

CDCP1803 1:3 LVPECL CLOCK BUFFER WITH PROGRAMMABLE DIVIDER

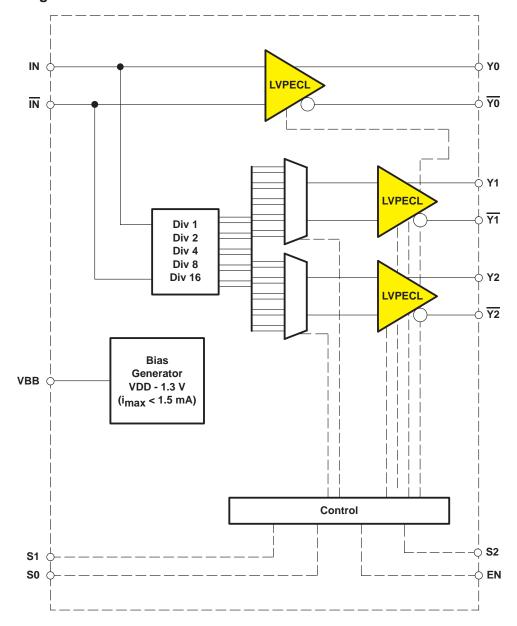
SCAS727B - NOVEMBER 2003 - REVISED FEBRUARY 2004

- Distributes One Differential Clock Input to Three LVPECL Differential Clock Outputs
- Programmable Output Divider for Two LVPECL Outputs
- Low-Output Skew 15 ps (Typical)
- V_{CC} Range 3 V-3.6 V
- Signaling Rate Up to 800-MHz LVPECL
- Differential Input Stage for Wide Common-Mode Range
- Provides VBB Bias Voltage Output for Single-Ended Input Signals
- Receiver Input Threshold ±75 mV
- 24-Pin MLF Package (4 mm x 4 mm)
- Accepts Any Differential Signaling: LVDS, HSTL, CML, VML, SSTL-2, and Single-Ended: LVTTL/LVCMOS

† PowerPad must be connected to V_{SS}.

description

The CDCP1803 clock driver distributes one pair of differential clock inputs to three pairs of LVPECL differential clock outputs Y[2:0] and $\overline{Y[2:0]}$, with minimum skew for clock distribution. The CDCP1803 is specifically designed for driving 50- Ω transmission lines.


The CDCP1803 has three control pins, S0, S1, and S2, to select different output mode settings, see Table 1 for details. The CDCP1803 is characterized for operation from –40°C to 85°C. For use in single-ended driver applications, the CDCP1803 also provides a VBB output pin that can be directly connected to the unused input as a common-mode voltage reference.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

functional block diagram

Terminal Functions

NAME	NO.	I/O	DESCRIPTION
EN	1	I (with 60-kΩ pullup)	ENABLE: Enables or disables all outputs simultaneously. EN=1: outputs on according to S0, S1, and S2 setting EN=0: outputs Y[2:0] off (high impedance) See Table 1 for details.
IN, ĪN	3, 4	I (differential)	Differential input clock: Input stage is sensitive and has a wide common-mode range. Therefore, almost any type of differential signal can drive this input (LVPECL, LVDS, CML, HSTL). Since the input is high impedance, it is recommended to terminate the PCB transmission line before the input (e.g. with 100 - Ω across input). Input can also be driven by single ended signal if the complementary input is tight to VBB. A more advanced scheme for single-ended signal is given in the application section near the end of this document.
			The inputs deploy an ESD structure protecting the inputs in case of an input voltage exceeding the rails by more than \sim 0.7 V. Reverse biasing of the IC through these inputs is possible and must be prevented by limiting the input voltage < V_{DD} .
NC	12		No connect. Leave this pin open or tie to ground
S0, S1, S2	18, 19, 24	l (with 60-kΩ pullup)	Select mode of operation: Defines the output configuration of Y[2:0]. See Table 1 for configuration.
Y[2:0], Y[2:0]	9, 10, 15, 16, 21, 22	O (LVPECL)	LVPECL clock outputs: These outputs provide low-skew copies of IN pair or down divided copies of clock IN based on selected mode of operation S[2:0]; If an output is unused, the output can simply be left open to save power and minimize noise impact to the remaining outputs.
VBB	6	0	Bias voltage output can be used to bias unused complementary input $\overline{\text{IN}}$ for single ended input signals. The output voltage of VBB is V _{DD} – 1.3 V. When driving a load, the output current drive is limited to about 1.5 mA.
V _{SS}	7, 13	Supply	Device ground
V _{DD} PECL	2, 5	Supply	Supply voltage PECL input + internal logic
V _{DD} [0–2]	8, 11, 14, 17,20,	Supply	PECL output supply voltage for output Y[0–2]: Each output can be disabled by pulling the corresponding V _{DD} x to GND.
	23		CAUTION: In this mode, no voltage from outside may be forced, because internal diodes could be forced in forward direction; Thus, it is recommended to disconnect the output if it is not being used.

control pin settings

The CDCP1803 has three control pins (S0, S1, and S2) and an enable pin (EN) to select different output mode settings.

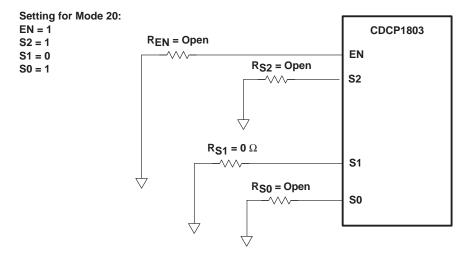


Figure 1. Control Pin Setting for Example

Table 1. Selection Mode Table

						LVPECL	
MODE	EN	S2	S1	S0	Y0	Y1	Y2
0	0	Х	Х	Х		Off (high-z)	
1	1	0	0	0	÷ 1	÷ 1	÷ 1
2	1	0	0	V _{DD} /2	÷ 1	Off (high-z)	Off (high-z)
3	1	0	0	1	÷ 1	÷ 1	Off (high-z)
4	1	0	V _{DD} /2	0	÷ 1	÷ 2	Off (high-z)
5	1	0	V _{DD} /2	V _{DD} /2	÷ 1	÷ 4	Off (high-z)
6	1	0	V _{DD} /2	1	÷ 1	÷ 8	Off (high-z)
7	1	0	1	0	÷ 1	Off (high-z)	÷ 1
8	1	0	1	1	÷ 1	÷ 2	÷ 1
9	1	V _{DD} /2	0	0	÷ 1	÷ 4	÷ 1
10	1	V _{DD} /2	0	V _{DD} /2	÷ 1	÷ 8	÷ 1
11	1	V _{DD} /2	0	1	÷ 1	Off (high-z)	÷ 2
12	1	V _{DD} /2	V _{DD} /2	0	÷ 1	÷ 1	÷ 2
13	1	V _{DD} /2	V _{DD} /2	V _{DD} /2	÷ 1	÷ 2	÷ 2
14	1	V _{DD} /2	V _{DD} /2	1	÷ 1	÷ 4	÷ 2
15	1	V _{DD} /2	1	0	÷ 1	÷ 8	÷ 2
16	1	V _{DD} /2	1	V _{DD} /2	÷ 1	Off (high-z)	÷ 4
17	1	V _{DD} /2	1	1	÷ 1	÷ 1	÷ 4
18	1	1	0	0	÷ 1	÷ 2	÷ 4
19	1	1	0	V _{DD} /2	÷ 1	÷ 4	÷ 4
20	1	1	0	1	÷ 1	÷ 8	÷ 4
21	1	1	V _{DD} /2	0	÷ 1	Off (high-z)	÷ 8
22	1	1	V _{DD} /2	V _{DD} /2	÷ 1	÷ 1	÷ 8

23	1	1	V _{DD} /2	1	÷1	÷ 2	÷ 8
24	1	1	1	0	÷ 1	÷ 4	÷ 8
25	1	1	1	V _{DD} /2	÷ 1	÷ 8	÷ 8
26	1	1	1	1	÷ 1	Off (high-z)	÷ 16
27	V _{DD} /2	0	0	0	÷ 1	÷ 1	÷ 16
28	V _{DD} /2	0	0	V _{DD} /2	÷ 1	÷ 2	÷ 16
29	V _{DD} /2	0	0	1	÷ 1	÷ 4	÷ 16
30	V _{DD} /2	0	V _{DD} /2	0	÷ 1	÷ 8	÷ 16
Rsv	V _{DD} /2	1	V _{DD} /2	1	Reserved	Reserved	Reserved
Rsv	V _{DD} /2	1	1	0	N/A	Low	Low

NOTE: The LVPECL outputs are open emitter stages. Thus, if you leave the unused LVPECL outputs Y0, Y1, or Y2 unconnected, then the current consumption is minimized and noise impact to remaining outputs is neglectable. Also, each output can be individually disabled by connecting the corresponding V_{DD} input to GND.

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Supply voltage, V _{DD}	–0.3 V to 3.8 V
Input voltage, V _I	$-0.2 \text{ V to } (V_{DD} + 0.2 \text{ V})$
Output voltage, V _O	
Differential short circuit current, Yn, Yn, I _{OSD}	Continuous
Electrostatic discharge (HBM 1.5 kΩ, 100 pF), ESD	>2000 V
Moisture level 24-pin MLF package (solder reflow temperature of 235°C) MSL .	
Storage temperature, T _{Stq}	–65°C to 150°C
Maximum junction temperature, T _J	125°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

	MIN	TYP	MAX	UNIT
Supply voltage, V _{DD}	3	3.3	3.6	٧
Operating free-air temperature, TA	-40		85	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

LVPECL input IN, IN

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNIT
fclk	Input frequency		0	800	MHz
Vсм	High-level input common mode		1	V _{DD} -0.3	V
VIN	Input voltage swing between IN and $\overline{\text{IN}}$, see Note 1		500	1300	mV
VIN	Input voltage swing between IN and $\overline{\text{IN}}$, see Note 2		150	1300	mV
I _{IN}	Input current	$V_I = V_{DD}$ or 0 V		±10	μΑ
R _{IN}	Input impedance		300		kΩ
Cl	Input capacitance at IN, IN		_	1	pF

NOTES: 1. Is required to maintain ac specifications

2. Is required to maintain device functionality

CDCP1803 1:3 LVPECL CLOCK BUFFER WITH PROGRAMMABLE DIVIDER SCAS727B - NOVEMBER 2003 - REVISED FEBRUARY 2004

LVPECL output driver Y[2:0], Y[2:0]

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{clk}	Output frequency, see Figure 3		0		800	MHz
Vон	High-level output voltage	Termination with 50 Ω to V _{DD} –2 V	V _{DD} -1.18		V _{DD} -0.81	V
VOL	Low-level output voltage	Termination with 50 Ω to V _{DD} –2 V	V _{DD} -1.98		V _{DD} -1.55	V
Vo	Output voltage swing between Y and \overline{Y} , see Figure 3	Termination with 50 Ω to V _{DD} –2 V	500			mV
lozL	Output 3-state	V _{DD} = 3.6 V, V _O = 0 V			5	μΑ
lozh	Output 3-state	$V_{DD} = 3.6 \text{ V}, V_{O} = V_{DD} - 0.8 \text{ V}$			10	μΑ
t _r /t _f	Rise and fall time	20% to 80% of VOUTPP, see Figure 7	200		350	ps
t _{skpecl(o)}	Output skew between any LVPECL output Y[2-0] and Y[2-0]	See Note A in Figure 6		15	30	ps
t _{Duty}	Output duty cycle distortion, see Note 3	Crossing point-to-crossing point distortion	-50		50	ps
t _{sk(pp)}	Part-to-part skew	Any Y, See Note B in Figure 6		50		ps
CO	Output capacitance	$V_O = V_{DD}$ or GND		1		pF
LOAD	Expected output load			50		Ω

NOTES: 3. For a 800-MHz signal, the 50-ps error would result into a duty cycle distortion of $\pm 4\%$ when driven by an ideal clock input signal.

LVPECL input-to-LVPECL output parameter

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tpd(lh)	Propagation delay rising edge	VOX to VOX	320		600	ps
tpd(hl)	Propagation delay falling edge	VOX to VOX	320		600	ps
tsk(p)	LVPECL pulse skew	VOX to VOX, See Note C in Figure 6			100	ps

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) (continued)

jitter characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		12 kHz to 20 MHz, f _{out} = 250 MHz to 800 MHz, divide by 1 mode			0.15	ps rms
^t jitterLVPECL	see Figure 2	50 kHz to 40 MHz, f _{out} = 250 MHz to 800 MHz, divide by 1 mode			0.25	ps rms

ADDITIVE PHASE NOISE vs FREQUENCY OFFSET FROM CARRIER – LVPECL

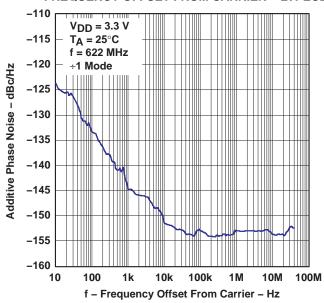


Figure 2.

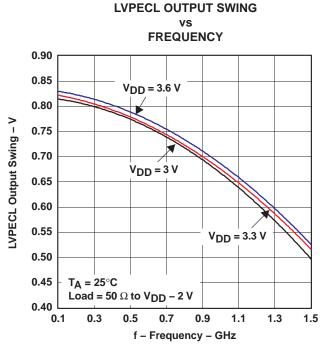
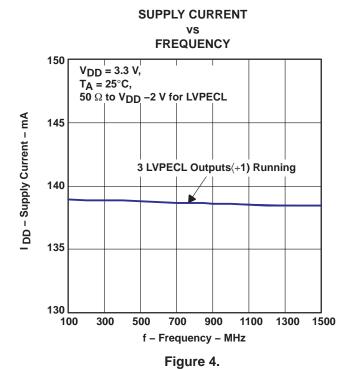



Figure 3.

supply current electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNITS
I _{DD}	Supply current	Full load	All outputs enabled and terminated with 50 Ω to V_{DD} – 2 V on LVPECL outputs, f = 800 MHz for LVPECL outputs V_{DD} = 3.3 V		140		mA
		No load	Outputs enabled, no output load, f = 800 MHz for LVPECL outputs V_{DD} = 3.6 V			90	
I _{DD}	Supply current saving per L\ output stage disabled, no loa		f = 800 MHz for LVPECL output, V_{DD} = 3.3 V		10		mA
I _{DDZ}	Supply current, tri-state		All outputs 3-state by control logic, $f = 0$ Hz, $V_{DD} = 3.6$ V			0.5	mA

package thermal resistance

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
θJA-1	MLF–24 package thermal resistance, See Note 1	4-layer JEDEC test board (JESD51-7), airflow = 0 ft/min		106.6		°C/W
θЈΑ-2	MLF–24 package thermal resistance with thermal vias in PCB, See Note 1	4-layer JEDEC test board (JESD51-7) with four thermal vias of 22-mil diameter each, airflow = 0 ft/min		55.4		°C/W

NOTE 1: It is recommended to provide four thermal vias to connect the thermal pad of the package effectively with the PCB and ensure a good heat sink.

Example:

calculation of the junction-lead temperature with a 4-layer JEDEC test board using four thermal vias:

T_{Chassis} = 85°C (temperature of the chassis)

 $P_{effective} = I_{max} x V_{max} = 90 \text{ mA } x 3.6 V = 324 \text{ mW} \text{ (max power consumption inside the package)}$

 $\theta T_{Junction} = \theta_{JA-2} \times P_{effective} = 55.45^{\circ}C/W \times 324 \text{ mW} = 17.97^{\circ}C$

 $T_{Junction} = \theta T_{Junction} + T_{Chassis} = 17.97^{\circ}C + 85^{\circ}C = 103^{\circ}C$ (the maximum junction temperature of $T_{die-max} = 125^{\circ}C$ is not violated)

control input characteristics over recommended operating free-air temperature range

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
t _{su}	Setup time, S0, S1, S2, and EN pin before clock IN		25			ns
t _h	Hold time, S0, S1, S2, and EN pin after clock IN		0			ns
^t (disable)	Time between latching the EN low transition and when all outputs are disabled (how much time is required until the outputs turn off)			10		ns
^t (enable)	Time between latching the EN low-to-high transition and when outputs are enabled based on control settings (how much time passes before the outputs carry valid signals)			1		μs
Rpullup	Internal pullup resistor on S[2:0] and EN input		42	60	78	kΩ
V _{IH(H)}	Three level input high, S0, S1, S2, and EN pin, see Note 1		0.9xV _{DD}			V
V _{IL(L)}	Three level low, S0, S1, S2, and EN pin				0.1xV _{DD}	V
lн	Input current, S0, S1, S2, and EN pin	$V_I = V_{DD}$			-5	μА
I _L	Input current, S0, S1, S2, and EN pin	V _I = GND	38		85	μΑ

NOTES: 1. Leaving this pin floating automatically pulse the logic level high to V_{DD} through an internal pullup resistor of 60 k Ω .

bias voltage VBB over recommended operating free-air temperature range

	PARAMETER	TEST CONDITIONS	MIN	TYP MAX	UNITS
VBB	Output reference voltage	$V_{DD} = 3 \text{ V} - 3.6 \text{ V}, I_{BB} = -0.2 \text{ mA}$	V _{DD} – 1.4	V _{DD} – 1.2	V

OUTPUT REFERENCE VOLTAGE ($V_{\mbox{\footnotesize{BB}}}$)

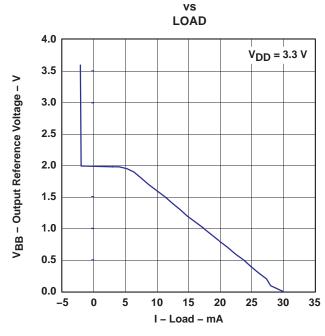
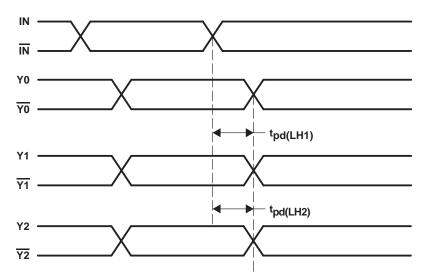



Figure 5.

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. Output skew, $t_{sk(0)}$, is calculated as the greater of:

 The difference between the fastest and the slowest $t_{pd(LH)n}$ (n = 0...2)

 The difference between the fastest and the slowest $t_{pd(HL)n}$ (n = 0...2)

 B. Part-to-part skew, $t_{sk(pp)}$, is calculated as the greater of:

 - - The difference between the fastest and the slowest t_{pd(LH)n} (n = 0...2) for LVPECL across multiple devices
 - The difference between the fastest and the slowest t_{pd(HL)n} (n = 0...2) for LVPECL across multiple devices

 C. Pulse skew, t_{sk(p)}, is calculated as the magnitude of the absolute time difference between the high-to-low (t_{pd(HL)}) and the low-to-high $(t_{pd(LH)})$ propagation delays when a single switching input causes one or more outputs to switch, $t_{sk(p)} = |t_{pd(LH)} - t_{pd(LH)}|$. Pulse skew is sometimes referred to as pulse width distortion or duty cycle skew.

Figure 6. Waveforms for Calculation of $t_{sk(p)}$ and $t_{sk(pp)}$

PARAMETER MEASUREMENT INFORMATION

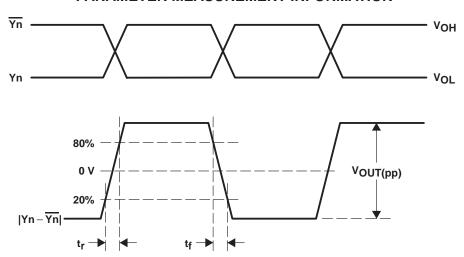


Figure 7. LVPECL Differential Output Voltage and Rise/Fall Time

PCB design for thermal functionality

It is recommended to take special care of the PCB design for good thermal flow from the MLF-24 pin package to the PCB.

Due to the three LVPECL outputs, the current consumption of the CDCP1803 is fixed.

JEDEC JESD51-7 specifies thermal conductivity for standard PCB boards.

Modeling the CDCP1803 with a standard 4-layer JEDEC board results into a 59.5°C max temperature with a θ_{JA} of 106.62°C/W for 25°C ambient temperature.

When deploying four thermal vias (one per quadrant), the thermal flow improves significantly, yielding 42.9°C max temperature with a θ_{JA} of 55.4°C/W for 25°C ambient temperature.

To ensure sufficient thermal flow, it is recommended to design with four thermal vias in applications enabling all four outputs at ones.

PARAMETER MEASUREMENT INFORMATION

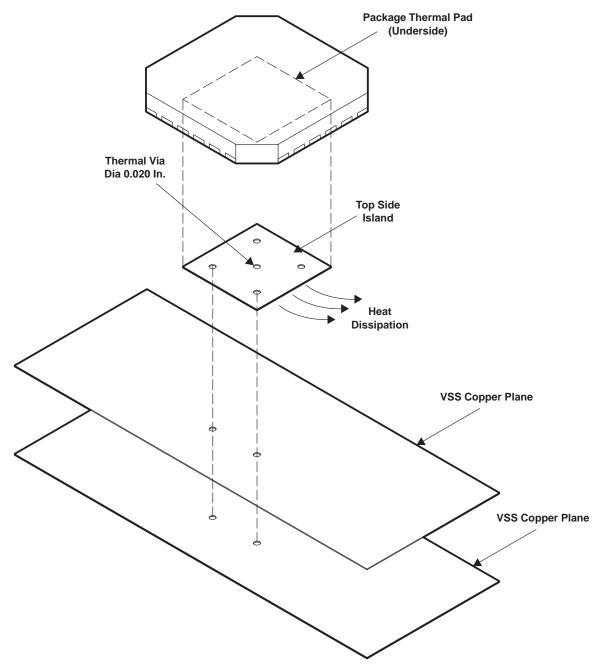


Figure 8. Recommended Thermal Via Placement

See the SCBA017 and the SLUA271 application notes for further package related information.

APPLICATION INFORMATION

LVPECL receiver input termination

The input of the CDCP1803 has a high impedance and comes with a large common-mode voltage range.

For optimized noise performance, it is recommended to properly terminate the PCB trace (transmission line). If a differential signal drives the CDCP1803, then a $100-\Omega$ termination resistor is recommended to be placed as close as possible across the input pins. An even better approach is to install $2x 50 \Omega$, with the center tap connected to a capacitor (C) to terminate odd-mode noise and make up for transmission line mismatches. The VBB output can also be connected to the center tap to bias the input signal to $(V_{DD} - 1.3 V)$ (see Figure 9).

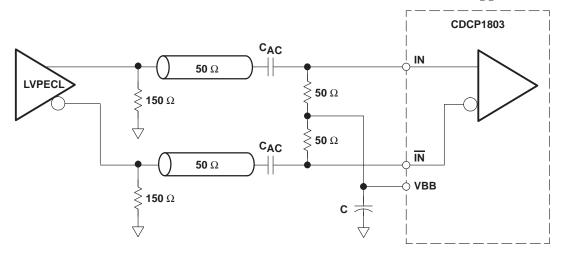


Figure 9. Recommended AC-Coupling LVPECL Receiver Input Termination

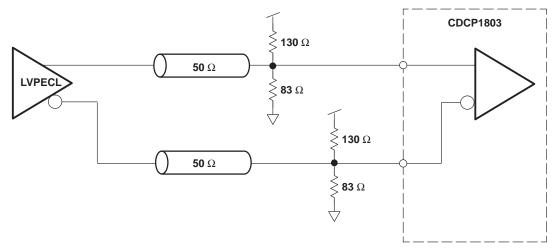
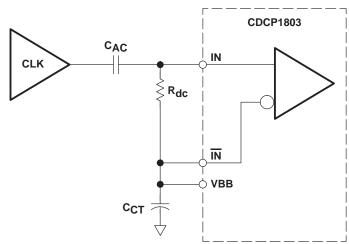



Figure 10. Recommended DC-Coupling LVPECL Receiver Input Termination

APPLICATION INFORMATION

The CDCP1803 can also be driven by single-ended signals. Typically, the input signal becomes connected to one input, while the complementary input must be properly biased to the center voltage of the incoming input signal. For LVCMOS signals, this would be $V_{CC}/2$, realized by a simple voltage divider (e.g. two 10-k Ω resistors). The best options (especially if the dc offset of the input signal might vary) are to ac-couple the input signal and then rebias the signal using the VBB reference output. See Figure 11.

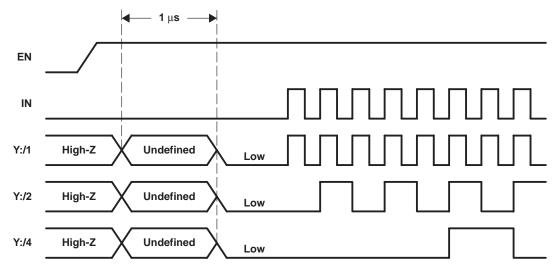
NOTE: CAC - AC-coupling capacitor (e.g., 10 nF)

CCT - Capacitor keeps voltage at IN constant (e.g., 10 nF)

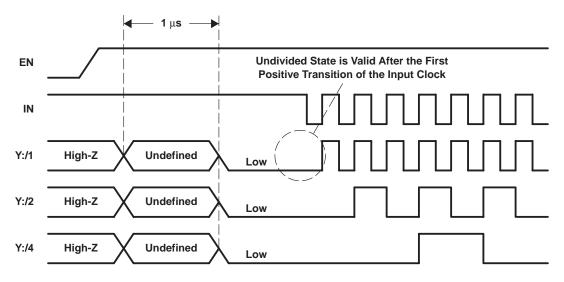
 R_{dC} – Load and correct duty cycle (e.g., 50 Ω)

V_{BB} - Bias voltage output

Figure 11. Typical Application Setting for Single-Ended Input Signals Driving the CDCP1803


APPLICATION INFORMATION

device behavior during RESET and control pin switching


output behavior from enabling the device (EN=0 \Rightarrow 1)

In disable mode (EN=0), all output drivers are switched in high-Z mode. The S[0:2] control inputs are also switched off. In the same mode, all flip-flops are reset. The typical current consumption is below $500 \, \mu A$.

When the device is enabled again, it takes typically 1 μ s for the settling of the reference voltage and currents. During this time, the outputs Y[0:2] and $\overline{Y[0:2]}$ drive a high signal. After the settle time, the outputs go into the low state. Due to the synchronization of each output driver signal with the input clock, the state of the waveforms after enabling the device looks like shown in Figure 12. The inverting input and output signal is not included. The Y:/1 waveform is the undivided output driver state.

Signal State After the Device is Enabled (IN = Low)

Signal State After the Device is Enabled (IN = High)

Figure 12. Waveforms

APPLICATION INFORMATION

enabling a single output stage

If a single output stage becomes enabled:

- Y[0:2] will either be low or high (undefined).
- Y[0:2] will be the inverted signal of Y[0:2].

With the first positive clock transition the undivided output becomes the input clock state. The divided output states are equal to the actual internal divider. The internal divider doesn't get reset while enabling single output drivers.

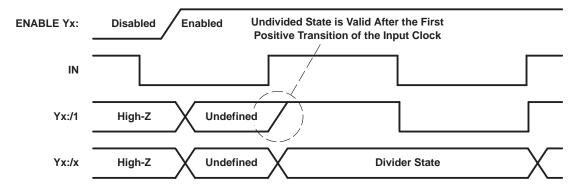


Figure 13. Signal State After an Output Driver Becomes Enabled While IN = 0

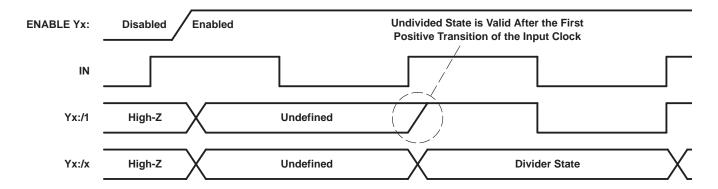
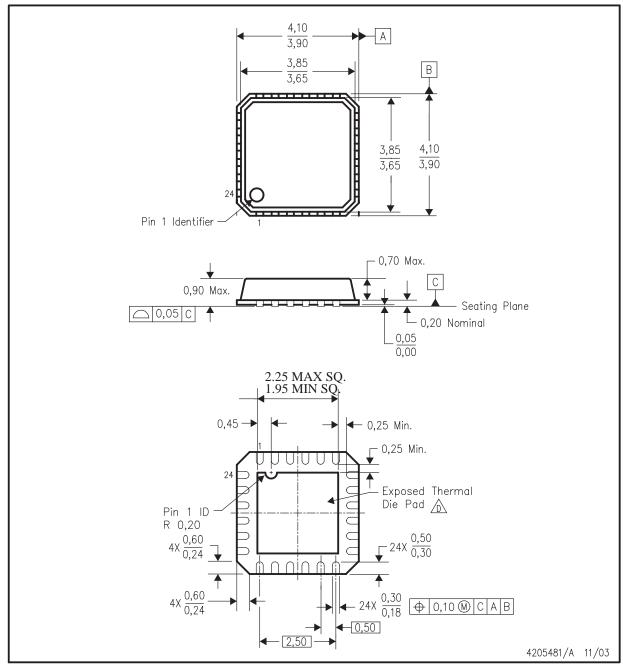



Figure 14. Signal State After an Output Driver Becomes Enabled While IN = 1

MECHANICAL DATA

RTH (S-PQFP-N24)

PLASTIC QUAD FLATPACK

NOTES:

- A. All linear dimensions are in millimeters.
- 3. This drawing is subject to change without notice.
- C. QFN (Quad Flatpack No-Lead) Package configuration.

The Package thermal performance may be enhanced by bonding the thermal die pad to an external thermal plane. This pad may be electrically connected to ground.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications		
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio	
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive	
DSP	dsp.ti.com	Broadband	www.ti.com/broadband	
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol	
Logic	logic.ti.com	Military	www.ti.com/military	
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork	
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security	
		Telephony	www.ti.com/telephony	
		Video & Imaging	www.ti.com/video	
		Wireless	www.ti.com/wireless	

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated