorporated from the sandbox. When you delete the sandbox
directory, the application reverts to its captured state. You might delete a sandbox when an application has a
problem and you want to revert the application back to the working original state. For more information about
the sandbox, see Appendix B, “ThinApp Sandbox,” on page 95.

To specify user groups and sandbox locations in the Setup Capture wizard

1 (Optional) In the Set Up User Groups and Sandbox Location page, click Add to specify Active Directory

information.

Option Action

Object Types Specifies objects.

Locations Specifies a location in the forest.

Object names (manually enter) Searches for object names.

Advanced Locates user names in the Active Directory forest.

Common Queries (under Advanced) Searches for groups according to names, descriptions, disabled accounts,
passwords, and days since last login.

2 Select the ThinApp sandbox location.
You can deploy it to a local user machine, carry it on a mobile USB stick, or store it in a network location.

If you deploy the sandbox to a local machine, use the user’s profile. If you store the sandbox in a network
drive, enter the absolute path to the location where you want the sandbox created. A sample path is
\\thinapp\sandbox\Firefox. You can select a network location even if an application is installed on a
local machine.

Specify File System Access

Isolation modes help determine the changes that affect the virtual environment and the physical environment.
During the capture process, you can set Merged and WriteCopy isolation modes to determine different levels
of write access to the physical file system. The wizard does not provide the Full isolation mode option.

For information about the Full isolation mode that is available outside of the wizard, see “Modifying Isolation
Modes” on page 23.

The key effect of the selection of Merged and WriteCopy isolation modes within the Setup Capture wizard is
on the value of the DirectoryIsolationMode parameter in the Package. ini file. This parameter controls the
default isolation mode for the files created by the capture process except when a different isolation mode exists
in the ##Attributes.ini file for an individual directory. For information about the
DirectoryIsolationMode parameter, see “DirectorylsolationMode” on page 64.

Merged isolation mode allows the application to modify elements on the physical file system outside of the
virtual application package. Some applications rely on DLLs and registry information in the local system
image. The advantage of using Merged mode is that documents saved by users end up on the physical system
in the location expected by users, instead of in the sandbox. The disadvantage is that this mode might clutter
the system image. An example of the residue might be first-execution markers by shareware applications
written to random computer locations as part of the licensing process.

VMware, Inc.

Chapter 2 Capturing Applications

When you select the Merged isolation mode in the Setup Capture wizard, ThinApp completes the following
operations:

B ThinApp sets the DirectoryIsolationMode parameter in the Package.ini file to Merged.
® ThinApp assigns the Merged isolation mode to the following directories:

B %Personal%

B %Desktop%

B %SystemSystem% \ spool

If you save documents to the desktop and My Documents folder, ThinApp saves the documents to the
physical system regardless of the Merged mode selection because Merged mode affects documents saved
to global locations such as C:\myfiles.

B ThinApp excludes some locations from the Merged isolation mode and assigns the WriteCopy isolation
mode to the following directories and their subdirectories:

m %AppData%

m %Common AppData¥%

® %lLocal AppData%

® %Program Files Common%
m %ProgramFilesDir%

B %SystemRoot%

B %SystemSystem¥%

B ThinApp assigns the Full isolation mode to any new directories that the application creates during the
installation.

The Merged option in the Setup Capture wizard has the same effect as the Merged mode setting in the
Package.ini file, but the directory exceptions that use WriteCopy isolation mode apply only to the wizard
option. The wizard configures the directory exceptions for you and adds ##Attributes.in1 files within the
directories. To achieve the same result outside of the wizard, you must configure these directory exceptions
manually.

WriteCopy isolation mode allows ThinApp to intercept write operations and redirect them to the sandbox.
VMware recommends WriteCopy mode for legacy or untrusted applications. Although this mode might make
it difficult to locate user data files that reside in the sandbox instead of the actual system, this mode is useful
for locked down desktops where you want to prevent users from affecting the operating file system and
registry files.

When you select the WriteCopy isolation mode in the Setup Capture wizard, ThinApp completes the
following operations:

® ThinApp sets the DirectoryIsolationMode parameter in the Package.ini file to WriteCopy.
® ThinApp assigns the WriteCopy isolation mode to the following directories:

m %AppData%

m %Common AppData¥%

B %lLocal AppData%

m %Program Files Common%

® %ProgramFilesDir%

B %SystemRoot%

B %SystemSystemd%

VMware, Inc. 19

ThinApp User’s Guide

20

® ThinApp assigns the Merged isolation mode to the following directories:
m %Personal%
B %Desktop%
® %SystemSystem% \spool

B ThinApp assigns the Full isolation mode to any new directories that the application creates during the
installation.

The WriteCopy option in the Setup Capture wizard has the same effect as the WriteCopy isolation mode
setting in the Package. ini file, but the directory exceptions apply only to the wizard option. The wizard
configures the directory exceptions for you and adds ##Attributes.ini files within the directories.

To achieve the same result outside of the wizard, you must configure these directory exceptions manually.

Regardless of the selected isolation mode, ThinApp treats write operations to network drives according to the
SandboxNetworkDrives parameter in the Package. ini file. This parameter has a default value of 0 that
directs write operations to the physical drive. ThinApp treats write operations to removable disks according
to the SandboxRemovableDrives parameter in the Package. ini. This parameter has a default value of 0 that
directs write operations to the physical drive.

All runtime modifications to virtual elements in the captured application are stored in the sandbox, regardless
of the isolation mode setting. At runtime, virtual and physical registry elements are indistinguishable to an
application, but virtual registry elements always supersede physical registry elements when both exist in the
same location. If virtual and physical entries exist at the same location, isolation modes do not affect access to
these entries because the application always interacts with virtual elements. If external group policy updates
occur separately from the package through the physical registry, you might need to remove virtual registry
elements from a package and verify that the parent element of these virtual registry elements does not use Full
isolation. Because child elements inherit isolation modes from parent elements, Full isolation in a parent
element can block the visibility of physical child elements to an application.

To specify file system access in the Setup Capture wizard
In the Specify File System Access page, select the isolation mode to determine which files and registry keys

are visible and written by the virtual application you create.

Option Action

Merged Allows the application to read resources on and write to the local machine

WriteCopy Allows the application to read resources on the local machine and restrict most modifications to the sandbox.

ThinApp copies physical file system changes to the sandbox to ensure ThinApp only modifies copies of
files instead of the actual files.

Specify Application Delivery Settings

You can specify the file format of an application, the size of the package, and the location of a ThinApp project.
The project is the data created by the capture process. You cannot run or deploy the captured application until
you build a package from the project files. The package is the executable file or MSI file with executable files
that you use to run or deploy a captured application.

A typical Firefox application does not require an MSI installation. But other applications, such as Microsoft
Office, that integrate with application delivery tools, work well as an MSI package. MSI generation requires
you to install the MSI on the target device before you can use the application package.

MSI packages automate the process of registering file-type associations, registering desktop and Start menu
shortcut, and displaying control panel extensions. If you plan to deploy ThinApp executables directly on each
machine, you can accomplish the same registration using the thinreg. exe utility.

For more information about MSI files, see “Building an MSI Database” on page 29.

VMware, Inc.

Chapter 2 Capturing Applications

To specify application delivery settings in the Setup Capture wizard
1 (Optional) Change the directory where you want to save the ThinApp project.

If you keep the default directory and capture Firefox 2.0.0.3, the path might appear as C:\Program
Files\VMware\VMware ThinApp\Captures\Mozilla Firefox (2.0.0.3). The inventory name
selected during the wizard determines the default project directory name.

2 (Optional) Select the Build MSI package check box and change the MSI filename.

3 (Optional) To create a smaller executable file for locations such as a USB stick, select the Compress virtual
package check box.

In typical circumstances, compression reduces the on-disk storage requirement by 50 percent but slows
the application performance when ThinApp uncompresses initial blocks that start the application.

4 Click Save to create the project.

Build Virtual Applications

The application package is the executable file or MSI file that you use to run or deploy a captured application.
Before you build the package from the ThinApp project, you can review the project files to update settings.
For example, if you capture Firefox 2.0.0.3, the location of the project files might be C:\Program
Files\VMware\VMware ThinApp\Captures\Mozilla Firefox 2.0.0.3. You might browse the project
before you build the application executable file or MSI file to update a setting, such as an Active Directory
specification, in the Package. in1 file that contains the parameters set during the capture process. For
information about advanced configuration of the Package. ini file, see “Modifying Settings in the Package.ini
File” on page 22.

The project includes folders, such as %AppData%, that represent file system paths that might change locations
when running on different operating systems or computers. Most folders have ##Attributes.ini files that
specify the isolation mode at the folder level. The isolation mode setting at the granular folder level overrides
the overall isolation mode setting of the Package. ini file.

If you capture an application on a 32-bit operating system and want to build it on a 64-bit operating system,
you must set the THINSTALL_BIN environment variable on the machine with the 64-bit operating system to
C:\Program Files (x86)\VMware\VMware ThinApp. You do not need to build the package on the same
machine on which you captured the application. You can copy the project to another computer and discard the
capture machine.

To build virtual applications in the Setup Capture wizard

1 (Optional) In the Build Application Package page, click Edit Package.ini to modify application
parameters.

2 (Optional) To look at the ThinApp project files in Windows Explorer, click Open project folder.
3 (Optional) To prevent a build, select the Skip the build process check box.

You can build the package at a later time with the build.bat file in the captured application folder.
For example, a Firefox 2.0.0.3 path to the build.bat file might be C:\Program Files\VMware\VMware
ThinApp\Captures\Mozilla Firefox 2.0.0.3\build.bat.

4 Click Build to build an executable file or MSI file containing the files you installed during the Setup
Capture process.

5 Click Finish.

You can rebuild the package at any time after clicking Finish if you need to make changes.

VMware, Inc. 21

ThinApp User’s Guide

Advanced Package Configuration

22

Advanced users might modify configuration files outside of the Setup Capture wizard, such as the
Package.ini or ##Attributes.ini files.

Modifying Settings in the Package.ini File

The Package. ini file contains configuration settings and resides in the captured application folder. For
example, a Firefox 2.0.0.3 path might be C:\Program Files\VMware\VMware ThinApp\Captures\Mozilla
Firefox 2.0.0.3\Package.ini.

The following parameters are examples of settings that you might modify:

DirectoryIsolationMode — Sets the isolation mode to Merged, WriteCopy, or Full.

ThinApp caches the isolation modes for the registry and the file system at runtime in the sandbox. If you
change the isolation mode for the project and rebuild the executable file, you might need to delete the
sandbox for the change to take effect.

PermittedGroups — Restricts use of an application package to a specific set of Active Directory users.
SandboxName — Names the ThinApp sandbox.

You might keep the name for incremental application updates and change the name for major updates.
SandboxPath — Sets the sandbox location.

You can set the sandbox in a USB location if the application executable file resides in that location.
SandboxNetworkDrives — Specifies whether to direct write operations on the network share to the sandbox.

RequiredAppLinks — Specifies a list of external ThinApp packages to import to the current package at
runtime.

If ThinApp cannot import a package, ThinApp stops the base application.

OptionalAppLinks — Specifies a list of external ThinApp packages to import to the current package at
runtime.

If ThinApp cannot import a package, ThinApp allows the base application to start.

For information about all Package. ini parameters, see Appendix A, “Configuring Package Parameters,” on
page 61.

Edit the Package.ini File

Use a text editor to update the Package. ini file.

To edit the Package.ini parameters

1

Open the Package. ini file located in the captured application folder.

For example, a Firefox 2.0.0.3 path might be C:\Program Files\VMware\VMware
ThinApp\Captures\Mozilla Firefox 2.0.0.3\Package.ini.

Activate the parameter to edit by removing the semicolon at the beginning of the line.
For example, activate the RemoveSandboxOnExit parameter for Firefox.
RemoveSandboxOnExit=1

Another example might involve commenting out the Protocols parameter if you do not want Firefox to
take over the protocols.

Delete or change the value of the parameter and save the file.

Double-click the build.bat file in the captured application folder to rebuild the application package.
For example, a Firefox 2.0.0.3 path to the build.bat file might be C:\Program Files\VMware\VMware
ThinApp\Captures\Mozilla Firefox 2.0.0.3\build.bat.

VMware, Inc.

Chapter 2 Capturing Applications

Modifying Settings in the ##Attributes.ini File

The ##Attributes.ini file applies configuration settings at the directory level. The Package. ini file applies
settings at the overall application level.

For example, you can set the isolation mode at the directory or application level to determine which files and
registry keys are visible and written by the virtual application you create. The detailed setting in the
##Attributes.ini file overrides the overall Package. ini setting. The Package.ini setting determines the
isolation mode only when ThinApp does not have ##Attributes.ini information.

To compress only certain folders with large files rather than an entire application, you can compress files at
the folder level with the CompressionType parameter in the ##Attributes.ini file.

The ##Attributes.ini file appears in most folders for the captured application. For example, the
Attributes.ini file might be located in C:\Program Files\VMware\VMware
ThinApp\Captures\Mozilla Firefox 2.0.0.3\%AppDataX\##Attributes.ini.

Edit the #fAttributes.ini File

Use a text editor to update the ##Attributes.ini file.

To edit the ##Attributes.ini parameters
1 Inthe ##Attibutes.ini file, uncomment, update, or delete the parameter.

2 Double-click the build.bat file in the captured application folder to rebuild the application package.

Modifying Isolation Modes

ThinApp provides the Merged and WriteCopy isolation mode choices in the Setup Capture wizard.
For information about those modes, see “Specify File System Access” on page 18.

You can use a third isolation mode, Full, outside the wizard in the ThinApp configuration files. The Full
isolation mode secures the virtual environment by blocking visibility to system elements outside the virtual
application package. This mode restricts any changes to files or registry keys to the sandbox and ensures that
no interaction exists with the environment outside the virtual application package. Full isolation prevents
application conflict between the virtual application and applications installed on the physical system.

ThinApp caches the isolation modes for the registry and the file system at runtime in the sandbox. If you
change the isolation mode for the project and rebuild the executable file, you might need to delete the sandbox
for the change to take effect.

You can modify isolation modes in the Package.ini and ##Attributes.ini files. See “Edit the Package.ini
File” on page 22 and “Edit the ##Attributes.ini File” on page 23. For information about the effect of application
updates on isolation modes, see “Affecting Isolation Modes with Application Link” on page 44.

VMware, Inc. 23

ThinApp User’s Guide

24 VMware, Inc.

Deploying Applications

Working with captured applications might involve working with deployment tools, the thinreg. exe utility,
MSI files, and Active Directory.

This information includes the following topics:

“ThinApp Deployment Options” on page 25

“Establishing File Type Associations with the thinreg.exe Utility” on page 26
“Building an MSI Database” on page 29

“Controlling Application Access with Active Directory” on page 31

“Using ThinApp Packages Streamed from the Network” on page 32

“Using Captured Applications with Other System Components” on page 34

“Sample Isolation Mode Configuration Depending on Deployment Context” on page 36

ThinApp Deployment Options

You can deploy captured applications with deployment tools, in a VMware View environment, on a network
share, or as basic executable files.

Deploying ThinApp With Deployment Tools

Medium and large enterprises often use major deployment tools, such as Symantec, BMC, and SMS tools.
ThinApp works with all major deployment tools.

When you use any of these tools, you can create MSI files for the captured applications and follow the same
process you use to deploy native MSI files. See deployment instructions from the tool vendors. For information
about MSI files, see “Building an MSI Database” on page 29.

Deploying ThinApp in the VMware View Environment

If you work with VMware View, the workflow involves the following tasks:

VMware, Inc.

Creating executable files for the captured applications.
Storing the executable files on a network share.

Creating alogin script that queries applications entitled to the user and runs the thinreg. exe utility with
the option that registers the applications on the local machine. Login scripts are useful for nonpersistent
desktops. See “Establishing File Type Associations with the thinreg.exe Utility” on page 26.

Controlling user access to fileshares. IT administrators might control access by organizing network shares
based on function and associating permissions with network shares based on those functional
boundaries.

25

ThinApp User’s Guide

Deploying ThinApp on Network Shares

Small and medium enterprises tend to use a network share. You can create executable files for the captured
application and store them on a network share. Each time you deploy a new application or an update to an
existing package, you can notify client users to run the thinreg. exe utility with an appropriate option.

IT administrators can control user access to fileshares by organizing network shares based on function and
associating permissions with network shares based on those functional boundaries.

The differences between the network share option and the VMware View option are that the network share
option assumes a mix of physical and virtual (persistent) desktops and involves users running the
thinreg.exe utility directly instead of relying on login scripts.

Deploying ThinApp Using Executable Files

You use this basic option in an environment where disk usage is limited. You can create executable files for the
captured applications, copy them from a central repository, and run the thinreg. exe utility manually to
register file type associations, desktop shortcuts, and the application package on the system.

Establishing File Type Associations with the thinreg.exe Utility

ThinApp requires you to use the thinreg. exe utility to open files, such as a . doc document or an . htm1 page.
For example, if you click a URL in an email message, ThinApp must be set to start Firefox. You do not have to
run the thinreg. exe utility for MSI files because MSI files start the utility automatically during the
application installation.

The thinreg. exe utility creates the Start menu and desktop shortcuts, sets up file type associations, adds
uninstall information to the system control panel, and unregisters previously registered packages. The utility
allows you to see the control panel extensions for applications, such as Quicktime or the mail control panel
applet for Microsoft Outlook 2007. When you right-click a file, such as a . doc file, the thinreg. exe utility
allows you to see the same menu options for a . doc file in a native environment.

If an application runs SMTP or HTTP protocols, such as an email link on a Web page that needs to open
Microsoft Outlook 2007, the thinreg. exe utility starts available virtual applications that can handle those
protocols. If virtual applications are not available, the thinreg. exe utility starts native applications that can
handle those protocols.

The default location of the utility is C:\Program Files\VMware\VMware ThinApp.

Application Sync Effect on the thinreg.exe Utility

ThinApp provides the Application Sync utility to update an application package. The Application Sync utility
has the following effect on the thinreg. exe utility:

® If you add, modify, or remove executable files, the thinreg.exe utility reregisters the file type
associations, shortcuts, and icons.

® Ifyou install protocols, MIME types, control panel applets, and templates other than executable files, the
thinreg.exe utility reregisters these elements.

For information about the Application Sync utility, see “Application Sync Updates” on page 39.

26 VMware, Inc.

Chapter 3 Deploying Applications

Run the thinreg.exe Utility

This example provides some sample thinreg.exe commands. The package name in the thinreg.exe
commands can appear in the following ways:

B (C:\<absolute_path_to_.exe>
B Relative path to .exe file
m \\<server>\<share>\<path_to_.exe>
As a variation, you can use a wildcard specification, such as *. exe.

If the path or filename contains spaces, enclose the path in double quotation marks. The following
command shows the use of double quotation marks.

thinreg.exe "\\DEPLOYSERVER\ThinApps\Microsoft Office Word 2007.exe"

For information about thinreg.exe parameters, see “Optional thinreg.exe Parameters” on page 27.

To run the thinreg.exe utility
1 Determine the executable files that ThinApp must register with the local environment.
2 From the command line, type the thinreg.exe command.
thinreg.exe [<optional_parameters>] [<packagel.exe>][<package2.exe>][<packages_by_wildcard>]

If the server name is DEPLOYSERVER and the share is ThinApps, use the following example to register
Microsoft Word for the logged-in user.

ThinReg.exe '"\\DEPLOYSERVER\ThinApps\Microsoft Office 2007 Word.exe"

Use the following example to register all Microsoft Office applications in the specified directory for the
logged-in user.

ThinReg.exe "\\DEPLOYSERVER\ThinApps\Microsoft Office *.exe"

Optional thinreg.exe Parameters

The thinreg.exe utility monitors the PermittedGroups setting in the Package. ini file, registering and
unregistering packages as needed. When the thinreg. exe utility registers a package for the current user, the
utility creates only the shortcuts and file type associations that the current user is authorized for in the
PermittedGroups setting. If this setting does not exist, the current user is authorized for all executable files.

When the thinreg.exe utility registers a package for all users with the /allusers parameter, ThinApp
creates all shortcuts and file type associations regardless of the PermittedGroups setting. When you
double-click a shortcut icon that you are not authorized for, you cannot run the application.

If the package name you want to register or unregister contains spaces, you must enclose it in double quotation
marks.

For information about the PermittedGroups setting and support for Active Directory groups, see
“PermittedGroups” on page 67.

Table 3-1 lists optional parameters for the thinreg.exe utility. Any command that uses the /a parameter
requires administrator rights.

VMware, Inc. 27

ThinApp User’s Guide

28

Table 3-1. Optional thinreg.exe parameters
Parameter Purpose

/a, /allusers Registers a package for all users.
If an unauthorized user attempts to run
the application, a message informs the
user that he or she cannot run the

Sample Usage

thinreg.exe /a
"\\<server>\<share>\Microsoft Office
2007 Word.exe"

application.
/q, /quiet Prevents the display of an error message thinreg.exe /g <unknown_option>
for an unrecognized command-line
parameter.
/u, /unregister, Unregisters a package. Unregister Microsoft Word for the current user.
/uninstall This command removes the software from thinreg.exe /u
the Add/Remove Programs control panel "\\<server>\<share>\Microsoft Office
applet. 2007 Word.exe"
Unregister all Microsoft Office applications for
the current user and remove the Add/Remove
Programs entry.
thinreg.exe /u
"\\server\share\Microsoft Office *.exe"
If a user registers the package with the /a
parameter, you must use the /a parameter when
unregistering the package.
thinreg.exe /u /a *.exe
/r, /reregister Reregisters a package. thinreg.exe /r

Under typical circumstances, the
thinreg.exe utility can detect whether a
package is already registered and skips it.
The /r option forces the thinreg.exe
utility to reregister the package.

"\\<server>\<share>\Microsoft Office
2007 Word.exe"

If a user registers the package with the /a
parameter, you must use the /a when
reregistering the package.

*

thinreg.exe /r /a *.exe

/k, Prevents the removal of registration

/keepunauthorized, information even if you are no longer

/keep authorized to access an application
package.

Without this option, the thinreg.exe
utility removes the registration
information for that package if it detects
you are no longer authorized to access the
package.

ThinApp stores authorization information
in the PermittedGroups parameter of the
Package.ini file.

thinreg.exe /k
"\\<server>\<share>\Microsoft Office
2007 Word.exe"

/noarp Prevents the creation of an entry in the thinreg.exe /q /noarp
Add/Remove Programs control panel "\\<server>\<share>\Microsoft Office
applet. 2007 Word.exe"

/norelaunch Starts the thinreg.exe utility on thinreg.exe /q /norelaunch

Microsoft Vista without elevated
privileges. Standard users can start the
utility without a user account control
(UAC) pop-up window.

When the thinreg.exe utility detects a
need for more privileges, such as the
privileges required for the /allusers
parameter, the utility restarts itself as a
privileged process and generates a UAC
pop-up window. The /norelaunch
option blocks this restart process and
causes the registration to fail.

"\\<server>\<share>\Microsoft Office
2007 Word.exe"

VMware, Inc.

Chapter 3 Deploying Applications

Building an MSI Database

If you do not create MSI files with the Setup Capture wizard, you can still create these files after building an
application. An MSI database is useful for delivering captured applications through traditional desktop
management systems to remote locations and automatically creating shortcuts and file type associations.
Basic Active Directory group policies provide ways to distribute and start MSI packages.

ThinApp creates an MSI database that contains certain files depending on the database size:

For databases smaller than 2GB, the MSI database consists of captured executable files, installer logic, and
the thinreg. exe utility.

For databases larger than 2GB, the MSI database consists of installer logic and the thinreg.exe utility.
ThinApp stores the captured executable files in cabinet files. For example, the files might be
<inventory_name>_1.CABand <inventory_name>_2.CAB. The . CAB files must be in the same directory
as the MSI files. ThinApp must distribute these files with the MSI file to have a complete installer.

Customizing MSI Files with Package.ini Parameters

You can customize the behavior of MSI files by modifying Package. ini parameters, such as the following
parameters, and rebuilding the application package:

The MSIInstallDirectory parameter sets the installation directory for the package.
For example, include MSIInstallDirectory=C:\Program Files\ in the Package.ini file.

The MSIDefaultInstallAllUsers parameter sets installation of the package for individual users.
ThinApp installs the package in the %AppData% user directory.

For example, include MSIDefaultInstallAllUsers=0 in the Package. ini file.

For more information about this parameter, see “Specifying a Database Installation for Individual Users
and Machines” on page 30.

The MSIFileName parameter names the package.
For example, include MSIFilename=Firefox30.msi in the Package.ini file.

The MSIRequireElevatedPrivileges parameter indicates whether an installer needs elevated
privileges for deployment on Microsoft Vista. Installations for individual users do not usually need
elevated privileges but per-machine installations require such privileges.

For example, include MSIRequireElevatedPrivileges=1in the Package.ini file.

The MSIProductCode parameter makes it easier to install a new version of the application. An MSI
database contains a product code and an upgrade code. When you update a package, keep the original
value of the MSIUpgradeCode parameter.

If the parameter value of the new version is the same as the value of the old version, the installation
prompts you to remove the old version. If the values for the parameter are different, the installation
uninstalls the old version and installs the new version.

VMware recommends that you avoid specifying an MSIProductCode value and allow ThinApp to
generate a different product code for each build.

Regardless of the parameter values specified at build time, you can override the settings at deployment time.
See “Force MSI Deployments for Each User or Each Machine” on page 30. For more information about MSI
parameters, see “Configuring MSI Files” on page 88.

VMware, Inc.

29

ThinApp User’s Guide

30

Modify the Package.ini File to Create MSI Files

You must enter a value for the MSIFilename parameter to generate MSI files. For more information about MSI
parameters, see “Customizing MSI Files with Package.ini Parameters” on page 29 and “Configuring MSI
Files” on page 88.
To edit the MSI parameters
1 Inthe Package.ini file, enter the MSI filename.

MSIFilename=<filename>.msi

For example, the filename for Firefox might be Mozilla Firefox 2.0.0.3.msi.

2 (Optional) Update other MSI parameters.

3 Double-click the build.bat file in the captured application folder to rebuild the application package.

Specifying a Database Installation for Individual Users and Machines

ThinApp installs the MSI database across all machines. You can change the default installation with the
following parameter values:

m To create a database installation for individual users, use a value of 0 for the
MSIDefaultInstallAllUsers parameter in the Package.ini file. This value creates msiexec
parameters for each user.

m To create a database installation for individual machines for administrators and individual user
installations for other users, use a value of 2 for the MSIDefaultInstallAllUsers parameter.
Administrators belong to the Administrators Active Directory group.

For more information about the MSIDefaultInstallAllUsers parameter, see “MSIDefaultInstallAllUsers”
on page 88.
Force MSI Deployments for Each User or Each Machine

Regardless of the parameter values specified at build time, you can override the settings at deployment time.
For example, if you created the database with a value of 1 for the MSIDefaultInstallAllUsers parameter,
you can still force individual user deployments for Firefox 3.0 with the msiexec /i Firefox30.msi
ALLUSERS="" command.

If you use the ALLUSERS=""" argument for the msiexec command, ThinApp extracts the captured executable
files to the %AppData% user directory.

To force MSI deployments for individual users

nn

From the command line, type the msiexec /i <database>.msi ALLUSERS="" command.

To force MSI deployments for all users on a machine

From the command line, type the msiexec /i <database>.msi ALLUSERS=1 command.

Override the MSI Installation Directory

When ThinApp performs an individual machine MSI deployment, the default installation directory is the
localized equivalent of %ProgramFilesDir%\<inventory_name> (VMware ThinApp).If you install a Firefox
package for each machine, the package resides in %ProgramFilesDir%\Mozilla Firefox (VMware ThinApp).

When ThinApp performs an MSI deployment for individual users, the default installation directory is
%AppData%\<inventory_name> (VMware ThinApp).

In both cases, you can override the installation directory by passing an INSTALLDIR property to the msiexec
command.

VMware, Inc.

Chapter 3 Deploying Applications

To override the MSI installation directory

From the command line, type the msiexec /i <database>.msi
INSTALLDIR=C:\<my_directory>\<my_package> command.

Deploying MSI Files on Microsoft Vista

When you deploy MSI files on Vista, you must indicate whether an installer needs elevated privileges. Typical
individual user installations do not require elevated privileges but individual machine installations require
such privileges. ThinApp provides the MSIRequireElevatedPrivileges parameter in the Package.ini file
that specifies the need for elevated privileges when the value is set to 1. Specifying a value of 1 for this
parameter or forcing an individual user installation from the command line can generate UAC prompts.
Specifying a value of 0 for this parameter prevents UAC prompts but the deployment fails for machine-wide
installations.

Controlling Application Access with Active Directory

You can control access to applications using Active Directory groups. When you build a package, ThinApp
converts Active Directory group names into Security Identifier (SID) values. A SID is a small binary value that
uniquely identifies an object. SID values are not unique for a few groups, such as the administrator group.
Because ThinApp stores SID values in packages for future validation, the following considerations apply to
Active Directory use:

B You must be connected to your Active Directory domain during the build process and the groups you
specify must exist. ThinApp looks up the SID value during the build.

® If you delete a group and recreate it, the SID might change. In this case, rebuild the package to
authenticate against the new group.

B When users are offline, ThinApp can authenticate them using cached credentials. If the users can log into
their machines, authentication still works. Use a group policy to set the period when cached credentials
are valid.

® Cached credentials might not refresh on clients until the next Active Directory refresh cycle. You can force
a group policy on a client by using the gpupdate command. This command refreshes local group policy,
group policy, and security settings stored in Active Directory. You might need to log off before Active
Directory credentials are recached.

m Certain groups, such as the Administrators group and Everyone group, have the same SID on every
Active Directory domain and workgroup. Other groups you create have a domain-specific SID. Users
cannot create their own local group with the same name to bypass authentication.

Package.ini Entries for Active Directory Access Control

ThinApp provides the PermittedGroups parameter in the Package. ini file to control Active Directory
access. When you start a captured application, the PermittedGroups parameter checks whether a user is a
member of a specified Active Directory group. If the user is not a member of the Active Directory group,
Thinapp does not start the application. For information about restricting packages to Active Directory groups,
see “PermittedGroups” on page 67.

In the following Package.in1i entry, Appl and App2 inherit PermittedGroups values.
[BuildOptions]

PermittedGroups=Administrators;0fficeUsers
[Appl.exe]

[App2.exe]

VMware, Inc. 31

ThinApp User’s Guide

In the following entry, only users belonging to the Applusers group can use the App1l. exe file, and members
of the Everyone group can use the App2 . exe file. The default message for denied users changes for Appl.

[BuildOptions]

PermittedGroups=Everyone

[Appl.exe]

PermittedGroups=ApplUsers

AccessDeniedMsg=Sorry, you can’t run this application

[App2.exe]

Using ThinApp Packages Streamed from the Network

32

Any network storage device can serve as a streaming server for hundreds or thousands of client computers.
See Figure 3-1.

Figure 3-1. Data Block Streaming over a Network Share
o
Jill's
Sandbox

Sam’s
Sandbox

Joe’s
Sandbox

shared folder

On the end-user desktop, you can create shortcuts that point to the centrally hosted executable file packages.
When the user clicks the shortcut, the application begins streaming to the client computer. During the initial
streaming startup process, the ThinApp status bar informs the user of the progress.

How ThinApp Application Streaming Works

When you place compressed ThinApp executable files on a network share or USB flash drive, the contents
from the executable file stream to client computers in a block-based fashion. As an application requests specific
parts of data files, ThinApp reads this information in the compressed format over the network using standard
Windows file sharing protocol. For a view of the process, see Figure 3-2.

After a client computer receives data, ThinApp decompresses the data directly to memory. Because ThinApp does
not write data to the disk, the process is fast. A large package does not necessarily take a long time to load over
the network and the package size does not affect the startup time of an application. If you add an extra 20GB
file to a package that is not in use at runtime, the package loads at the same speed. If the application opens and
reads 32KB of data from the 20GB file, ThinApp only requests 32KB of data.

The ThinApp runtime client is a small part of the executable file package. When ThinApp loads the runtime
client, it sets up the environment and starts the target executable file. The target executable file accesses other
parts of the application stored in the virtual operating system. The runtime client intercepts such requests and
serves them by loading DLLs from the virtual operating system.

VMware, Inc.

Chapter 3 Deploying Applications

The load time of the runtime client across a network is a few milliseconds. After ThinApp loads the runtime
client to memory on the client computer, the end-user computer calculates which blocks of data are required
from the server and reads them based on application activity.

When the application makes subsequent read requests for the same data, the Windows disk cache provides
data without requiring a network read operation. If the client computer runs low on memory, Windows
discards some of its disk cache and provides the memory resource to other applications.

Figure 3-2. Application Streaming

packaged executable

VMware ThinApp VOS

local PC

virtual registry

compressed file

decompressed

64KE (Block 1) Ethernet (Block1)

Eg S
64KB (Block 2)

l*l

decompressed
(Block 2)

64KB (Block 3)

64KB (Block 4)

64KB (Block 5)

Requirements and Recommendations for Streaming Packages

ThinApp does not require specific server software to provide streaming capability. Any Windows file share,
NAS device, or SMB share can provide this capability. The amount of data that needs to transfer before the
application can begin running varies for each application. Microsoft Office requires that only a fraction of the
package contents stream before an application can run.

VMware recommends that you use ThinApp streaming in a LAN-based environment with a minimum of
100MB networks. For WAN and Internet deployments that involve frequent or unexpected disconnections,
VMware recommends one of the following solutions:

® Use a URL to deploy the applications.

® Use a desktop deployment solution to push the package to the background. Allow the application to run
only after the entire package downloads.

These solutions reduce failures and eliminate situations in which the application requires unstreamed
portions during a network outage. A company with many branch offices typically designates one application
repository that mirrors a central shared folder at each branch office. This setup optimizes local performance
for client machines located at each branch office.

VMware, Inc. 33

ThinApp User’s Guide

Security Recommendations for Streaming Packages

VMware recommends that you make a central shared directory for the package read-only. Users can read the
package contents but not change the executable file contents. When a package streams from a shared location,
ThinApp stores application changes in the user sandbox. The default sandbox location is
%AppData%\Thinstall\<application_name>. You can configure the sandbox location at runtime or at
package time.

A common configuration is to place the user sandbox on another central storage device. The user can use any
computer and retain individual application settings at a central share. When packages stream from a central
share, they remain locked until all users exit the application.

Stream ThinApp Packages from the Network

Users can access packaged applications through the network.

To stream packages from the network
1 Place the ThinApp package in a location accessible to client computers.

2 Send a link to users to run the application directly.

Using Captured Applications with Other System Components

Captured applications can interact with other components installed on the desktop.

Performing Paste Operations
Review the following paste operations and limitations with ThinApp:

® Pasting content from system installed applications to captured applications — This paste operation is
unlimited. The virtual application can receive any standard clipboard formats, such as text, graphics, and
HTML. The virtual application can receive OLE objects.

® Pasting from captured applications to system applications — ThinApp converts OLE objects created in
virtual applications to system native objects when you paste them into native applications.

Accessing Printers

A captured application has access to any printer installed on the computer that it is running on. Captured
applications and applications installed on the physical system have the same printing ability.

You cannot use ThinApp to virtualize printer drivers. You must manually install printer drivers on a computer.

Accessing Drivers

A captured application has full access to any device driver installed on the computer that it is running on.
Captured applications and applications installed on the physical system have the same relationship with
device drivers. If an application requires a device driver, you must install the driver separately from the
ThinApp package.

In some cases, an application without an associated driver might function with some limitations. For example,
Adobe Acrobat installs a printer driver that allows applications system wide to render PDF files using a print
mechanism. When you use a captured version of Adobe Acrobat, you can use it to load, edit, and save PDF
files without the printer driver installation. Other applications do not detect a new printer driver unless the
driver is installed.

34 VMware, Inc.

Chapter 3 Deploying Applications

Accessing the Local Disk, the Removable Disk, and Network Shares

When you create a project structure, ThinApp configures isolation modes for directories and registry subtrees.
The isolation modes control which directories the application can read and write to on the local computer.
Review the default configuration options:

® Hard disk — An example of a hard disk is C: \. Isolation modes selected during the capture process affect
access. Users can write to their Desktop and My Documents folders. Other modifications that the
application makes go into the user sandbox. The default location of the sandbox is in the Application
Data directory.

B Removable disk — By default, any user who has access rights can read or write to any location on a
removable disk.

® Network mapped drives — By default, any user who has access rights can read or write to any location on
a network mapped disk.

® UNC network paths — By default, any user who has access rights can read or write to any location on a
UNC network path.

Accessing the System Registry

By default, captured applications can read the full system registry as permitted by access permissions. Specific
parts of the registry are isolated from the system during the package creation process. This isolation reduces
conflicts between different versions of virtual applications and system-installed applications. By default,
ThinApp saves all registry modifications from captured applications in an isolated sandbox and the system
remains unchanged.

Accessing Networking and Sockets

Captured applications have standard access to networking capability. Captured applications can bind to local
ports and make remote connections if the user has access permissions to perform these operations.

Using Shared Memory and Named Pipes

Captured applications can interact with other applications on the system by using shared memory, named
pipes, mutex objects, and semaphores.

ThinApp can isolate shared memory objects and synchronization objects. This isolation makes them invisible
to other applications, and other application objects are invisible to a captured application.

Using COM, DCOM, and Out-of-Process COM Components

Captured applications can create COM controls from the virtual environment and the system. If a COM
control is installed as an out-of-process COM, the control runs as a virtual process when a captured application
uses it. You can control modifications that the captured applications make.

Starting Services

Captured applications can start and run system-installed services and virtual services. System services run in
the virtual environment that controls the modifications that the services can make.

Using File Type Associations

Captured applications can run system-installed applications by using file type associations. You can add file
type associations to the local computer registry to point to captured executable files for individual users and
machines.

VMware, Inc. 35

ThinApp User’s Guide

Sample Isolation Mode Configuration Depending on Deployment
Context

36

Isolation modes control the read and write access for specific system directories and system registry subkeys.

See “Modifying Isolation Modes” on page 23.

You can adjust isolation modes to resolve the problems in Table 3-2.

Table 3-2. Sample Problems and Solutions That Use Isolation Modes

Problem

An application fails to run because
previous or future versions exist
simultaneously or fail to uninstall

properly.

Solution

Use the Full isolation mode.

ThinApp hides host computer files and registry keys from the application
when the host computer files are located in the same directories and
subkeys that the application installer creates.

For directories and subkeys that have Full isolation, the applications only
detect virtual files and subkeys. Any system values that exist in the same
location are invisible to the application.

An application fails because users did not
design or test it for a multiuser
environment. The application fails to
modify files and keys without affecting
other users.

Use the WriteCopy isolation mode.

ThinApp makes copies of registry keys and files that the application writes
and performs all the modifications in a user-specific sandbox.

For directories and subkeys that have WriteCopy isolation, the application
recognizes the host computer files and virtual files. All write operations
convert host computer files into virtual files in the sandbox.

An application fails because it has write
permission to global locations and is not
designed for a locked-down desktop
environment found in a corporate setting
or on Windows Vista.

Use the WriteCopy isolation mode.

ThinApp makes copies of registry keys and files that the application writes
and performs all the modifications in a user-specific sandbox.

For directories and subkeys that have WriteCopy isolation, the application
recognizes the host computer files and virtual files. All write operations
convert host computer files into virtual files in the sandbox.

View of Isolation Mode Effect on the Windows Registry

Figure 3-3 shows a section of the Windows registry for a computer that has older Microsoft Office applications
installed. Microsoft Office 2003 creates the HKEY_LOCAL_MACHINE\Software\Microsoft\Office\11.0

registry subtree.

Figure 3-3. Windows Registry as seen by Windows Regedit

[0DBC

- ST

. m-{d10.0

L om[11.0
+-18.0
+{J9.0
EI Common
#-_] Delivery
#- 1 Live Meeting
#-1 Outlook
C] PowerPoint

i.[] Visio

When ThinApp runs a captured version of Microsoft Visio 2007, ThinApp sets the
HKLM\Software\Microsoft\Office registry subtree to full isolation. This setting prevents
Microsoft Visio 2007 from failing because of registry settings that might preexist on the host computer at the

same location.

VMware, Inc.

Chapter 3 Deploying Applications

Figure 3-4 shows the registry from the perspective of the captured Microsoft Visio 2007.

Figure 3-4. Windows Registry as seen by the captured Microsoft Visio 2007

Vot Fice

VMware, Inc.

=l 12.0

#-[@ll Access Connectivity

[l Common

+-[@ll Registration
-l User Settings

&l Visio

{20 10.0
Ol 11.0
{23 8.0
{23 9.0

| Common

- Delivery
] Live Meeting
1 Outlook

_| PowerPoint

L[] Visio

37

ThinApp User’s Guide

38 VMware, Inc.

Updating Applications

You can update captured applications with different utilities depending on the extent of change and
dependencies on other applications.

This information includes the following topics:

m “Application Updates That the End User Triggers” on page 39

m “Application Updates That the Administrator Triggers” on page 45
B “Automatic Application Updates” on page 47

® “Upgrading Running Applications on a Network Share” on page 48
B “Sandbox Considerations for Upgraded Applications” on page 49

Application Updates That the End User Triggers

ThinApp provides the Application Sync and Application Link utilities to update applications with new
versions or new components. The Application Sync utility updates an entire application package.
The Application Link utility keeps shared components or dependent applications in separate packages.

Application Sync Updates

The Application Sync utility keeps deployed virtual applications up to date. When an application starts with
this utility enabled, the application queries a Web server to determine if an updated version of the executable
file is available. If an update is available, the differences between the existing package and the new package
are downloaded and used to construct an updated version of the package. The updated package is used for
future launches.

The Application Sync utility is useful for major configuration updates to the application. For example, you
might need to update Firefox to the next major version.
Using Application Sync in a Managed or Unmanaged Environment

If you use virtual applications that update automatically in a managed computer environment, do not use the
Application Sync utility because it might clash with other update capabilities.

If an automatic update feature updates an application, the update exists in the sandbox. If the Application Sync
utility attempts to update the application after an automatic application update, the version update stored in
the sandbox take precedence over the files contained in the Application Sync version. The order of precedence
for updating files is the files in the sandbox, the virtual operating system, and the physical machine.

If you have an unmanaged environment that does not update applications automatically, use the Application
Sync utility to update applications.

VMware, Inc. 39

ThinApp User’s Guide

40

Update Firefox 2.0.0.3 to Firefox 3 with Application Sync
This example shows the Application Sync update process for Firefox.

The update process involves editing the Package. ini file. The AppSyncURL parameter requires a URL path.
ThinApp supports HTTPE, HTTPS, and file protocols. For information about all Application Sync parameters,
see “Configuring Application Updates with Application Sync” on page 85.

To update Firefox 2.0.0.3 to Firefox 3
1 Capture Firefox 2.0.0.3 and Firefox 3 into separate packages.
2 Verify that the primary data container name is the same for both packages.

The primary data container, determined during the setup capture process, is the file that contains the virtual
file system and virtual registry. If you have a Firefox 2.0.0.3 package thathasMozilla Firefox 2.0.0.3.exe
as the name of the primary data container, and you have a Firefox 3 package thathasMozilla Firefox 3.dat
as the name of the primary data container, change the name in the Shortcut parameter to a common
name. For example, you can use Firefox.exe as a name.

3 Edit the Package. ini file in each package.
a Open the Package. ini file located in the captured application folder.

For example, a Firefox 2.0.0.3 path to the Package. ini file might be C:\Program
Files\VMware\VMware ThinApp\Captures\Mozilla Firefox 2.0.0.3\Package.ini.

b Uncomment the Application Sync parameters you want to edit by removing the semicolon at the
beginning of the line.

You must uncomment the AppSyncURL parameter to enable the utility.
¢ Change the value of the parameters and save the file.

For example, you can copy an executable file of the latest Firefox version to a mapped network drive
and enter a path to that location as the value of the AppSyncURL parameter. If Z: is the mapped drive
and Firefox is the name of the directory that stores the executable file, a sample path is
file:///Z:/Firefox/Firefox.exe.

Make sure the AppSyncURL path is the same in both Package. ini files and points to the updated
version.

4 In the captured application folder, double-click the build.bat file to rebuild the application package.

For example, a Firefox 2.0.0.3 path to the build.bat file might be C:\Program Files\VMware\VMware
ThinApp\Captures\Mozilla Firefox 2.0.0.3\build.bat.

5 To update Firefox 2.0.0.3 to Firefox 3, start the executable file, such as Mozilla Firefox 2.0.0.3.exe,
in the \b1in directory.

When you start the application before the expiration time set in the AppSyncExpirePeriod parameter of
the Package. ini file, ThinApp downloads the update in the background as you work with the
application. The next time you start the application, you can see the updated version.

When you start the application after the package expires, ThinApp downloads the update in the
foreground and prevents you from working with the application. When the download is ready, ThinApp
restarts the application with the new version.

Fix an Incorrect Update with Application Sync

If you have multiple Application Sync download updates, such as multiple Microsoft Office updates, and a
certain update has an adverse affect or needs to be withdrawn, you can address the problem.

To fix an incorrect update
Place the correct update on the server that ThinApp can access.

The update is applied the next time the application is started on a client machine.

VMware, Inc.

Chapter 4 Updating Applications

Application Sync Effect on Entry Point Executable Files

The Application Sync utility updates entry point executable files. For example, assume you deploy a Microsoft
Office 2007 package that does not include Microsoft PowerPoint. The Microsoft Office PowerPoint

2007 . exe entry point does not exist for the original package. If you rebuild the Microsoft Office 2007 package
to include Microsoft PowerPoint, and you use the Application Sync utility to update client machines, the end
users can access an entry point executable file for Microsoft PowerPoint.

Updating thinreg.exe Registrations with Application Sync

If you register virtual applications on the system using thinreg.exe and update applications with the
Application Sync utility, you can update registrations by placing a copy of thinreg.exe, located in
C:\Program Files\VMware\VMware ThinApp, alongside the updated package on the server.

Maintaining the Primary Data Container Name with Application Sync

The Application Sync utility requires that the name of the primary data container, the file that stores virtual
files and registry information, is the same for the old and new versions of an application. For example, you
cannot have an old version with Microsoft Office Excel 2003.exe as the primary data container name
while the new version has Microsoft Office 2007.dat as the primary data container name. To verify the
name of the primary data container, see the ReadOnlyData parameter in the Package.ini file. For more
information about the primary data container, see “Specify Application Shortcuts and Tracking Names” on
page 16.

Application Link Updates

The Application Link utility connects dependent applications at runtime. You can package, deploy, and update
component pieces separately rather than capture all components in the same package. ThinApp supports
linking up to 250 packages at a time. Each package can be any size.

The Application Link utility is useful for the following objects:

® Large shared libraries and frameworks — Link runtime components, such as .NET, JRE, or ODBC drivers,
with dependent applications.

For example, you can link .NET to an application even if the local machine for the application does not
allow the installation of .NET or already has a different version of .NET.

B Add-on components and plug-ins — Package and deploy application-specific components and plug-ins
separately from the base application.

For example, you might separate Adobe Flash Player or Adobe Reader from a base Firefox application
and link the components.

The Application Link utility allows you to deploy a single virtualized Microsoft Office to all users and
deploy individual add-on components for each user.

® Hot fixes and service packs — Link updates to an application and roll back to a previous version if users
experience significant issues with the new version. You can deploy minor patches to applications as a
single file and reduce the need for rollbacks.

The Application Link utility provides bandwidth savings. For example, if you have Microsoft Office 2007
Service Pack 1 and you want to update to Service Pack 2 without Application Link, you would need to
transfer 1.5Gb of data per computer with the deployment of a new Office 2007 Service Pack 2 package.
The Application Link utility transfers just the updates and not the whole package to the computers.

VMware, Inc. 41

ThinApp User’s Guide

View of the Application using Application Link

Figure 4-1 shows the running application with a merged view of the system, the base application, and all
linked components. Files, registry keys, services, COM objects, and environment variables from dependency
packages are visible to the base application.

Figure 4-1. View of the System, Base Application, and Linked Components Using Application Link

= &2 Local Disk (&)
[_] Documents and Settings
System Files = [Program Files
] Common Files
[ComPlus Applications

= &2 Local Disk (C:)
Base Application = D Program Files
[_|Base Application

=l & Local Disk (C:)
Component Package I=/[_] Program Files
[__] Componentl

Application Link

=] € Local Disk (C:)
[Documents and Settings

mesrsstir\ge;;:; =[] Program Files
+ Base Application C] Base Application
+ Component Package D Common Files

[_] ComPlus Applications
(] Componentl

Link a Base Application to the Microsoft .NET Framework

Review this sample workflow to link a base application, MyApp . exe, to a separate package that contains the
Microsoft .NET 2.0 Framework. Make sure the base application capture process does not include the Microsoft
.NET 2.0 Framework. For information about the process of capturing an application, see Chapter 2,
“Capturing Applications,” on page 15.

For information about required and optional Application Link parameters in the Package. ini file, see
“Configuring Dependent Applications with Application Link” on page 84.

To link an application to Microsoft .NET
1 Capture the installation of the .NET 2.0 Framework.

During the capture process, you must select at least one user-accessible entry point.
2 Rename the.exe file that ThinApp produces to a .dat file.

This renaming prevents users from accidentally running the application.

The name of the .dat file you select does not matter because users do not run the file directly. For
example, use dotnet.dat.

3 Save the .NET project to C:\Captures\dotnet.

4 Capture the base application by using the same physical system or virtual machine with the NET
framework already installed.

5 Save the project to C:\Captures\MyApp.

42 VMware, Inc.

Chapter 4 Updating Applications

6 Open the Package.ini file in the captured application folder for the base application.

7 Enable the RequiredAppLinks parameter for the base application by adding the following line after the
[BuildOptions] entry.

RequiredAppLinks=dotnet.dat

Application Link parameters must reference the primary data container of the application you want to
link to. You cannot reference shortcut . exe files because these files do not contain any applications, files,
or registry keys.

8 Rebuild the .NET 2.0 and base application packages.
a Double-click the build.bat file in C:\Captures\MyApp.
b Double-click the build.bat file in C:\Captures\dotnet.
Running these batch files builds separate ThinApp packages.
9 Deploy the applications to an end-user desktop in C:\Program Files\MyApp.

a Copy C:\Captures\MyApp\bin\MyApp.exe to
\\<end_user_desktop>\<Program_Files_share>\MyApp\MyApp.exe.

b Copy C:\Captures\dotnet\bin\cmd.exe to
\\<end_user_desktop>\<Program_Files_share>\MyApp\dotnet.dat.
Set up Nested Links with Application Link

ThinApp supports nested links with the Application Link utility. For example, if Microsoft Office links to a
service pack, and the service pack links to a hot fix, ThinApp supports all these dependencies.

This procedure refers to AppA that requires AppB and AppB that requires AppC. Assume the following folder
layout for the procedure:

B c:\AppFolder\AppA\AppA.exe
B c:\AppFolder\AppB\AppB.exe
B c:\AppFolder\AppC\AppC.exe

For information about setting up required and optional Application Link parameters in this procedure, see
“Configuring Dependent Applications with Application Link” on page 84.

To set up nested links

1 Capture Application A.

2 Inthe Package.ini file, specify Application B as a required or optional application link.
For example, add RequiredLinks=\AppFolder\AppB\AppB. exe to the file.

3 Capture Application B.

4 Inthe Package.ini file for Application B, specify Application C as a required or optional application link.
For example, add RequiredLinks=\AppFolder\AppC\AppC. exe to the file.

5 Capture Application C.

If you start Application A, it can access the files and registry keys of Application B and Application B can
access the files and registry keys of Application C.

VMware, Inc. 43

ThinApp User’s Guide

44

Affecting Isolation Modes with Application Link

ThinApp loads an Application Link layer during application startup and merges registry entries and file
system directories. If ThinApp finds a registry subkey or file system directory that did not previously exist in
the main package or layer that is already merged, ThinApp uses the isolation mode specified in the layer being
loaded. If the registry subkey or file system directory exists in the main package and a layer that is already
merged, ThinApp uses the most restrictive isolation mode specified in any of the layers or main package.
The order of most restrictive to least restrictive isolation modes is Full, WriteCopy, and Merged.

PermittedGroups Effect on Linked Packages

If you link two applications and you specify a value for the PermittedGroups parameter, the user account
used for starting the application must be a member of at least one of the Active Directory groups for this
parameter in the Package. ini files of both applications. For information about the PermittedGroups
parameter, see “Configuring Permissions and Security” on page 66.

Sandbox Changes for Standalone and Linked Packages

Sandbox changes from linked packages are not visible to the base executable file. For example, you can install
Acrobat Reader as a standalone virtual package and as a linked package to the base Firefox application. When
you start Acrobat Reader as a standalone application by running the virtual package and you make changes
to the preferences, ThinApp stores the changes in the sandbox for Acrobat Reader. When you start Firefox,
Firefox cannot detect those changes because Firefox has its own sandbox. Opening a .pdf file with Firefox does
not reflect the preference changes that exist in the standalone Acrobat Reader application.

Import Order for Linked Packages

ThinApp imports linked applications according to the order of applications in the RequiredAppLinks or
OptionalApplLinks parameter. If either parameter specifies a wildcard character that triggers the import of
more than one file, alphabetical order determines which package is imported first.

The OptionalApplLinks parameter might appear as OptionalAppLinks=a.exe;b.exe;plugins*.exe.
Using a.exe and b.exe as sample executable files, ThinApp imports linked packages in the following order:
B Base application

m gd.exe

m b.exe

B Plug-ins loaded in alphabetical order

B Nested plug-ins for a.exe

B Nested plug-ins for b.exe

® Nested plug-ins for the first set of plug-ins in this list

For information about nested links, see “Set up Nested Links with Application Link” on page 43.

File and Registry Collisions in Linked Packages

If the base application and a dependent package linked to the base application contain file or registry entries
at the same location, a collision occurs. When this happens, the order of import operations determines which
package has priority. The last package imported has priority in such cases and the file or registry contents from
that package are visible to the running applications.

VBScript Collisions in Linked Packages

VBScript name collisions might prevent scripts in other imported packages from running. If you link packages
with Application Link and those packages have scripts with the same name, ThinApp places the VBScripts
from the linked packages into a single pool. For scripts with the same name, ThinApp runs the script from the
last imported package and disregards the other script.

VMware, Inc.

Chapter 4 Updating Applications

For example, a base package might contain the a.vbs and b.vbs files and a dependent package might contain
the b.vbs and c.vbs files. Because a filename collision exists between the b. vbs files, the VBScript in the last
imported package specified in a RequiredAppLinks or OptionalAppLinks parameter overrides any
previously imported scripts with the same name. In this case, ThinApp condenses the pool of four .vbs files
into a single pool with the a.vbs file from the base package and b.vbs and c. vbs files from the dependent
package.

VBScript Function Order in Linked Packages

In a pool of VBScripts for packages linked with Application Link, functions in the main bodies of the scripts
run in alphabetical order of the script names. ThinApp callback functions in the scripts run in reverse
alphabetical order of the script names in the pool.

Storing Multiple Versions of a Linked Application in the Same Directory

If the directory holds a linked package, and you add an updated version of the linked package in the same
directory, the Application Link utility detects and uses the updated version.

Using Application Sync For a Base Application and Linked Packages

If you use Application Link to link packages to a base package, and you start the base package, Application
Sync can update only the base package. For example, if you build a Microsoft Office 2007 package with
Application Sync entries in the Package. ini file, build an Adobe Reader package with Application Sync
entries in the Package. in1 file, use Application Link to link the two packages, and start Microsoft Office 2007,
Application Sync only updates Microsoft Office 2007. You can update both Microsoft Office 2007 and Adobe
Reader by starting each application separately.

If you do not update all the applications and link a base application to an expired plug-in, the base application
can still load and use the plug-in.

Application Updates That the Administrator Triggers
ThinApp provides the AppSync.exe and sbmerge. exe utilities for administrators.
The AppSync. exe utility forces an Application Sync update on a client machine.

The sbmerge. exe utility make incremental updates to applications. For example, an administrator might use
the utility to incorporate a plug-in for Firefox or to change the home page of a Web site to point to a different
default site.

Forcing an Application Sync Update on Client Machines

You can use the AppSync command to force an Application Sync update on a client machine. You might want
to update a package stored in a location where standard users do not have write access. In this situation, you
cannot use Application Sync parameters to check for updates when an application starts because users do not
have the required rights to update the package. You can schedule a daily AppSync. exe run under an account
with sufficient privileges. The Application Sync parameters, such as AppSyncUpdateFrequency, in the
Package.ini file do not affect the AppSync command.

To force an Application Sync update, use the AppSync <Application_Sync_URL>
<executable_file_path> command. The value of the URL is the same as the Application Sync URL in the
Package. ini file and the executable file path is the path to the executable file that requires the update.

Updating Applications with Runtime Changes

The sbmerge. exe utility merges runtime changes recorded in the application sandbox back into a ThinApp
project. A typical workflow for this utility involves the following tasks:

® Capturing an application.

B Building the application with the build.bat file.

VMware, Inc. 45

ThinApp User’s Guide

46

B Running a captured application and customizing the settings and virtual environment. ThinApp stores
the changes in the sandbox.

B Running the sbmerge. exe utility to merge registry and file system changes from the sandbox into the
ThinApp project.

B Rebuilding the captured application with the build.bat file

B Deploying the updated application.

Merge Sandbox Changes with Firefox

This procedure for the sbmerge. exe utility uses Firefox 2.0.0.3 as an example of a captured application.

To merge sandbox changes with Firefox 2.0.0.3
1 Capture Firefox 2.0.0.3.
2 Double-click the build.bat file in the captured application folder to rebuild the application package.

For example, a Firefox 2.0.0.3 path to the build.bat file might be C:\Program Files\VMware\VMware
ThinApp\Captures\Mozilla Firefox 2.0.0.3\build.bat.

3 Create a Thinstall directory in the bin directory for the sandbox location.
4 Start Firefox and make a change to the settings.
For example, change the home page.
5 From the command line, navigate to the directory where the ThinApp project folder resides.

For example, navigate to C:\Program Files\VMware\VMware ThinApp\Captures\Mozilla
Firefox 2.0.0.3.

6 From the command line, type the "C:\Program Files\VMware\VMware ThinApp\sbmerge™" Print
command.

ThinApp prints the changes that affected the sandbox folder when using the captured application.

7 From the command line, type the "C:\Program Files\VMware\VMware ThinApp\sbmerge™ Apply
command.

ThinApp empties the Thinstall folder and merges the sandbox changes with the application.

sbmerge.exe Commands

The sbmerge.exe Print command displays sandbox changes and does not make modifications to the
sandbox or original project.

The sbmerge.exe Apply command merges changes from the sandbox with the original project. This
command updates the project registry and file system to reflect changes and deletes the sandbox directory.

Usage

"C:\Program Files\VMware\VMware ThinApp\sbmerge" Print [<optional_parameters>]
"C:\Program Files\VMware\VMware ThinApp\sbmerge" Apply [<optional_parameters>]

VMware, Inc.

Optional Parameters

Chapter 4 Updating Applications

The optional sbmerge. exe parameters specify project and sandbox paths and block progress messages and

merging of sandbox files.

Parameter

—ProjectDir <project_path>

Description

If you start the sbmerge . exe command from a location other than the application
project folder, use the absolute or relative path to the project directory using the
—-ProjectDir <project_path> parameter. A sample command is "C:\Program
Files\VMware\VMware ThinApp\sbmerge" Print -ProjectDir

"C:\<project_folder_path>"".

-SandboxDir <sandbox_path>

When you start a captured application, it searches for the sandbox in a particular
order. See “Search Order for the Sandbox” on page 95.

If you use a custom location for the sandbox, use the ~SandboxDir
<sandbox_path> parameter to specify the location.

—Quiet

Blocks the printing of progress messages.

—-Exclude <excluded_file>.ini

Prevents the merging of specific files or registry entries from the sandbox.

You can specify a . ini file to determine the content for exclusion. This file
contains separate sections to specify files, such as the FileSystemIgnorelList
and the RegistryIgnorelist.

The sbmerge. exe utility uses the snapshot. ini file in the ThinApp installation
folder by default to exclude certain content from the merge process. This option
allows you to specify another . 1ini file to ensure additional exclusion of content.

Automatic Application Updates

If an application can update automatically, its update mechanism functions with ThinApp. If the application

downloads the update and runs an installer or patching program, this activity occurs inside the virtual
environment and ThinApp stores the changes from the update software in the sandbox. When the application
restarts, it uses the version of the executable file in the sandbox and not the executable file from the original

package.

For example, if you capture Firefox 1.5, your autoupdate mechanism might prompt you to upgrade to Firefox 2.0.
If you proceed with the upgrade, the application downloads the updates, writes the updates to the sandbox,
and prompts you to restart the application. When you run the captured application again, Firefox 2.0 starts.

If you delete the sandbox, Firefox reverts back to version 1.5.

To merge changes that an auto-update mechanism makes with the original package to build an updated
executable file, use the sbmerge. exe utility. See “Application Updates That the Administrator Triggers” on

page 45.

NOTE If you use the Application Sync utility to perform application updates, disable the auto-update
capabilities of the application. See “Using Application Sync in a Managed or Unmanaged Environment” on

page 39.

Dynamic Updates Without Administrator Rights

You can update applications dynamically without requiring administrator rights. For example, NET-based
applications that download new DLL files from the Internet as part of their update process must run the
ngen. exe file to generate native image assemblies for startup performance. In typical circumstances, the
ngen. exe file writes to HKLM and C: \WINDOWS, both of which are only accessible with administrator accounts.
With ThinApp, the ngen. exe file can install native image assemblies on guest user accounts but stores changes

in a user-specific directory.

VMware, Inc.

47

ThinApp User’s Guide

You can update the package on a central computer and push the changes to client machines or central network
shares as a new captured executable file. Use one of the following options for applying updates:

B During the setup capture process.
B Inside the virtual environment.

Applications with auto-update capabilities can undergo updates. If the update is a patch. exe file, the
patch program can run in the virtual environment and run from a cmd . exe file entry point. Changes occur
in the sandbox during automatic updates or manual updates to allow you to revert to the original version
by deleting the sandbox.

If you apply patches in the virtual environment on a central packaging machine, you can use the
sbmerge. exe utility to merge sandbox changes made by the update with the application. See
“Application Updates That the Administrator Triggers” on page 45.

B In the captured project.

If you must update a small set of files or registry keys, replace the files in the captured project.
This approach is useful for software developers who integrate ThinApp builds with their workflow.

Upgrading Running Applications on a Network Share

ThinApp allows you to upgrade or roll back an application that is running on a network share for multiple
users. The upgrade process occurs when the user quits the application and starts it a second time. In Terminal
Server environments, you can have multiple users executing different versions at the same time during the
transition period.

File Locks

Starting an application locks the executable file package. You cannot replace, delete, or move the application.
This file lock ensures that any computer or user who accesses a specific version of an application continues to
have that version available as long as the application processes and subprocesses are running.

If you store an application in a central location for many users, this file lock prevents administrators from
replacing a packaged executable file with a new version until all users exit the application and release their
locks.

Upgrade a Running Application

You can copy a new version of an application into an existing deployment directory with a higher filename
extension, such as .1 or .2. This procedure uses Firefox as a sample application.

You do not need to update shortcuts.

To upgrade a running application

1 Deploy the original version of the application, such as Firefox.exe.

2 Copy the application to a central share at \\<server>\<share>\Firefox.exe.
A sample location is C:\Program Files\Firefox\Firefox.exe.

3 Create a desktop or Start menu shortcut to the user’s desktop that points to a shared executable file
location at \\<server>\<share>\Firefox.exe.

Assume two users start Firefox.exe and lock the application.
4 Copy the updated version of Firefox.exe to the central share at \\<server>\<share>\Firefox.1.

If you are a new user, ThinApp launches the application with the new package data in Firefox.1.If you
are a user working with the original version, you can see the new version after you exit the application
and restart the application.

48 VMware, Inc.

Chapter 4 Updating Applications

5 If you must deploy a more current update of Firefox, place it in the same directory with a higher number
at the end.

6 Copy Version 2.0 of Firefox.exe to central share at \\<server>\<share>\Firefox.2

After Firefox.1is unlocked, you can delete it, but Firefox.exe should remain in place because the user
shortcuts continue to point there. ThinApp always uses the filename that has the highest version number.
If you must roll back to an earlier version and the most recent version is still locked, copy the old version so
that it has the highest version number.

Sandbox Considerations for Upgraded Applications

When you upgrade an application, you can control whether users continue to use their previous settings by
keeping the sandbox name consistent in the Package. ini file. You can prevent users from using an older
sandbox with an upgraded application by packaging the upgraded application with a new name for the
sandbox. Starting the upgraded application the first time creates the sandbox with the new name.

VMware, Inc. 49

ThinApp User’s Guide

50 VMware, Inc.

Monitoring and Troubleshooting
ThinApp

You can use Log Monitor to generate trace files and troubleshoot the ThinApp environment. Log Monitor is

compatible only with an application captured using the same version of ThinApp.

This information includes the following topics:

“Providing Information to Technical Support” on page 51
“Log Monitor Operations” on page 51

“Troubleshooting Specific Applications” on page 58

Providing Information to Technical Support

VMware Technical support requires the following information from you to troubleshoot a ThinApp

environment:

B Step-by-step reproduction of the procedure you performed when you encountered the problem.

B Information on the host configuration. Specify the Windows operating system, the use of Terminal Server
or Citrix Xenapp, and any prerequisite programs that you installed on the native machine.

m Copies of the Log Monitor trace files. See “Log Monitor Operations” on page 51.

® Exact copy of the capture folder and all content. Do not include the compiled executable files from the
/bin subfolder.

B Description of the expected and accurate behavior of the application.

® (Optional) Copies of the applications that you captured. Include the server components configuration for
Oracle Server or Active Directory.

m (Optional) Native or physical files or registry key settings that might be relevant to the problem.

m (Optional) System services or required device drivers.

® (Optional) Virtual machine that reproduces the defect. VMware support might request this if the support
contact is unable to reproduce the problem.

® (Optional) One or more WebEx sessions to facilitate debugging in your environment.

Log Monitor Operations

Log Monitor captures detailed chronological activity for executable files that the captured application starts.
Log Monitor intercepts and logs names, addresses, parameters, and return values for each function call by
target executable files or DLLs. Log Monitor captures the following activity:

VMware, Inc.

Win32 API calls from applications running in the ThinApp virtual operating system.
Potential errors, exceptions, and security events within the application.

All DLLs loaded by the application and address ranges.

51

ThinApp User’s Guide

52

The generated log files can be large and over 100MB depending on how long the application runs with Log
Monitor and how busy an application is. The only reason to run Log Monitor for an application is to capture
trace files. Trace files are critical for troubleshooting problems by analyzing and correlating multiple entries
within the trace file.

Troubleshoot Activity with Log Monitor

You can use Log Monitor to perform basic troubleshooting.

To troubleshoot ThinApp logs
1 Shut down the captured application to investigate.

2 On the computer where you captured the application, select Start > Programs > VMware > ThinApp Log
Monitor.

To start Log Monitor on a deployment machine, copy the log_monitor.exe, logging.dll, and Setup
Capture.exe files from C:\Program Files\VMware\VMware ThinApp to the deployment machine and
double-click the log_monitor.exe file.

3 Start the captured application.

As the application starts, a new entry appears in the Log Monitor list. Log Monitor shows one entry for
each new trace file. Each file does not necessarily correspond with a single process.

4 Terminate the application as soon as it encounters an error.
5 Generate logs for each trace file you want to investigate.

a Select the . trace file in the list.

b Click Generate text trace report.

Child processes that the parent process generates reside in the same log. Multiple independent processes
do not reside in the same log.

ThinApp generates a . trace file. Log Monitor converts the binary . trace file into a . txt file.

6 (Optional) Open the . txt file with a text editor and scan the information. In some circumstances, the . txt
file is too large to open with the text editor.

7 Zip the .txt files and send the files to VMware support.

Perform Advanced Log Monitor Operations

Advanced operations in Log Monitor include stopping applications or deleting trace files. If an application is
busy or experiencing slow performance with a specific action, you can perform suspend and resume
operations to capture logs for a specific duration. The resulting log file is smaller than the typical log file and
easier to analyze. Even when you use the suspend and resume operations, the root cause of an error might
occur outside of your duration window. Suspend and resume operations are global and affect all applications.

For more information about using these options, contact VMware support.

To perform advanced Log Monitor operations
1 Shut down the captured application to investigate.

2 On the computer where you captured the application, select Start > Programs > VMware > ThinApp Log
Monitor.

To start Log Monitor on a deployment machine, copy the log_monitor.exe, logging.dll, and Setup
Capture.exe files from C:\Program Files\VMware\VMware ThinApp to the deployment machine and
double-click the Llog_monitor.exe file.

VMware, Inc.

Chapter 5 Monitoring and Troubleshooting ThinApp

(Optional) Capture logs for a specific duration to troubleshoot an exact issue.
a Select the Suspend check box.

b Start the captured application and let it run to the point where the error occurs or the performance
problem starts.

¢ InLog Monitor, deselect the Suspend check box to resume the logging process.
You can check the application behavior to isolate the issue.

d Select the Suspend check box to stop the logging process.

(Optional) Select a file in the trace file list to delete and click Delete File.

(Optional) Click Kill App to stop a running process.

(Optional) Click the Compress check box to decrease the size of a trace file.

This operation slows the performance of the application.

(Optional) Generate a trace file report.

a Select a trace file in the file list, enter a trace filename, or click Browse to select a trace file on your
system.

b (Optional) Enter or change the name of the output report.
¢ Click Generate text trace report to create a report.

You can view the file with a text editor that supports UNIX-style line breaks.

Locating Errors

ThinApp logging provides a large amount of information. The following tips might help advanced users
investigate errors:

VMware, Inc.

Look at the Potential Errors Detected section of the . txt trace file.

Entries might not indicate errors. ThinApp lists each Win32 API call where the Windows error code
changed.

Look at exceptions that the applications generate.

Exceptions can indicate errors. Exception types include C++ and .NET. The trace file records the exception
type and DLL that generates the exception. If the application, such as a .NET or Java application, creates
an exception from self-generating code, the trace file indicates an unknown module.

The following example is a .trace entry for an exception.
*%% Exception EXCEPTION_ACCESS_VIOLATION on read of 0x10 from unknown_module:0x7c9105f8

If you find an exception, scan the earlier part of the trace file for the source of the exception. Ignore the
floating point exceptions that Virtual Basic 6 applications generate during typical use.

Look at child processes.

Log Monitor produces one . trace file for each process. If an application starts several child processes,
determine which process is causing the problem. In some cases, such as circumstances involving
out-of-process COM, a parent application uses COM to start a child process, runs a function remotely, and
continues to run functions.

When you run applications from a network share that generates two processes, ignore the first process.

ThinApp addresses the slow performance of Symantec antivirus applications by restarting processes.

53

ThinApp User’s Guide

54

Search for the error message displayed in dialog boxes.

Some applications call the MessageBox Win32 API function to display unexpected errors at runtime. You
can search a trace file for MessageBox or the contents of the string displayed in the error and determine
what the application was running just before the dialog box appeared.

Narrow the focus on calls originating from a specific DLL and thread.

The log format specifies the DLL and thread that makes a call. You can often ignore the calls from system
DLLs.

Log Format

A trace file includes the following sections:

System configuration

This section includes information about the operating system, drives, installed software, environment
variables, process list, services, and drivers.

The information starts with a Dump started on string and ends with a Dump ended on string.
Header

This section shows contextual information for the instance of the process that Log Monitor tracks. Some
of the displayed attributes show logging options, address ranges when the operating system runtime is
loaded, and macro mapping to actual system paths.

ThinApp marks the beginning of the header section with sequence number 000001. In typical
circumstances, ThinApp marks the end of this section with a message about the Application Sync utility.

Body

This section includes trace activity as the application starts and performs operations. Each line represents
function calls that target executable files or one of the DLLs make.

The section starts with a New Modules detected in memory entry followed by the SYSTEM_LOADED
modules list. The section ends with a Modules Loaded entry.

Summary

This section includes modules that the captured application loads, potential errors, and a profile of the
150 slowest calls.

The section starts with the Modules Loaded message.

General APl Log Message Format

The following message shows a format example for API calls.

000257 0a88 mydll.d1ll :4ad0576d->kernel32.d11:7c81b1f® SetConsoleMode (IN HANDLE
hConsoleHandle=7h, IN DWORD dwMode=3h)
000258 0a88 mydll.d1ll :4ad0576d<-kernel32.d11:7c81b1f® SetConsoleMode ->BOOL=1h ()

This example includes the following entries:

000257 indicates the log entry number. Each log entry has a unique number.

0a88 indicates the current running thread ID. If the application has one thread, this number does not
change. If two or more threads record data to the log file, you might use the thread ID to follow
thread-specific sequential actions because ThinApp records log entries in the order in which they occur.

mydl1l.d11 indicates the DLL that makes the API call.

4ad0576d indicates the return address for the API call that myd11.d11 makes. In typical circumstances,
the return address is the address in the code where the call originates.

—> indicates the process of entering the call. For the call entry log element, ThinApp displays the input
parameters. These parameters are in and in/out parameters.

VMware, Inc.

Chapter 5 Monitoring and Troubleshooting ThinApp

B <-indicates the process of the call returning to the original caller. For call exit log entries, ThinApp
displays the output parameters. These parameters are out and in/out parameters.

m kernel32.dl1l indicates the DLL where the API call lands.

B 7c81b1f0 indicates the address of the API inside kernel32 where the call lands. If you disassemble
kernel32.d11 at the 7c81b1f0 address, you locate the code for the SetConsoleMode function.

B —>BOOL=1h indicates the API returns the value of 1 and the return code has the BOOL type.

Application Startup Information

The following entries shows basic information about the application, such as the module name and
process ID (PID), and about Log Monitor, such as the version and options.

000001 0a88 Logging started for Module=C:\test\cmd_test\bin\cmd.exe
Using archive=

PID=0xec

CommandLine = cmd

000002 0a88 Logging options: CAP_LEVEL=9 MAX_CAP_ARY=25 MAX_CAP_STR=150
MAX_NEST=100

VERSION=3.090

000003 0a88 System Current Directory = C:\test\cmd_test\bin Virtual Current Directory =
C:\test\cmd_test\bin

000004 0a88 |start_env_var| =::=::\

000005 0a88 |start_env_var| =C:=C:\test\cmd_test\bin

000006 0a88 |start_env_var| =ExitCode=00000000

000007 0a88 |start_env_var| ALLUSERSPROFILE=C:\Documents and Settings\All Users.WINDOWS

List of DLLs Loaded into Memory During Runtime

The Modules loaded section is located near the end of the log file and describes the DLLs that are loaded into
memory at runtime and the DLL addresses. The information shows whether Windows or ThinApp loads the
DLLs.

This example includes a summary of the length of the longest calls and the following entries:
B SYSTEM_LOADED indicates that Windows loads the DLL. The file must exist on the disk.

® MEMORY_MAPPED_ANON indicates that ThinApp loads the DLL. ThinApp might load the file from the
virtual file system.

B 46800000-46873fff indicates the address range in virtual memory where the DLL resides.

® PRELOADED_BY_SYSTEMand PRELOADED_MAP are duplicate entries and refer to the memory address range
where the executable image file is mapped into memory.

——-Modules loaded —-

PRELOADED_MAP 00400000-00452fff, C:\Program Files\Adobe\Reader
8.0\Reader\AcroRd32.exe

PRELOADED_BY_SYSTEM 00400000-00452fff, C:\Program Files\Adobe\Reader
8.0\Reader\AcroRd32.exe

SYSTEM_LOADED 00400000-00452fff, C:\test\AcroRd32.exe
MEMORY_MAPPED_ANON 013b0000-020affff, C:\Program Files\Adobe\Reader
8.0\Reader\AcroRd32.d11

———-Timing Report: list of slowest 150 objects profiled -——
8255572220 total cycles (2955.56 ms): |sprof| thinapp_LoadlLibrary2
765380728 cycles (274.01 ms) on log entry 21753

428701805 cycles (153.48 ms) on log entry 191955
410404281 cycles (146.93 ms) on log entry 193969

VMware, Inc. 55

ThinApp User’s Guide

56

. 438 total calls
7847975891 total cycles (2809.64 ms): |sprof| ts_load_internal_module
764794646 cycles (273.80 ms) on log entry 21753
426837866 cycles (152.81 ms) on log entry 191955
408570540 cycles (146.27 ms) on log entry 193969

. 94 total calls
4451728477 total cycles (1593.76 ms): |sprof| ts_lookup_imports
544327945 cycles (194.87 ms) on log entry 21758
385149968 cycles (137.89 ms) on log entry 193970
187246661 cycles (67.04 ms) on log entry 190210

. 34 total calls
1099873523 total cycles (393.76 ms): |sprof| new_thread_start
561664565 cycles (201.08 ms) on log entry 151922
531551734 cycles (190.30 ms) on log entry 152733
1619002 cycles (0.58 ms) on log entry 72875

Potential Errors

The Potential Errors Detected section marks log entries that might post problems with three asterisks
(***). For information about interpreting this section, see “Locating Errors” on page 53.

————Potential Errors Detected ——-

006425 0000075c LoadLibraryExW 'C:\Program Files\Adobe\Reader
8.0\Reader\Microsoft.Windows.Common-Controls.DLL' flags=2 -> 0 (failed **¥*)
006427 0000075c LoadLibraryExW 'C:\Program Files\Adobe\Reader

8.0\Reader\Microsoft.Windows.Common-Controls\Microsoft.Windows.Common-Controls.DLL' flags=2
—> 0 (failed **¥*)

006428 0000089c nview.dll :1005b94b<-kernel32.dl1:7c80aed4b *** LoadLibraryW -
>HMODULE=7c800000h () *** GetLastError() returns 2 [0]: The system cannot find the file
specified.

007062 0000075c LoadLibraryExW 'C:\Program Files\Adobe\Reader
8.0\Reader\en-US\Microsoft.Windows.Common—-Controls.DLL' flags=2 —> 0 (failed ***)
010649 0000075c LoadLibraryExW 'C:\Program Files\Adobe\Reader

8.0\Reader\en-US\Microsoft.Windows.Common-Controls\Microsoft.Windows.Common-Controls.DLL"
flags=2 —> 0 (failed **%*)

019127 0000075c MSVCR80.d11l :781348cc<-msvcrt.dll :77c10396 *** GetEnvironmentVariableA -
>DWORD=0h (OUT LPSTR 1pBuffer=*0h <bad ptr>) *** GetLastError() returns 203 [0]: The system
could not find the environment option that was entered.

019133 0000075c MSVCR80.d1l1l :78133003<-nview.dll :1000058c *** GetProcAddress -

>FARPROC=*0h () *** GetLastError() returns 127 [203]: The specified procedure could not be found.
019435 0000075c MSVCR80.d11l :78136e08<-dbghelp.dll :59a60360 *** Getfile type —>DWORD=0h ()

*%% GetLastError() returns 6 [0]: The handle is invalid.

019500 0000075c MSVCR80.d11l :78134481<-nview.dll :1000058c *** GetProcAddress -

>FARPROC=*0h () *** GetLastError() returns 127 [0]: The specified procedure could not be found.
019530 0000075c MSVCR80.d11l :78131dcd<-dbghelp.dll :59a603al *** GetModuleHandleA -
>HMODULE=0h () *** GetLastError() returns 126 [0]: The specified module could not be found.

Troubleshooting Example for cmd.exe Utility

In the troubleshooting example, ThinApp packages the cmd . exe utility with logging turned on. The example
shows how you can simulate application failure by running an invalid command. If you request the cmd . exe
utility to run the foobar command, the utility generates the foobar is not recognized as an internal
or external command message. You can scan the trace file and check the Potential Errors Detected
section to locate the API functions that modified the GetLastError code.

The example shows the C:\test\cmd_test\bin\foobar.*, C:\WINDOWS\system32\foobar.%*, and
C:\WINDOWS\ foobar paths as the locations where the cmd. exe utility looks for the foobar command.

VMware, Inc.

Chapter 5 Monitoring and Troubleshooting ThinApp

The example shows the %drive_C%\test\cmd_test\bin, %SystemSystem¥%\foobar, and
%SystemRoot%\foobar paths as the locations in the virtual file system that ThinApp probes.

————Potential Errors Detected ——-

**% Unable to determine if any services need to be auto-started, error 2

001550 *** FindFirstFileW ’C:\test\cmd_test\bin\foobar.*’ —> INVALID_HANDLE_VALUE *** fagiled
[system probe C:\test\cmd_test\bin\foobar.* —> ffffffffh][no virtual or system matches]

*%% FindFirstFileW —>HANDLE=ffffffffh .. *** GetLastError() returns 2 [203]: The system cannot
find the file specified.

*%% FindFirstFileW ’C:\test\cmd_test\bin\foobar’ —> INVALID_HANDLE_VALUE *** failed [FS
missing in view O] [fs entry not found %drive_C%\test\cmd_test\bin\foobar][fs entry not found
%drive_C%\test\cmd_test\bin]

%% FindFirstFileW ’C:\WINDOWS\system32\foobar.’ —-> INVALID_HANDLE_VALUE *** failed [system
probe C:\WINDOWS\system32\foobar.* —> ffffffffh][no virtual or system matches]

*%% FindFirstFileW ’C:\WINDOWS\system32\foobar’ —> INVALID_HANDLE_VALUE *** failed [FS missing
in view 0] [fs entry not found %SystemSystem¥%\foobar]

%% FindFirstFileW ’C:\WINDOWS\foobar.’ —> INVALID_HANDLE_VALUE *** fgiled [system probe
C:\WINDOWS\foobar.* —> ffffffffh][no virtual or system matches]

*%% FindFirstFileW ’C:\WINDOWS\foobar’ -> INVALID_HANDLE_VALUE *** fgiled [FS missing in view
0] [fs entry not found %SystemRoot%\foobar]

Perform Advanced Examination for cmd.exe Log Entries

A more thorough examination of an entry from the Potential Errors section of a trace file might involve
searching the full body of the Log Monitor trace file for that specific entry and reviewing the system calls and
conditions leading to the potential error.

For example, the following entry for the cmd. exe utility in the Potential Errors section might require a
more thorough examination throughout the Log Monitor trace file.

001550 *** FindFirstFileW ’C:\test\cmd_test\bin\foobar.*' —> INVALID_HANDLE_VALUE *** failed
[system probe

To perform an advanced examination of the cmd.exe entry

1 To determine why the cmd. exe utility probes c:\test\cmd_test\bin, scan the log for this log entry
number and determine what occurs before this call.

2 To determine the locations where the cmd. exe utility obtains the c:\test\cmd_test path, scan the log
for GetCurrentDirectoryW and GetFullPathNameW entries.

000861 0a88 cmd.exe :4ad01580->USERENV.d1l1l :769c0396 GetCurrentDirectoryW (IN DWORD
nBufferLength=104h)

000862 0a88 GetCurrentDirectoryW —> 0x14 (C:\test\cmd_test\bin)
000863 0a88 cmd.exe :4ad01580<-USERENV.d1l1l :769c0396 GetCurrentDirectoryW —>DWORD=14h
(OUT LPWSTR 1pBuffer=*4AD34400h—>L"C:\test\cmd_test\bin")

000864 0a88 cmd.exe :4ad05b74->o0le32.dll :774e03f0 Getfile type (IN HANDLE hFile=7h)
000865 0a88 Getfile type 7 —> 0Ox2

000866 0a88 cmd.exe :4ad05b74<-ole32.dll :774e03f0 Getfile type —>DWORD=2h ()

001533 0a88 cmd.exe :4ad01bOd<-kernel32.d11:7c80acOf SetErrorMode —>UINT=0h ()
001534 0a88 cmd.exe :4ad0@1bl3->kernel32.d11:7c80acOf SetErrorMode (IN UINT uMode=1h)
001535 0a88 cmd.exe :4ad01b13<-kernel32.d11:7c80acOf SetErrorMode —>UINT=0h ()
001536 0a88 cmd.exe :4ad01b24->IMM32.DLL :7639039b GetFullPathNameW (IN LPCWSTR
1pFileName=*1638COh—>L."," IN DWORD nBufferLength=208h)

001537 0a88 GetFullPathNameW . —> 20 (buf=C:\test\cmd_test\bin,
file_part=bin)

001538 0a88 cmd.exe :4ad01b24<-IMM32.DLL :7639039b GetFullPathNameW —>DWORD=14h

(OUT LPWSTR 1pBuffer=*163D60h—>L"C:\test\cmd_test\bin," OUT *1pFilePart=*13D8D4h-
>*163D82h—>L"bin")

001549 0a88 cmd.exe :4ad01b5f->USERENV.d11l :769c03fa FindFirstFileW (IN LPCWSTR
1pFileName=*1638COh—>L"C:\test\cmd_test\bin\foobar.*")

001550 0a88 FindFirstFileW ’C:\test\cmd_test\bin\foobar.*’ —>
INVALID_HANDLE_VALUE *** fagiled [system probe C:\test\cmd_test\bin\foobar.* —> ffffffffh][no
virtual or system matches]

VMware, Inc. 57

ThinApp User’s Guide

The cmd . exe utility obtains the first location by calling GetCurrentDirectoryW and the second location by
calling GetFul1lPathNameW with "." as the path specifies. These calls return the path for the current working
directory. The log file shows that the cmd. exe utility creates the c:\test\cmd_test\bin> prompt. The
utility queries the PROMPT environment variable that returns PG and uses the WriteConsoleW API
function to print the prompt to the screen after internally expanding PG to c:\test\cmd_test\bin>.

Troubleshooting Specific Applications

58

Troubleshooting tips are available for capturing Microsoft Outlook, Explorer.exe, and Java Runtime Environment.

Troubleshoot Registry Setup for Microsoft Outlook

Microsoft Outlook stores account settings in registry keys and files. When you start Microsoft Outlook for the
first time, it checks that the keys exist. If Microsoft Outlook cannot locate the keys, it prompts you to create a
new account.

This process works properly in the virtual environment when Microsoft Outlook is not installed on the
physical system. If the user already has Microsoft Outlook installed on the physical system, the captured
version finds the registry keys in the system registry and uses those settings. You must use Full isolation mode
for the registry keys and files where Microsoft Outlook stores its settings.

To set up Full isolation mode for Microsoft Outlook registry keys
1 Add the following entries to the HKEY_CURRENT_USER. txt file:

isolation_full HKEY_CURRENT_USER\Identities
isolation_full HKEY_CURRENT_USER\Software\Microsoft\Windows
NT\CurrentVersion\Windows Messaging Subsystem\Profiles

2 Create a ##Attributes.ini file with the following entries:

[Isolation]
DirectoryIsolationMode=Full

3 Place the ##Attributes. ini file in each of the following subdirectories:

%AppData%\Microsoft\AddIns
%AppData%\Microsoft\Office
%AppData%\Microsoft\Outlook
%Local AppData%\Microsoft\FORMS
%Local AppData%\Microsoft\Outlook

4 (Optional) If the subdirectories do not exist, create the directories.

Viewing Attachments in Microsoft Outlook

Microsoft Outlook creates a default directory to store attachments when you open an attachment for viewing.
The typical location is C: \Documents and Settings\<user_name>\Local Settings\Temp\Temporary
Internet Files\OLK<xxxx>.The last xxxx is replaced by a random entry.

You can view attachments when the viewing application runs in the same virtual sandbox as Microsoft
Outlook. External applications might not be able to find the file to display because Microsoft Outlook stores
the file in the sandbox. You must use the Merged isolation mode for the directory that stores the attachments.

To set up Merged isolation mode to view Microsoft Outlook attachments
1 Add a value to the HKEY_CURRENT_USER. txt file that sets the name of the attachment directory:

isolation_full
HKEY_CURRENT_USER\Software\Microsoft\Office\11l.0\0utlook\Security
Value=0OutlookSecureTempFolder

REG_SZ~%Profile%\Local Settings\OutlookTempxxxx#2300

In this example, 11.0 in the key name is for Microsoft Outlook 2003.

2 Replace the last four xxxx characters with random alphanumeric entries to increase security.

VMware, Inc.

Chapter 5 Monitoring and Troubleshooting ThinApp

Create a directory that is named in the OutlookSecureTempFolder registry key in your ThinApp project.
For example, create the %Profile%\Local Settings\OutlookTempxxxx directory.

In the %Profile%\Local Settings\OutlookTempxxxx directory, create a ##Attributes.ini file with
the following entries:

[Isolation]
DirectoryIsolationMode=Merged

Starting Explorer.exe in the Virtual Environment

Running one instance of the explorer. exe utility on a Windows operating system makes it difficult to add
an entry point to Windows Explorer and launch it inside the virtual environment.

You can use the following methods to launch a Windows Explorer window inside the virtual environment:

Add an entry point to iExplorer and launch it with the —E parameter.
For example, add the following entries to the Package. ini file:

[iexplore.exe]

Shortcut=xxxx.exe

Source=%ProgramFilesDir%\Internet Explorer\iexplore.exe
CommandLine=%ProgramFilesDir%\Internet Explorer\iexplore.exe -E

Add the following virtual registry key:

isolation_full HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer
Value=DesktopProcess
REG_DWORD=#01#00#00#00

Add the following entries to the Package. ini file:

[explorer.exe]
Shortcut=xxxxxx.exe
Source=%SystemR0O0T%\explorer.exe

Use this method to browse the virtual file system with a familiar interface and enable accurate file type
associations without system changes, especially when using portable applications. You can access
shell-integrated components without system changes.

Troubleshooting Java Runtime Environment Version Conflict

A conflict might occur if one version of Java is installed on the physical system and another version is included

in a captured executable file. Updated versions of Java install a plug-in DLL that Internet Explorer loads.

This plug-in DLL overwrites virtual registry keys and conflicts with a virtualized copy of older Java runtimes.

To prevent Internet Explorer from loading plug-in DLLs

Add the following entry to the beginning of the HKEY_LOCAL_MACHINE. txt file:

isolation_full HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Explorer\Browser
Helper Objects

VMware, Inc.

59

ThinApp User’s Guide

60 VMware, Inc.

Configuring Package Parameters

Advanced users can customize the parameters of the virtual application outside of the capture process.
The Package. ini file is located in the project folder and contains parameters that configure a captured

application during the build process. You must save the Package. in1 file and build the project to have the
parameters changes take effect.

Parameters can affect the configuration of isolation modes and build options that include MSI, Application

Link, Application Sync, and application entry point settings. The Setup Capture wizard sets the initial values

of certain Package. ini parameters. See “Capture an Application with the Setup Capture Wizard” on page 16.

This information includes the following topics:

VMware, Inc.

“Package.ini File Structure” on page 62

“Parameters that Apply to Package.ini or ##Attributes.ini Files” on page 62
“Configuring the ThinApp Runtime” on page 62

“Configuring File System and Registry Isolation” on page 64
“Configuring File and Protocol Associations” on page 65

“Configuring Build Output” on page 66

“Configuring Permissions and Security” on page 66

“Configuring Objects and DLL Files” on page 69

“Configuring Storage” on page 72

“Configuring Processes and Services” on page 74

“Configuring File and Block Sizes” on page 76

“Configuring Icons” on page 77

“Configuring Logging” on page 78

“Configuring Versions” on page 79

“Configuring Locale Information” on page 80

“Configuring Individual Applications” on page 80

“Configuring Dependent Applications with Application Link” on page 84
“Configuring Application Updates with Application Sync” on page 85
“Configuring MSI Files” on page 88

“Configuring Sandbox Storage and Inventory Names” on page 91

61

ThinApp User’s Guide

Package.ini File Structure

The [BuildOptions] section of the Package. ini file applies to all applications. Individual applications
inherit these parameters unless the application-specific entries overrides these settings. For example, the
[Adobe Reader 8.exe] section of the Package. ini file for an Adobe Reader application might have settings
that override the larger [BuildOptions] parameters. The application-specific parameters show the
application entry points that you create during the build process.

Package.ini Parameter Placement

The square bracket sections of the Package. ini file require parameters to exist under the proper section.
These sections have the following headings:

m [BuildOptions]

B [<application>.exe]
m [FilelList]

m [Compression]

B [Isolation]

Parameters that do not apply to these sections do not need to reside under a particular heading. Parameters
do not have to be in alphabetical order. The [FilelList], [Compression], and [Isolation] parameters act
as [BuildOptions] parameters but are grouped separately for backward compatibility reasons. You can add
the [FileList] heading manually to the file when you need to add the ExcludePattern parameter.

Parameters that Apply to Package.ini or ##Attributes.ini Files

You can use the DirectoryIsolationMode, Compression, and ExcludePattern parameters in an
##Attributes.ini file if you want to override the Package. in1i settings at the directory level.

The ##Attributes.ini file exists in the folder macros of the project folder. For more information about the
##Attributes.ini file, see “Modifying Settings in the ##Attributes.ini File” on page 23.

Configuring the ThinApp Runtime

62

Runtime configuration tasks involve parameters that address application startup performance and virtual
computer names.

NetRelaunch

The NetRelaunch parameter determines whether to restart an application from the local disk when you run
the application from a network share or removable disk, such as a USB disk. This parameter is useful when
you need to address the slow startup or performance of applications.

ThinApp detects whether an application runs from a network drive or a removable disk, and uses a stub
executable file on the local hard disk to restart the application. This process addresses performance problems
that Symantec AntiVirus generates when it tries to perform a complete scan of executable files that start from
a network share or removable disk and on executable files that make the initial network connections. The scan
can affect start times for large executable files.

Because a large number of desktops have Symantec AntiVirus, ThinApp allows applications to start from a
network share without incurring lengthy scan times. When the application runs from a network share or
removable disk, ThinApp creates a stub executable file in the directory that the CachePath parameter sets on
the local disk and restarts the application from this stub executable file. The stub executable file can load the
runtime from the large package and read the rest of the application from its original network location.
Symantec AntiVirus perceives that the application is local and does not scan the larger executable file on the
network share or removable disk.

VMware, Inc.

Appendix A Configuring Package Parameters

Examples

If the application starts from a network drive or a removable disk, the default value of the NetRelaunch
parameter creates a local stub file to restart the application.

[BuildOptions]
NetRelaunch=1

If your application is small or you know that Symantec AntiVirus is not installed on the desktops to which you
are deploying the application, you might want to turn off the NetRelaunch parameter for stronger initial
startup performance.

[BuildOptions]
NetRelaunch=0

RuntimeEULA

The RuntimeEULA parameter controls the End User License Agreement (EULA) display for the package.
This parameter addresses legacy EULA requirements.

VMware does not require a runtime EULA for ThinApp packages. Do not alter the value of this parameter.

Examples
The default value for the RuntimeEULA parameter prevents the display of the EULA.

[BuildOptions]
;Default: do not show an Eula
RuntimeEULA=0

You can display a EULA.

[BuildOptions]
;Turn on display of EULA
RuntimeEULA=1

VirtualComputerName

The VirtualComputerName parameter virtualizes the computer name. This is useful for a deployment
machine that does not have the same name as the capture machine.

Applications can use the name of the machine on which they are installed or connect to a database and use the
name of the computer in the connection string. For captured applications, the computer name is virtual to
ensure that the application runs on any machine.

This parameter is a string that GetComputerName and GetComputerNameEx API functions return in a captured
application.

Examples
If the capture machine does not have the LOCALHOST name, ThinApp comments out the parameter.
;VirtualComputerName=<original_machine_name>

If you rename a clean machine as LOCALHOST before performing the capture process, the Package.ini file
activates the VirtualComputerName entry.

VirtualComputerName=LOCALHOST

If you enter a GetComputerName or GetComputerNameEx command, the machine returns LOCALHOST. If the
Windows system requires the GetComputerName and GetComputerNameEx API functions to operate in a
standard way and return the actual name of the computer where the application runs, do not rename the
machine as LOCALHOST.

Besides specifying a literal string, such as LOCALHOST, you can specify an environment variable.

VirtualComputerName=%VCOMPNAME%

VMware, Inc. 63

ThinApp User’s Guide

When you specify an environment variable, the value returned is the value of the environment variable. If the
value of the VirtualComputerName parameter is %VCOMPNAME%, and the %VCOMPNAME%
environment variable is set to EnvCompName, the GetComputerName API returns EnvCompName.

Wow64

The Wow64 parameter simulates a 32-bit environment for 32-bit applications that cannot run on a 64-bit
Windows operating system. If a 32-bit application tries to handle its own 64-bit registry redirection, you can
enable this parameter before building a project.

Examples
You can leave the parameter commented out to prevent Windows on Windows 64-bit (WOW64) emulation.

[BuildOptions]
;Wow64=0

You can simulate a 32-bit environment for 32-bit applications on a 64-bit operating system. For example, a
virtualized 32-bit Oracle application might not work on a 64-bit operating system.

[BuildOptions]
Wow64=0

Configuring File System and Registry Isolation

64

Isolation mode parameters determine the write access to the file system and registry keys.

DirectorylsolationMode

The DirectoryIsolationMode parameter specifies the level of write access for directories to the physical file
system. ThinApp provides the Merged, WriteCopy, and Full isolation modes. This parameter controls the
defaultisolation mode for application package directories that do not have specific settings. The default setting
depends on the application capture process.

The Package. ini file sets the default isolation mode for the project. Individual ##Attributes.ini files
override the Package. in1 file and specify the isolation mode for specific directories and child directories.
Any unspecified directories, such as C: \myfolder, inherit the isolation mode from the Package. ini file.
You must add the[Isolation] heading before this parameter entry.

Do not use the Full isolation mode in the Package. ini file because that mode blocks the ability to detect and
load system DLLs. You can use Full isolation mode as an override mechanism in the ##Attributes.ini files.

For information about the definitions and effect of isolation modes, see “Specify File System Access” on
page 18.
Examples

WriteCopy isolation mode allows the application to read resources on the local machine but not write to the
host computer. This is the default setting for the snapshot. exe utility.

[Isolation]
DirectoryIsolationMode=WriteCopy

Merged isolation mode allows the application to read resources on and write to any location on the computer
except where the package specifies otherwise. This is the default setting for the Setup Capture wizard.

[Isolation]
DirectoryIsolationMode=Merged

VMware, Inc.

Appendix A Configuring Package Parameters

RegistrylsolationMode

The RegistryIsolationMode parameter controls the default isolation mode for registry keys in the package.
This setting applies to the registry keys that do not have explicit settings.

For more information about the definitions of isolation modes, see “Specify File System Access” on page 18.
Registry isolation modes only exist in the Package. ini file. You cannot configure this setting in the Setup
Capture wizard.

Examples

You can use the RegistryIsolationMode parameter to ensure that the application can read keys from the
host computer but not write to the host computer. If you do not specify the registry isolation mode in the
Package.ini file, the default value is WriteCopy.

[Isolation]
RegistryIsolationMode=WriteCopy

You can use the RegistryIsolationMode parameter to ensure that the application can write to any key on
the computer, except where the package specifies otherwise.

[Isolation]
RegistryIsolationMode=Merged

Configuring File and Protocol Associations

File and protocol parameters associate file extensions with applications and specify protocols that are visible
to the physical environment.

FileTypes

The FileTypes parameter lists file extensions that the thinreg. exe utility associates with an executable file.
The capture process generates default values that you cannot add to. You can remove extensions that you do
not want to associate with the virtual package. Do not use separators between the file extensions in the list.

Examples

The default value for a Microsoft Word 2007 package is. doc . docx. If you virtualize Microsoft Office 2007 and
have Microsoft Office 2003 installed in the physical environment, you can remove the . doc extension from the
FileTypes list and leave the.docx extension to ensure that Microsoft Word 2003 opens . doc files and
Microsoft Word 2007 opens .docx files.

[Microsoft Office Word 2007.exe]
FileTypes=.docx

The capture process can create file type associations for .doc and .dot extensions and link them to
Microsoft Word.

[Microsoft Office Word 2003.exe]
ReadOnlyData=bin\Package.ro.tvr
Source=%ProgramFilesDir%\Microsoft Office\OFFICE11\WINWORD.EXE
FileTypes=.doc.dot

Protocols

The Protocols parameter specifies the protocols, such as HTTP, that are visible to applications in the physical
environment. This parameter is similar to the FileTypes parameter but deals with applications that handle
protocols rather than file types. The capture process generates default values that you cannot add to. You can
remove entries for browers or other applications.

VMware, Inc. 65

ThinApp User’s Guide

Examples
The capture process can specify protocols, such as the mailto protocol, for a Microsoft Outlook package.

[Microsoft Office Outlook 2007.exe]
Protocols=feed;feeds;mailto;Outlook.URL.mailto;stssync;webcal;webcals

Configuring Build Output

Build parameters specify the location of the build output and the files to exclude from the package.

OutDir

The OutDir parameter specifies the directory that stores the build.bat output. Do not change the value of
this parameter.

Examples
The default and required value specifies the bin directory of the project.

[BuildOptions]
OutDir=bin

ExcludePattern

The ExcludePattern parameter excludes files or directories during the application build process. You must
add a [FilelList] heading before this parameter entry.

You can use a comma to separate patterns in the list. Wildcards (*) match none of the characters or at least one
of the characters and question marks (?) match exactly one character. The syntax is similar to the DOS dir
command, but you can apply wildcard characters to directory names and filenames.

You can specify the ExcludePattern parameter in the Package. ini file, where the pattern exclusion applies
to the entire directory structure, and the ##Attributes.ini file, where ThinApp adds the pattern exclusion
to the current list of exclusions but applies settings only to the specific directory and subdirectories. You can
create a different exclusion list for different directories in your project.

Examples

If you store packages in a version control system and you want to exclude version control info from the virtual
filesystem, you can exclude any directories called .svn or . cvs and all the subdirectories.

[FileList]
ExcludePattern=\.svn,\.cvs

The pattern does not match filenames or directories that contain .svn or . cvs in the middle of the string.
You can exclude any path that ends with .bak or .ms1i.

[FileList]

ExcludePattern=*.bak,*.msi

Configuring Permissions and Security

Security tasks involve parameters that define user access to packages and change Data Execution Prevention
(DEP) protection.

AccessDeniedMsg

The AccessDeniedMsg parameter contains an error message to display to users who do not have permission
to run a package. The default setting is You are not currently authorized to run this application.
Please contact your Administrator.

66 VMware, Inc.

Appendix A Configuring Package Parameters

Examples
You can customize the AccessDeniedMsg string with a technical support number.

[BuildOptions]

PermittedGroups=Administrator;0fficeUsers

AccessDeniedMsg=You do not have permission to execute this application, please call support @
1-800-822-2992

AddPageExecutePermission

The AddPageExecutePermission parameter addresses applications that do not work in a Data Execution
Prevention (DEP) environment.

The DEP feature of Windows XP SP2, Windows Server 2003, and later operating system versions protects
against some security exploits that occur with buffer overflow. This feature creates some compatibility issues.
Windows turns off the feature by default on Windows XP SP2 and you can use a machine-specific opt-in or
opt-out list of the applications to which to apply DEP protection. Opt-in and opt-out policies can be difficult
to manage when a large number of machines and applications are involved. The
AddPageExecutePermission parameter instructs ThinApp to add execution permission to pages that an
application allocates. The application can run on machines that have DEP protection enabled without
modifying the opt-out list.

Examples
The default value of the AddPageExecutePermission parameter prevents any change to the DEP protections.

[BuildOptions]
AddPageExecutionPermission=0

You can add execution permission to pages that an application allocates. ThinApp executes code from memory
pages that the application specifies. This is useful for applications that combine the program and its data into
one area of memory.

[BuildOptions]
;Disable some Data Execution protections for this particular application
AddPageExecutionPermission=1

PermittedGroups

The PermittedGroups parameter restricts a package to a specific set of Active Directory users. You can use
this parameter under the [BuildOptions] heading to affect the package or under the [<application>.exe]
heading to affect a specific application. The [<application>.exe] value overrides the default
[BuildOptions] value for the specific application.

You can specify group names, SID strings, or a mix of group names and SID strings in the same line of the
PermittedGroups parameter. If you use a domain-based group name, you must be connected to that domain
when you build the application package. If you enter a SID directly in the parameter value, you do not need
to connect to the domain where the SID is defined.

The parameter does not support nested Active Directory groups. For example, if a user is a member of group
A, and group A is a member of group B, ThinApp can only detect the user as a member of group A rather than
group A and group B.

When ThinApp builds an application, ThinApp assumes any specified group names are valid and converts
the names to SID values. ThinApp can resolve group ownership at runtime using cached credentials. You can
continue to authenticate laptop users even when they are offline.

If the user does not have access to run the package, you can customize the AccessDeniedMsg parameter to
instruct the user.

VMware, Inc. 67

ThinApp User’s Guide

68

Examples

You can specify a list of Active Directory user group names separated by semicolons. The [BuildOptions]
parameters set global settings for the entire project.

[BuildOptions]

PermittedGroups=Administrator;0fficeUsers

AccessDeniedMsg=You do not have permission to execute this application, please call support @
1-800-822-2992

You can specify a user group setting for a specific application that overwrites the global PermittedGroups
setting.

[Appl.exe]

PermittedGroups=Guest

AccessDeniedMsg=You do not have permission to execute this application, please call support @
1-800-822-2992

If you do not specify a PermittedGroups setting for an application, the application inherits the global
PermittedGroups value in the [BuildOptions] section.

[App2.exe]

You can mix group names and SID strings in the same entry for the PermittedGroups parameter.

PermittedGroups=S-1-5-32-544;0ffice Users

UACRequestedPrivilegesLevel

The UACRequestedPrivilegesLevel parameter specifies privileges for programs requiring User Account
Control (UAC) information. This parameter affects users working on Windows Vista or later operating system
versions.

You can use the following values:
m aslnvoker
This value uses the profile in Vista.
B requireAdministrator
® highestAvailable
This value uses the highest available privilege that can avoid the UAC prompt.
If you do not specify privileges, ThinApp does not assign a default value but operates according to the
asInvoker setting.
Examples
You can specify that a program requires administrator privileges.

[BuildOptions]
UACRequestedPrivilegeslLevel=requireAdministrator

UACRequestedPrivilegesUlAccess

Windows Vista or later operating system versions protect some elements of the user interface. In typical
circumstances, virtual applications do not require access to protected elements.You can assign a true or false
value to the UACRequestedPrivilegesUIAccess parameter to specify user interface access.

The UACRequestedPrivilegesUIAccess parameter exists to provide parallel features to the Microsoft
application manifest rather than to alter the value.

VMware, Inc.

Appendix A Configuring Package Parameters

Examples
The default value of false ensures that the virtual application cannot access protected elements.

[BuildOptions]
UACRequestedPrivilegesUiAccess=false

Configuring Objects and DLL Files

You can use ThinApp parameters to specify COM object access and DLL loading requirements.

External COMODbjects

The ExternalCOMObjects parameter controls whether ThinApp or Windows creates a specific COM object
CLSID key.

By default, ThinApp creates all COM objects in the virtual environment. COM supports out-of-process
executable servers and service-based COM objects. If an application can create COM objects that generate
modifications on the host computer, the integrity of the host computer is at risk. If ThinApp runs
out-of-process and service-based COM objects in the virtual environment, ThinApp stores in the sandbox all
changes that the COM objects make.

Examples

You can instruct ThinApp to run two COM objects outside of the virtual environment if the application creates
the objects.

[BuildOptions]
ExternalCOMObjects={8BC3FO5E-D86B-11DO-A075-00CO4FB68820} ; {7DO96C5F-ACO8-4F1F-BEB7-5C22C517CE39}

ExternalDLLs

The ExternalDLLs parameter can force Windows to load DLL files from the virtual file system.

ThinApp loads DDL files from the virtual file system and passes the loading process to Windows for DLL files
on the physical file system. In some circumstances, Windows must load a DLL file in the virtual file system.
For example, you might have a DLL file that inserts itself into other processes using Windows hooks. The DLL
file that implements the hook must be available on the host file system and Windows must load that file. When
you specify a DLL file in the ExternalDLLs parameter, ThinApp extracts the file from the virtual file system
to the sandbox and instructs Windows to load it.

The ExternalDLLs parameter does not support a DLL file that depends on other DLL files inside the virtual
file system. In this case, Windows cannot load the DLL file.
Examples

You can instruct ThinApp to pass on to Windows the loading process of the inject.dl1l and injectme2.d11
files.

[BuildOptions]
ExternalDLLs=inject.d1ll;injectme2.dl1l
IsolatedMemoryObjects
The IsolatedMemoryObjects parameter lists the shared memory objects to isolate from other applications.

Applications that use CreateFileMapping and OpenFileMapping Windows functions create shared memory
objects. Shared memory objects can have names or remain anonymous. Named objects are visible to other
applications running in the same user account. You might want to isolate shared memory objects to ensure that
virtual applications and system objects cannot detect each other.

VMware, Inc. 69

ThinApp User’s Guide

70

ThinApp isolates shared memory objects that embedded Internet Explorer instances use. A conflict occurs
between the explorer.exe and iexplore.exe utilities when the utilities map sandbox files. You can use the
IsolatedMemoryObjects parameter to isolate additional named shared memory objects to ensure that the
objects are visible only to other virtual applications using the same sandbox.

The IsolatedMemoryObjects parameter accepts a list of entries that are separated by the semicolon (;).
Each entry can contain asterisk (*) and question mark (?) wildcard characters to match variable patterns.

Examples

You can isolate two shared memory objects, match an object with outlook in the name, and match an object
with the exact My Shared Object name.

[BuildOptions]
IsolatedMemoryObjects=*outlook*;My Shared Object

IsolatedSynchronizationObjects

The IsolatedSynchronizationObjects parameter lists specific synchronization objects to isolate from
other applications.

Windows has the following named synchronization objects:
® Mutex
Use OpenMutex and CreateMutex to access this object.
m Semaphore
Use OpenSemaphore and CreateSemaphore to access this object.
® Events
Use OpenEvent and CreateEvent to access this object.

If an application fails or an error occurs, you might need to isolate these objects in the virtual environment to
avoid a collision with synchronization objects that native applications create. You can isolate synchronization
objects from applications that do not run in the same virtual namespace. If two applications share the same
sandbox path, the applications have the same namespace for isolated synchronization objects. If two
applications have the same sandbox name but different sandbox paths, the applications have separate
namespaces.

The IsolatedSynchronizationObjects parameter accepts a list of entries that are separated by the
semicolon (;). Each entry can use the asterisk (*) and question mark (?) as wildcard characters to match
variable patterns.

Examples

You can isolate two synchronization objects, match an object with outlook in the name, and match an object
with the exact My Shared Object name.

[BuildOptions]
IsolatedSynchronizationObjects=*outlook*;My Shared Object

ObjectTypes

The ObjectTypes parameter specifies a list of virtual COM object types that are visible to other applications
in the physical environment. You can use scripts, such as VBScripts, to call objects that start captured
applications.

An object type is registered to only one native or virtual application at a time. If you install Office 2003 on the
native machine and want to use a virtual Office 2007 package, you must choose whether to have the virtual or
native application handle the object types.

VMware, Inc.

Appendix A Configuring Package Parameters

If you want the virtual Office 2007 to handle the object types, you can leave the ObjectTypes setting in the
Package.ini file, build the package, and register it using the thinreg. exe utility. If you want the native
Office 2003 to handle the object types, you must remove the ObjectTypes setting from the Package. ini file
before building and registering the package. You cannot add random entries to the ObjectTypes parameter.
You can only remove entries generated by the setup capture process.

Examples

If a script or a native application creates an Excel.Application COM object or other COM objects listed in
the ObjectTypes parameter, ThinApp starts the virtual package.

[Microsoft Office Excel 2007.exe]
ObjectTypes=Excel.Application;Excel.Application.12;Excel.Chart;
Excel.Macrosheet;Excel.Sheet; Excel.Workspace

SandboxCOMObjects

The SandboxCOMObjects parameter indicates whether applications in the physical environment can access
COM objects that the virtual application registers at runtime.

Examples

You can prevent native applications in the physical environment from accessing COM objects that the virtual
application registers. ThinApp places in the sandbox the COM objects that the virtual application registers.

SandboxCOMObjects=1
You can make visible COM objects that the virtual application registers outside the sandbox.

SandboxCOMObjects=0

VirtualizeExternalOutOfProcessCOM

The VirtualizeExternalOutOfProcessCOM parameter controls whether external out-of-process COM
objects can run in the virtual environment.

Captured applications can create COM objects from the host system and COM objects that ThinApp registers
in the virtual environment.

The VirtualizeExternalOutOfProcessCOM parameter determines how to address out-of-process COM
objects that are not part of a ThinApp package and are not registered in the virtual registry. ThinApp runs
external out-of-process COM objects in the virtual environment to ensure that COM objects cannot modify the
host computer. If a compatibility problem exists with an external COM object running in the virtual
environment, you can use the VirtualizeExternalOutOfProcessCOM parameter to create and run COM
objects on the host system. To run only specific COM objects outside of the virtual environment, you can use
the ExternalCOMObjects parameter to explicitly list the CLSID of each COM object.

Examples

You can run all external out-of-process COM objects in the physical environment rather than the virtual
environment.

[BuildOptions]
VirtualizeExternalOutOfProcessCOM=0

Use the default value to run all external out-of-process COM objects in the virtual environment.

[BuildOptions]
VirtualizeExternalOutOfProcessCOM=1

VMware, Inc. 71

ThinApp User’s Guide

Configuring Storage

72

You can use ThinApp parameters to configure file storage and set up virtual drives.

CachePath

The CachePath parameter sets the path to the cache directory that stores font files and stub executable files.
You can use this parameter to force the cache directory to reside on a different drive.

This parameter can contain macros, such as %Local AppData%, that expand before use. If the path is relative,
ThinApp interprets the path relative to the directory where the package is stored.

You can use the THINSTALL_CACHE_DIR environment variable to override this parameter at runtime.

If neither the CachePath parameter nor the THINSTALL_CACHE_DIR environment variable is present, ThinApp
uses a default location. The default location depends on the presence of a SandboxPath parameter in the
Package. ini file. If the SandboxPath parameter exists and the path setting is relative, CachePath defaults to
the same path. If the SandboxPath setting exists and the path setting is absolute, CachePath defaults to
%Local AppDataX\Thinstall\Cache\Stubs.

Examples
You can set the cache directory to C:\VirtCache.
CachePath=C:\VirtCache

If the package resides in C: \VirtApps and the CachePath parameter has a value of Cache, the cache directory
is C:\VirtApps\Cache.

Using a USB key might involve forcing the sandbox on to the USB key. If you store packages in the \VirtApps
directory on the USB key, you can force the cache directory to reside on the USB key.

CachePath=Sandbox

UpgradePath

The UpgradePath parameter specifies the location of information and files for updates. Application Sync and
integer updates use this location.

By default, the Application Sync utility places its log and cache files in the same location as the application
executable file on the local machine. Integer updates operate in a similar way. If the default location has limited
space or you want to isolate upgrades from the application executable file, use the UpgradePath parameter to
specify an alternative location. You can use environment variables in the path. Do not use folder macros.

When the Application Sync utility downloads an update from a server, it stores the update with a temporary
name in the UpgradePath location. The next time the application starts, ThinApp renames the temporary file
with a .1 extension or a .2 extension depending on whether .1 already exists. ThinApp attempts to change the
name with the .1 extension to the original name of the file that might reside in another directory. If ThinApp
cannot make this change, the file keeps the .1 extension in the UpgradePath location. Running the original
application accesses that file.

For information about the Application Sync utility, see “Application Sync Updates” on page 39.

Examples

Instead of storing update files in the default location with the application executable file, you can instruct
ThinApp to detect application updates in C:\Program Files\MyAppUpgrades.

[BuildOptions]
UpgradePath=C:\Program Files\MyAppUpgrades

VMware, Inc.

Appendix A Configuring Package Parameters

VirtualDrives

The VirtualDrives parameter specifies additional drive letters that are available to the application at
runtime.

Virtual drives are useful when applications rely on hard-coded paths to drive letters that might not be
available on the client computers. For example, certain legacy applications might expect that the D: driveis a
CD-ROM and that data files are available at D: \media.

Virtual drives are visible only to applications running in the virtual environment. Virtual drives do not affect
the physical Windows environment. Virtual drives inherit isolation modes from the default isolation mode of
the project unless you specifically override the mode. If you configure your virtual drive with the
IsolationMode parameter set to Merged, any write operations to that drive fail if it does not exist on the
physical system.

A project lists virtual drive information for drives that are present at the time of application capture.

The VirtualDrives parameter uses semicolons to separate information assigned to different drive letters and
commas to separate parameters for individual drive letters. The VirtualDrives parameter includes this
information:

B Driveis a single character between A and Z.
B Serial is an eight digit hex number.
B Typeis FIXED, REMOVABLE, CD-ROM, or RAMDISK.
B FIXED—Indicates fixed media.
For example, a hard drive or internal Flash drive.
B REMOVABLE—Indicates removable media.
For example, a disk drive, thumb drive, or flash card reader.
B (CD-ROM—Indicates a CD-ROM drive.
® RAMDISK—Indicates a RAM disk.

Examples

The VirtualDrives parameter is a single string that can hold information for multiple drive letters, and
optional parameters for those drive letters.

VirtualDrives= Drive=A, Serial=12345678, Type=REMOVABLE; Drive=B, Serial=9ABCDEFQ, Type=FIXED

Basic usage involves specifying a single virtual drive letter. By default, ThinApp assigns a serial number and
the FIXED type to the drive.

You can specify the X, D, and Z virtual drive letters.

[BuildOptions]
VirtualDrives=Drive=X, Serial=ff897828, Type=REMOVABLE; Drive=D, Type=CDROM; Drive=Z

Drive X is a removable disk with the ff797828 serial number.
Drive D is a CD-ROM drive with an assigned serial number,

Drive Z is a FIXED disk with an assigned serial number.
Change Virtual Drive Isolation Settings
You might need to use the ##Attributes.ini file to change the isolation mode of a virtual drive.

To specify the isolation mode for a virtual drive
1 Add the %Drive_X% folder to your ThinApp project.

2 In the new directory, add the ##Attributes.ini file to specify the isolation mode for the drive letter.

VMware, Inc. 73

ThinApp User’s Guide

Configuring Processes and Services

Process and service configuration involve parameters that specify write access to a native process or the
startup and shutdown of virtual services.

AllowEXxternalProcessModifications

The AllowExternalProcessModifications parameter determines whether captured applications can write
to a native process. For example, you might capture a speech recognition application that must inject itself into
native applications to voice the text.

When ThinApp blocks a captured application from injecting itself into a native application, Log Monitor
generates trace logs that refer to the AllowExternalProcessModifications parameter.

Examples

The default value of the AllowExternalProcessModifications parameter blocks any attempt by the
captured application to inject itself into a native application. The captured application can still inject itself into
virtual applications running in the same sandbox. ThinApp does not display the default parameter in the
Package.ini file.

[BuildOptions]
AllowExternalProcessModifications=0

You can add the AllowExternalProcessModifications parameter manually to the Package. ini file with
a value of 1 to prevent the default blocking behavior.

[BuildOptions]
AllowExternalProcessModifications=0
AllowUnsupportedExternalChildProcesses

The AllowUnsupportedExternalChildProcesses parameter specifies whether to prevent the virtualized
application from creating a child 64-bit process. You can create child 64-bit processes in the physical
environment rather than the virtual environment.

If you do not specify a value, the default behavior facilitates unsupported external processes.

Examples

The default setting of the AllowUnsupportedExternalChildProcesses parameter causes ThinApp to run
64-bit applications in the physical environment. You can run 64-bit child process tasks on applications that run
on 64-bit systems. Running the print spooler is an example of a 64-bit child process task.

[BuildOptions]
AllowUnsupportedExternalChildProcesses=1

You can block ThinApp from generating 64-bit child processes outside of the virtual environment.

AllowUnsupportedExternalChildProcesses=0

AutoShutdownServices

The AutoShutdownServices parameter controls whether to shut down virtual services when the last
nonservice process exits.

The default behavior shuts down virtual services when the last nonservice child process exits.
The AutoShutdownServices parameter instructs ThinApp to keep virtual services running even when all
other processes exit. The parameter does not affect services outside the virtual context.

74 VMware, Inc.

Appendix A Configuring Package Parameters

Examples
You can keep virtual services running when the application exits.

[BuildOptions]
AutoShutdownServices=0

You can stop virtual services when the last nonservice application exits. This is the default behavior.

[BuildOptions]
AutoShutdownServices=1

AutoStartServices
The AutoStartServices parameter controls whether to start virtual service when the first application starts.

The default behavior starts virtual services that are installed with the startup type of Automatic. The virtual
services start when the user runs the first parent process. You can use the AutoStartServices parameter to
disable the automatic starting of virtual services.

Examples
You can prevent the start of virtual services.

[BuildOptions]
AutoStartServices=0

You can start virtual services when the first process starts. This is the default behavior.

[BuildOptions]
AutoStartServices=1

ChildProcessEnvironmentDefault

The ChildProcessEnvironmentDefault parameter determines whether ThinApp runs all child processes in
the virtual environment.

You can create specific exceptions with the ChildProcessEnvironmentExceptions parameter.
See “ChildProcessEnvironmentExceptions” on page 75.

Examples
The default entry creates all child processes in the virtual environment.

[BuildOptions]
ChildProcessEnvironmentDefault=Virtual

The External value creates child processes outside of the virtual environment.

[BuildOptions]
ChildProcessEnvironmentDefault=External

ChildProcessEnvironmentExceptions

The ChildProcessEnvironmentExceptions parameter notes exceptions to the
ChildProcessEnvironmentDefault parameter.

If the ChildProcessEnvironmentDefault parameter value is set to Virtual, the
ChildProcessEnvironmentExceptions parameter lists the applications that run outside of the virtual
environment. If the ChildProcessEnvironmentDefault parameter value is set to External, the
ChildProcessEnvironmentExceptions parameter lists the applications that run inside the virtual
environment.

VMware, Inc. 75

ThinApp User’s Guide

Examples

You can specify exceptions to running child processes in the virtual environment. When the virtual application
starts a notepad. exe child process, the child process runs outside the virtual environment.

[BuildOptions]
ChildProcessEnvironmentExceptions=AcroRd.exe;notepad.exe
ChildProcessEnvironmentDefault=Virtual

Configuring File and Block Sizes

76

You can use ThinApp parameters to compress file and block sizes for applications.

BlockSize

The BlockSize parameter controls the size of compression blocks when ThinApp compresses files for a build.

Using a larger block size can achieve higher compression. Larger block sizes might slow the performance
because of the following reasons:

B The build process slows down with larger block sizes.
B The startup time and read operations for applications slow down with large block sizes.
B More memory is required at runtime when you use larger block sizes.

You can specify the BlockSize parameter in the Package. ini file, where the block size becomes the default
for all files in the project unless otherwise specified, and in the ##Attributes.ini file, where the block size
overrides the block size for the present directory and all subdirectories. You can use different block sizes for
different directories within a single project.

Examples
You can set the default block size of 64KB.

[Compression]
BlockSize=64k

You can use other block sizes.

BlockSize=128k
BlockSize=256k
BlockSize=512k
BlockSize=1M

CompressionType

The CompressionType parameter sets the compression value to None or Fast.

None is the default value when you capture an application. This value is useful for building your application
quickly for testing purposes. Avoiding compression improves application startup time on older computers or
in circumstances where you start the application multiple times and depend on the Windows disk cache to
provide data for each start.

Fast compression has a quick rate of decompression and little effect on application startup time and memory
consumption at runtime. Fast compression achieves similar compression ratios as the ZIP algorithm.

Table A-1 lists sample compression ratios and startup times for a Microsoft Office 2003 package that runs from
a local hard drive.

VMware, Inc.

Appendix A Configuring Package Parameters

Table A-1. Sample Compression Ratios and Startup Times

Compression Type None Fast

Size 448,616KB 257,373KB
Compression ratio 100% 57%
Startup time (first run) 6 seconds 6 seconds
Startup time (second run) 0.1 seconds 1 seconds
Build time (first build) 3 minutes 19 minutes
Build time (second build) 2 minutes 1.2 minutes

You can specify the CompressionType parameter in the Package. ini file, where the compression type
becomes the default for all files in the project unless otherwise specified, and the ##Attributes.ini file,
where the compression type overrides the compression algorithm for the present directory and all
subdirectories. You can use different compression algorithms for different directories within a single project.

Examples

You can prevent compression to facilitate fast build and load time. This is the default behavior.

[Compression]
CompressionType=None

You can use fast compression for a slow build time and fast load time.

[Compression]
CompressionType=Fast

Configuring Icons

You can use ThinApp parameters to add or remove icons.

Icon
The Icon parameter specifies the icon file to use for the generated executable file.

By default, each generated application uses the main group icon from its source executable file and the
individual icon resource that the group icon points to. You can specify a . ico file or executable file to use an
alternative icon.

Examples

You can specify a NULL value to generate an executable file without icons. Do not use a NULL value when you
use the file types directive. The executable file image allocates one icon for each file type.

[myapp.exe]
Source=%ProgramFilesDir%\myapp\app.exe
Tcon=NULL

You can specify the application icon by using an executable file that is different from the Source executable
file.

[myapp.exe]

Source=%ProgramFilesDir%\myapp\app.exe
Icon=%ProgramFilesDir%\myapp\app2.exe

You can specify the set to use by appending ,1 ,2 to the end of the icon path.

[myapp.exe]
Source=%ProgramFilesDir%\myapp\app.exe
Icon=%ProgramFilesDir%\myapp\app2.exe,1

You can use a .ico file to specify the application icon.

VMware, Inc. 77

ThinApp User’s Guide

[myapp.exe]
Source=%ProgramFilesDir%\myapp\app.exe
Icon=%ProgramFilesDir%\myap\myicon.ico

RetainAlllcons

The RetainAllIcons parameter keeps all of the original icons of the source executable file in the captured
executable file.

By default, the t1ink. exe utility constructs a new executable file using a source executable file. To reduce disk
space, the new executable file image contains only icons that you can view from the system shell. The package
contains all the other icons. The icons remain accessible to the application while it runs. The icons that the
system can access have a larger disk size because ThinApp cannot compress the icons. You might want to have
all of the original icons of the application visible to the system shell.

Examples

You can instruct the t1ink. exe utility to retain all of the original icons of the application.

[app.exe]
Source=%ProgramFilesDir%\myapp\app.exe
RetainAllIcons=1

The default behavior removes unused icons from the portion of the executable file that is visible to the physical
environment.

[app.exe]

Source=%ProgramFilesDir%\myapp\app.exe
RetainAllIcons=0

Configuring Logging

You can use ThinApp parameters to prevent logging activity or customize the location of the log files.

DisableTracing

The DisableTracing parameter prevents . trace file generation when you run Log Monitor. Log Monitor
produces . trace files for troubleshooting purposes.

You might want to disable . trace file generation for the following reasons:

B You might need to hide the execution history for security purposes.

B Inatesting environment, you might need to turn off tracing for specific applications that you know work
properly. Producing extra . trace files wastes disk space and CPU time.

Examples

You can stop an application from creating a . trace file even if you run Log Monitor.

[BuildOptions]
DisableTracing=1

The default behavior supports . trace file generation in Log Monitor.
[BuildOptions]

DisableTracing=0

LogPath

The LogPath parameter sets the location to store . trace files during logging activity. The default location is
the same directory that stores the application executable file. You might change the default location to find a
directory with more space or to redirect the logs from a USB device to the client machine.

78 VMware, Inc.

Appendix A Configuring Package Parameters

Examples
You can direct ThinApp to store log files in c:\ThinappLogs.

[BuildOptions]
LogPath=C:\ThinappLogs

Unlike most paths in ThinApp, the log path cannot contain macros such as %AppData% or %Temp%.

Configuring Versions

ThinApp parameters provide information about the versions of application executable files and ThinApp.

CapturedUsingVersion
The CapturedUsingVersion parameter indicates the version of the Setup Capture wizard used during the
application capture process.
Examples
You do not need to adjust this parameter.
[BuildOptions]
CapturedUsingVersion=4.0.0-2200
StripVersionlnfo

The StripVersionInfo parameter removes all version information from the source executable file when
ThinApp builds the application.

Version information for executable files is in Windows properties. Properties information includes the
copyright, trademark, and version number. By default, ThinApp copies all version information from the
source executable file. The StripVersionInfo parameter strips version information from the captured
application.

Examples

You can generate a target application without version information.

[app.exe]

Source=%ProgramFilesDir%\myapp\app.exe
StripVersionInfo=1

Version. XXXX

The Version.XXXX parameter overrides executable file version strings or adds new version strings.
ThinApp copies version resources from the original executable file. You can override the version resource
strings and add new ones with a Version.<string_name>=<string_value> setting.

Examples

You can set My New Product Name as the version product name value.

[<app>.exe]
Version.ProductName=My New Product Name
Version.Description=This Product is great!

VMware, Inc. 79

ThinApp User’s Guide

Configuring Locale Information

ThinApp parameters that display locale information do not require changes.

AnsiCodePage

The AnsiCodePage parameter uses a numerical value to specify the country locale where you captured the
application. ThinApp uses the value to translate multibyte strings.

Examples

The capture process generates the AnsiCodePage value.

[BuildOptions]
AnsiCodePage=1252

Localeldentifier

The LocaleIdentifier parameter displays a numericID for the locale. The value locates the correct language
resources from the application.

Examples

1033 is the locale ID for an English language application.

[BuildOptions]
LocaleIdentifier=1033

LocaleName

The LocaleName parameter displays the name of the locale when you capture an application on
Microsoft Vista.

Examples

ThinApp can generate a Japanese locale name.

[BuildOptions]
LocaleName=ja-JP

Configuring Individual Applications

80

Parameters specific to entry points fall under the [<application>.exe] sections of the Package.ini file.
For example, the entries under [Adobe Reader 8.exe] for an Adobe Reader application affect areas such as
command-line arguments and application shortcuts.

CommandLine

The CommandLine parameter specifies the command-line arguments that start a shortcut executable file. While
the Source parameter specifies the path to the shortcut executable file, the CommandL1ine parameter specifies
the file with the required options or parameters.

The options and parameters follow the base application name. Depending on the application, use / or — before
the option or parameter. Use folder macros for the path name conventions.

If the Start menu shortcut for the application has command-line options, ThinApp determines the value of the
CommandLine parameter based on those options. In rare troubleshooting cases, you might need to alter this
parameter.

VMware, Inc.

Appendix A Configuring Package Parameters

Examples
Use the /<option> <parameter> format for command-line arguments.

[<app>.exe]

Source=%ProgramFilesDir%\<base_app>\<app>.exe
Shortcut=<primary_data_container>.exe
CommandLine="%ProgramFilesDir¥%\<base_app>\<app>.exe" /<option> <parameter>

ThinApp can create a CommandL1ine entry based on the
"C:\Program Files\Mozilla Firefox\firefox.exe" -safe-mode Start menu shortcut.

CommandLine="C:\Program Files\Mozilla Firefox\firefox.exe" -safe-mode

Disabled

The Disabled parameter indicates that an application build target is just a placeholder and prevents ThinApp
from generating the executable file in the /bin directory. This parameter is useful when you do not select a
particular entry point during the Setup Capture wizard but decide at a later time that you want to generate an
executable file for that entry point.

If you do not select the cmd . exe, regedit.exe, or iexplore.exe entry points during the application capture
process, and you develop a need to debug or troubleshoot the environment, you can set the Disabled
parameter to 0 and rebuild the project to generate these entry points. For information about the
troubleshooting entry points, see “Specify Application Shortcuts and Tracking Names” on page 16.

Examples

You can prevent the generation of the application executable file during the build process. ThinApp uses this
setting for the entry points that you do not select during the Setup Capture wizard.

[app.exe]

Source=%ProgramFilesDir%\<my_app>\<app>.exe

Disabled=1

You can use a value of 0 for the Disabled parameter or remove the line to generate the application executable
file.

[app.exe]

Source=%ProgramFilesDir%\<my_app>\<app>.exe
Disabled=0

ReadOnlyData

The ReadOnlyData parameter specifies the name of the read-only virtual registry file created during the
application build.

Do not alter the value of this parameter. The Package. ini file displays this parameter in case you need to
locate the primary data container. The ReadOnlyData parameter in an application-specific section of the
Package. ini file designates the primary data container.

When the primary data container is less than 200MB, the container is stored within an entry point executable
file. When the primary data container is more than 200MB, ThinApp stores the container as a . dat file that
cannot serve as an entry point for the application.

Examples

The default and required value specifies Package. ro.tvr as the name of the virtual registry file.

ReadOnlyData=bin\Package.ro.tvr

VMware, Inc. 81

ThinApp User’s Guide

82

ReserveExtraAddressSpace

The ReserveExtraAddressSpace parameter indicates the amount of extra address space to reserve for the
captured executable file.

The tlink.exe utility sets the Windows SizeOfImage field in the generated executable file based on the
SizeOfImage field of the source executable file. The Windows loader uses the SizeOfImage field to determine
how much virtual address space to reserve for the executable file. When you build a package based on a source
executable file that is not included in the package, you can reserve virtual address space by specifying the
ReserveExtraAddressSpace parameter. The value is the number of bytes to reserve. You can add K after the
number to indicate kilobytes or M to indicate megabytes. The default value of 0 specifies address space to
reserve.

Examples
You can instruct the Windows loader to reserve 512KB of address space.

[app.exe]
Source=%ProgramFilesDir%\myapp\app.exe
ReserveExtraAddressSpace=512K

The default behavior does not reserve extra address space.

[app.exe]
Source=¥%ProgramFilesDir%\myapp\app.exe
ReserveExtraAddressSpace=0

Shortcut

The Shortcut parameter points a shortcut executable file to the primary data container that contains the
virtual file system and virtual registry. You can distinguish a primary data container from other entry points
in the Package. ini file because the primary data container contains the ReadOnlyData entry and the other
entry points contain the Shortcut entry.

To ensure that the application can start, the shortcut executable file must reside in the directory that stores the
primary data container file. For information about the primary data container, see “ReadOnlyData” on
page 81.

Do not change the value of the Shortcut parameter. ThinApp detects the primary data container during the
capture process.

Examples

ThinApp can point AcroRd32. exe, the shortcut executable file, to Adobe Reader 8.exe, the primary data
container file.

[AcroRd32.exe]
Shortcut=Adobe Reader 8.exe
Source=%ProgramFilesDir%\Adobe\Reader 8.0\Reader\AcroRd32.exe

ThinApp can point Microsoft Office Word 2007.exe, the shortcut executable file, to Microsoft Office
Enterprise 2007.dat, the primary data container file.

[Microsoft Office Word 2007.exe]
Source=%ProgramFilesDir%\Microsoft Office\Officel2\WINWORD.EXE
Shortcut=Microsoft Office Enterprise 2007.dat

Shortcuts

The Shortcuts parameter lists the locations where the thinreg. exe utility creates a shortcut to a virtual
application. You can separate the entries with semicolons. Each entry can contain folder macros.

The capture process determines Shortcuts entries based on the shortcuts the application installer
implements. If you add shortcut locations, use semicolons to separate the entries.

MSI files use the Shortcuts parameter to determine the shortcuts to create.

VMware, Inc.

Appendix A Configuring Package Parameters

Examples

You can create a shortcut in the Microsoft Office folder of the Start menu to the Microsoft Word 2003
application.

[Microsoft Office Word 2003.exe]
ReadOnlyData=bin\Package.ro.tvr
Source=%ProgramFilesDir%\Microsoft Office\OFFICE11\WINWORD.EXE
Shortcuts=%Programs%\Microsoft Office

Source

The Source parameter points to the executable file that ThinApp loads when you use a shortcut executable
file. The parameter provides the path to the executable file in the virtual or physical file system. If ThinApp
cannot locate the source executable file in the virtual file system, ThinApp searches the physical file system.
For example, if you use native Internet Explorer from the virtual environment, ThinApp loads the source
executable file from the physical file system.

ThinApp specifies the source for each executable file. If an application suite has three user entry points, such
as Winword.exe, Powerpnt.exe, and Excel.exe, the Package. ini file lists three application entries.
Each entry has a unique source entry.

The Source parameter and the /bin directory in the project are not related to each other. The /bin directory
stores the generated executable file and the Source path leads to the installed executable file stored in the
read-only virtual file system.

Do not alter the Source path. The capture process determines the path based on where the application installer
places the executable file in the physical file system of the capture machine. ThinApp creates a virtual file
system path based on the physical file system path.

Examples
ThinApp can create an entry point for an application in C:\Program Files\<base_app>\<app>.exe.

[<app>.exe]
Source=%ProgramFilesDir%\<base_app>\<app>.exe

WorkingDirectory

The WorkingDirectory parameter sets the current working directory before the application starts.
The working directory is the first place in which an application looks for files and places files.

ThinApp does not include this parameter by default in the Package. ini file because Thinapp assumes the
working directory is the directory where the executable file resides. The typical location in a ThinApp
environment is on the desktop of the deployment machine.

You can set the working directory for individual applications. The working directory can exist in the virtual
file system, the sandbox, or the physical system depending on the isolation mode setting. You can use folder
macros for the path name conventions.

The WorkingDirectory parameter sets the initial value of the working directory but the directory is dynamic
as you navigate to other locations.

Examples

You might change the working directory for an application on a USB drive from the default USB location to
the My Documents directory on the desktop.

[<app>.exe]
WorkingDirectory=%Personal%

The location of the My Documents directory depends on the isolation mode setting. If you want to map the
working directory to the My Documents directory on the physical system, use the Merged isolation mode
setting. If you want to map the working directory to the sandbox on the local machine, use WriteCopy or Full
isolation mode. See “DirectorylsolationMode” on page 64.

VMware, Inc. 83

ThinApp User’s Guide

Configuring Dependent Applications with Application Link

84

The Application Link utility keeps shared components or dependent applications in separate packages. In the
Package.ini file, you can use the OptionalAppLinks and RequiredAppLinks entries to dynamically
combine ThinApp packages at runtime on end-user computers. This process enables you to package, deploy,
and update component pieces separately and retain the benefits of application virtualization.

ThinApp supports linking up to 250 packages at a time. Each package can be any size.

Sandbox changes from linked packages are not visible to the base package. For example, you can install
Acrobat Reader as a standalone virtual package and as a linked package to the base Firefox application. When
you start Acrobat Reader as a standalone application by running the virtual package and you make changes
to the preferences, ThinApp stores the changes in the sandbox for Acrobat Reader. When you start Firefox,
Firefox cannot detect those changes because Firefox has its own sandbox. Opening a .pdf file with Firefox does
not reflect the preference changes that exist in the standalone Acrobat Reader application.

For more information about the Application Link utility, see “Application Link Updates” on page 41,
“Optional AppLinks” on page 85, and “Required AppLinks” on page 84.

Application Link Path Name Formats

The Application Link utility supports the following path name formats:

® Path names can be relative to the base executable file. For example,
RequiredAppLinks=..\SomeDirectory results in c:\MyDir\SomeDirectory when you deploy the
base executable file to c:\MyDir\SubDir\ Dependency.exe.

® Path names can be absolute path names. An example is RequiredAppLinks=c:\SomeDirectory.

® Path names can use a network share or a UNC path. An example is
RequiredAppLinks=\\share\somedir\Dependency.exe.

® Path names can contain environment variables and dynamically expand to any of the preceding path
names. An example is RequiredAppLinks=%MYAPP_ADDONS%\Dependency.exe.

® Path names can specify multiple links or dependencies with a semicolon that separates individual
filenames. An example is RequiredAppLinks=Dependencyl.exe; Dependency2.exe;.

RequiredAppLinks

The RequiredAppLinks parameter specifies a list of required packages to import to the base package at
runtime. You can configure this parameter in the Package. ini file of the base package.

If the import operation for any dependent package fails, an error message appears and the base executable file
exits. You can use the OptionalAppLinks parameter instead to continue even when load errors occur. If you
use a wildcard pattern to specify a package and files do not match the wildcard pattern, ThinApp does not
generate an error message.

Importing packages involves the following operations:

Running VBScripts from imported packages
Starting autostart services from imported packages
Registering fonts from imported packages

Relocating SxS DLL files from Windows XP to Windows Vista

You must create a link to the primary data container of a package. You cannot link to other shortcut packages.

VMware, Inc.

Appendix A Configuring Package Parameters

Path names are on the deployment machine because the linking takes effect at runtime on the client machine.
You can specify absolute paths, such as c:\abs\path\dotnet.exe, relative paths, such as
relpath\dotnet.exe, and UNC paths, such as \\server\share\dotnet.exe. Path names can contain
environment variables. Use semicolons to separate the linked packages.

For more information about the Application Link utility, see “Application Link Updates” on page 41.

Examples

If you package the .NET framework in the dotnet. exe package and you have a .NET application, you can
specify that the application needs to link to the dotnet. exe file before it can start.

RequiredAppLinks=c:\abs\path\dotnet.exe

You can import a single package located in the same directory as the base executable file.
RequiredAppLinks=Plugin.exe

You can import a single package located in a subdirectory of the base executable file.
RequiredAppLinks=plugins\Plugin.exe

You can import all executable files located in the directory for plug-in files. If ThinApp cannot import any
executable file because the file is not a proper Thinapp package or because a security problem exists, the base
executable file fails to load.

RequiredAppLinks=plugins*.exe

You can import all executable files located at the n:\plugins absolute path.
RequiredAppLinks=n:\plugins*.exe

You can expand the PLUGINS environment variable and import all executable files at this location.
RequiredAppLinks=%PLUGINS%*.exe

You can load two specified plug-in files and a list of executable files located under the plug-in location.

RequiredAppLinks=pluginl.exe;plugin2.exe;plugins*.exe

OptionalAppLinks

The OptionalApplLinks parameter is similar to the RequireApplLinks parameter butignores errors and starts
the main application even when an import operation fails.

You must create a link to the primary data container of a package. You cannot link to other shortcut packages.

Path names are on the deployment machine because the linking takes effect at runtime on the client machine.
You can specify absolute paths, such as c: \abs\path\dotnet.exe, relative paths, such as
relpath\dotnet.exe, and UNC paths, such as \\server\share\dotnet.exe.

RequiredApplLinks and OptionalAppLinks parameters use the same syntax. For information about the
RequireApplLinks parameter and examples, see “Required AppLinks” on page 84.

Configuring Application Updates with Application Sync

The Application Sync utility keeps deployed virtual applications up to date. When an application starts,
Application Sync can query a Web server to determine if an updated version of the package is available. If an
update is available, ThinApp downloads the differences between the existing package and the new package
and constructs an updated version of the package.

The Application Sync utility downloads updates in the background. You can continue to use an old version of
the application. If the user quits the application before the download is complete, the download resumes when
the virtual application starts again. When the download is finished, ThinApp activates the new version the
next time the application starts.

VMware, Inc. 85

ThinApp User’s Guide

86

You must comment the AppSyncURL parameter to activate all Application Sync parameters. The following
entries are the default settings for Application Sync parameters:

AppSyncURL=https://example.com/some/path/PackageName.exe

AppSyncUpdateFrequency=1d

AppSyncExpirePeriod=30d

AppSyncWarningPeriod=5d

AppSyncWarningFrequency=1d

AppSyncWarningMessage=This application will become unavailable for use in AppSyncWarningPeriod
days if it cannot contact its update server. Check your network connection to ensure
uninterrupted service

AppSyncExpireMessage=This application has been unable to contact its update server for
AppSyncExpirePeriod days, so it is unavailable for use. Check your network connection and try
again

AppSyncUpdatedMessage=

AppSyncClearSandboxOnUpdate=0

For more information about the Application Sync utility, see “Application Sync Updates” on page 39.

AppSyncClearSandboxOnUpdate

The AppSyncClearSandboxOnUpdate parameter empties the sandbox after an update.

Examples

The default value of the AppSyncClearSandboxOnUpdate parameter does not clear the sandbox.
AppSyncClearSandboxOnUpdate=0

You can clear the sandbox after application updates.

AppSyncClearSandboxOnUpdate=1

AppSyncExpireMessage

The AppSyncExpireMessage parameter sets the message that appears when the connection to the Web server
fails after the expiration period ends and a virtual application starts. The application quits when the message
appears.

Examples
ThinApp provides a default message for the AppSyncExpireMessage parameter.

AppSyncExpireMessage=This application has been unable to contact its update server for
<AppSyncExpirePeriod_value> days, so it is unavailable for use. Check your network connection and
try again.

If the value of the AppSyncExpirePeriod parameter is in hours or minutes, change the message to indicate
hours or minutes rather than days.

AppSyncExpirePeriod

The AppSyncExpirePeriod parameter sets the expiration of the package in minutes (m), hours (h), or days (d).
If ThinApp cannot reach the Web server to check for updates, the package continues to work until the
expiration period ends and the user closes it. Even after the expiration period ends, ThinApp tries to reach the
Web server at each subsequent startup attempt.

Examples

You can prevent the package from expiring with the default never value.

AppSyncExpirePeriod=never

VMware, Inc.

Appendix A Configuring Package Parameters

AppSyncURL

The AppSyncURL parameter sets the Web server URL or fileshare location that stores the updated version of an
application. ThinApp checks this location and downloads the updated package.

Application Sync works over the HTTP (unsecure), HTTPS (secure), and File protocols. Part of the HTTPS
protocol involves checking the identity of the Web server. You can include a user name and a password in the
AppSyncURL parameter for basic authentication. ThinApp adheres to the standard Internet Explorer proxy
setting.

You must comment the AppSyncURL parameter to activate all Application Sync parameters.

Examples

You can assign an HTTP or HTTPS value to the AppSyncURL parameter according to the following format.
AppSyncURL=https://<site.com>/<path>/<package_name>.exe

You can specify local and network drive paths.

file:///C:/<path>/<package_name>.exe

You can use a UNC path and access locations of network resources.

file://<server>/<share>/<path>/<package_name>.exe

AppSyncUpdateFrequency

The AppSyncUpdateFrequency parameter specifies how often ThinApp checks the Web server for application
updates. You can set the update frequency in minutes (m), hours (h), or days (d).

ThinApp does not check for an update when another running application shares the same sandbox.

Examples

The default value connects a package to the Web server once a day to check for updates.
AppSyncUpdateFrequency=1d

A value of 0 sets the captured application to check for updates every time you start it.

AppSyncUpdateFrequency=0

AppSyncUpdatedMessage

The AppSyncUpdatedMessage parameter sets the message that appears when an updated package first starts.

Examples
The AppSyncUpdatedMessage value confirms that the application is updated.

AppSyncUpdatedMessage=Your application has been updated.

AppSyncWarningFrequency
The AppSyncWarningFrequency specifies how often a warning appears before the package expires. You can
specify minutes (m), hours (h), or days (d).
Examples
The default value sets the warning message to appear only once a day.
AppSyncWarningFrequency=1d
A 0 value configures the warning to appear each time the application starts.

AppSyncWarningFrequency=0

VMware, Inc. 87

ThinApp User’s Guide

AppSyncWarningMessage

The AppSyncWarningMessage parameter sets the message that appears when the warning period starts.
The first time you start the application in the warning period, a warning message appears and ThinApp tries
to access the update from the server. If ThinApp cannot update the package, ThinApp tries again every time
the application starts. The warning message appears only after each AppSyncWarningFrequency period
expires.

Examples

ThinApp includes a default message for the Application Sync utility warning.

AppSyncWarningMessage=This application will become unavailable for use in %%remaining_days%%
day(s) if it cannot contact its update server. Check your network connection to ensure
uninterrupted service.

The %%remaining_days%% variable is the number of days remaining until the expiration of the package.

If the value of the AppSyncWarningPeriod parameter is in hours or minutes, change the message to indicate
hours or minutes rather than days.

AppSyncWarningPeriod

The AppSyncWarningPeriod parameter sets the start of the warning period before a package expires. You can
specify minutes (m), hours (h), or days (d). When the warning period starts, ThinApp checks the Web server
every time an application starts and sets the value of the AppSyncUpdateFrequency parameter to 0.
Examples

The default period of the AppSyncWarningPeriod parameter is five days.

AppSyncWarningPeriod=5d

Configuring MSI Files

88

MSI parameters configure MSI files that you might deploy instead of executable files. For information about
MSI files, see “Building an MSI Database” on page 29.

MSIArpProducticon

The MSTArpProductIcon parameter specifies the icons to place in the Windows control panel for the Add or
Remove Programs list.

Examples

You can specify icons for Microsoft Office 2007 in the Add or Remove Programs list.

MSIArpProductIcon=%Program Files Common%\Microsoft Shared\OFFICE12\
Office Setup Controller\OSETUP.DLL,1

The general format is MSTArpProductIcon=<filename>[,<icon_index>]. The <icon_index> entry is
optional.

MSIiDefaultinstallAllUsers

The MSIDefaultInstallAllUsers parameter sets the installation mode of the MSI database. You can install
a .ms1 file for all users on a computer and for individual users. The parameter works only when the
MSIFilename parameter requests the generation of a Windows installer database.

For information about forcing an MSI installation for each user or each machine, see “Force MSI Deployments
for Each User or Each Machine” on page 30.

VMware, Inc.

Appendix A Configuring Package Parameters

Examples

If a user installs the .ms1 file with a value of 1 for the MSIDefaultInstallAllUsers parameter, that user and
all other users who log in to the computer can use shortcuts, file type associations, and more. You must have
administrator rights for a machine installation.

[BuildOptions]

MSIFilename=mymsi.msi

MSIDefaultInstallAllUsers=1

If a user installs the .ms1 file with a value of 0 for the MSIDefaultInstallAllUsers parameter, only that user
can use shortcuts, file type associations, and more. You do not need administrator rights for an individual user
installation.

[BuildOptions]

MSIFilename=mymsi.msi

MSIDefaultInstallAllUsers=0

Administrators can create a database installation for all users on a machine and users without administrator
rights can create installations for individual users.

[BuildOptions]

MSIFilename=mymsi.msi
MSIDefaultInstallAllUsers=2

MSIFilename

The MSIFilename parameter enables the generation of an MSI database and specifies its filename.

The MSIFilename parameter produces a Windows installer with the specified filename in the output directory.

Examples
You can generate an MSI file during the build process and replace the mymsi.ms1 file with your own filename.

[BuildOptions]
MSIFilename=mymsi.msi

MSlinstallDirectory

The MSIInstallDirectory parameter specifies the path of the MSI installation directory. The parameter
works only when the MSIFilename parameter requests the generation of a Windows installer database.

By default, ThinApp places packages in the %ProgramFilesDir%\<InventoryName> directory during the
installation on each machine. You can change the installation path with theMSIInstallDirectory parameter.
When you use a relative path, the path is relative to %ProgramFilesDir% for installations on each machine
and relative to %AppData% for installations for each user. If you set the MSIInstallDirectory parameter to
ExampleDir, the default installation directory for installations on each machine is
%ProgramFilesDir%\ExampleDir.

Examples
You can install a .ms1 file in the C:\Program Files\My Application directory.

[BuildOptions]
MSIFilename=mymsi.msi
MSIInstallDirectory=My Application

MSIManufacturer

The MSIManufacturer parameter specifies the manufacturer to put in the MSI database. The default setting
is the name of the company to which your copy of Windows is registered. The parameter works only when the
MSIFilename parameter requests the generation of a Windows installer database.

VMware, Inc. 89

ThinApp User’s Guide

90

Examples

You can set the MSIManufacturer parameter to the name of your organization. The name does not have any
effect other than appearing in the properties of the MSI database.

[BuildOptions]
MSIFilename=mymsi.msi
MSIManufacturer=My Company Name

MSIProductCode

The MSIProductCode parameter specifies a product code for the MSI database. The parameter works only
when the MSIFilename parameter requests the generation of a Windows Installer database.

Each MSI database needs a product code. The capture process generates a default product code and places it
in the Package. ini file. If you change the product code, the new value must be a valid Globally Unique
Identifier (GUID).

Examples
You can create an MST file with 590810CE-65E6-3E0B-08EF-9CCF8AE20DOE as the product code.

[BuildOptions]
MSIFilename=mymsi.msi
MSIProductCode={590810CE-65E6-3EOB-O8EF-9CCF8AE20DOE}

MSIProductVersion

The MSIProductVersion parameter specifies a product version number for the MSI database. The parameter
works only when the MSIFilename parameter requests the generation of a Windows installer database.

The product version appears when you show the properties of the database. When you deploy a package to a
machine that already has the package installed, Windows Installer checks the version numbers and blocks the
installation of an older version over an updated version. In this situation, you must manually uninstall the new
version.

Examples

The default product version is 1.0.

[BuildOptions]
MSIFilename=mymsi.msi
MSIProductVersion=1.0

MSIRequireElevatedPrivileges

The MSIRequireElevatedPrivileges parameter applies to Windows Vista and specifies elevated privilege
requirements for the MSI database. The parameter works only when the MSIFilename parameter requests the
generation of a Windows installer database.

A value of 1 marks the MSI database as requiring elevated privileges. If your system is set up for UAC
prompts, a UAC prompt appears when you install an application.

A value of 0 blocks the UAC prompt and the installation across all machines.

Examples
The default setting of 1 creates an MSI file that always prompts for elevated privileges on Windows Vista.

[BuildOptions]
MSIFilename=mymsi.msi
MSIRequireElevatedPrivileges=1

VMware, Inc.

Appendix A Configuring Package Parameters

MSIUpgradeCode

The MSIUpgradeCode parameter specifies an upgrade code for the MSI database. The parameter works only
when the MSIFilename parameter requests the generation of a Windows installer database.

VMware recommends that each MSI database have an upgrade code. The capture process generates a suitable
upgrade code in the Package. ini file. Avoid changing the UpgradeCode value unless you verify that the new
value is a valid GUID.

Examples

You can create an MSI file with D89F1994-A24B-3E11-0C94-7FD1E13AB93F as the upgrade code.

[BuildOptions]
MSIFilename=mymsi.msi
MSIUpgradeCode={D89F1994-A24B-3E11-0C94-7FD1E13AB93F}

MSIUseCabs

The MSIUseCabs parameter determines the use of . cab files.
If you set the value to 1, ThinApp stores the package files in a . cab file. The . cab file is in the MSI file.

If you set the value to 0, ThinApp does not use .cab files. You might avoid a . cab file when it slows down the
installation process for applications. You can distribute the MSI file and individual executable files in /bin to
install the application.

Examples
You can store package files in a . cab file.

[BuildOptions]
MSIUseCabs=1

Configuring Sandbox Storage and Inventory Names

The sandbox parameters configure the directory where all changes that the captured application makes are
stored. The ThinApp inventory name might affect the need to change the sandbox name.

For more information about the sandbox, see Appendix B, “ThinApp Sandbox,” on page 95.

InventoryName

The InventoryName parameter is a string that inventory tracking utilities use for package identification. This
parameter determines the default names of the project folder and sandbox during the application capture
process.

The application capture process sets a default value for the InventoryName parameter based on new strings
created under one of the following locations:

m HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\
CurrentVersion\Uninstall

®m HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\
CurrentVersion\Uninstall

The thinreg.exe utility and ThinApp MSI files reference the inventory name to determine the product name
for display in the Add or Remove Programs control panel. For example, if the inventory name is SuperApp and
you install an MSI file or register a package with the thinreg. exe utility, the Add or Remove programs list
displays an installed application with the SuperApp (VMware ThinApp) string. ThinApp appends VMware
ThinApp to the inventory name to distinguish applications that are virtualized during inventory scans.

VMware, Inc. 91

ThinApp User’s Guide

92

You can use the same inventory name across different versions of the same application to ensure that only the
most recent version appears in Add or Remove Programs list. The applications overwrite each other in the
Add or Remove Programs list and prevent you from uninstalling all of the registered packages. If you want to
uninstall more than one version, use a different inventory name for each version. For example, use Microsoft
Office 2003 and Microsoft Office 2007 as inventory names rather than just Microsoft Office. When you
maintain different versions of a virtual application in the same environment, you might want to change the
SandboxName parameter to ensure that a new version has isolated user settings in a different sandbox.

If you have a package that includes other applications, you might update the inventory name manually to
reflect the true contents of the package. For example, if you capture the SuperApp application and the package
includes Java Runtime, the InventoryName value might appear as Java Runtime Environment 1.5 instead
of SuperApp. The Add or Remove Programs list displays the first application installed within the package.

Examples

You can set the inventory name to Microsoft Office 2003.

[BuildOptions]
InventoryName=Microsoft Office 2003

RemoveSandboxOnEXxit

The RemoveSandboxOnExit parameter deletes the sandbox and resets the application when the last child
process exits.

ThinApp stores all application changes to the registry and file system locations with WriteCopy or Full
isolation in the sandbox. By default, the sandbox directory keeps consistent settings across multiple runs of
the application. You might want to delete the sandbox each time the application exits.

If the application creates child processes, ThinApp does not delete the sandbox until all child processes exit.
Applications might be designed to leave child processes in place that can block the cleanup operation.

For example, Microsoft Office 2003 leaves the ctfmon.exe process. You might need to use a script to end the
ctfmon. exe process and child processes to force the cleanup operation to occur.

You can decide at runtime whether to use the RemoveSandboxOnExit script API function to delete the
sandbox on exit.

Examples
You can delete the sandbox when the application exits.

[BuildOptions]
RemoveSandboxOnExit=1

You can leave the sandbox in place when the application exits. This is the default behavior.

[BuildOptions]
RemoveSandboxOnExit=0

SandboxName

The SandboxName parameter sets the name of the directory that stores the sandbox.

When you upgrade an application, the sandbox name helps determine whether users retain previous personal
settings or require new settings. Changing the sandbox name with new deployments affects the need to create
a new sandbox with different settings or retains the same sandbox.

Examples

You can make My Application 1.0 the sandbox directory name.

[BuildOptions]
SandboxName=My Application 1.0

VMware, Inc.

Appendix A Configuring Package Parameters

SandboxNetworkDrives

The SandboxNetworkDrives parameter determines whether ThinApp uses sandboxes for network-mapped
drives.

Examples
You can store changes in the sandbox and prevent the user from writing directly to network-mapped drives.

[BuildOptions]
SandboxNetworkDrives=1

You can write directly to network-mapped drives without storing changes in a sandbox. This is the default
behavior.

(default)
[BuildOptions]
SandboxNetworkDrives=0

SandboxPath

The SandboxPath parameter sets the path to create a new sandbox.

If an application runs only from portable media, such as USB flash devices, you can use the SandboxPath
parameter to force the application to use a local sandbox. For information about how ThinApp locates a
sandbox, see “Search Order for the Sandbox” on page 95.

Examples
You can create the sandbox in the same directory as the executable file.

[BuildOptions]
SandboxPath=.

You can create the sandbox in a subdirectory subordinate to the executable file location.

[BuildOptions]
SandboxPath=LocalSandbox\Subdirl

You can create the sandbox in the AppData folder of the user under the Thinstall subdirectory:

[BuildOptions]
SandboxPath=%AppData¥\Thinstall

You can create the sandbox on a network mapped drive.
[BuildOptions]
SandboxPath=Z:\Sandboxes

SandboxRemovableDisk

The SandboxRemovableDisk parameter determines whether ThinApp can write removable disk changes to
the disks or to the sandbox. Removable disks include USB flash devices and removable hard drives.

Examples
The default value instructs ThinApp to write removable disk file changes directly to the disk.

[BuildOptions]
SandboxRemovableDisk=0

ThinApp can apply isolation modes to removable disks. Depending on the isolation mode, changes to files
stored on removable disks can reside in the sandbox or on the removable disk.

[BuildOptions]
SandboxRemovableDisk=1

VMware, Inc. 93

ThinApp User’s Guide

94 VMware, Inc.

ThinApp Sandbox

The sandbox is the directory where all changes that the captured application makes are stored. The next time
you start the application, those changes are incorporated from the sandbox. When you delete the sandbox
directory, the application reverts to its captured state.

This information includes the following topics:
m “Search Order for the Sandbox” on page 95
® “Controlling the Sandbox Location” on page 97

B “Sandbox Structure” on page 98

Search Order for the Sandbox

During startup of the captured application, ThinApp searches for an existing sandbox in specific locations and
in a specific order. ThinApp uses the first sandbox it detects. If ThinApp cannot locate an existing sandbox,
ThinApp creates a sandbox according to certain environment variable and parameter settings. Review the
search order and sandbox creation logic before changing the placement of the sandbox.

The search order uses Mozilla Firefox 3.0 as an example with the following variables:
B <sandbox_name> is Mozilla Firefox 3.0

The SandboxName parameter in the Package. in1 file determines the name. See “SandboxName” on
page 92.

B <sandbox_path>is Z:\sandboxes

The SandboxPath parameter in the Package. in1 file determines the path. See “SandboxPath” on
page 93.

B <exe_directory>is C:\Program Files\Firefox
The application runs from this location.
m <computer_name> is JOHNDOE-COMPUTER
m %AppData%is C:\Documents and Settings\JohnDoe\Application Data

ThinApp requests the Application Data folder location from the operating system. The location
depends on the operating system or configuration.

VMware, Inc. 95

ThinApp User’s Guide

96

ThinApp starts the sandbox search by trying to locate the following environment variables in this order:
B %<sandbox_name>_SANDBOX_DIR%

This environment variable changes the sandbox location for specific applications on the computer.

For example, if the Mozilla Firefox 3.0_SANDBOX_DIR environment variable exists, its value
determines the parent directory sandbox location. If the value is z: \FirefoxSandbox before you run the
application, ThinApp stores the sandbox in z: \FirefoxSandbox.JOHNDOE—-COMPUTER if the directory
already exists. If the directory does not exist, ThinApp creates a sandbox in z: \FirefoxSandbox.

B %THINSTALL_SANDBOX_DIR%

This environment variable changes the location of all sandboxes on a computer. For example, if the
THINSTALL_SANDBOX_DIR environment variable exists, its value determines the parent directory sandbox
location. If the value is z:\MySandboxes before you run the application, ThinApp creates a sandbox in
z:\MySandboxes.

If ThinApp does not detect the %<sandbox_name>_SANDBOX_DIR% or $THINSTALL_SANDBOX_DIR%
environment variable, ThinApp checks for the following file system directories and creates a sandbox in the
first directory it detects:

B <exe_directory>\<sandbox_name>.<computer_name>
For example, C:\Program Files\Firefox\Mozilla Firefox 3.0.JOHNDOE-COMPUTER
B <exe_directory>\<sandbox_name>
For example, C:\Program Files\Firefox\Mozilla Firefox 3.0
B <exe_directory>\Thinstall\<sandbox_name>.<computer_name>
For example, C:\Program Files\Firefox\Thinstall\Mozilla Firefox 3.0.JOHNDOE-COMPUTER
m <exe_directory>\Thinstall\<sandbox_name>
For example, C:\Program Files\Firefox\Thinstall\Mozilla Firefox 3.0
B <sandbox_path>\<sandbox_name>.<computer_name>
For example, Z:\sandboxes\Mozilla Firefox 3.0.JOHNDOE-COMPUTER
B <sandbox_path>\<sandbox_name>
For example, Z:\sandboxes\Mozilla Firefox 3.0
m %AppData%\Thinstall\<sandbox_name>.<computer_name>

For example, C:\Documents and Settings\JohnDoe\Application Data\Thinstall\Mozilla
Firefox 3.0.JOHNDOE-COMPUTER

B %AppData%\Thinstall\<sandbox_name>

For example, C:\Documents and Settings\JohnDoe\Application Data\Thinstall\Mozilla
Firefox 3.0

If ThinApp does not detect the %<sandbox_name>_SANDBOX_DIR% or $THINSTALL_SANDBOX_DIR%
environment variable, and does not detect the specified file system directories, ThinApp creates a sandbox
using the following guidelines in this order:

m If the SANDBOXPATH Package. ini parameter is set, the value determines the sandbox location.

® [f ThinApp completes the sandbox search without any results, ThinApp creates a sandbox in the default
%AppData%\Thinstall directory of the user.

NOTE Only one computer at a time can use a shared sandbox. If a computer is already using a sandbox,
ThinApp creates a new sandbox to allow you to continue working until the previous copy of the sandbox
closes.

VMware, Inc.

Appendix B ThinApp Sandbox

Controlling the Sandbox Location

The setup capture process adds the SandboxName parameter to the Package. ini file. If you capture Firefox
and Mozilla Firefox 3.0 is the value of this parameter, the default location of the sandbox for the
application is %AppData%\Thinstall\Mozilla Firefox 3.0. The typical %AppData% location is
C:\Documents and Settings\<user_name>\Application Data.%AppData% is often mapped to a shared
network drive.

Store the Sandbox on the Network

You can use the SandboxPath parameter to store the sandbox on a mapped drive. A network location is useful
for backing up the sandbox and for users who need to log in to any machine and retain their application
settings. For more information about the SandboxPath parameter, see “SandboxPath” on page 93.

To store the sandbox on a mapped drive
1 Open the Package.ini file.
2 Under the SandboxName parameter, set the SandboxPath parameter to the network location.

SandboxName=Mozilla Firefox 3.0
SandboxPath=Z:\Sandbox

For example, if Mozilla Firefox 3.0 is the value of the SandboxName parameter, the captured Firefox
application creates the sandbox in Z:\Sandbox\Mozilla Firefox 3.0.

Store the Sandbox on a Portable Device

You can use the SandboxPath parameter to set a portable device location for the sandbox. You can use any
portable device, such as a USB drive, that appears as a disk drive in theMy Computer system folder. A portable
device location is useful to keep the sandbox data on the device where the application resides.

For more information about the SandboxPath parameter, see “SandboxPath” on page 93.

To store the sandbox in the same directory on a USB drive where the executable file resides
1 Open the Package. ini file.
2 Under the SandboxName parameter, set the SandboxPath parameter to this value.

SandboxName=Mozilla Firefox 3.0
SandboxPath=.

For example, if Mozilla Firefox 3.0 is the value of the SandboxName parameter, the captured Firefox
application creates the Mozilla Firefox 3.0 sandbox in the same directory that Firefox runs from.

To store the sandbox in a Thinstall directory on a USB drive at the same level as the executable file

1 Ifthe ¥THINSTALL_SANDBOX_DIR% or %<sandbox_name>_SANDBOX_DIR% environment variables are set,
unset the variables.

2 On the portable device, create a Thinstall directory in the same directory as your captured application.

The next time the packaged application starts from the portable device, the application creates a sandbox
in the Thinstall directory.

3 If the application and sandbox originally ran from another location, such as a computer, and you need the
same sandbox on a portable device, copy the Thinstall directory from %AppData% to the directory where
the executable file resides on the device.

ThinApp no longer uses the sandbox in the original location.

VMware, Inc. 97

ThinApp User’s Guide

Sandbox Structure

98

ThinApp stores the sandbox using a file structure almost identical to the build project structure. ThinApp uses
macro names for shell folder locations, such as %AppData%, instead of hard coded paths. This structure enables
the sandbox to migrate to different computers dynamically when the application runs from new locations.

The sandbox contains the following registry files:
B Registry.rw.tvr - Contains all registry modifications that the application makes.

B Registry.rw.1lck-Prevents other computers from simultaneously using a registry located on a network
share.

B Registry.tvr.backup — Contains a backup of the . tvr file that ThinApp uses when the original . tvr
file is corrupted.

Besides these registry files, the sandbox contains directories that include %AppData%, %ProgramFilesDir%,
and %SystemRoot%. Each of these folders contains modifications to respective folders in the captured
application.

Making Changes to the Sandbox

ThinApp stores file system information in the virtual registry. The virtual registry enables ThinApp to
optimize file system access in the virtual environment. For example, when an application tries to open a file,
ThinApp does not need to consult the real file system for the real system location and again for the sandbox
location. Instead, ThinApp can check for the existence of the file by consulting only the virtual registry. This
ability increases the ThinApp runtime performance.

VMware does not support modifying or adding files directly to the sandbox. If you copy files to the sandbox
directory, the files are not visible to the application. If the file already exists in the sandbox, you can overwrite
and update the file. VMware recommends that you perform all modifications from the application itself.

Listing Virtual Registry Contents with vregtool

Because the sandbox contains the modifications to the registry, you might need the vregtool utility to view
modified virtual registry changes. You must have access to the vregtool utility in C: \Program
Files\VMware\VMware ThinApp.

A sample command to list the contents of a virtual registry file is vregtool registry.rw.tvr printkeys.

VMware, Inc.

Snapshot Commands and
Customization

The snapshot. exe utility creates a snapshot of a computer file system and registry and creates a ThinApp
project from two previously captured snapshots. You do not need to start the snapshot. exe utility directly
because the Setup Capture wizard starts it. Only advanced users and system integrators who are building
ThinApp functionality into other platforms might make direct use of this utility.

Creating a snapshot of a computer file system and registry involves scanning and saving a copy of the
following data:

m File information for all local drives
This information includes directories, filenames, file attributes, file sizes, and file modification dates.
® HKEY_LOCAL_MACHINE and HKEY_USERS registry trees

ThinApp does not scan HKEY_CLASSES_ROOT and HKEY_CURRENT_USER registry entries because those
entries are subsets of HKEY_LOCAL_MACHINE and HKEY_USERS entries.

The snapshot.ini configuration file specifies what directories and subkeys to exclude from a ThinApp
project when you capture an application. You might customize this file for certain applications.

This information includes the following topics:

B “Methods of Using the snapshot.exe Utility” on page 99

B “Sample snapshot.exe Commands” on page 101

B “Create a Project Without the Setup Capture Wizard” on page 101

B “Customizing the snapshot.ini File” on page 102

Methods of Using the shapshot.exe Utility

You can use the snapshot. exe utility to create snapshot files of machine states, create the template file for the
Package.ini file, create a ThinApp project, and display the contents of a snapshot file.

For information about the full procedure to create a ThinApp project from the command line, see “Create a
Project Without the Setup Capture Wizard” on page 101.

Creating Snapshots of Machine States

The snapshot . exe utility creates a snapshot file of a machine state. ThinApp captures the machine state and
saves it to a single file to create a project. The snapshot. exe utility saves a copy of registry data and file system
metadata that includes paths, filenames, sizes, attributes, and timestamps.

Usage

snapshot.exe SnapshotFileName.snapshot [-Config ConfigFile.ini][BaseDirl][BaseDir2][BaseRegl]

VMware, Inc. 99

ThinApp User’s Guide

100

Examples

Snapshot My.snapshot

Snapshot My.snapshot -Config MyExclusions.ini

Snapshot My.snapshot c:\MyAppDirectory HKEY_LOCAL_MACHINE\Software\MyApp
Options

The options specify the directories or subkeys in the snapshot.

Option Description

-Config ConfigFile.ini Specifies directories or registry subkeys to exclude during snapshot creation.
If you do not specify a configuration file, ThinApp uses the snapshot.ini file
from the ThinApp installation directory.

BaseDirl Specifies one or more base directories to include in the scan. If you do not specify
base directories, the snapshot. exe utility scans c:\ and all subdirectories.
If you scan a machine where Windows or program files are installed on different
disks, include these drives in the scan.
If you know that your application installation creates or modifies files in fixed

locations, specify these directories to reduce the total time required to scan a
machine.

BaseRegl Species one or more base registry subkeys to include in the scan. If you do not
specify registry subkeys, the snapshot. exe utility scans the
HKEY_LOCAL _MACHINE and HKEY_USERS keys.

Creating the Template Package.ini file from Two Snapshot Files

The snapshot. exe utility generates a template Package. ini file. The utility scans the two snapshot files for
all applications that are created and referenced from shortcut links or the Start menu. The template
Package.ini file becomes the basis of the Package.ini file in a ThinApp project.

Usage

snapshot.exe Snapl.snapshot -SuggestProject Snap2.snapshot OutputTemplate.ini

Examples
Snapshot Start.snapshot -SuggestProject End.snapshot Template.ini

ThinApp requires all of the parameters.

Creating the ThinApp Project from the Template Package.ini File

The snapshot . exe utility creates the ThinApp project file from the template Package. ini file.

Usage

snapshot.exe Template.ini -GenerateProject OutDir [-Config ConfigFile.ini]

Examples

Snapshot Template.ini -GenerateProject c:\MyProject
Snapshot Template.ini -GenerateProject c:\MyProject -Config MyExclusions.ini

-Config ConfigFile.1ini is optional. The configuration file specifies directories or registry subkeys for
exclusion from the project. If you do not specify a configuration file, ThinApp uses the snapshot.ini file.

VMware, Inc.

Appendix C Snapshot Commands and Customization

Displaying the Contents of a Snapshot File

The snapshot. exe utility lists the contents of the snapshot file.

Usage

snapshot.exe SnapshotFileName.snapshot -Print

Examples
Snapshot Start.snapshot -Print

ThinApp requires all of the parameters.

Sample snhapshot.exe Commands

Table C-1 describes sample commands for the snapshot. exe utility. The parameters are not case-sensitive.
The commands are wrapped in the Command column because of space restraints.

Table C-1. snapshot.exe Sample Commands

Command

snapshot c:\Capture.snapshot

Description

Captures a complete snapshot of local drives and
registry to the file c:\Capture.snapshot.

snapshot c:\Capture.snapshot c:\ e:\

Captures a complete snapshot of the c:\ and e:\ drives.
ThinApp does not capture registry information.

snapshot c:\Capture.snapshot c:\
HKEY_LOCAL_MACHINE\Software\Classes

Captures a complete snapshot of the c:\ drive and all of
the HKEY_CLASSES_ROOT registry subtree.

snapshot c:\Original.snapshot -Diff
c:\NewEnvironment.snapshot c:\MyProject

Generates a ThinApp project directory by comparing
two snapshots.

snapshot Original.snapshot -DiffPrint
NewEnvironment.snapshot

Displays differences between two captured snapshots.

snapshot C:\data.snapshot snapshot
C:\data.snapshot C:\ HKEY_LOCAL_MACHINE

Saves the state of the computer file system and registry.

snapshot C:\start.snapshot -diffprint
C:\end.snapshot

Compares two recorded states.

snapshot C:\start.snapshot —print

Prints the contents of a saved state.

snapshot C:\start.snapshot -SuggestProject

C:\end.snapshot C:\project.ini snapshot
C:\project.ini -GenerateProject

Generates a ThinApp project by comparing two saved
states.

Create a Project Without the Setup Capture Wizard

You can use the snapshot . exe utility from the command line instead of using the Setup Capture wizard that
runs the snapshot. exe utility in the background. The command-line utility is useful to package a large
number of applications or automate ThinApp project creation. The typical location of the snapshot.exe
utility is C:\Program Files\VMware\VMware ThinApp\snapshot.exe.

The snapshot process makes a copy of the all registry entries on the system and file system metadata.

File system metadata includes path, filename, attribute, size, and timestamp information but excludes actual

file data.

To create a project with the snapshot.exe command-line utility

1 Save an initial snapshot of the current machine configuration to disk.

snapshot.exe c:\Start.snapshot

2 Install the application and make any necessary manual system changes.

VMware, Inc.

101

ThinApp User’s Guide

Save to disk a snapshot of the new machine configuration.

snapshot.exe c:\End.snapshot

Generate a template Package. ini file.

snapshot.exe c:\Start.snapshot -SuggestProject c:\End.snapshot c:\Template.ini

ThinApp uses the template file to generate the final Package. ini file. The template file contains a list of
all detected executable file entry points and Package.ini parameters. If you write your own script to
replace the Setup Capture wizard, use the template Package. ini file to select the entry points to keep or
customize Package.ini parameters such as InventoryName.

Generate a ThinApp project.
snapshot.exe c:\Template.ini -GenerateProject c:\MyProjectDirectory

(Optional) Delete the temporary c:\Start.snapshot, c:\End.snapshot, and c:\Template.ini files.

(Optional) To generate multiple projects with different configurations, reuse the original
Start.snapshot file and repeat the procedure from Step 2.

Customizing the snapshot.ini File

102

The snapshot.ini configuration file specifies what registry keys to exclude from a ThinApp project when
you capture an application.

For example, if you use Internet Explorer 7, you might need ThinApp to capture the following registry keys:

HKEY_CURRENT_USER\Software\Microsoft\Internet Explorer\Desktop\Components
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Internet Settings

HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Internet
Settings\Connections

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Hardware
Profiles\0001\Software\Microsoft\windows\CurrentVersion\Internet Settings

If the snapshot.ini file excludes the
HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\

Internet Settings\Connections key by default, you can remove this key from the snapshot.ini file to
ensure that ThinApp captures the key in the capture process.

If you do not customize the snapshot. ini file, the snapshot process loads the file from one of these locations:

Application Data\Thinapp\snapshot.ini
This location is the AppData directory of the user.
C:\Program Files\VMware\VMWare Thinapp\snapshot.ini

This is the location from which ThinApp runs the snapshot . exe utility.

VMware, Inc.

ThinApp Virtual File System

ThinApp stores the differences between snapshots during the setup capture process in a virtual file system and
virtual registry.

This information about the virtual file system includes the following topics:
® “Virtual File System Formats” on page 103

B “Merged and Virtual Views of the File System” on page 103

® “Using Folder Macros” on page 104

Virtual File System Formats
ThinApp generates the following virtual file system formats:
m Build

The setup capture process generates this format from files found directly on the physical file system.
ThinApp uses folder macros to represent Windows shell folder locations.

® Embedded

The build.bat file triggers a build process that embeds a read-only file system in executable files.
The executable files provide block-based streaming to client computers. ThinApp compresses the file
system.

® Sandbox

Running the captured application generates the read-write directory structure that holds file data that the
application modifies. File modifications that prompt ThinApp to extract embedded virtual files to the
sandbox include the following operations:

® Changing the timestamp or attributes of a file
B Opening a file with write access

B Truncating a file

B Renaming or moving a file

The embedded and sandbox file systems use folder macros to enable file paths to dynamically expand at
runtime.

Merged and Virtual Views of the File System

Isolation modes specify whether ThinApp presents the application with a merged view of the virtual and
physical file system or a view of virtual files. For information about isolation modes, see “Modifying Isolation
Modes” on page 23.

VMware, Inc. 103

ThinApp User’s Guide

Using Folder Macros

104

ThinApp uses macros to represent file system path locations that might change when virtualized applications
run on different Windows operating systems or computers. The use of macros allows shared application
profile information to instantly migrate to different operating systems.

For example, you might capture an application on a system that has C: \WINNT as the Windows directory and
deploy the application on a system that has C: \Windows as the Windows directory. ThinApp transparently
converts C:\WINNT to %SystemRoot% during the capture process for that system and expands %SystemRoot%
to C:\Windows during runtime for that system.

If an application registers DLLs to C:\winnt\system32 while running on Windows 2000, the user can quit
the application and log in to a Windows XP machine. On the Windows XP machine, the files appear to exist at
C:\windows\system32 and all related registry keys point to C: \windows\system32.

On Windows Vista, ThinApp moves Windows SxS DLLs and policy information to match Windows Vista
instead of using Windows XP file path styles. This feature allows most applications to migrate to updated or
older operating systems.

ThinApp provides SxS support for applications running on Windows 2000 even though the underlying
operating system does not. This support enables most applications captured on Windows XP to run on
Windows 2000 without changes.

List of Folder Macros

ThinApp uses the shfolder.d11 file to obtain the location of shell folders. Older versions of the
shfolder.d11 file do not support some macro names.

Macros requiring shfolder.d11 version 5.0 or later include %ProgramFilesDir%, %Common AppData%,
%Local AppData%, %My Pictures%, and %Profile%.

Macros requiring shfolder.dl1 version 6.0 or later include %My Videos%, %Personal%, and %Profiles%.
Table D-1 lists the available folder macros.
Table D-1. Folder Macros

Macro Name Typical Location

%AdminTools% C:\Documents and Settings\<user_name>\Start
Menu\Programs\Administrative Tools

%AppData% C:\Documents and Settings\<user_name>\Application Data

%CDBurn Area% C:\Documents and Settings\<user_name>\Local Settings\Application
Data\Microsoft\CD Burning

%Common AdminTools% C:\Documents and Settings\All Users\Start Menu\Programs\Administrative
Tools

%Common AppData% C:\Documents and Settings\All Users\Application Data

%Common Desktop% C:\Documents and Settings\All Users\Desktop

%Common Documents% C:\Documents and Settings\All Users\Documents

%Common Favorites% C:\Documents and Settings\All Users\Favorites

%Common Programs% C:\Documents and Settings\All Users\Start Menu\Programs

%Common StartMenu% C:\Documents and Settings\All Users\Start Menu

%Common Startup% C:\Documents and Settings\All Users\Start Menu\Programs\Startup

%Common Templates% C:\Documents and Settings\All Users\Templates

%Cookies% C:\Documents and Settings\<user_name>\Cookies

%Desktop% C:\Documents and Settings\<user_name>\Desktop

%Drive_c% C:\

%Drive_m% M:\

VMware, Inc.

Appendix D ThinApp Virtual File System

Table D-1. Folder Macros (Continued)

Macro Name Typical Location

%Favorites% C:\Documents and Settings\<user_name>\Favorites

%Fonts% C:\Windows\Fonts

%History% C:\Documents and Settings\<user_name>\Local Settings\History

%Internet Cache% C:\Documents and Settings\<user_name>\Local Settings\Temporary Internet
Files

%Local AppData% C:\Documents and Settings\<user_name>\Local Settings\Application Data

%My Pictures% C:\Documents and Settings\<user_name>\My Documents\My Pictures

%My Videos% C:\Documents and Settings\<user_name>\My Documents\My Videos

%NetHood% C:\Documents and Settings\<user_name>\NetHood

%Personal% C:\Documents and Settings\<user_name>\My Documents

%PrintHood% C:\Documents and Settings\<user_name>\PrintHood

%Profile% C:\Documents and Settings\<user_name>

%Profiles% C:\Documents and Settings

%Program Files Common% C:\Program Files\Common Files

%ProgramFilesDir% C:\Program Files

%Programs% C:\Documents and Settings\<user_name>\Start Menu\Programs

%Recent% C:\Documents and Settings\<user_name>\My Recent Documents

%Resources% C:\Windows\Resources

%Resources Localized% C:\Windows\Resources\<language_ID>

%SendTo% C:\Documents and Settings\<user_name>\SendTo

%Startup% C:\Documents and Settings\<user_name>\Start Menu\Programs\Startup

%SystemRoot% C:\Windows

%SystemSystem¥% C:\Windows\System32

%TEMPY% C:\Documents and Settings\<user_name>\Local Settings\Temp

%Templates% C:\Documents and Settings\<user_name>\Templates

Processing %SystemRoot%

A Terminal Services environment has a shared Windows directory, such as C:\Windows, and a private
Windows directory, such as C:\Documents and Settings\User\Windows. In this environment, ThinApp
uses the user-specific directory for %SystemRoot%.

VMware, Inc. 105

ThinApp User’s Guide

106 VMware, Inc.

ThinApp Scripts

Scripts modify the behavior of virtual applications dynamically. You can create custom code before starting an
application packaged with ThinApp or after an application exits. You can use scripts to authenticate users and
load configuration files from a physical to virtual environment.

Callback functions run code during specific events. If applications create child processes, use callback
functions to run code only in the main parent process.

API functions run ThinApp functions and interact with the ThinApp runtime. API functions can authenticate
users and prevent the start of applications for unauthorized users.

Adding scripts to your application involves creating an ANSI text file with the .vbs file extension in the root
application project directory. The root project directory is the same directory that contains the Package.ini

file. During the build process, ThinApp adds the script files to the executable file and runs each of the script

files at runtime.

ThinApp uses VBScript to run script files. For information about VBScript, see the Microsoft VBScript
documentation. You can use VBScript to access COM controls registered on the host system or within the
virtual package.

This information includes the following topics:
® “Callback Functions” on page 107
B “Use Scripts in a ThinApp Environment” on page 108

® “API Functions” on page 111

Callback Functions

Callback functions with specific names run only under certain conditions. For example, callback functions run
script code only when an application starts or quits.

Callback function names include the following names:

B OnFirstSandboxOwner—Called only when an application first locks the sandbox. This callback is not
called if a second copy of the same application uses the same sandbox while the first copy runs. If the first
application spawns a subprocess and quits, the second subprocess locks the sandbox and prevents this
callback from running until all subprocesses quit and the application runs again.

B OnFirstParentStart—Called before running a ThinApp executable file regardless of whether the
sandbox is simutaneously owned by another captured executable file.

B OnFirstParentExit—Called when the first parent process exits. If a parent process runs a child process
and quits, this callback is called even if the child process continues to run.

B OnLastProcessExit—Called when the last process owning the sandbox exits. If a parent process runs a
child process and quits, this callback is called when the last child process exits.

VMware, Inc. 107

ThinApp User’s Guide

The following callback example shows the OnFirstSandboxOwner and OnFirstParentExit functions.

example.vbs
Function OnFirstSandboxOwner
msgbox "The sandbox owner 1is:
End Function

+ GetCurrentProcessName

Function OnFirstParentExit
msgbox "Quiting application:
End Function

+ GetCurrentProcessName

msgbox "This code will execute for all parent and child processes"

Use Scripts in a ThinApp Environment

You might use a script in the following circumstances:

B Timing out an application on a specific date.

B Running a .bat file from a network share inside the virtual environment.
B Modifying the virtual registry.

B Importing the . reg file at runtime.

B Stopping a virtual service when the main application quits.

® Copying an external system configuration file into the virtual environment on startup.

To use a script

1 Save the script contents in a plain text file with the . vbs extension in the same directory as your
Package.ini file.

You can use any filename. ThinApp adds all .vbs files to the package at build time.

2 Rebuild the application.

.bat Example

The following script runs an external . bat file from a network share inside of the virtual environment.

The . bat file makes modifications to the virtual environment by copying files, deleting files, or applying

registry changes using regedit /s regfile.reg. Run this script only for the first parent process. If you run

this script for other processes, each copy of the cmd . exe utility runs the script and an infinite recursion develops.

Function OnFirstParentStart

Set Shell = CreateObject("Wscript.Shell™)
Shell.Run "\\jcdesk2\test\test.bat"

End Function

Timeout Example

The following script prevents the use of an application after a specified date. The VBS date uses the
#mm/dd/yyyy# format, regardless of locale.

This check occurs upon startup of the parent process and any child processes.

if Date >= #03/20/2007# then

msgbox "This application has expired, please contact Administrator"
ExitProcess 0
end if

108 VMware, Inc.

Appendix E ThinApp Scripts

Modify the Virtual Registry

The following script procedure modifies the virtual registry at runtime to load an external ODBC driver from
the same directory where the package executable file is located.

To modify the registry
1 Obtain the path to the package executable files.
Origin = GetEnvironmentVariable("TS_ORIGIN")
2 Find the last slash in the path and obtain the characters that precede the slash.

LastSlash = InStrRev(Origin, "\")
SourcePath = Left(Origin, LastSlash)

3 Form a new path to the ODBC DLL file located outside of the package.
DriverPath=SourcePath + "tsodbc32.d11"
4 Modify the virtual registry to point it to this location.

Set WSHShell = CreateObject("Wscript.Shell™)
WSHShell.RegWrite "HKEY_LOCAL_MACHINE\SOFTWARE\ODBC\ODBCINST.INI\Transoft ODBC
Driver\Driver," DriverPath

This modification causes the application to load the DLL from an external location.

.reg Example

The following script imports the registry values from an external . reg file into the virtual registry at runtime.

Function OnFirstParentStart
ExecuteVirtualProcess "regedit /s c:\tmp\somereg.reg"
End Function

Stopping a Service Example

The following script stops a virtual or native service when the main application quits.

Function OnFirstParentExit

Set WshShell = CreateObject("WScript.Shell")
WshShell.Run "net stop ""iPod Service"""
End Function

Copying a File Example

The following script sections shows how to copy a configuration file located in the same directory as the
captured executable file into the virtual file system each time the application starts. This script is useful for an
external configuration file that is easy to edit after deployment. Because the copy operation occurs each time
you run the application, any changes to the external version are reflected in the virtual version.

For example, if your captured executable file is running from \\server\share\myapp.exe, this script
searches for a configuration file located at \\server\share\config.ini and copies it to the virtual file
system location at c:\Program Files\my application\config.ini.

By putting this code in the OnFirstParentStart function, it is only called once each time the script runs.
Otherwise it runs for every child process.

Function OnFirstParentStart

VMware, Inc. 109

ThinApp User’s Guide

110

ThinApp sets up TS_ORIGIN to indicate the full path to a captured executable file package. A virtual
application sets the TS_ORIGIN variable to the physical path of the primary data container.If you have a virtual
application consisting of the main.exe and shortcut.exe files, both files reside in C:\VirtApp. When you
run themain.exefile, TS_ORIGIN varissetto C:\VirtApp\main.exe. When you run the shortcut.exefile,
the TS_ORIGIN environment variable is set to C: \VirtApp\main.exe. The environment variable is always set
to the primary data container, even when you create a shortcut. When you run VBScripts that are included in
the package, the variable is already set and available to the scripts.

Origin = GetEnvironmentVariable("TS_ORIGIN")

You can separate the filename from TS_ORIGIN by finding the last backslash and removing all of the characters
following it.

LastSlash = InStrRev(Origin, "\'")
SourcePath = Left(Origin, LastSlash)

The source file to copy into the virtual environment is the package path plus config.ini.
SourceFile = SourcePath + "Config.ini"

The location to copy to might be a different location on different computers if the Program Files directory is
mapped to a location other than c:\. The following call lets ThinApp expand a macro to obtain the correct
location for the local computer.

DestFile = ExpandPath("%ProgramFilesDir%\MyApplication\Config.ini")
Use the file systemObject parameter to check the source file exists.

Set objFSO = CreateObject("Scripting.filesystemObject™)
If objFSO.FileExists(SourceFile) Then

If the source file exists, copy it into the virtual file system. The %ProgramFilesDir%\MyApplication virtual
directory is in the package.

objFSO.CopyFile SourceFile, DestFile, TRUE
End if
End Function

Add a Value to the System Registry

This script procedure adds a value to the physical system registry.

To add a value to the system registry

1 Create a .reg file and run the regedit /s command as an external process that accesses the system
registry instead of the virtual registry.

Function OnFirstParentStart

2 Create the . reg file in a location that has the IsolationMode parameter set to Merged so that the virtual
environment can access it with this script and the physical environment can it with the regedit /s
command.

RegFileName = ExpandPath("'%Personal%\thin.reg")
Set fso = CreateObject("Scripting.filesystemObject")
Set RegFile = fso.CreateTextFile(RegFileName, true)

The %Personal¥% directory is a directory that has Merged isolation mode by default.
3 Construct the . reg file.

RegFile.WriteLine("Windows Registry Editor Version 5.00")

RegFile.WriteBlankLines (1)

RegFile.WriteLine (" [HKEY_CURRENT_USER\Software\Thinapp\demo]") RegFile.WriteLine(chr(34) and
"InventoryName" and chr(34) and "=" and chr(34) and GetBuildOption('InventoryName") and
chr(34))

RegFile.Close

VMware, Inc.

Appendix E ThinApp Scripts

4 Enter the information in the system registry.

RegEditPid = ExecuteExternalProcess('"regedit /s " and chr(34) and RegFileName and chr(34))
WaitForProcess RegEditPid, 0

Wait until the process is complete.
5 Clean the environment.

fso.DeleteFile(RegFileName)
End Function

API Functions

You can use API functions that instruct ThinApp to complete operations such as load DLLs as virtual DLLS,
convert paths from macro format to system format, and run commands inside of the virtual environment.

AddForcedVirtualLoadPath

The AddForcedVirtualLoadPath(Path) function instructs ThinApp to load all DLLs from the specified path
as virtual DLLs even if they are not located in the package.

Use this function if the application needs to load external DLLs that depend on DLLs located inside the
package.

Parameters

Path

[in] The filename or path for DLLs to load as virtual.

Examples

You can load any DLL located in the same directory as the executable file as a virtual DLL.
Origin = GetEnvironmentVariable("TS_ORIGIN™)

TS_ORIGIN is the path from which the executable file is running.

You can delete the filename from TS_ORIGIN by finding the last backslash and removing all of the characters
that follow it.

LastSlash = InStrRev(Origin, "\'")
SourcePath = Left(Origin, LastSlash)

You can instruct ThinApp to load all DLLs in the same or lower directory from where the source executable
file resides.

AddForcedVirtualLoadPath(SourcePath)

This process allows you to drop additional files in the SourcePath tree and have them resolve import
operations against virtual DLLs.

ExitProcess

The ExitProcessExitCode function quits the current process and sets the specified error code.

Parameters
ExitCode

[in] The error code to set. This information might be available to a parent process. A value of 0 indicates no
error.

VMware, Inc. 111

ThinApp User’s Guide

Examples
You can exit the process and indicate success.
ExitProcess 0

When the process exits, the scripting system receives its OnLastProcessExist function callback. Any loaded
DLLs run termination code to clean up the environment.

ExpandPath

The ExpandPath (InputPath) function converts a path from macro format to system format.

Parameters
InputPath

[in] A path in macro format.

Returns

The expanded macro path in system format.

Examples

Path = ExpandPath ("%ProgramFilesDir%\Myapp.exe')

Path = c:\Program Files\myapp.exe

All macro paths must escape the % and # characters by replacing these characters with #25 and #23.
Path = ExpandPath ("%ProgramFilesDir%\FilenameWithPercent#25.exe")

This expands to C:\Program Files\FileNameWithPercent%.exe

ExecuteExternalProcess
The ExecuteExternalProcess(CommandLine) function runs a command outside of the virtual
environment. You can use this function to make physical system changes.
Parameters
CommandLine
[in] Representation of the application and command-line parameters to run outside of the virtual
environment.
Returns
Integer process ID. You can use the process ID with the WaitForProcess function. See “WaitForProcess” on

page 117.

Examples
ExecuteExternalProcess("cmd.exe /c copy c:\systemfile.txt c:\newsystemfile.txt")
You can run a command that requires quotation marks in the command line.

ExecuteExternalProcess("regsvr32 /s " and chr(34) and "c:\Program Files\my.ocx" and chr(34))

112 VMware, Inc.

Appendix E ThinApp Scripts

ExecuteVirtualProcess
The ExecuteVirtualProcess(CommandLine) function runs a command inside of the virtual environment.
You can use this function to make changes to the virtual environment.
Parameters
CommandLine
[in] Representation of the application and command-line parameters to run outside of the virtual
environment.
Returns
Integer process ID. You can use the process ID with the WaitForProcess function. See “WaitForProcess” on
page 117.
Examples
ExecuteVirtualProcess("cmd.exe /c copy c:\systemfile.txt c:\virtualfile.txt")
You can run a command that requires quotation marks in the command line.

ExecuteVirtualProcess("regsvr32 /s " and chr(34) and "c:\Program Files\my.ocx" and chr(34))

GetBuildOption
The GetBuildOption(OptionName) function returns the value of a setting specified in the [BuildOptions]
section of the Package. ini file used for capturing applications.
Parameters
OptionName

[in] Name of the setting.

Returns

This function returns a string value. If the requested option name does not exist, the function returns an empty
string ("").

Examples

Package.ini contains:

[BuildOptions]
CapturedUsingVersion=4.0.1-2866

The following line appears in a VBS file:

Value = GetBuildOption("CapturedUsingVersion™)

GetFileVersionValue

The GetFileVersionValue(Filename, Value) function returns version information value from files such
as a specific DLL, OCX, or executable file. You can use this function to determine the internal version number
of a DLL or retrieve DLL information about the copyright owner or a product name.

Parameters

Filename

[in] The name of the filename whose version information is being retrieved.
Value

[in] The name of the value to retrieve from the version information section of the specified file.

VMware, Inc. 113

ThinApp User’s Guide

114

You can retrieve the following values from most DLLs:
® Comments

® InternalName

B ProductName

® CompanyName
® LegalCopyright
B ProductVersion
®m FileDescription

® LegalTrademarks
® PrivateBuild

m FileVersion

® OriginalFilename

B SpecialBuild

Returns
This function returns a string value. If the requested filename does not exist, or the function cannot locate the

specified value in the file, the function returns an empty string ("").

Examples

FileVersion = GetFileVersionValue("c:\windows\system32\kernel32.d1l1l," "FileVersion™)

if FileVersion = "1.0.0.0" then
MsgBox "This is Version 1.0!"

End if

GetCommandLine

The GetCommandLine function accesses the command-line parameters passed to the running program.

Returns

This function returns a string that represents the command-line arguments passed to the current running
program, including the original executable file.

Examples

MsgBox "The command line for this EXE was " + GetCommandLine

GetCurrentProcessName

The GetCurrentProcessName function accesses the full virtual path name of the current process.

Returns

This function returns a string that represents the full executable path name inside of the virtual environment.
In most circumstances, this path is c:\Program Files\.. ., even if the package source runs from a network
share.

Examples

MsgBox "Running EXE path is " + GetCurrentProcessName

VMware, Inc.

Appendix E ThinApp Scripts

GetOSVersion

The GetOSVersion() function returns information about the current version of Windows.

Parameters

This function has no parameters.

Returns
This function returns a string in the MAJOR .MINOR.BUILD_NUMBER.PLATFORM_ID OS_STRING format.

MAJOR is one the following values:

Windows Vista 6
Windows Server 2008 6
Windows Server 2003 5
Windows XP 5
Windows 2000 5
Windows NT 4.0 4

MINOR is one of the following values:

Windows Vista 0
Windows Server 2008 0
Windows Server 2003 2
Windows XP 1
Windows 2000 0
Windows NT 4.0 0
Windows NT 3.51 51

BUILD_NUMBER is the build number of the operating system.
PLATFORML_ID assigns one of the following values:
m Value = 1 for Windows Me, Windows 98, or Windows 95 (Windows 95 based OS)

® Value = 2 for Windows Server 2003, Windows XP, Windows 2000, or Windows NT. (Windows NT based
0S)

OS_STRING represents information about the operating system such as Service Pack 2.

Examples

if GetOSVersion() = "5.1.0.2 Service Pack 2"
then MsgBox "You are running on Windows XP Service Pack 2!"
endif

VMware, Inc. 115

ThinApp User’s Guide

116

GetEnvironmentVariable

The GetEnvironmentVariable(Name) function returns the environment variable associated with the Name
variable.

Parameters
Name

[in] The name of the environment variable for which the value is retrieved.

Returns

This function returns the string value associated with the Name environment variable.

Examples

MsgBbox "The package source EXE is " + GetEnvironmentVariable("TS_ORIGIN™)

RemoveSandboxOnExit

The RemoveSandboxOnExit(YesNo) function set toggles that determine whether to delete the sandbox when
the last child process exits.

If you set the RemoveSandboxOnExit parameter to 1in the Package. ini file, the default cleanup behavior for
the package with is Yes. You can change the cleanup behavior to No by calling RemoveSandboxOnExit with
the value of 0. If you do not modify the RemoveSandboxOnExit=1 entry in the Package. ini file, the default
cleanup behavior for the package is No. You can change the cleanup behavior to Yes by calling
RemoveSandboxOnExit with the value of 1.

Parameters

Yes No

[in] Do you want to clean up when the last process shuts down? 1=Yes, 0=No

Examples

The following example turns on cleanup.
RemoveSandboxOnExit 1

The following example turns off cleanup.

RemoveSandboxOnExit ©

SetEnvironmentVariable

The SetEnvironmentVariable(Name, Value) function set the value of an environment variable.

Parameters

Name

[in] The name of the environment variable to store the value.
Value

[in] The value to store.

Examples

SetEnvironmentVariable "PATH", "C:\Windows\system32"

VMware, Inc.

Appendix E ThinApp Scripts

SetfileSystemlsolation
The Setfile systemIsolation(Directory, IsolationMode) function sets the isolation mode of a
directory.
Parameters
Directory
[in] Full path of the directory whose isolation mode is to be set.
IsolationMode
[in] Isolation mode to set.
1 = WriteCopy
2 =Merged
3=Full
Examples
You can set the Merged isolation mode for the temp directory.

Setfile systemIsolation GetEnvironmentVariable("TEMP"), 2

SetRegistrylsolation
The SetRegistryIsolation(RegistryKey, IsolationMode) function sets the isolation mode of a registry
key.
Parameters
RegistryKey

[in] The registry key on which to set the isolation mode. Start with HKLM for HKEY_LOCAL _MACHINE, HKCU for
HKEY_CURRENT_USER, and HKCR for HKEY_CLASSES_ROOT.

IsolationMode

[in] Isolation mode to set.

1 =WriteCopy

2 =Merged

3 =Full

Examples

You can set the Full isolation mode for HKEY_CURRENT_USER\Software\Thinapp\Test.

SetRegistryIsolation "HKCU\Software\Thinapp\Test," 3

WaitForProcess
The WaitForProcess(ProcessID, TimeOutInMilliSeconds) function waits until the process ID is

finished running.

Parameters

ProcessID

[in] The process ID to end. The process ID can come from ExecuteExternalProcess or
ExecuteVirtualProcess.

TimeOutInMilliSeconds

[in] The maximum amount of time to wait for the process to finish running before continuing. A value of 0
specifies INFINITE.

VMware, Inc. 117

ThinApp User’s Guide

118

Returns
This function returns an integer.

0 = Timeout fails
1 =Process exits
2 = Process does not exist or security is denied

Examples

id = ExecuteExternalProcess("cmd.exe")
WaitForProcess(id, 0)

VMware, Inc.

Glossary

A Application Link
A utility that links dependent applications to a base application at runtime and starts all the applications
together when you start the base application. You can use the utility to deploy and update component
packages separately rather than capture all components in the same package.

Application Sync
A utility that updates an application by detecting a new packaged version on a server or network share.
You can configure update settings, such as the checking of an update server at certain intervals. ThinApp
detects the most recent application executable file and downloads the differences.

attributes.ini
The file that applies configuration settings at the directory level of the package rather than the entire
package. The ##Attributes.in1i settings override the overall Package. inti settings.

B build
To convert a ThinApp project into a package. You can build a package with the Setup Capture wizard or
with the build.bat utility.

C capture
To package an application into a virtual environment and set initial application parameters. ThinApp
provides the Setup Capture wizard or the snapshot. exe utility to create a portable application package
that is independent of the operating system it runs on.

clean machine
The computer or virtual machine, installed with only the basic Windows operating system, on which you
capture the application. The Windows operating system version must be the earliest version of Windows
that you expect the application to run on.

E entry point
An executable file that starts the captured application. An application might have multiple entry points.
For example, the Firefox.exe file and cmd. exe file might serve as the entry points for a Mozilla Firefox
application. The primary data container file must exist as one of the entry points.

| inventory name
A name that ThinApp uses for internal tracking of the application. The inventory name sets the default
project directory name and appears in the Add or Remove Programs dialog box for Windows.

isolation mode

A package setting that determines the read and write access to the physical environment. ThinApp has
WriteCopy, Merged, and Full isolation modes.

VMware, Inc. 119

ThinApp User’s Guide

120

logging.dll
A utility that generates . trace files.

Log Monitor
A utility that captures chronological activity for executable files that the captured application starts.The
log_monitor.exe file is compatible only with applications captured using the same version of ThinApp.

MSI
A Windows Installer container that is useful for application deployment tools. You can deliver the
captured application as an MSI file instead of an executable file.

native
Refers to the physical environment rather than the virtual environment. See also physical.

network streaming
The process of running a package from a central server. ThinApp downloads blocks of the application as
needed to ensure quick processing and display.

package
The virtual application files that the ThinApp build process generates. The package includes the primary
data container file and entry point files to access the application.

package.ini
The file that applies configuration settings to the package and that resides in the captured application
folder. The Setup Capture wizard sets the initial values of the configuration settings.

physical
Refers to the computer memory and file system in which all standard Windows processes run. Depending
on ThinApp isolation mode settings, processes in the virtual environment can access the physical
environment. See also native, virtual.

prescan
To establish a baseline image or snapshot of a machine before you install the application you want to
capture. The capture process stores in a virtual file system and virtual registry the differences between the
prescan and postscan images. See also postscan, snapshot.

primary data container
The main file to access the virtual application. The file is a . exe file or a . dat file that includes the
ThinApp runtime and the read-only virtual file system and virtual registry. The primary data container
must reside in the same /bin directory with any subordinate application executable files.

project
The data that the capture process creates before you build a package. The capture process uses the
inventory name as the default project directory name. You can customize parameters in the project files
before you build an application package. You cannot deploy a captured application until you build a
package from the project.

postscan
To establish an image or snapshot of a machine after you install the application you want to capture. The
capture process stores in a virtual file system and virtual registry the differences between the prescan and
postscan images. See also prescan, snapshot.

sandbox
The physical system folder that stores runtime user changes to the virtual application. When you start the
application, ThinApp incorporates changes from the sandbox. When you delete the sandbox, ThinApp
reverts the application to its captured state. The default location of the sandbox is
%APPDATA%\Thinstall\<user_name>.

VMware, Inc.

Glossary

sbmerge.exe
A utility that makes incremental updates to applications, such as the incorporation of a plug-in or a
change in a browser home page. The sbmerge. exe utility merges runtime changes recorded in the
sandbox back into a ThinApp project.

snapshot
A recording of the state of the Windows file system and registry during the application capture process.
The Setup Capture process uses the snapshot . exe utility to take a snapshot before and after the
application is installed and stores the differences in a virtual file system and virtual registry. See also
postscan, prescan.

snapshot.exe
A utility that creates the snapshots of a computer file system and registry and facilitates the prescan and
postscan operations during the capture process. Only advanced users who build ThinApp functionality
into other platforms might make direct use of this utility. See also postscan, prescan, snapshot.

snapshot.ini
A configuration file that specifies the directories and subkeys to exclude from a ThinApp project when
you capture an application. You can customize this file for applications.

template.msi
A template for MSI files that you can customize to adhere to company deployment procedures and
standards. For example, you can add registry settings for ThinApp to add to client computers as part of
the installation.

thinreg.exe
A utility that establishes file type associations, sets up Start menu and desktop shortcuts, and facilitates
the opening of files. You must run the thinreg. exe utility to register executable files. MSI files automate
the thinreg. exe registration process.

tlink.exe
A utility that links key modules during the build process.

vftool.exe
A utility that compiles the virtual file system during the build process.

virtual
Refers to the logical file and memory within which a captured application runs. Processes in a physical
environment cannot access the virtual environment. See also physical.

virtual application
An application that you capture to make it portable and independent of the operating system it runs on.

virtual file system
The file system as the captured application sees it.

virtual registry
The registry as the captured application sees it.

vregtool.exe
A utility that compiles the virtual registry during the build process.

VMware, Inc. 121

ThinApp User’s Guide

122 VMware, Inc.

Index

Symbols

##Attributes.ini
comparing to Package.ini 23, 62
editing 23
modifying isolation modes 23

A

Active Directory
authorizing access to groups 18
controlling access to applications 31
using Package.ini parameters 31

API parameters
AddForcedVirtualLoadPath 111
ExecuteExternalProcess 112
ExecuteVirtualProcess 113
ExitProcess 111
ExpandPath 112
GetBuildOption 113
GetCommandLine 114
GetCurrentProcessName 114
GetEnvironmentVariable 116
GetFileVersionValue 113
GetOSVersion 115
RemoveSandboxOnExit 116
SetEnvironmentVariable 116
SetfileSystemlsolation 117
SetRegistrylsolation 117
WaitForProcess 117

Application Link
defining 39, 41
defining access with the PermittedGroups

parameter 44

effect on isolation modes 44
file and registry collisions 44

linking packages to base applications and using
Application Sync 45

optional links 85

parameters 84

path name formats 84

required links 84

sample workflow 42

setting up nested links 43

storing multiple versions of linked applications 45
view of 42

VMware, Inc.

Application Sync
clashing with automatic update capabilities 39
defining 39
editing parameters 40
effect on entry point executable files 41
effect on thinreg.exe 26
fixing incorrect updates 40
forcing updates with appsync.exe commands 45
maintaining the primary data container name 41
parameters 85
updating base applications with linked packages 45
updating thinreg.exe registrations 41
applications
capturing 15
controlling access for Active Directory groups 31

difference between Application Sync and Application
Link 39

not supported by ThinApp 12

sandbox considerations during upgrade
processes 49

streaming requirements and recommendations 33
updating 39

C
capturing applications
assessing application dependencies 15
phases of 15
recommendations before 15
with the Setup Capture wizard 16-21
with the snapshot.exe utility 101
cmd.exe, defining 17
compression
for executable files 21
for trace files 53
computers
defining a clean system 12
using virtual machines for clean systems 13
cut and paste operations, ThinApp limitations 34

D

data container, See primary data container
DCOM services, access for captured applications 12
deploying
applications on network share 26
applications with deployment tools 25
executable files 26
MSI files 25

123

ThinApp User’s Guide

deployment tools, using MSI files 25 (o)
device drivers, incompatible with ThinApp 12 operating systems
DLLs support for 11

loading into memory 55
recording by Log Monitor 51

using the lowest version for ThinApp installation 13

drivers, support for 34 P
Package.ini
E AccessDeniedMsg 66
entry points Active Directory parameters 31
defining 16 AddPageExecutePermission 67

for troubleshooting 17
updating with Application Sync 41

G

global hook DLLs, reduced function with ThinApp 12

iexplore.exe, defining 17
installing ThinApp 13
inventory name, purpose of 17
isolation modes

effect on virtual file system 103

Full 23

Merged 20

modifying 23

sample configuration 36

using Application Link 44

WriteCopy 20

L

log format 54
Log Monitor
extra options 52
suspending and resuming logging 52
troubleshooting procedures 52
using 51

Merged isolation mode 20

Microsoft Vista, deploying MSI files 31

MSI files
automating the thinreg.exe utility 20
building the database 29
customizing parameters 29
deploying on Microsoft Vista 31
generating 21
modifying the Package.ini 30
overriding the installation directory 30
parameters 88

N

nested links, using Application Link 43
network, streaming packages 32

124

AllowExternalProcessModifications 74
AllowUnsuppportedExternalChildProcesses 74
AnsiCodePage 80
AppSyncClearSandboxOnUpdate 86
AppSyncExpireMessage 86
AppSyncExpirePeriod 86
AppSyncUpdateFrequency 87
AppSyncUpdateMessage 87
AppSyncURL 87
AppSyncWarningFrequency 87
AppSyncWarningMessage 88
AppSyncWarningPeriod 88
AutoShutdownServices 74
AutoStartServices 75

BlockSize 76

CachePath 72

CapturedUsingVersion 79
ChildProcessEnvironmentDefault 75
ChildProcessEnvironmentExceptions 75
CommandLine 80

CompressionType 76

configuring Application Link parameters 84
configuring Application Sync parameters 85
configuring build parameters 66

configuring file and protocol association
parameters 65

configuring icon parameters 77

configuring individual application parameters 80
configuring isolation parameters 64

configuring locale parameters 80

configuring logging parameters 78

configuring MSI parameters 88

configuring object and DLL parameters 69
configuring process and service parameters 74
configuring runtime parameters 62

configuring sandbox parameters 91

configuring security parameters 66

configuring size parameters 76

configuring storage parameters 72

configuring version parameters 79

description of common parameters 22
DirectorylsolationMode 64

Disabled 81

VMware, Inc.

Index

DisableTracing 78 UACRequestedPrivilegesLevel 68

editing Application Sync parameters 40 UACRequestedPrivilegesUiAccess 68
ExcludePattern 66 UpgradePath 72

External COMObjects 69 Version. XXXX 79

ExternalDLLs 69 VirtualComputerName 63

FileTypes 65 VirtualDrives 73

Icon 77 VirtualizeExternalOutOfProcessCOM 71
InventoryName 91 WorkingDirectory 83
IsolatedMemoryObjects 69 Wow64 64
IsolatedSynchronizationObjects 70 parameters

Localeldentifier 80 applying settings at folder level instead of package
LocaleName 80 level 23

LogPath 78 for MSI files 29

modifying isolation modes 23 for Package.ini 61

modifying MSI parameters 30 for sbmerge.exe 46

MSI parameters 29 for thinreg.exe 27

MSIArpProducticon 88 PermittedGroups, effect on Application Link 44
MSIDefaultinstallAllUsers 88 primary data container

MSIFilename 89 defining 17

MSilInstallDirectory 89 maintaining the name with Application Sync 41
MSIManufacturer 89 size implications 17

MSIProductCode 90 project files 21

MSIProductVersion 90
MSIRequireElevatedPrivileges 90 R

MSIUpgradeCOde 91 regedit.exe, defining 17
MSIUseCabs 91

S
NetRelaunch 62 &b
ObjectTypes 70 sanabox iderati ¢ ded licati 49
OptionalAppLinks 85 COI’!SI. erations for upgraded applications
defining 95

OutDir 66

parameter placement 62

parameters 61-93

parameters that apply to ##Attributes.ini 62
PermittedGroups 67

Protocols 65

ReadOnlyData 81

location 18, 97
parameters 91
search order 95
structure 98
sbmerge.exe
commands 46

RegistrylsolationMode 65 deﬂnllng 45t' h 45
RemoveSandboxOnExit 92 . Merging runfime changes
scripts

RequiredAppLinks 84
ReserveExtraAddressSpace 82
RetainAlllcons 78
RuntimeEULA 63
SandboxCOMObjects 71
SandboxName 92
SandboxNetworkDrives 93
SandboxPath 93
SandboxRemovableDisk 93

.bat example 108

.reg example 109

callback functions 107

file copy example 109
reasons for 108

service example 109
system registry example 110
timeout example 108

virtual registry example 109

Shortcut 82 Setup Capt ard. using 16-21
Shortcuts 82 e up ap UI.'e wizard, using 621 .

shell integration, reduced functions with ThinApp 12
Source 83

StripVersioninfo 79
structure 62

VMware, Inc. 125

ThinApp User’s Guide

snapshot.exe \")
creating snapshots from the command line 99 virtual file system
sample commands 101 format stages 103
sample procedure 101 representing path locations with macros 104
snapshot.ini, defining 99, 102 using 103
support using isolation modes 103
for applications 11 VMware View, using captured applications 25
for operating systems 11 vregtool, listing virtual registry contents 98
T w
technical support WriteCopy isolation mode 20
required information for troubleshooting 51
ThinApp

applications that are not supported 12
browsing project files 21

deployment options 25

directory files 13

folder macros 104

in a VMware View environment 25
installing 13

recommendation for clean computers 12

requirements for installing and capturing
applications 11

streaming packages from the network 32
supported operating systems and applications 11
updating applications 39
using thinreg.exe 26
thinreg.exe
defining 26
parameters 27
running 27
starting with MSI files 20
updating registrations with Application Sync 41
with Application Sync 26
troubleshooting
Explorer.exe 59
Java Runtime Environment 59
Microsoft Outlook 58
providing required information to support 51
with Log Monitor 52

U

upgrading applications, methods and considerations 39—
49

126 VMware, Inc.

	ThinApp User’s Guide
	Contents
	About This Book
	Installing ThinApp
	ThinApp Requirements
	Operating Systems, Applications, and Systems That ThinApp Supports
	Applications That ThinApp Cannot Virtualize
	Device Drivers
	Shell Integration
	DCOM Services that are Accessible on a Network
	Global Hook DLLs

	Recommendations for Installing ThinApp
	Using a Clean Computer
	Using Virtual Machines for Clean Computers

	Using the Earliest Operating System Required For Users

	Install ThinApp
	Locating ThinApp Installation Files

	Capturing Applications
	Reviewing the Capture Process
	Assessing Application Dependencies Before the Capture Process
	Closing Applications Before the Capture Process

	Capture an Application with the Setup Capture Wizard
	Initiate the Capture Process with Prescan and Postscan Images
	Specify Application Shortcuts and Tracking Names
	Specify User Groups and Sandbox Data Locations
	Specify File System Access
	Specify Application Delivery Settings
	Build Virtual Applications

	Advanced Package Configuration
	Modifying Settings in the Package.ini File
	Edit the Package.ini File

	Modifying Settings in the ##Attributes.ini File
	Edit the ##Attributes.ini File

	Modifying Isolation Modes

	Deploying Applications
	ThinApp Deployment Options
	Deploying ThinApp With Deployment Tools
	Deploying ThinApp in the VMware View Environment
	Deploying ThinApp on Network Shares
	Deploying ThinApp Using Executable Files

	Establishing File Type Associations with the thinreg.exe Utility
	Application Sync Effect on the thinreg.exe Utility
	Run the thinreg.exe Utility
	Optional thinreg.exe Parameters

	Building an MSI Database
	Customizing MSI Files with Package.ini Parameters
	Modify the Package.ini File to Create MSI Files
	Specifying a Database Installation for Individual Users and Machines
	Deploying MSI Files on Microsoft Vista

	Controlling Application Access with Active Directory
	Package.ini Entries for Active Directory Access Control

	Using ThinApp Packages Streamed from the Network
	How ThinApp Application Streaming Works
	Requirements and Recommendations for Streaming Packages
	Security Recommendations for Streaming Packages

	Stream ThinApp Packages from the Network

	Using Captured Applications with Other System Components
	Performing Paste Operations
	Accessing Printers
	Accessing Drivers
	Accessing the Local Disk, the Removable Disk, and Network Shares
	Accessing the System Registry
	Accessing Networking and Sockets
	Using Shared Memory and Named Pipes
	Using COM, DCOM, and Out-of-Process COM Components
	Starting Services
	Using File Type Associations

	Sample Isolation Mode Configuration Depending on Deployment Context
	View of Isolation Mode Effect on the Windows Registry

	Updating Applications
	Application Updates That the End User Triggers
	Application Sync Updates
	Using Application Sync in a Managed or Unmanaged Environment
	Update Firefox 2.0.0.3 to Firefox 3 with Application Sync
	Fix an Incorrect Update with Application Sync
	Application Sync Effect on Entry Point Executable Files
	Updating thinreg.exe Registrations with Application Sync
	Maintaining the Primary Data Container Name with Application Sync

	Application Link Updates
	View of the Application using Application Link
	Link a Base Application to the Microsoft .NET Framework
	Set up Nested Links with Application Link
	Affecting Isolation Modes with Application Link
	PermittedGroups Effect on Linked Packages
	Sandbox Changes for Standalone and Linked Packages
	Import Order for Linked Packages
	File and Registry Collisions in Linked Packages
	VBScript Collisions in Linked Packages
	VBScript Function Order in Linked Packages
	Storing Multiple Versions of a Linked Application in the Same Directory
	Using Application Sync For a Base Application and Linked Packages

	Application Updates That the Administrator Triggers
	Forcing an Application Sync Update on Client Machines
	Updating Applications with Runtime Changes
	Merge Sandbox Changes with Firefox
	sbmerge.exe Commands

	Automatic Application Updates
	Dynamic Updates Without Administrator Rights

	Upgrading Running Applications on a Network Share
	File Locks
	Upgrade a Running Application

	Sandbox Considerations for Upgraded Applications

	Monitoring and Troubleshooting ThinApp
	Providing Information to Technical Support
	Log Monitor Operations
	Troubleshoot Activity with Log Monitor
	Perform Advanced Log Monitor Operations
	Locating Errors

	Log Format
	General API Log Message Format
	Application Startup Information
	List of DLLs Loaded into Memory During Runtime
	Potential Errors
	Troubleshooting Example for cmd.exe Utility

	Troubleshooting Specific Applications
	Troubleshoot Registry Setup for Microsoft Outlook
	Viewing Attachments in Microsoft Outlook
	Starting Explorer.exe in the Virtual Environment
	Troubleshooting Java Runtime Environment Version Conflict

	Configuring Package Parameters
	Package.ini File Structure
	Package.ini Parameter Placement

	Parameters that Apply to Package.ini or ##Attributes.ini Files
	Configuring the ThinApp Runtime
	NetRelaunch
	Examples

	RuntimeEULA
	Examples

	VirtualComputerName
	Examples

	Wow64
	Examples

	Configuring File System and Registry Isolation
	DirectoryIsolationMode
	Examples

	RegistryIsolationMode
	Examples

	Configuring File and Protocol Associations
	FileTypes
	Examples

	Protocols
	Examples

	Configuring Build Output
	OutDir
	Examples

	ExcludePattern
	Examples

	Configuring Permissions and Security
	AccessDeniedMsg
	Examples

	AddPageExecutePermission
	Examples

	PermittedGroups
	Examples

	UACRequestedPrivilegesLevel
	Examples

	UACRequestedPrivilegesUIAccess
	Examples

	Configuring Objects and DLL Files
	ExternalCOMObjects
	Examples

	ExternalDLLs
	Examples

	IsolatedMemoryObjects
	Examples

	IsolatedSynchronizationObjects
	Examples

	ObjectTypes
	Examples

	SandboxCOMObjects
	Examples

	VirtualizeExternalOutOfProcessCOM
	Examples

	Configuring Storage
	CachePath
	Examples

	UpgradePath
	Examples

	VirtualDrives
	Examples
	Change Virtual Drive Isolation Settings

	Configuring Processes and Services
	AllowExternalProcessModifications
	Examples

	AllowUnsupportedExternalChildProcesses
	Examples

	AutoShutdownServices
	Examples

	AutoStartServices
	Examples

	ChildProcessEnvironmentDefault
	Examples

	ChildProcessEnvironmentExceptions
	Examples

	Configuring File and Block Sizes
	BlockSize
	Examples

	CompressionType
	Examples

	Configuring Icons
	Icon
	Examples

	RetainAllIcons
	Examples

	Configuring Logging
	DisableTracing
	Examples

	LogPath
	Examples

	Configuring Versions
	CapturedUsingVersion
	Examples

	StripVersionInfo
	Examples

	Version.XXXX
	Examples

	Configuring Locale Information
	AnsiCodePage
	Examples

	LocaleIdentifier
	Examples

	LocaleName
	Examples

	Configuring Individual Applications
	CommandLine
	Examples

	Disabled
	Examples

	ReadOnlyData
	Examples

	ReserveExtraAddressSpace
	Examples

	Shortcut
	Examples

	Shortcuts
	Examples

	Source
	Examples

	WorkingDirectory
	Examples

	Configuring Dependent Applications with Application Link
	Application Link Path Name Formats
	RequiredAppLinks
	Examples

	OptionalAppLinks

	Configuring Application Updates with Application Sync
	AppSyncClearSandboxOnUpdate
	Examples

	AppSyncExpireMessage
	Examples

	AppSyncExpirePeriod
	Examples

	AppSyncURL
	Examples

	AppSyncUpdateFrequency
	Examples

	AppSyncUpdatedMessage
	Examples

	AppSyncWarningFrequency
	Examples

	AppSyncWarningMessage
	Examples

	AppSyncWarningPeriod
	Examples

	Configuring MSI Files
	MSIArpProductIcon
	Examples

	MSIDefaultInstallAllUsers
	Examples

	MSIFilename
	Examples

	MSIInstallDirectory
	Examples

	MSIManufacturer
	Examples

	MSIProductCode
	Examples

	MSIProductVersion
	Examples

	MSIRequireElevatedPrivileges
	Examples

	MSIUpgradeCode
	Examples

	MSIUseCabs
	Examples

	Configuring Sandbox Storage and Inventory Names
	InventoryName
	Examples

	RemoveSandboxOnExit
	Examples

	SandboxName
	Examples

	SandboxNetworkDrives
	Examples

	SandboxPath
	Examples

	SandboxRemovableDisk
	Examples

	ThinApp Sandbox
	Search Order for the Sandbox
	Controlling the Sandbox Location
	Store the Sandbox on the Network
	Store the Sandbox on a Portable Device

	Sandbox Structure
	Making Changes to the Sandbox
	Listing Virtual Registry Contents with vregtool

	Snapshot Commands and Customization
	Methods of Using the snapshot.exe Utility
	Creating Snapshots of Machine States
	Usage
	Examples
	Options

	Creating the Template Package.ini file from Two Snapshot Files
	Usage
	Examples

	Creating the ThinApp Project from the Template Package.ini File
	Usage
	Examples

	Displaying the Contents of a Snapshot File
	Usage
	Examples

	Sample snapshot.exe Commands
	Create a Project Without the Setup Capture Wizard
	Customizing the snapshot.ini File

	ThinApp Virtual File System
	Virtual File System Formats
	Merged and Virtual Views of the File System
	Using Folder Macros
	List of Folder Macros
	Processing %SystemRoot%

	ThinApp Scripts
	Callback Functions
	Use Scripts in a ThinApp Environment
	.bat Example
	Timeout Example
	Modify the Virtual Registry
	.reg Example
	Stopping a Service Example
	Copying a File Example
	Add a Value to the System Registry

	API Functions
	AddForcedVirtualLoadPath
	Parameters
	Examples

	ExitProcess
	Parameters
	Examples

	ExpandPath
	Parameters
	Returns
	Examples

	ExecuteExternalProcess
	Parameters
	Returns
	Examples

	ExecuteVirtualProcess
	Parameters
	Returns
	Examples

	GetBuildOption
	Parameters
	Returns
	Examples

	GetFileVersionValue
	Parameters
	Returns
	Examples

	GetCommandLine
	Returns
	Examples

	GetCurrentProcessName
	Returns
	Examples

	GetOSVersion
	Parameters
	Returns
	Examples

	GetEnvironmentVariable
	Parameters
	Returns
	Examples

	RemoveSandboxOnExit
	Parameters
	Examples

	SetEnvironmentVariable
	Parameters
	Examples

	SetfileSystemIsolation
	Parameters
	Examples

	SetRegistryIsolation
	Parameters
	Examples

	WaitForProcess
	Parameters
	Returns
	Examples

	Glossary
	Index

