

3.3-GHz TO 3.8-GHZ 1-W Power Amplifier

FEATURES

- 1 W P-1dB Linear, 30-dB Gain Transmitter
- Operates Over the 3300-MHz to 3800-MHz Range
- Two TTL Controlled, 1-bit, 16-dB Gain Steps for 32 dB of Total Gain Control
- Superior Linearity (+45 dBm IP3) Over the Entire Frequency Range
- Auto-Bias Design With PA Enable
- Temperature Compensated Directional Coupler Detector
- Low Power Bias Mode
- Internally Matched 50-Ω Input and Output

DESCRIPTION

The TRF1223 is a highly integrated linear transmitter / power amplifier (PA) MMIC. The chip has two 16-dB gain steps that provide a total of 32-dB gain control via 1-bit TTL control signals. The chip also integrates a TTL mute function that turns off the amplifiers for power critical or TDD applications. A temperature compensated detector is included for output power monitor or ALC applications. The chip has a P_{1dB} of +30 dBm and a third order intercept of +45 dBm.

The TRF1223 is designed to function as a part of Texas Instruments complete 3.5-GHz chip set. The TRF1223 is the output power amplifier or a driver amplifier for higher power applications. The linear nature of the transmitter makes it ideal for complex modulations schemes such as high order QAM or OFDM.

KEY SPECIFICATIONS

- OP_{1dB} = +30 dBm
- Output IP3 = +45 dBm, Typical
- Gain = 30 dB, Typical
- Gain Flatness over Transmit Band ±2 dB
- Frequency Range = 3300 MHz to 3800 MHz
- ±0.5-dB Detected Output Voltage vs Temperature

BLOCK DIAGRAM

The detailed block diagram and the pin-out of the ASIC are shown in Figure 1.

www.DataSheet.in

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

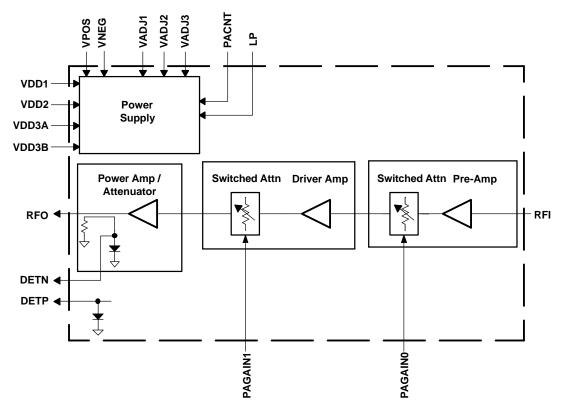


Figure 1. Detailed Block Diagram of TRF1223

ELECTROSTATIC DISCHARGE NOTE

The TRF1223 contain Class 1 devices. The following electrostatic discharge (ESD) precautions are recommended:

- Protective outer garments
- Handling in ESD safeguarded work area
- Transporting in ESD shielded containers
- Frequent monitoring and testing all ESD protection equipment
- Treating the TRF1223 as extremely sensitive to ESD

PINOUT TABLE

Table 1. Pin Out of TRF1223⁽¹⁾

PIN#	PIN NAME	I/O	TYPE	DESCRIPTION
1	VDD1	I	Power	Stage 1 dc drain supply power. The dc current through this pin is typically 5% of IDD.
2	VADJ1	1	Analog	No connection required for normal operation. May be used to adjust FET1 bias. DO NOT GROUND THIS PIN OR CONNECT TO ANY OTHER PIN.
3	GND	-	-	Ground
4	RFI	I	Analog	RF input to power amplifier, dc blocked internally
5	RFI	I	Analog	RF input to power amplifier, dc blocked internally
6	VNEG	I	Power	Negative power supply -5 V. Used to set gate voltage. This voltage must be sequenced with V_{DD} . See $^{(1)}$.
7	VPOS	I	Power	Positive power supply for bias circuits. Bias is +5 V. Used to set gate bias and logic input level.

⁽¹⁾ Proper sequencing: In order to avoid permanent damage to the power amplifier, the supply voltages must be sequenced. The proper power up sequence is V_{NEG}, then V_{POS}, and then V_{DD}. The proper power down sequence is remove V_{DD}, then V_{POS}, and then V_{NEG}.

Table 1. Pin Out of TRF1223 (continued)

PIN#	PIN NAME	I/O	TYPE	DESCRIPTION
8	PAGAIN0	I	Digital	First 16-dB attenuator gain control. Logic high is high gain and logic low is low gain.
9	PAGAIN1	I	Digital	Second 16-dB gain control. Logic high is high gain and logic low is low gain.
10	VADJ2	I	Analog	No connection required for normal operation. May be used to adjust FET2 bias. DO NOT GROUND THIS PIN OR CONNECT TO ANY OTHER PIN.
11-14	GND	-	-	Ground
15	VADJ3	I	Analog	No connection required for normal operation. May be used to adjust FET3 bias DO NOT GROUND THIS PIN OR CONNECT TO ANY OTHER PIN.
16	LP	I	Digital	Low power mode: Active high. Low power mode is lower dc and P _{OUT} mode.
17	PACNT	I	Digital	Power amplifier enable, High is PA on, logic low is PA off (low current)
18	VDD3B	I	Power	Stage 3 dc-drain supply power. This pin is internally dc connected to pin 23 (VDD3A). Bias must be provided to both pins for optimal performance. The tota dc-current through these two pins is typically 70% of IDD.
19	GND	-	-	Ground
20	RFO	0	Analog	RF output, internal dc block
21	RFO	0	Analog	RF output, internal dc block
22	VDD3A	-	-	Ground
23	DETP	I	Power	Stage 3 dc-rain supply power. This pin is internally dc connected to pin 18 (VDD3B). Bias must be provided to both pins for optimal performance. The tota dc-current through these two pins is typically 70% of I _{DD} .
24	DETN	0	Analog	Detector output, positive. Voltage will be 0.5 V with/without RF output
25	GND	0	Analog	Detector output, negative. Voltage is 0.5 V with no RF and decreases with increasing RF output power.
26-31	GND	-	-	Ground
32	VDD2	1	Power	Stage 2 dc-drain supply power. The dc current through this pin is typically 25% of I_{DD} .
	Back	-	-	Back of package has a metal base which must be grounded for thermal and RF performance.

SPECIFICATIONS

ABSOLUTE MAXIMUM RATINGS

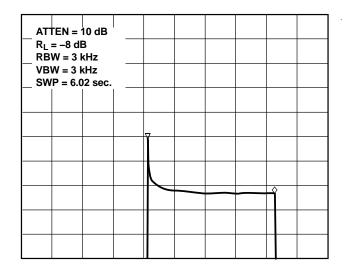
PARAMETER		TEST CONDITION	MIN	MAX	UNIT	
VDD			0	8	V	
VPOS	DC supply voltage		0	5.5	V	
VNEG			-5.5	0	V	
I _{DD}	Current consumption			1300	Ма	
Pin	RF input power			20	dBm	
Tj	Junction temperature			175	°C	
Pd	Power dissipation			6.5	W	
	Digital input pins		-0.3	5.5		
Θ_{jc}	Thermal resistance junction to case ⁽¹⁾			20	°C/W	
T _{stg}	Storage temperature		-40	105	°C	
T _{op}	Operating temperature	Maximum case temperature derate for PCB thermal resistance	-40	85	°C	
	Lead temperature	40 sec maximum		220	°C	

⁽¹⁾ Thermal resistance is junction to case assuming thermal pad with 25 thermal vias under package metal base. See the recommended layout Figure 7 and application note RA1005 for more detail.

DC CHARACTERISTICS

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNIT
V_{DD}	VDD supply voltage	-40°C, PACNTRL = High, V _{DD} = 5 V, LP = Low		5	7	V
				875		
I_{DD}	VDD supply current high power	25°C, PACNTRL = High, $V_{DD} = 5 \text{ V}, \text{LP} = \text{Low}$		925		mA
		100 0 1, I. IO		950		
				475		
I_{DD}	VDD supply current low power	85°C, PACNTRL = High, V _{DD} = 5 V, LP = Low		550		mA
		V _{DD} = 3 V, 21 = 23 W		600		
V_{NEG}	Negative supply voltage	-40°C, PACNTRL = High, V _{DD} = 5 V, LP = High, 25°C	-5.25	-5	-4.75	V
I _{NEG}	Negative supply current	25°C, PACNTRL = High, V _{DD} = 5 V, LP = High, 25°C		15	25	mA
V _{POS}	Positive supply digital voltage	85°C, PACNTRL = High, V _{DD} = 5 V, LP = High, 25°C	4.75	5	5.25	V
I _{POS}	Positive supply digital current			35	50	mA
V _{IH}	Input high voltage		2.5		5	V
V _{IL}	Input low voltage				0.8	V
I _{IH}	Input high current				300	μΑ
I _{IL}	Input low current				-50	μΑ

POWER AMPLIFIER CHARACTERISTICS


Unless otherwise stated: V_{DD} = 5 V_{S} , I_{DD} = 1050 mA, V_{POS} = 5 V, V_{NEG} = -5 V, PAGAIN0 = 1, PAGAIN1 = 1, PACNT = 1, T = 25°C

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
F	Frequency		3300		3800	MHz
G	Gain		26	30	32.5	dB
σ_{G}	Standard deviation part-to-part gain	At a single frequency, full gain		0.3		dB
G _{HG}	Gain flatness full band	F = 3300 MHz to 3800 MHz		4	6	dB
G _{NB}	Gain flatness / 2 MHz			0.2		dB
OP-1dB	Output power at 1-dB compression	High power bias mode	30	31		dBm
OP-1dB	Output power at 1-dB compression	Low power bias mode		27		dBm
OIP3	Output third order intercept point	High power bias mode	43	48		dBm
OIP3	Output third order intercept point	Low power bias mode		38		dBm
Vdet	Detector voltage output, differential (DETP-DETN)	At POUT = 27 ±0.75 dBm, F = 3300 MHz to 3800 MHz at 25°C		150		mV
	Detector accuracy vs temperature	F = 3550 MHz, -30 to 75°C,		±0.5		dB
	Gain step size 1st step	PAGAIN0 = Low, PAGAIN1 = High	13	16	19	dB
	Gain step size 2nd step	PAGAIN0 = Low, PAGAIN1 = Low	26	32	38	dB
t _{STEP}	Gain step response time			1	5	μs
P _{ON/OFF}	On to Off Power ratio	Max gain-to-gain with PACNT = Low	35			dB
NF _{HG}	Noise figure, max gain	PAGAIN0 = High, PAGAIN1 = High		6	7	dB
NF _{LG}	Noise figure min gain	PAGAIN0 = Low, PAGAIN1 = Low			20	dB
S ₁₂	Reverse isolation		30			dB
S ₁₁	Input return loss	Ζ = 50 Ω	-10	-12		dB
S ₂₂	Output return loss	Ζ = 50 Ω		-8		dB

TYPICAL PERFORMANCE

All data was taken on parts mounted on PCBs using the pad layout specified in Figure 7 and the filled via process illustrated in Figure 8.

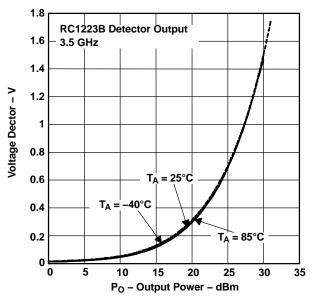


Figure 2. Pulse Droop

Figure 3. Detector vs Temperature

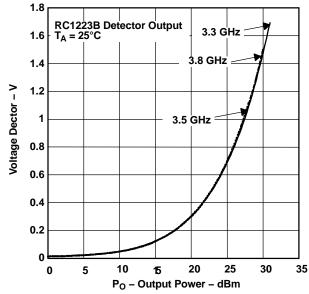


Figure 4. Detector Output vs Frequency

APPLICATION INFORMATION

APPLICATION INFORMATION (continued)

A typical application schematic is shown in Figure 5 and a mechanical drawing of the package outline (LPCC Quad 5 mm x 5 mm, 32-pin) is shown in Figure 6.

The recommended PCB Layout mask is shown in Figure 7 below, along with recommendations on the board material Table 2 and construction Figure 8.

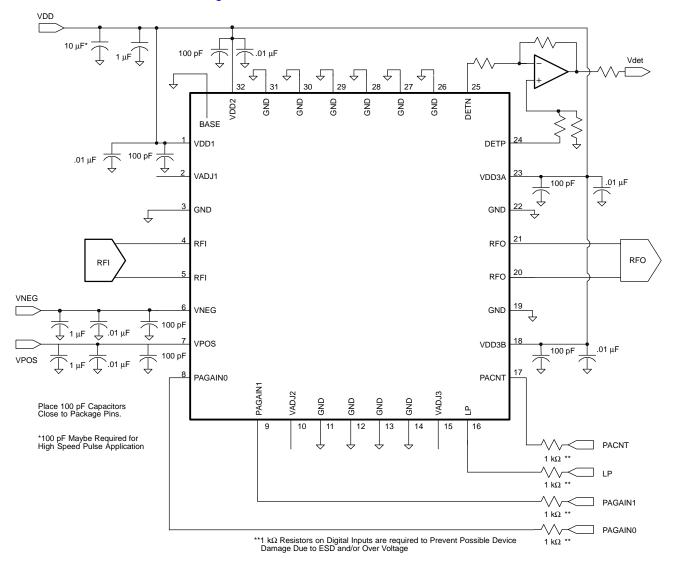
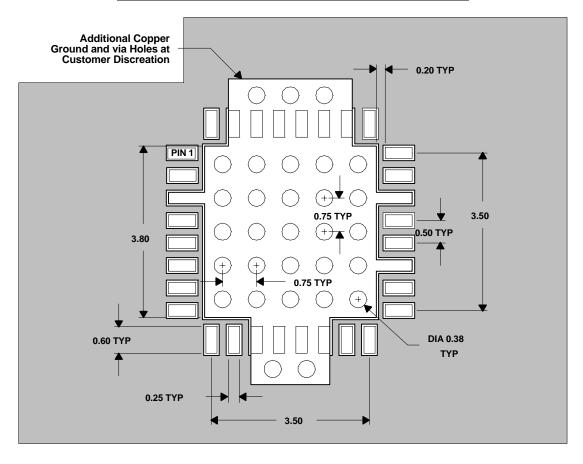


Figure 5. Recommended TRF1223 Application Schematic

Figure 6. Package Drawing


Table 2. PCB Recommendations

Board Material	FR4
Board Material Core Thickness	10 mil
Copper Thickness (starting)	1 oz
Prepreg Thickness	8 mil
Recommended Number of Layers	4
Via Plating Thickness	0.5 oz

Table 2. PCB Recommendations (continued)

Final Plate	White immersion tin		
Final Board Thickness	33 to 37 mil		

SOLDER MASK: NO SOLDERMASK UNDER CHIP, ON LEAD PADS OR ON GROUND CONNECTIONS.

25 VIA HOLES, MIN, EACH 0.38 mm. DIMENSIONS in mm

Figure 7. Recommended Pad Layout

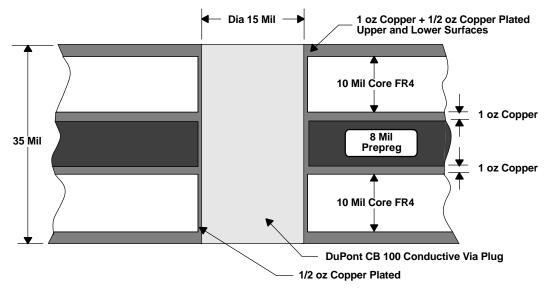


Figure 8. Via Cross Section

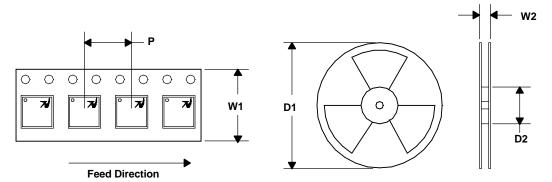


Figure 9. Tape and Reel Specification

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated