TOSHIBA PHOTOCOUPLER

TLP251

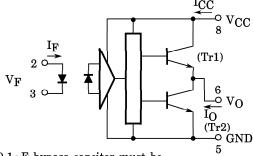
GaAℓAs IRED & PHOTO-IC

(TLP251)

INVERTER FOR AIR CONDITIONOR INDUCTION HEATING TRANSISTOR INVERTER POWER MOS FET GATE DRIVE IGBT GATE DRIVE

The Toshiba TLP251 consists of a GaAlAs light emitting diode and a integrated photodetector.

This unit is 8-lead DIP package.

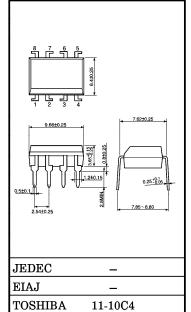

TLP251 is suitable for gate driving circuit of IGBT or power MOS FET. Especially TLP251 is capable of "direct" gate drive of lower power IGBTs. (~15A)

* Target Specifications *

Input Threshold Current : I_F=5mA (Max.)
 Supply Current (I_{CC}) : 11mA (Max.)
 Supply Voltage (V_{CC}) : 10-35V

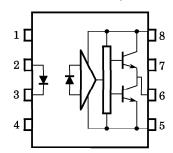
• Output Current (IO) : ± 0.1 A (Min.) • Switching Time (t_{pLH}/t_{pHL}) : $1\mu s$ (Max.) • Isolation Voltage : 2500Vrms (Min.)

SCHMATIC



A $0.1\mu\text{F}$ bypass capcitor must be connected between pin 8 and 5 (See note 5).

TRUTH TABLE


		Tr1	Tr2
Input	ON	ON	OFF
LED	OFF	OFF	ON

Unit in mm

Weight: 0.54g

PIN CONFIGURATION (TOP VIEW)

1 : N.C.

2: ANODE

3 : CATHODE

4 : N.C.

5 : GND

6: VO (OUTPUT)

7 : N.C. 8 : V_{CC}

(0)	The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by
_	TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use.
	No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others

No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPÓRATION or others.

These TOSHIBA products are intended for use in general commercial applications (office equipment, communication equipment, measuring equipment, domestic appliances, etc.). please make sure that you consult with us before you use these TOSHIBA products in equipment which requires extraordinarily high quality and/or reliability, and in equipment which may involve life threatening or critical application, including but not limited to such uses as atomic energy control, airplane or spaceship instrumentation, traffic signals, medical instrumentation, combustion control, all types of safety devices, etc. TOSHIBA cannot accept and hereby disclaims liability for any damage which may occur in case the TOSHIBA products are used in such equipment or applications without prior consultation with TOSHIBA.

	TLP251 – 1
0	1996 – 4 – 8
	TOSHIBA CORPORATION

TLP251

(TLP251)

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

	CHARACTERISTIC		SYMBOL	RATING	UNIT	
	Forward Current	$I_{\mathbf{F}}$	20	mA		
lα	Forward Current Derating (Ta≥70°C)	ΔI _F /ΔTa	-0.36	mA/°C		
LE	Peak Transient Forward Curent	I_{FPT}	1	Α		
	Reverse Voltage		v_{R}	5	V	
	Junction Temperature		(T _j)	125	°C	
	"H" Peak Output Current ($P_W \le 2.0 \mu s$, $f \le 15$	IOPH	-0.4	Α		
	"L" Peak Output Current (PW \leq 2.0 μ s, f \leq 15	I_{OPL}	+0.4	A		
TOR	Output Voltage	(Ta≦70°C)	Vo	35	v	
CT(Output Voltage	(Ta=85°C)	v_{O}	24	V	
TE(C	(Ta≦70°C)	37	35	v	
DET	Supply Voltage	(Ta=85°C)	v_{CC}	24	v	
	Output Voltage Derating (Ta≥70°C)		ΔV _O /ΔTa	-0.73	V/°C	
	Supply Voltage Derating (Ta≥70°C)		ΔV _{CC} /ΔTa	-0.73	V/°C	
	Junction Temperature		(T_j)	125	°C	
Ope	rating Frequency	(Note 3)	f	25	kHz	
Ope	rating Temperature Range	$T_{ m opr}$	-20~85	°C		
Stor	age Temperature Range		$\mathrm{T_{stg}}$	-55~125	°C	
Lead	Solder Temperature (10s)	$T_{ m sol}$	260	°C		
Isola	tion Voltage (AC, 1min., R.H.≦60%, Ta=25°	C) (Note 4)	$BV_{\mathbf{S}}$	2500	Vrms	

Note 1 : Pulse width $P_W \leq 1\mu s$, 300pps

Note 2: Expornential Waveform

Note 3 : Expornential Waveform, $I_{OPH} \le -0.25 A \ (\le 2.0 \mu s)$, $I_{OPL} \le +0.25 A \ (\le 2.0 \mu s)$

Note 4: Device considerd a two terminal device: pins 1,2,3 and 4 shorted together, and pins 5, 6,

7 and 8 shorted together.

Note 5: A ceramic capacitor $(0.1\mu F)$ should be connected from pin 8 to pin 5 to stabilize the operation of the high gain linear amplifier. Failure to provide the bypassing may impair the switching property. The total lead length between capacitor and coupler should not exceed 1cm.

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	MIN.	TYP. MAX.		AX.	UNIT
Input Current, ON	I _{F (ON)}	7	8	10		mA
Input Voltage, OFF	V _{F (OFF)}	0	_	0.8		V
Supply Voltage	v_{CC}	10	_	30	20	V
Peak Output Current	I _{OPH} /I _{OPL} —		_	±c).1	A
Operating Temperature	$T_{ m opr}$	-20	25	70	85	°C

TLP251 – 2
1996 – 4 – 8
TOSHIBA CORPORATION

(TLP251)

ELECTRICAL CHARACTERISTICS ($Ta = -20 \sim 70^{\circ}C$, Unless otherwise specified)

		•		•					
CHARACTEI	RISTIC	SYMBOL	TEST CIR- CUIT		CONDITION	MIN.	TYP.*	MAX.	UNIT
Input Forward V	oltage	$V_{\mathbf{F}}$	_	$I_{ m F}\!=\!10{ m mA}, T$	Ta=25°C	_	1.6	1.8	V
Temperature Coe Forward Voltage		ΔV _F /ΔTa	_	$I_{ m F}\!=\!10{ m mA}$		_	-2.0	_	mV/°C
Input Reverse Cu	urrent	$I_{\mathbf{R}}$	_	V _R =5V, Ta=25°C		_	_	10	μ A
Input Capacitano	e	C_{T}	_	V = 0, f = 1M	V=0, f=1MHz, Ta=25°C		45	250	pF
Output Current	"H" Level	I _{OPH}	3	$V_{\rm CC}$ =30V	I _F =10mA V ₈₋₆ =4V	-0.1	-0.25	1	٨
Output Current	"L" Level	I _{OPL}	2	(*1)	$I_{F} = 0$ $V_{6-5} = 2.5V$	0.1	0.2	_	A
Output Voltage	"H" Level	V _{OH}	4	$V_{CC1} = +15$ $R_{L} = 200\Omega$, 1	V, $V_{\text{EE}1} = -15V$ $f_{\text{F}} = 5\text{mA}$	11	13.2	_	v
Output Voltage	"L" Level	" Level V_{OL} 5 $V_{CC1} = +15V, V_{EE1} = -15V$ $R_{L} = 200\Omega, V_{F} = 0.8V$		l	-14.5	-12.5	'		
	"H" Level	ICCH	_	$V_{CC}=30V$, Ta=25°C	$I_{ m F} = 10 { m mA}$	ı	7.5	ı	
Supply Current		00		$V_{CC}=30V$,	$I_{ m F} = 10 { m mA}$	I	1	11	mA
Supply Current	"L" Level	I _{CCL}	_	$V_{ m CC}$ =30V, $T_{ m a}$ =25°C	$\mathbf{I_F} = \mathbf{0mA}$	-	8	ı	IIIA
				$V_{\rm CC}$ =30V, 1	$I_{\mathbf{F}} = 0 \mathbf{m} \mathbf{A}$	ı	_	11	
Threshold Input Current	"Output L→H"	I _{FLH}	_	$V_{\text{CC1}} = +15$ $R_{\text{L}} = 200 \Omega$, Y	$V, V_{\text{EE}1} = -15V$ $V_{\text{O}} > 0V$	-	1.2	5	mA
Threshold Input Voltage	"Output H→L"	$v_{ m FHL}$		$V_{CC1} = +15$ $R_{L} = 200 \Omega$,	$V, V_{\text{EE}1} = -15V$ $V_{\text{O}} < 0V$	0.8	_	_	V
Supply Voltage		v_{CC}	_			10	_	35	V
Capacitance (Input-Output)		Cs	_	Vs = 0, f = 1N Ta = 25°C	MHz		1.0	2.0	pF
Resistance (Input	-Output)	R _S	_	Vs=500V, T R.H.≦60%	'a=25°C	5×10^{10}	10^{12}	_	Ω

^{*} All typical values are at $Ta=25^{\circ}C$

TLP251 – 3
1996 – 4 – 8
TOSHIBA CORPORATION

^{(*1) :} Duration of I_O time $\leq 50 \mu s$

SEMICONDUCTOR TOSHIBA TECHNICAL DATA

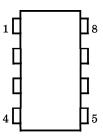
TLP251

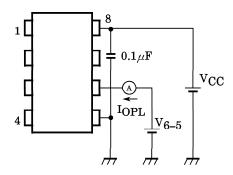
(TLP251

SWITCHING CHARACTERISTICS ($Ta = -20 \sim 70^{\circ}$ C, Unless otherwise specified)

CHARACTER	ISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.*	MAX.	UNIT
Propagation	$\mathrm{L}{\rightarrow}\mathrm{H}$	${ m t_{pLH}}$		$I_{\mathbf{F}} = 8 \mathbf{m} \mathbf{A}$	_	0.25	1.0	
Delay Time	$H{\rightarrow} L$	t_{pHL}	6	$V_{CC1} = +15V, V_{EE1} = -15V$		0.25	1.0	4.5
Output Rise Time		t _r					ı	μ s
Output Fall Time		t _f		$R_{\rm L}\!=\!200\Omega$			_	
Common Mode Tr Immunity at High Output		C _{MH}	7	$V_{ m CM} = 600 m V, \ I_{ m F} = 8 m mA \ V_{ m CC} = 30 m V, \ Ta = 25 m ^{\circ} C$	-5000	_	_	V/μs
Common Mode Tr Immunity at Low Output		C _{ML}	7	$V_{ m CM} = 600 m V, \ I_{ m F} = 0 m mA \ V_{ m CC} = 30 m V, \ Ta = 25 m ^{\circ} C$	5000	_	_	V/μs

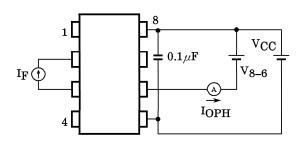
^{*} All typical values are at $Ta = 25^{\circ}C$

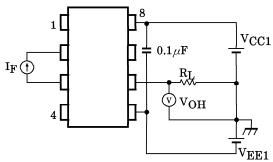

TLP251 - 4 1996 - 4 - 8 TOSHIBA CORPORATION

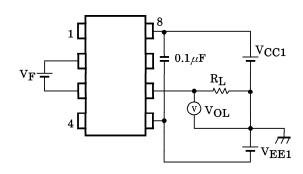


(TLP251)

TEST CIRCUIT 1:

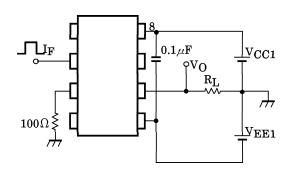


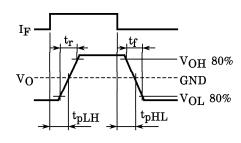


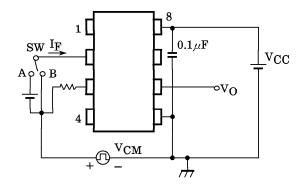

TEST CIRCUIT 3 : IOPH

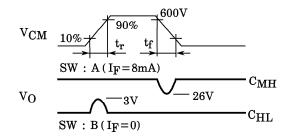
TEST CIRCUIT 4 : VOH

TEST CIRCUIT 5 : VOL

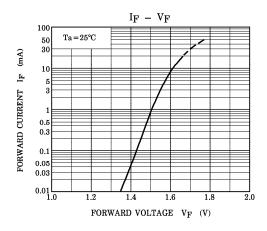


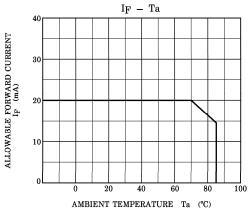

TLP2	251 – 5		
199	6 – 4 – 8		
TOSHIE	BA CO	RPOI	RATION
TOSHIE	BA CO	RPOI	RATION

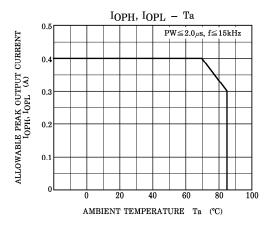

(TLP251)

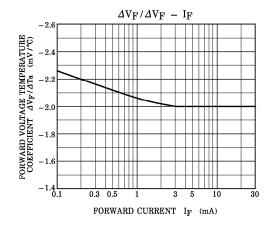

TEST CIRCUIT 6 : t_{pLH} , t_{pHL} , t_{r} , t_{f}

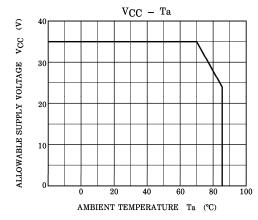
TEST CIRCUIT 7 : C_{MH} , C_{ML}


$$\begin{split} \mathrm{C_{ML}} &= \frac{480 \, \mathrm{(V)}}{\mathrm{t_r} \, (\mu \mathrm{s})} \\ \mathrm{C_{MH}} &= \frac{480 (\mathrm{V})}{\mathrm{t_f} \, (\mu \mathrm{s})} \end{split}$$


 $C_{ML}\left(C_{MH}\right)$ is the maximum rate of rise (fall) of the common mode voltage that can be sustained with the output voltage in the low (high) state.


TLP251	- 6
1996 –	4 – 8
TOSHIBA	CORPORATION




(TLP251)

TLP251 – 7*
1996 – 4 – 8
TOSHIBA CORPORATION

