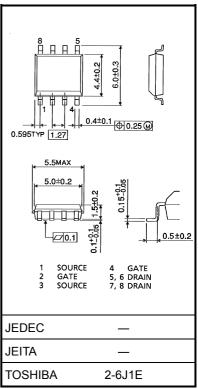
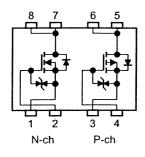


TOSHIBA Field Effect Transistor Silicon N, P Channel MOS Type (U-MOSII)


TPC8401

Lithium Ion Secondary Battery Applications Portable Equipment Applications Notebook PCs

- Low drain-source ON resistance
 P Channel RDS (ON) = 27 mΩ (typ.) N Channel RDS (ON) = 14 mΩ (typ.)
- High forward transfer admittance
 - : P Channel $|Y_{fs}| = 7 S (typ.)$
 - N Channel $|Y_{fs}| = 8 S (typ.)$
- Low leakage current
 - : P Channel IDSS = $-10 \mu A (V_{DS} = -30 V)$
 - N Channel IDSS = $10 \mu A (VDS = 30 V)$
- Enhancement-mode
 - : P Channel V_{th} = $-0.8 \sim -2.0$ V (V_{DS} = -10 V, I_D = -1mA) N Channel V_{th} = $0.8 \sim 2.5$ V (V_{DS} = 10 V, I_D = 1mA)

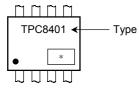

Maximum Ratings (Ta = 25°C)

	Currents et a	Rat	1.1				
C	Symbol	P Channel	N Channel	Unit			
Drain-source v	V _{DSS}	-30	30	V			
Drain-gate vol	tage ($R_{GS} = 20 \text{ k}\Omega$)	V _{DGR}	-30	30	V		
Gate-source v	oltage	V _{GSS}	±20	±20	V		
Drain current	DC (Note 1)	ID	-4.5	6	А		
	Pulse (Note 1)	I _{DP}	-18	24	~		
Drain power dissipation	Single-device operation (Note 3a)	P _{D (1)}	1.5	1.5			
(t = 10s) (Note 2a)	Single-device value at dual operation (Note 3b)	P _{D (2)}	1.0	1.0	W		
Drain power dissipation	Single-device operation (Note 3a)	P _{D (1)}	0.75	0.75			
(t = 10s) (Note 2b)	Single-device value at dual operation (Note 3b)	P _{D (2)}	0.45	0.45			
Single pulse a	E _{AS}	26.3 (Note 4a)	46.8 (Note 4b)	mJ			
Avalanche cur	I _{AR}	-4.5	6	А			
Repetitive ava Single-device	E _{AR}	0.10		mJ			
Channel temp	T _{ch}	150		°C			
Storage tempe	T _{stg}	-55~150		°C			

Weight: 0.080 g (typ.)

Circuit Configuration

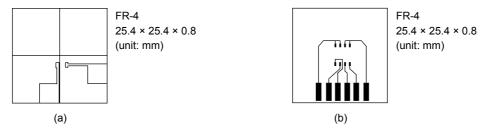
Note: For (Note 1), (Note 2a), (Note 2b), (Note 3a), (Note 3b), (Note 4a), (Note 4b) and (Note 5), please refer to the next page.


This transistor is an electrostatic sensitive device. Please handle with caution.

Unit: mm

Thermal Characteristics

Characteristics	Symbol	Max	Unit	
Thermal resistance, channel to ambient (t = 10s) (Note 2a)	Single-device operation (Note 3a)	R _{th (ch-a)} (1)	83.3	
	Single-device value at dual operation (Note 3b)	R _{th (ch-a) (2)}	125	°C/W
Thermal resistance, channel to ambient	Single-device operation (Note 3a)	R _{th (ch-a) (1)}	167	
(t = 10s) (Note 2b)	Single-device value at dual operation (Note 3b)	R _{th (ch-a) (2)}	278	


Marking

Note 1: Please use devices on condition that the channel temperature is below 150°C.

Note 2:

- a) Device mounted on a glass-epoxy board (a)
- b) Device mounted on a glass-epoxy board (b)

Note 3:

- a) The power dissipation and thermal resistance values are shown for a single device (During single-device operation, power is only applied to one device.)
- b) The power dissipation and thermal resistance values are shown for a single device (During dual operation, power is evenly applied to both devices.)

Note 4:

- a) V_{DD} = -24 V, T_{ch} = 25°C (Initial), L = 1.0 mH, R_G = 25 Ω , I_{AR} = -4.5 A
- b) V_DD = 24 V, T_ch = 25 °C (Initial), L = 1.0 mH, R_G = 25 Ω , I_{AR} = 6.0 A

Note 5: Repetitive rating: pulse width limited by maximum channel temperature

- Note 6: on lower left of the marking indicates Pin 1.
 - * shows lot number. (year of manufacture: last decimal digit of the year of manufacture, month of manufacture: January to December are denoted by letters A to L respectively.)

P-ch

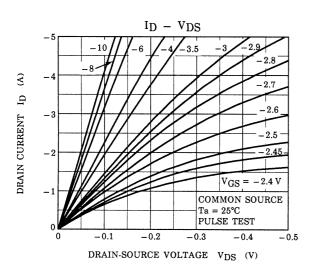
Electrical Characteristics (Ta = 25°C)

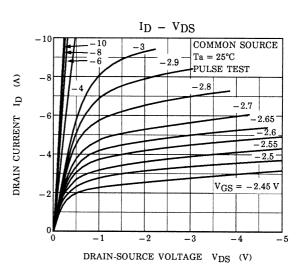
Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage current		I _{GSS}	V _{GS} = ±16 V, V _{DS} = 0 V	_	_	±10	μA
Drain cut-OFF	current	I _{DSS}	$V_{DS} = -30 \text{ V}, V_{GS} = 0 \text{ V}$	_	_	-10	μA
Drain-source b	reakdown	V (BR) DSS	$I_{\rm D}$ = -10 mA, $V_{\rm GS}$ = 0 V	-30	—		v
voltage		V (BR) DSX	I _D = -10 mA, V _{GS} = 20 V	-15	—		
Gate threshold	voltage	V _{th}	$V_{DS} = -10 \text{ V}, \text{ I}_{D} = -1 \text{ mA}$	-0.8	—	-2.0	V
Drain-source O	N resistance	R _{DS (ON)}	V_{GS} = -4 V, I _D = -2.2 A		51	65	mΩ
	in resistance	R _{DS (ON)}	V_{GS} = -10 V, I _D = -2.2 A		25	35	11152
Forward transfer admittance		Y _{fs}	V_{DS} = -10 V, I _D = -2.2 A	3.5	7		S
Input capacitance		C _{iss}			970		
Reverse transfe	Reverse transfer capacitance		V _{DS} = −10 V, V _{GS} = 0 V, f = 1 MHz	_	180		pF
Output capacita	Output capacitance			_	370		
	Rise time	tr	$V_{GS} \xrightarrow{0 V} I_{D} \xrightarrow{I_{D} = -2.2 A}$		17	_	
Switching time	Turn-ON time	t _{on}	$\begin{array}{c c} & -10 & \mathbf{V} \\ & & \mathbf{V} \\ & & \mathbf{V} \\ & & \mathbf{V} \\ & & \mathbf{K} $		20	_	ns
Switching time	Fall time	t _f			75	_	115
	Turn-OFF time	t _{off}	$V_{ m DD} \doteqdot -15 m V$ Duty $\leq 1\%$, t _w = 10 $\mu m s$		160	_	
	Total gate charge (Gate-source plus gate-drain)			_	28	—	
Gate-source charge 1		Q _{gs1}	$V_{DD} \approx -24 \text{ V}, \text{ V}_{GS} = -10 \text{ V}, \text{ I}_{D} = -4.5 \text{ A}$	—	6	—	nC
Gate-drain ("miller") charge		Q _{gd}]	_	12	_	

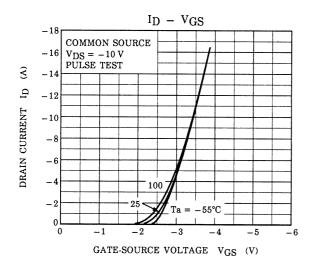
Source–Drain Ratings and Characteristics (Ta = 25°C)

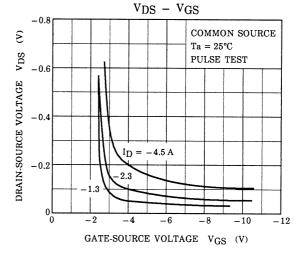
Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Drain reverse current	Pulse (Note 1)	I _{DRP}	—	_	_	-18	А
Forward voltage (diode)		V _{DSF}	I _{DR} = -4.5 A, V _{GS} = 0 V			1.2	V

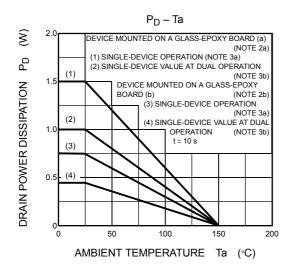
N-ch

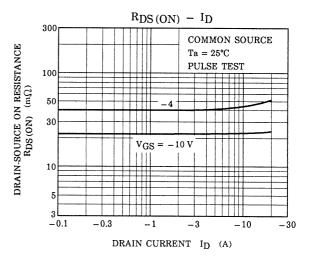

Electrical Characteristics (Ta = 25°C)

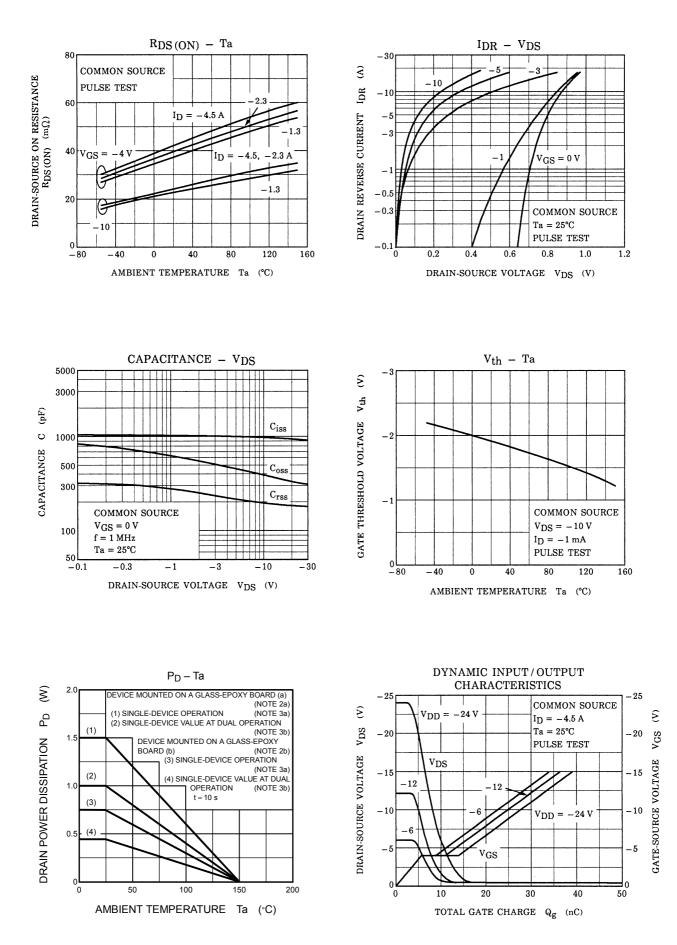

Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage current		I _{GSS}	V _{GS} = ±16 V, V _{DS} = 0 V	_	—	±10	μA
Drain cut-OFF	current	I _{DSS}	V _{DS} = 30 V, V _{GS} = 0 V	_	_	10	μA
Drain-source b	reakdown	V (BR) DSS	I _D = 10 mA, V _{GS} = 0 V	30	—	—	V
voltage		V (BR) DSX	$I_{\rm D}$ = 10 mA, $V_{\rm GS}$ = -20 V	15	_	_	v
Gate threshold	voltage	V _{th}	V _{DS} = 10 V, I _D = 1 mA	0.8	_	2.5	V
Drain-source O	N registeres	R _{DS (ON)}	V _{GS} = 4 V, I _D = 3 A	_	21	32	mΩ
Drain-source O	in resistance	R _{DS (ON)}	V _{GS} = 10 V, I _D = 3 A	_	14	21	11122
Forward transfe	r admittance	Y _{fs}	V _{DS} = 10 V, I _D = 3 A	4	8	_	S
Input capacitance		C _{iss}	V _{DS} = 10 V, V _{GS} = 0 V, f = 1 MHz	_	1700	_	pF
Reverse transfer capacitance		C _{rss}		_	260	_	
Output capacita	Output capacitance			_	380	_	
	Rise time	t _r	$V_{GS_{0V}} $	_	10	_	
Switching time	Turn-ON time	t _{on}		_	20	_	
Switching time	Fall time	t _f		_	35	_	ns
	Turn-OFF time	t _{off}	$V_{DD} \rightleftharpoons 15 V$ Duty ≤ 1 %, t _w = 10 μ s	_	120	_	
Total gate charge (Gate-source plus gate-drain)		Qg		_	40	_	
Gate-source charge 1		Q _{gs1}	V _{DD} ≈ 24 V, V _{GS} = 10 V, I _D = 6 A	—	28	—	nC
Gate-drain ("miller") charge		Q _{gd}		_	12	—	

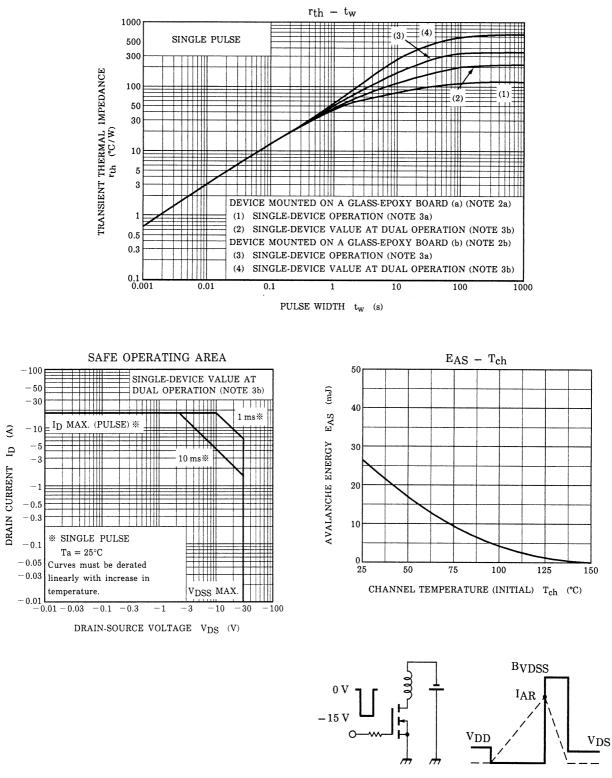

Source–Drain Ratings and Characteristics (Ta = 25°C)


Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Drain reverse current	Pulse (Note 1)	I _{DRP}	—	_		24	А
Forward voltage (diode)		V _{DSF}	I _{DR} = 6 A, V _{GS} = 0 V	_	_	-1.2	V


P-ch



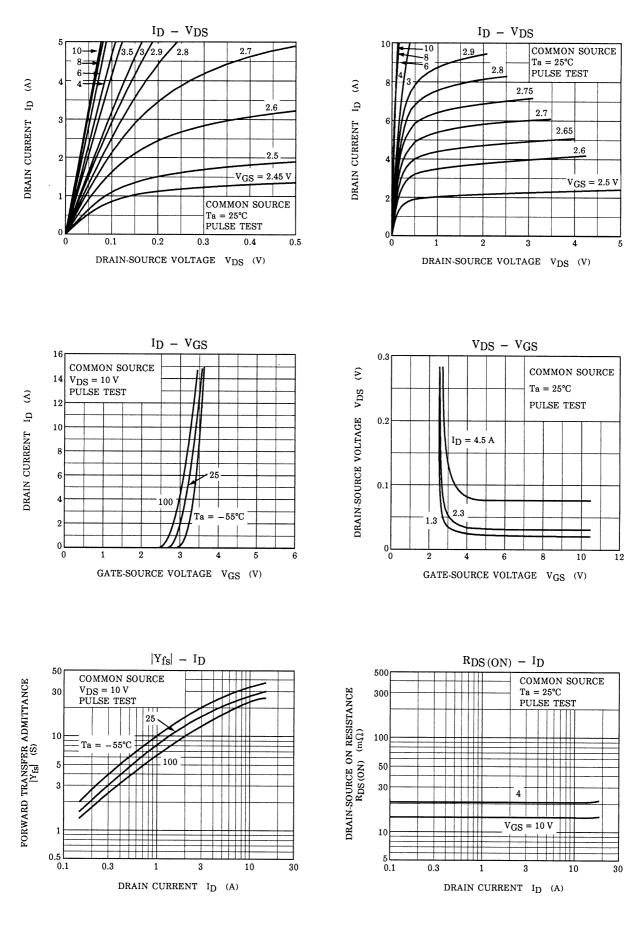




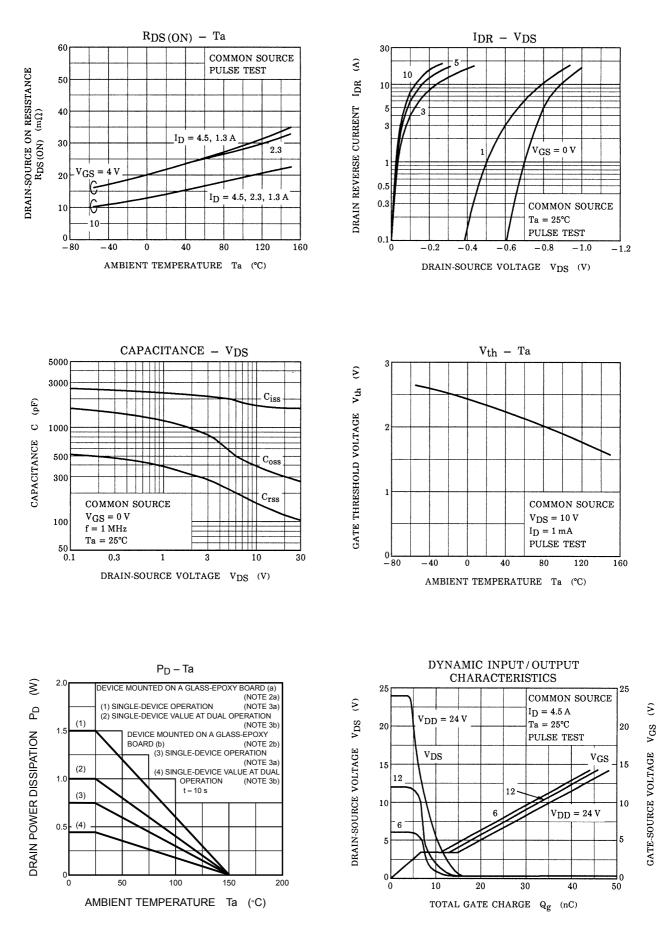
P-ch

P-ch

TOSHIBA

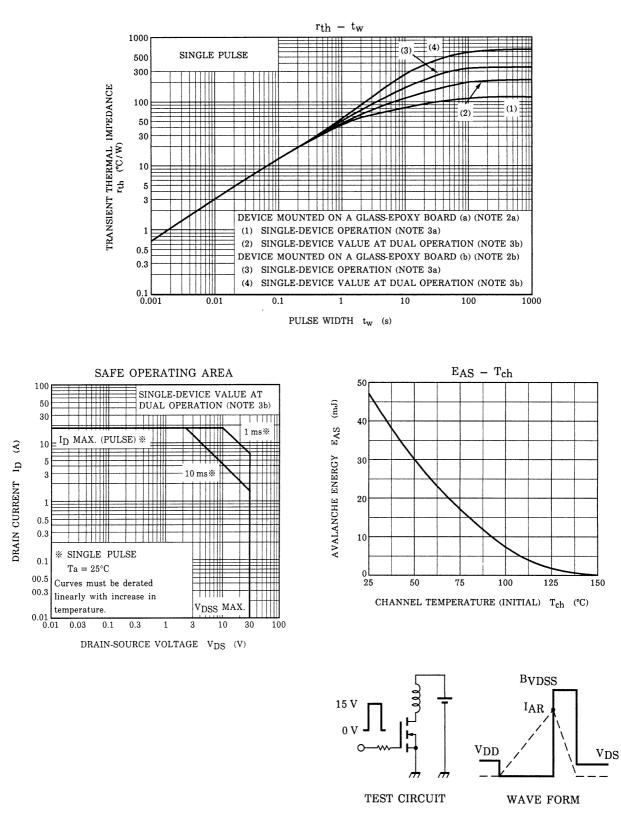


TEST CIRCUIT


 $\begin{array}{l} T_{ch}=25^{\circ}C \ (Initial) \\ Peak \ I_{AR}=-4.5 \ A, \ R_G=25 \ \Omega \quad E_{AS}=\frac{1}{2} \cdot L \cdot I^2 \cdot \left(\frac{B_{VDSS}}{B_{VDSS}-V_{DD}} \right) \\ V_{DD}=-24 \ V, \ L=1.0 \ mH \end{array}$

WAVE FORM

N-ch



N-ch

N-ch

TOSHIBA

 $\begin{array}{l} T_{ch} = 25^{\circ}C \ (Initial) \\ Peak \ I_{AR} = 6 \ A, \ R_G = 25 \ \Omega \\ V_{DD} = 24 \ V, \ L = 1.0 \ \text{mH} \end{array} \\ \end{array} \\ \begin{array}{l} E_{AS} = \frac{1}{2} \cdot L \ \cdot I^2 \cdot (\ \frac{B_{VDSS}}{B_{VDSS} - V_{DD}}) \end{array}$

RESTRICTIONS ON PRODUCT USE

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.