

www.ti.com

SLLS663A-SEPTEMBER 2005-REVISED NOVEMBER 2005

1 Gbps to 4.25 Gbps Limiting Amplifier With LOS and RSSI

FEATURES

- Multi-Rate Operation from 1 Gbps up to 4.25 Gbps
- 89-mW Power Consumption
- Input Offset Cancellation
- High Input Dynamic Range
- Output Disable
- CML Data Outputs
- Receive Signal Strength Indicator (RSSI)
- Loss of Signal Detection

- Polarity Select
- Single 3.3-V Supply
- Surface Mount Small Footprint 3-mm \times 3-mm 16-Pin QFN Package

APPLICATIONS

- Cable Driver and Receiver
- 1.0625 Gbps, 2.125 Gbps, and 4.25 Gbps Fibre Channel Receivers
- Gigabit Ethernet Receivers

DESCRIPTION

The ONET4251PA is a versatile high-speed limiting amplifier for copper cable and fiber optic applications with data rates up to 4.25 Gbps.

This device provides a gain of about 50 dB, which ensures a full 800-mV_{p-p} differential output swing over its wide input signal dynamic range.

The high input signal dynamic range ensures low jitter output signals even when overdriven with input signal swings as high as 1200 mV_{p-p} .

The ONET4251PA comprises a loss of signal detection as well as a received signal strength indicator.

The part is available in a small footprint 3-mm × 3-mm 16-pin QFN package. It requires a single 3.3-V supply.

This power efficient limiting amplifier dissipates less than 89 mW typical. It is characterized for operation from -40°C to 85°C.

BLOCK DIAGRAM

A simplified block diagram of the ONET4251PA is shown in Figure 1.

This compact 3.3 V, low power 4.25 Gbps limiting amplifier consists of a high-speed data path with offset cancellation block, a loss of signal and RSSI detection block, and a bandgap voltage reference and bias current generation block.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

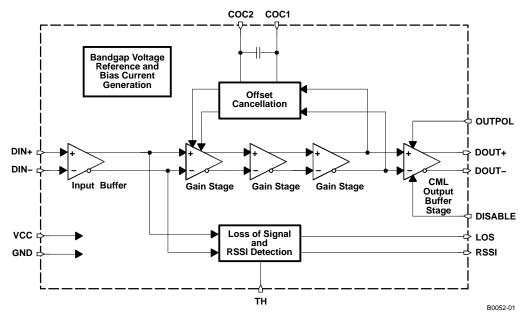


Figure 1. Simplified Block Diagram of the ONET4251PA

HIGH SPEED DATA PATH

The high-speed data signal is applied to the data path by means of the input signal pins DIN+/DIN–. The data path consists of the input stage with 2×50 - Ω on-chip line termination to VCC, three gain stages, which provide the required typical gain of about 50 dB, and a CML output stage. The amplified data output signal is available at the output pins DOUT+/DOUT-, which provide 2×50 - Ω back-termination to VCC. The output stage also includes a data polarity switching function, which is controlled by the OUTPOL input, and a disable function, controlled by the signal applied to the *DISABLE* input pin.

An offset cancellation compensates for internal offset voltages and thus ensures proper operation even for very small input data signals.

The low frequency cutoff is typically as low as 50 kHz with the built-in filter capacitor.

For applications which require even lower cutoff frequencies, an additional external filter capacitor may be connected to the COC1/COC2 pins.

LOSS OF SIGNAL AND RSSI DETECTION

The output signal of the input buffer is monitored by the loss of signal and RSSI detection circuitry. In this block, a signal is generated that is linear proportional to the input amplitude over a wide input voltage range. This signal is available at the RSSI output pin.

Furthermore, this circuit block compares the input signal to a threshold which can be programmed by means of an external resistor connected to the TH pin. If the input signal falls below the specified threshold, a loss of signal is indicated at the LOS pin.

The relation between the LOS assert voltage V_{AST} (in mV_{p-p}) and the external resistor R_{TH} (in $k\Omega$) connected to the TH pin can be approximated as given below:

$$R_{TH} \approx \frac{22.4 \text{ k}\Omega}{\left(V_{AST}/mV_{p-p} - 1\right)} + 560 \Omega$$

$$V_{AST} \approx \frac{22.4 \text{ mV}_{p-p}}{R_{TH}/k\Omega - 0.56} + 1 \text{ mV}_{p-p}$$
(2)

BANDGAP VOLTAGE AND BIAS GENERATION

The ONET4251PA limiting amplifier is supplied by a single 3.3-V \pm 10% supply voltage connected to the VCC pins. This voltage is referred to ground (GND).

An on-chip bandgap voltage circuitry generates a supply voltage independent reference from which all other internally required voltages and bias currents are derived.

PACKAGE

For the ONET4251PA a small footprint 3-mm \times 3-mm 16-pin QFN package, with a lead pitch of 0,5 mm is used. The pin out is shown in Figure 2.

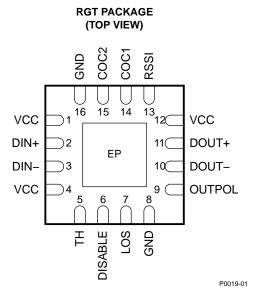


Figure 2. Pinout of ONET4251PA in a 3 mm x 3 mm 16-Pin QFN Package (Top View)

TERMINAL FUNCTIONS

TERMINAL		TYPE	DESCRIPTION				
NO.	NAME	ITPE	DESCRIPTION				
1, 4, 12	VCC	supply	3.3-V ±10% supply voltage				
2	DIN+	analog-in	Non-inverted data input. On-chip $50-\Omega$ terminated to VCC.				
3	DIN-	analog-in	Inverted data input. On-chip 50- Ω terminated to VCC.				
5	TH	analog-in	LOS threshold adjustment with resistor to GND.				
6	DISABLE	CMOS-in	Disables CML output stage when set to high level.				
7	LOS	CMOS-out	High level indicates that the input signal amplitude is below the programmed threshold level.				
8, 16, EP	GND	supply	Circuit ground. Exposed die pad (EP) must be grounded.				
9	OUTPOL	CMOS-in	Output data signal polarity select (internally pulled high). Setting to a high level or leaving the pin open selects normal polarity. Low level selects inverted polarity.				
10	DOUT-	CML-out	Inverted data output. On-chip 50- Ω back-terminated to VCC.				
11	DOUT+	CML-out	Non-inverted data output. On-chip $50-\Omega$ back-terminated to VCC				

TERMINAL FUNCTIONS (continued)

	TERMINAL	TYPE	DESCRIPTION				
NO.	NAME	ITPE					
13	RSSI	analog-out	Analog output voltage proportional to the input data amplitude. Indicates the strength of the received signal (RSSI).				
14	COC1	analog	Offset cancellation filter capacitor terminal 1. Connect an additional filter capacitor between this pin and COC2 (pin 15). To disable the offset cancellation loop connect COC1 and COC2 (pins 14 and 15).				
15	COC2	analog	Offset cancellation filter capacitor terminal 2. Connect an additional filter capacitor between this pin and COC1 (pin 14). To disable the offset cancellation loop connect COC1 and COC2 (pins 14 and 15).				

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)(1)

		VALUE/UNIT
V _{CC}	Supply voltage ⁽²⁾	-0.3 V to 4 V
V _{DIN+} , V _{DIN-}	Voltage at DIN+, DIN-(2)	0.5 V to 4 V
V _{TH} , V _{DISABLE} , V _{LOS} , V _{OUTPOL} , V _{DOUT+} , V _{DOUT-} , V _{RSSI} , V _{COC1} , V _{COC2}	Voltage at TH, DISABLE, LOS, OUTPOL, DOUT+, DOUT-, RSSI, COC1, COC2 (2)	-0.3 V to 4 V
V _{COC,DIFF}	Differential voltage between COC1 and COC2	±1 V
$V_{\text{DIN,DIFF}}$	Differential voltage between DIN+ and DIN-	±2.5 V
I _{LOS}	Current into LOS	– 1 to 9 mA
I _{DIN+} , I _{DIN-} , I _{DOUT+} , I _{DOUT-}	Continuous current at inputs and outputs	–25 mA to 25 mA
ESD	ESD rating at all pins	2 kV (HBM)
$T_{J(max)}$	Maximum junction temperature	125°C
T _{STG}	Storage temperature range	–65 to 85°C
T _A	Characterized free-air operating temperature range	-40 to 85°C
T _{LEAD}	Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

		MIN	TYP	MAX	UNIT
V_{CC}	Supply voltage	3.0	3.3	3.6	V
T _A	Operating free-air temperature	-40		85	°C
V_{IH}	CMOS input high voltage	2.1			V
V _{IL}	CMOS input low voltage			0.6	V

⁽²⁾ All voltage values are with respect to network ground terminal.

DC ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

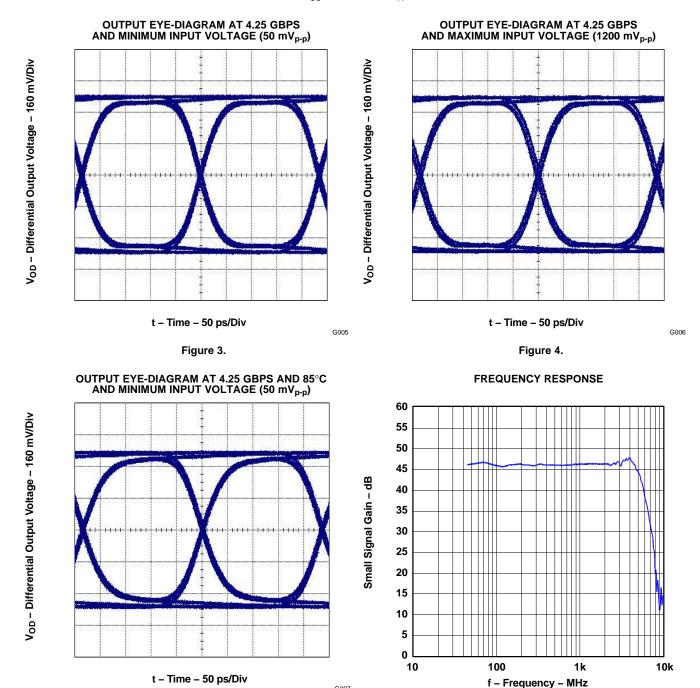
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
V _{CC}	Supply voltage		3	3.3	3.6	V		
I _{VCC}	Supply current	DISABLE = low (excludes CML output current)		27	40	mA		
V	Differential date output valtage eving	DISABLE = high		0.25	10	>/		
V _{OD}	Differential data output voltage swing	DISABLE = low	600	760	1200	mV_{p-p}		
R _{IN} , R _{OUT}	Data input/output resistance	Single-ended		50		Ω		
V	DCCI autaut valtaga	Input = 8 mV _{p-p} , $R_{RSSI} \ge 10 \text{ k}\Omega$		180		mV		
V _{RSSI}	RSSI output voltage	Input = 80 mV _{p-p} , $R_{RSSI} \ge 10 \text{ k}\Omega$		1900				
	RSSI Linearity	$8 \text{ mV}_{p-p} \le V_{IN} \le 80 \text{ mV}_{p-p}$		±3%				
V _{IN(MIN)}	Minimum data input voltage				50	mV _{p-p}		
V _{IN(MAX)}	Data input overload		1200			mV _{p-p}		
	LOS high voltage	I _{SOURCE} = 30 μA	2.4			V		
	LOS low voltage	I _{SINK} = 1 mA			0.4	V		

AC ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted), typical operating condition is at V_{CC} = 3.3 V and T_A = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
	Low fragues ov. 2 dD handwidth	C _{OC} = open		50		kHz	
	Low frequency –3 dB bandwidth	$C_{OC} = 0.1 \mu F$		0.8		KHZ	
	Data rate		4.25			Gb/s	
v _{NI}	Input referred noise			230		μV_{RMS}	
		K28.5 pattern at 4.25 Gbps		6	19		
DJ	Deterministic jitter	K28.5 pattern at 2.125 Gbps		8	22	ps _{p-p}	
		K28.5 pattern at 1.0625 Gbps		11	28		
RJ	Random jitter	Input = 50 mVpp		1		ps _{RMS}	
t _r	Output rise time	20% to 80%		35	70	ps	
t _f	Output fall time	20% to 80%		35	70	ps	
	LOS hysteresis	K28.5 pattern at 4.25 Gbps	2.5	4.5		dB	
R _{TH}	LOS threshold adjustment resistor	See (1)		4		kΩ	
V _{AST}	LOS assert voltage	$R_{TH} = 4 k\Omega K28.5 pattern at 4.25 Gbps$	3	7		mV _{p-p}	
V_{DEA}	LOS deassert voltage	$R_{TH} = 4 \text{ k}\Omega \text{ K28.5 pattern at 4.25 Gbps}$		11	50	mV_{p-p}	
t _{LOS}	LOS assert/deassert time		2		100	μs	
t _{DIS}	Disable response time			20		ns	

⁽¹⁾ For a given external resistor connected to the TH pin, the LOS assert voltage value may vary due to part-to-part variations. If high precision is required, adjustment of this resistor for each device is mandatory.



G004

Figure 6.

TYPICAL CHARACTERISTICS

Typical operating condition is at V_{CC} = 3.3 V and T_A = 25°C (unless otherwise noted).

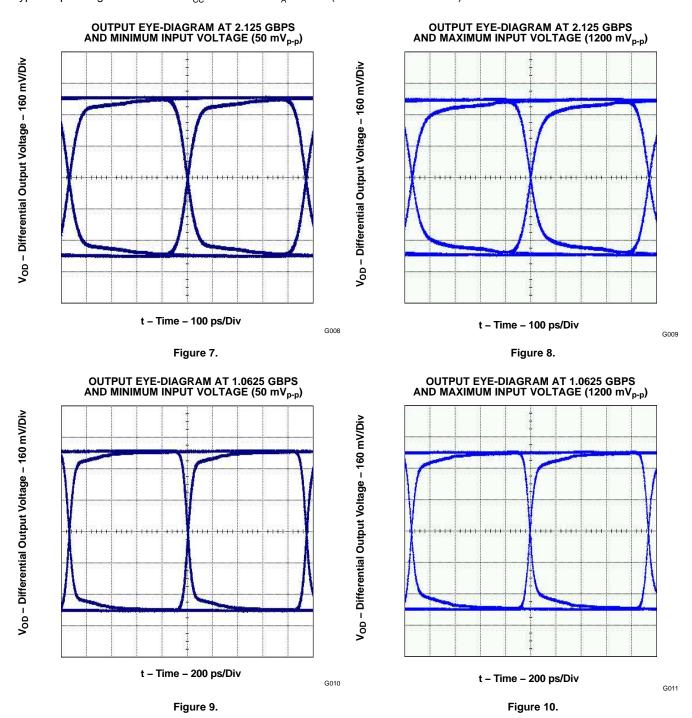

G007

Figure 5.

TYPICAL CHARACTERISTICS (continued)

Typical operating condition is at V_{CC} = 3.3 V and T_A = 25°C (unless otherwise noted).

TYPICAL CHARACTERISTICS (continued)

Typical operating condition is at $V_{CC} = 3.3 \text{ V}$ and $T_A = 25^{\circ}\text{C}$ (unless otherwise noted).

Figure 13.

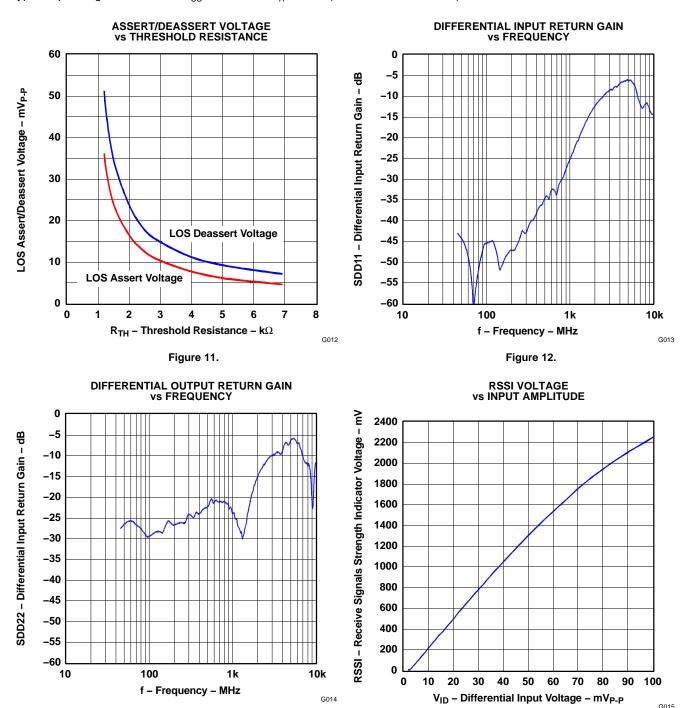


Figure 14.

APPLICATION INFORMATION

Figure 15 shows the ONET4251PA connected with an ac-coupled interface to the data signal source as well as to the output load.

Besides the ac-coupling capacitors C_1 through C_4 in the input and output data signal lines, the only required external component is the LOS threshold setting resistor R_{TH} . In addition, if a low cutoff frequency is required, as an option, an external filter capacitor C_{OC} may be used.

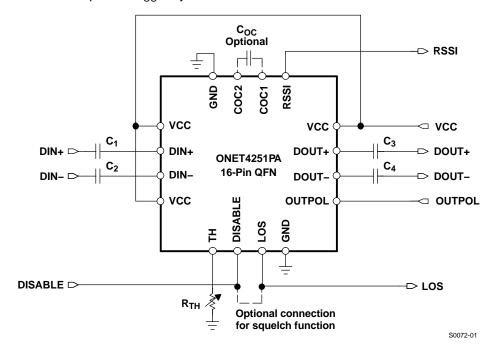


Figure 15. Basic Application Circuit With AC Coupled I/Os

.com 4-Noy-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
ONET4251PARGTR	ACTIVE	QFN	RGT	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
ONET4251PARGTRG4	ACTIVE	QFN	RGT	16	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
ONET4251PARGTT	ACTIVE	QFN	RGT	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
ONET4251PARGTTG4	ACTIVE	QFN	RGT	16	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

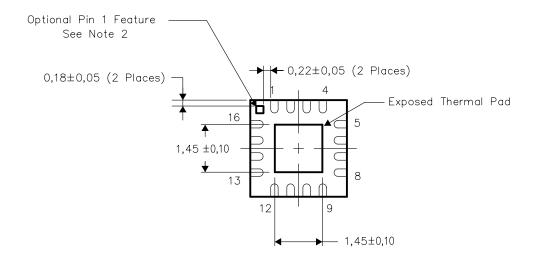
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

RGT (S-PQFP-N16) PLASTIC QUAD FLATPACK 3,15 2,85 3,15 2,85 PIN 1 INDEX AREA TOP AND BOTTOM 0,20 REF. -SEATING PLANE 0,08 0,05 0,00 $16X \frac{0,50}{0,30}$ 16 13 EXPOSED THERMAL PAD ⇘ $16X \ \frac{0,30}{0,18}$ 0,10 M 0,50 1,50 4203495/E 11/04

- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
 - B. This drawing is subject to change without notice.
 - C. Quad Flatpack, No-leads (QFN) package configuration.
 - The package thermal pad must be soldered to the board for thermal and mechanical performance.

 See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
 - E. Falls within JEDEC MO-220.



THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to a ground or power plane (whichever is applicable), or alternatively, a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, Quad Flatpack No—Lead Logic Packages, Texas Instruments Literature No. SCBA017. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View
Exposed Thermal Pad Dimensions

NOTES:

- 1) All linear dimensions are in millimeters
- 2) The Pin 1 Identification mark is an optional feature that may be present on some devices In addition, this Pin 1 feature if present is electrically connected to the center thermal pad and therefore should be considered when routing the board layout.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated