SDIS013 – JULY 1989 – REVISED AUGUST 1990

- Multiplexed Real-Time and Latched Data
- Byte Control for Byte-Write Applications
- Useful in NuBus[™] Interface Applications
- Useful in Memory Interleave Applications
- BiCMOS Design Substantially Reduces Standby Current
- Dependable Texas Instruments Quality and Reliability

SN74BCT2423A.	FN PACKAGE
(TOP \	/IEW)

	٩O	۹1	A2	43	44	4 5	<u>م</u> 6	47	GND	A8	A9	A10	A11	A12	۹13	۹14	A15		
	$\overline{}$	$\overline{}$	$\overline{}$		$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{\Box}$	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{}$	$\overline{\Box}$	$\overline{}$	$\overline{}$	$\overline{}$		[
AENL	9 10	8	7	6	5	4	3	2	1	68	67	66	65	64	63	62	61 60	ЪС	AENM
ABLEA	11																59	9[ALE
ABENL	12																58	в [V _{CC}
GND	13																57	7[V _C C
AB7	14																56	6	AB15
AB6	15																55	5	AB14
AB5	16																54	4	AB13
AB4	17																53	3 [AB12
GND	18																52	2	GND
AB 3	19																5	1	AB11
AB2	20																50	٦C	AB10
AB1	21																49	эĪ	AB9
AB 0	22																48	вΓ	AB8
Vcc	23																4	7	GND
A/BSEL	24																46	зГ	ABENM
BLE	25																4	5	ABLEB
BENL	26																44	4 T	BENM
	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43		
L		-	2	ო	4	10	6	\sim		~	0	0	-		~	4	10		l
	BO	è	Щ	ю	B4	B5	BG	B7	GND	B8	B9	B10	B11	B12	B13	B12	B15		

NuBus is a trademark of Texas Instruments Incorporated.

SDIS013 – JULY 1989 – REVISED AUGUST 1990

					S	N74	4BC				F IEV		PAC	KA	GE					
		AO	A 1	A 2	A 3	□ A4	🗌 A5	🗌 A6	□ A7	GND	A8	□ A9	A10	A11	🛛 A12	🛛 A13	🗌 A14	A15	7	
AENL	h 10	9	8	7	6	5	4	3	2	1	68	67	66	65	64	63	62	61 60	Г	AENM
ABLEA	F 11																	59	Η	ALE
ABENL	[] 12	2																58		V _{CC}
GND	13	3																57		V _{CC}
AB7	14	ŀ																56		AB15
AB6] 15	5																55	Γ	AB14
AB5	16	6																54		AB13
AB4	17	7																53		AB12
GND	18	3																52		GND
AB3	19)																51		AB11
AB2	20)																50		AB10
AB1	21																	49		AB9
AB0	22	2																48		AB8
V _{CC}	23	3																47		GND
A/BSEL	24	ŀ																46		ABENM
BLE	25	5																45		ABLEB
BENL	26		20	20	20	24	20	22	24	2F	36	27	20	20	10	11	10	44		BENM
		27	28	29	50	51	э2 П	აა 	34 🗆	33 	30	51	30	39	40	41	42	43 		
		BO	B	B2	B3	B4	B5	BG	B7	GND	B8	B9	B10	B11	B12	B13	B14	B15		

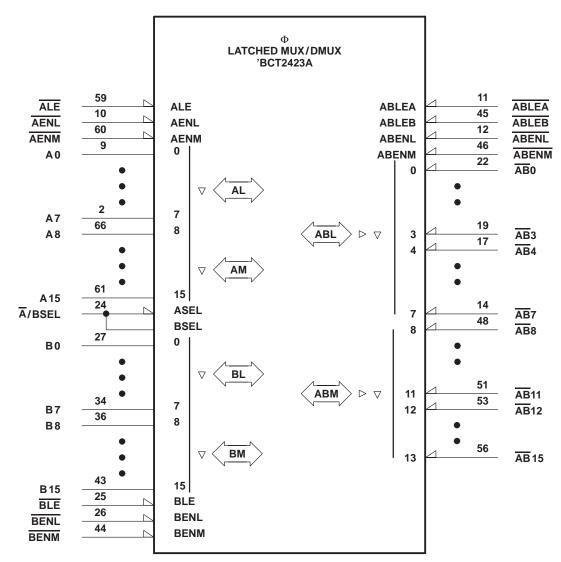
description

The 'BCT2423A and 'BCT2424A are general-purpose 16-bit bidirectional transceivers with data storage latches and byte control circuitry arranged for use in applications where two separate data paths must be multiplexed onto, or demultiplexed from, a single data path. Typical applications include multiplexing and/or demultiplexing of address and data information in microprocessor- or bus-interface applications. These devices are also useful in memory-interleaving applications. The 'BCT2423A and 'BCT2424A offer inverted and noninverted data paths, respectively.

The 'BCT2423A and 'BCT2424A were designed using Texas Instruments BiCMOS process, which features bipolar drive characteristics, but also greatly reduces the standby power of the device when disabled. This is valuable when the device is not performing an address or data transfer.

Three 16-bit I/O ports, A15–A0, B15–B0, and AB15–AB0 are available for address and/or data transfer. The AENM, AENL, BENM, BENL, ABENM, and ABENL inputs control the bus transceiver functions. These control signals also allow byte-control of the most significant byte and least significant byte for each bus.

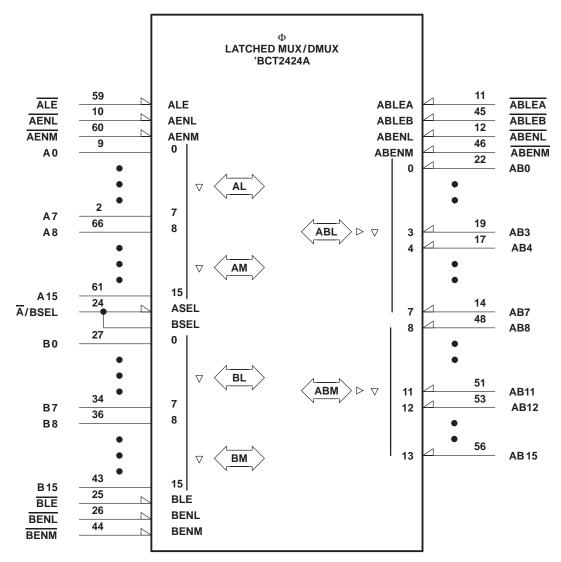
Address and/or data information can be stored using the internal storage latches. The ALE, BLE, ABLEA, and ABLEB inputs are active low, and are used to control data storage. When the latch enable input is low, the latch is transparent. When the latch enable input goes high, the data present at the inputs is latched, and remains latched until the latch enable input is returned low.


Data on the 'A' bus and 'B' bus are multiplexed onto the 'AB' bus via the \overline{A} /BSEL control line. When \overline{A} /BSEL is low, A15–A0 is mapped to the AB15–AB0 outputs. When \overline{A} /BSEL is high, B15–B0 is mapped to the AB15–AB0 outputs.

The SN74BCT2423A and SN74BCT2424A are characterized for operation from 0°C to 70°C.

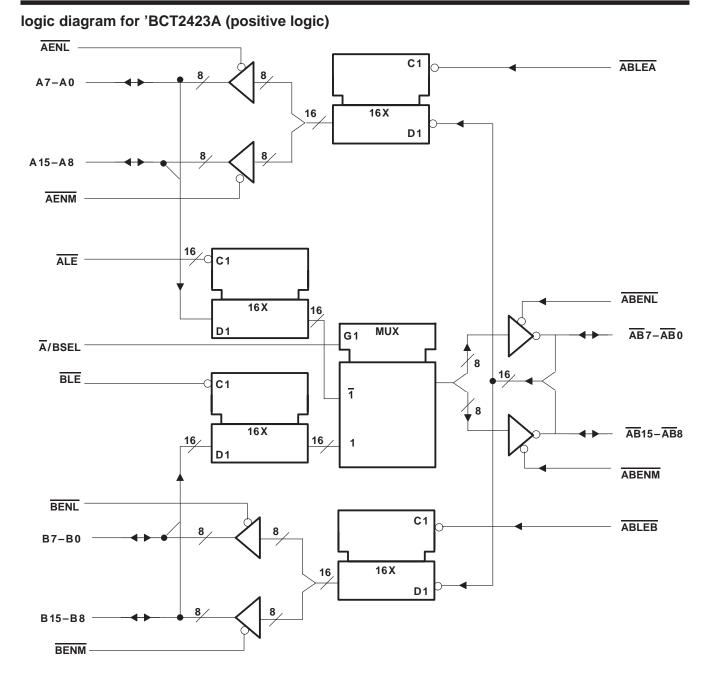
SDIS013 - JULY 1989 - REVISED AUGUST 1990

logic symbol for the 'BCT2423A[†]

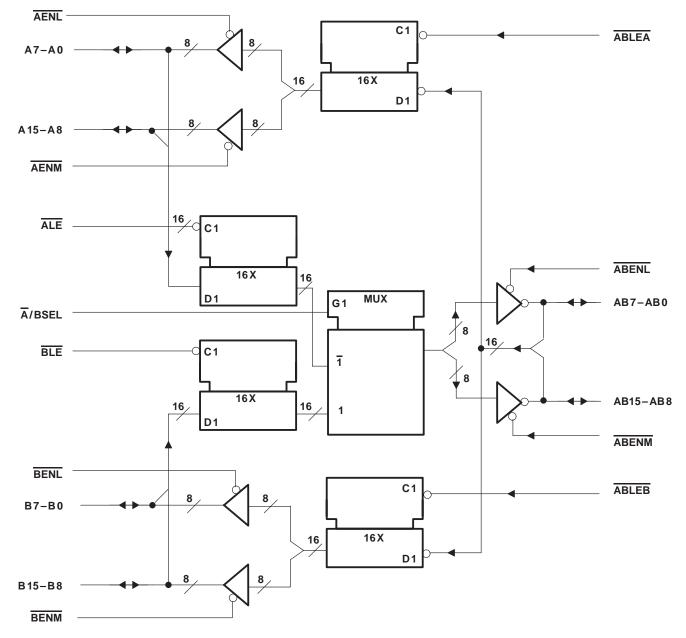


[†] These logic symbols are in accordance with ANSI/IEEE Std 91-1984.

SDIS013 – JULY 1989 – REVISED AUGUST 1990


logic symbol for the 'BCT2424A[†]

[†] These logic symbols are in accordance with ANSI/IEEE Std 91-1984.


SDIS013 - JULY 1989 - REVISED AUGUST 1990

POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SDIS013 - JULY 1989 - REVISED AUGUST 1990

logic diagram for 'BCT2424A (positive logic)

SDIS013 - JULY 1989 - REVISED AUGUST 1990

Terminal Functions

TERMINAL PINS	DESCRIPTION
A15-A0	A bus. This 16-bit I/O port allows for transmission of data and/or address information to or from the AB bus. Information transfer between the A bus and the AB bus is inverting for the 'BCT2423A and noninverting for the 'BCT2424A.
AB 15-AB 0 ('BCT 2423A) AB 15-AB 0 ('BCT 2424A)	AB Bus. This 16-bit i/o port allows for multiplexed transmission of data and/or address information to or from the A and B buses. Information transfer between the A, B, and AB buses is inverting for the 'BCT2423A and noninverting for the 'BCT2424A.
ABENL	AB Bus Output Enable, Least Significant Byte. This active-low input is used to enable the AB7–AB0 outputs. When this input is high, the AB7–AB0 outputs are in the high-impedance state allowing for data input.
ABENM	AB Bus Latch Enable, Most Significant Byte. This active-low input is used to enable the AB15–AB8 outputs. When this input is high, the AB15–AB8 outputs are in the high-impedance state allowing for data input.
ABLEA	AB Bus Latch Enable to A Bus. This active-low input is used to control the latch that holds data received from the AB bus (AB15–AB0) to be transferred to the A bus (A15–A0). When ABLEA is low, the latch is transparent. When ABLEA transitions to the high level, the data present at the AB15–AB0 inputs is latched, and it remains latched while ABLEA is high.
ABLEB	AB Bus Latch Enable to B Bus. This active-low input is used to control the latch that holds data received from the AB bus (AB15–AB0) to be transferred to the B bus (B15–B0). When ABLEB is low, the latch is transparent. When ABLEB transitions to the high level, the data present at the AB15–AB0 inputs is latched, and it remains latched while ABLEB is high.
A/BSEL	A/B Select Control. This input controls the A/B multiplexer. When the input is low, the A15–A0 is selected as input to the AB15–AB0 outputs. When the input is high, B15–B0 is selected as input to the AB15–AB0 outputs.
AENL	A Bus Output Enable, Least Significant Byte. This active-low input is used to enable the A7–A0 outputs. When this input is high, the A7–A0 outputs are in the high-impedance state allowing for data input.
AENM	A Bus Output Enable, Most Significant Byte. This active-low input is used to enable the A15–A8 outputs. When this input is high, the A15–A8 outputs are in the high-impedance state allowing for data input.
ALE	A Bus Latch Enable. This active-low input is used to control the latch that holds data received from the A bus (A15 – A0). When ALE is low, that latch is transparent. When ALE transitions to the high level, the data present at the A15–A0 inputs is latched and remains latched while ALE is high.
B15-B0	B Bus. This 16-bit I/O port allows for transmission of data and/or address information to or from the AB bus. Information transfer between the B bus and the AB bus is inverting for the 'BCT2423A and noninverting for the 'BCT2424A.
BENL	B Bus Output Enable, Least Significant Byte. This active-low input is used to enable the B7–B0 outputs. When this input is high, the B7–B0 outputs are in the high-impedance state allowing for data input.
BENM	B Bus Output Enable, Most Significant Byte. This active-low input is used to enable the B15–B8 outputs. When this input is high, the B15–B8 outputs are in the high-impedance state allowing for data input.
BLE	B Bus Latch Enable. This active-low input is used to control the latch that holds data received from the B bus (B15–B0). When BLE is low, that latch is transparent. When BLE transitions to the high level, that data present at the B15–B0 inputs is latched and remains latched while BLE is high.

SDIS013 - JULY 1989 - REVISED AUGUST 1990

				DIREC	CTION A OR	B TO AB						
			INPUTS									
			INPUIS				'BCT	2423A	'BCT	2424A		
Ax	Bx	ALE	BLE	A/BSEL	ABENM	ABENL	AB 15–8	AB 7–0	AB 15–8	AB 7–0		
Н	Х	L	Х	L	L	L		L	ŀ	1		
L	Х	L	Х	L	L	L	н		н		L	
Х	Х	Н	Х	L	L	L	AB ₀		A	В ₀		
Х	Н	Х	L	Н	L	L		L	H	4		
Х	L	Х	L	Н	L	L	''	4	L			
Х	Х	Х	Н	Н	L	L	A	B ₀	A	B ₀		
Х	Х	Х	Х	Х	L	L	Active	Active	Active	Active		
Х	Х	Х	Х	Х	L	Н	Active	Z	Active	Z		
Х	Х	Х	Х	Х	Н	L	Z	Active	z	Active		
Х	Х	Х	Х	Х	Н	Н	z	Z	z	Z		

Function Tables

			DIR	ECTION AB TO	D A OR B			
		INPUTS				OUTI	PUTS	
ABx	ABLEA		AENL [†]	BENL [†]	'BCT	2423A	'BCT	2424A
ABx	ADLEA	ABLEB	AENM [†]	BENM [†]	Ax	Bx	Ax	Bx
Н	L	L	L	L	L	L	н	Н
L	L	L	L	L	н	Н	L	L
н	L	Н	L	L	L	B ₀	н	B ₀
L	L	Н	L	L	н	B ₀	L	B ₀
н	н	L	L	L	A ₀	L	A ₀	Н
L	н	L	L	L	A ₀	н	A ₀	L
Х	н	Н	L	L	A ₀	B ₀	A ₀	B ₀
Х	Х	Х	L	L	Active	Active	Active	Active
Х	Х	Х	L	Н	Active	Z	Active	Z
Х	Х	Х	Н	L	z	Active	z	Active
Х	Х	Х	Н	Н	z	Z	z	Z

H = high level, L = low level, X = irrelevant, Z = high impedance.

A₀, B₀, AB₀, \overline{AB}_0 = no change since the controlling latch enable went high

⁺ The least significant bytes (A7-A0 and B7-B0) and the most significant bytes (A15-A8 and B15-B8) can be independently enabled and disabled, as was illustrated for the AB and AB bytes in the upper function table.

SDIS013 - JULY 1989 - REVISED AUGUST 1990

absolute maximum ratings over operating free-air temperature range(unless otherwise noted) [†]	
Supply voltage, V _{CC} (see Note 1)	V
Input voltage (all inputs and I/O ports) 5.5	V
Operating free-air temperature range	С
Storage temperature range	С

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "recommended operating conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltage values are with respect to GND.

recommended operating conditions

		PARAMETER	MIN	NOM	MAX	UNIT
VCC	Supply voltage		4.75	5	5.25	V
VIH	High-level input voltage		2			V
VIL	Low-level input voltage				0.8	V
lau	High lovel output ourrent	A _X , B _X outputs			-15	mA
ЮН	High-level output current	\overline{AB}_{X} or AB_{X} outputs			-15	mA
	Low lovel output ourrest	A _X , B _X outputs		24	~^^	
IOL	Low-level output current	\overline{AB}_X or AB_X outputs			5 5.25 0.8 -15 -15	mA
4	Pulse duration	ABLEA, ABLEB high or low	12.5		0.8 -15 -15 24 48	
t _W	Pulse duration	ALE, BLE high or low	12.5			ns
t _{su}	Setup time	Data before xLEx ↑	10			ns
th	Hold time	Data after xLEx ↑	2			ns
Т _А	Operating free-air temperatur	e	0		70	°C

electrical characteristics over recommended operating free-air temperature range

	PARAMETER	TEST CO	ONDITIONS	MIN	TYP†	MAX	UNIT
VIK		$V_{CC} = 4.75 V,$	lj = -18 mA			-1.2	V
		$V_{CC} = 4.75 V,$	I _{OH} = -400 μA	V _{CC} – 1.5			
∨он		$V_{CC} = 4.75 V,$	$I_{OH} = -3 \text{ mA}$	2.8	3.6		V
		$V_{CC} = 4.75 V,$	I _{OH} = -15 mA	2			v
	A_{X} , B_{x} outputs	$V_{CC} = 4.75 V,$	I _{OL} = 12 mA		0.25	0.4	
VOL	AX, B _X outputs	$V_{CC} = 4.75 V,$	I _{OL} = 24 mA		0.35	0.5	
VOL		$V_{CC} = 4.75 V,$	I _{OL} = 24 mA		0.25	0.4	V
	A_X , B_X outputs	$V_{CC} = 4.75 V,$	I _{OL} = 48 mA		0.35	0.5	
Ц		$V_{CC} = 5.25 V,$	V _I = 5.5 V			100	μA
IIH‡		V _{CC} = 5.25 V,	V _I = 2.7 V			20 -100	μΑ
IIL‡		V _{CC} = 5.25 V,	V _I = 0.4 V			-200	μA
los§		V _{CC} = 5.25 V,	$V_0 = 0$	-60		-225	mA
	Enabled	$V_{CC} = 5.25 V,$	V _{IL} = 0.5 V,		110	170	mA
Icc	Disabled	V _{IH} = 3 V,	Outputs open		20	40	ША

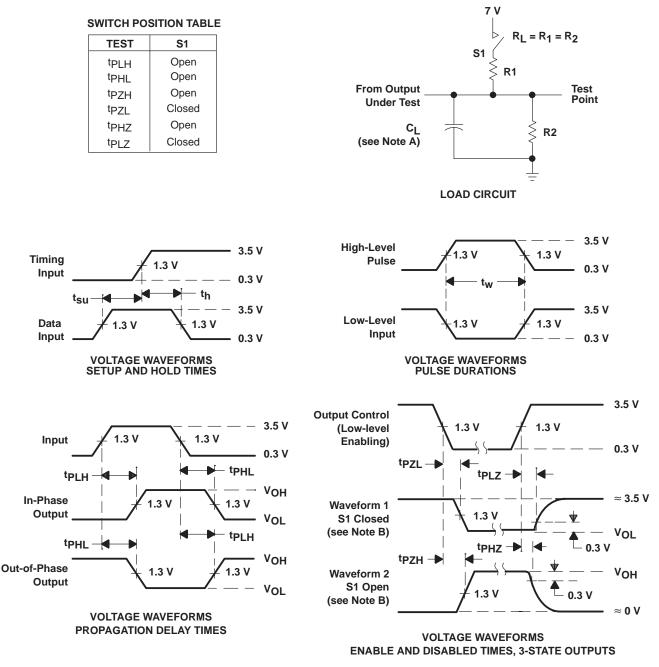
[†] All typical values are at V_{CC} = 5 V, T_A = 25 °C.

 \ddagger For I/O ports, the parameter I_{IH} and I_{IL} include the offstate output current.

§ Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.

SDIS013 - JULY 1989 - REVISED AUGUST 1990

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

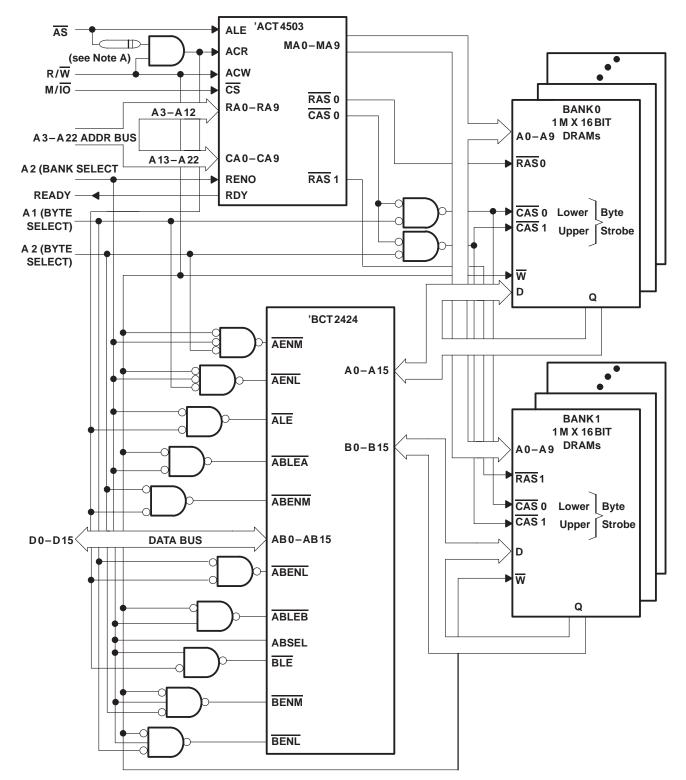

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS [‡]	MIN TYPT	MAX	UNIT
^t pd	ABx, ABx	Ax		8	12	ns
^t pd	ABx, ABx	Bx]	8	12	ns
^t pd	Ax	ABx, ABx		9	12	ns
^t pd	Bx	ABx, ABx		9	12	ns
^t pd	ALE ↓	ABx, ABx		10	13	ns
^t pd	$BLE\downarrow$	ABx, ABx		10	13	ns
^t pd	$ABLEA \downarrow$	Ax		8	12	ns
^t pd	$ABLEB\downarrow$	Bx		8	12	ns
^t pd	A/BSEL	ABx, ABx	V _{CC} = 4.75 V to 5.25 V,	8	12	ns
ten	AENM, AENL	Ax	$C_L = 50 \text{ pF},$ R ₁ = 500 Ω, R ₂ = 500 Ω,	10	13	ns
ten	BENM, BENL	Bx	$T_A = MIN$ to MAX	10	13	ns
ten	ABENM, ABENL	ABx, ABx		10	13	ns
^t dis	AENM, AENL	Ax		5	10	ns
^t dis	BENM, BENL	Bx		5	10	ns
^t dis	ABENM, ABENL	ABx, ABx		5	10	ns

[†] All typical values are at V_{CC} = 5 V, T_A = 25 °C.

[‡] See Parameter Measurement Information for load circuit and voltage waveforms.

SDIS013 - JULY 1989 - REVISED AUGUST 1990

PARAMETER MEASUREMENT INFORMATION


NOTES: A. CL includes probe and jig capacitance.

- B. Wafeform 1 is for an output with internal conditions such that the output is low except when disabled by the current control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses have the following characteristics: PRR \leq 1 MHz, t_f = t_f = 2 ns, duty cycle = 50%.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1

SDIS013 – JULY 1989 – REVISED AUGUST 1990

APPLICATION INFORMATION

NOTE A: The value of this delay element is dependent on the speed of the microprocessor.

Figure 2. Typical Memory Interleave Application

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated