道 CDCFR83供应商

SCAS665A - APRIL 2001 REVISED MARCH 2002

- 533-MHz Differential Clock Source for Direct Rambus[™] Memory Systems for an 1066-MHz Data Transfer Rate
- Synchronizes the Clock Domains of the Rambus Channel With an External System or Processor Clock
- Three Power Operating Modes to Minimize Power for Mobile and Other Power-Sensitive Applications
- Operates From a Single 3.3-V Supply and 120 mW at 300 MHz (Typ)
- Packaged in a Shrink Small-Outline Package (DBQ)
- Supports Frequency Multipliers: 4, 6, 8, 16/3
- No External Components Required for PLL
- Supports Independent Channel Clocking
- Spread Spectrum Clocking Tracking Capability to Reduce EMI
- Designed for Use With TI's 133-MHz Clock Synthesizers CDC924 and CDC921

- Cycle-Cycle Jitter Is Less Than 40 ps at 533 MHz
- Certified by Gigatest Labs to Exceed the Rambus DRCG Validation Requirement
- Supports Industrial Temperature Range of -40°C to 85°C

	(TOP VIEW)	
V _{DD} IR [1 REFCLK [2 V _{DD} P [3 GNDP [4 GNDI [5 PCLKM [6 SYNCLKN [7 GNDC [9 V _{DD} IPD [11 STOPB [17 PWRDNB [12]	1 14] S0] S1] ODDO] GNDO] CLK] NC] CLKB] GNDO] VDDO] MULT0] MULT1] S2

NC - No internal connection

description

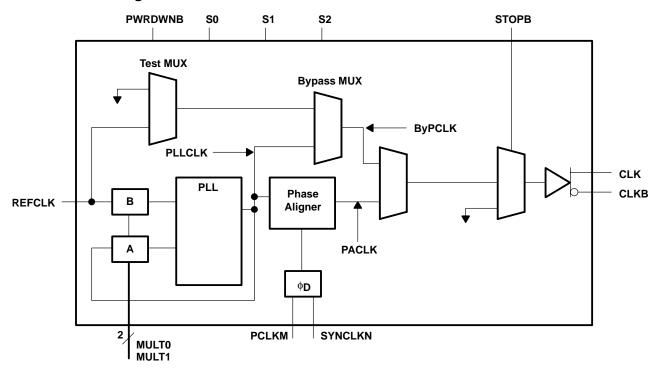
The Direct Rambus clock generator (DRCG) provides the necessary clock signals to support a Direct Rambus memory subsystem. It includes signals to synchronize the Direct Rambus channel clock to an external system or processor clock. It is designed to support Direct Rambus memory on a desktop, workstation, server, and mobile PC motherboards. DRCG also provides an off-the-shelf solution for a broad range of Direct Rambus memory applications.

The DRCG provides clock multiplication and phase alignment for a Direct Rambus memory subsystem to enable synchronous communication between the Rambus channel and ASIC clock domains. In a Direct Rambus memory subsystem, a system clock source provides the REFCLK and PCLK clock references to the DRCG and memory controller, respectively. The DRCG multiplies REFCLK and drives a high-speed BUSCLK to RDRAMs and the memory controller. Gear ratio logic in the memory controller divides the PCLK and BUSCLK frequencies by ratios M and N such that PCLKM = SYNCLKN, where SYNCLK = BUSCLK/4. The DRCG detects the phase difference between PCLKM and SYNCLKN and adjusts the phase of BUSCLK such that the skew between PCLKM and SYNCLKN is minimized. This allows data to be transferred across the SYNCLK/PCLK boundary without incurring additional latency.

User control is provided by multiply and mode selection terminals. The multiply terminals provide selection of one of four clock frequency multiply ratios, generating BUSCLK frequencies ranging from 267 MHz to 533 MHz with clock references ranging from 33 MHz to 100 MHz. The mode select terminals can be used to select a bypass mode where the frequency multiplied reference clock is directly output to the Rambus channel for systems where synchronization between the Rambus clock and a system clock is not required. Test modes are provided to bypass the PLL and output REFCLK on the Rambus channel and to place the outputs in a high-impedance state for board testing.

The CDCFR83 is characterized for operation over free-air temperatures of -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


Direct Rambus and Rambus are trademarks of Rambus Inc.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SCAS665A - APRIL 2001 REVISED MARCH 2002

functional block diagram

MODE	S0	S1 S2		CLK	CLKB				
Normal	0	0	0	Phase aligned clock	Phase aligned clock B				
Bypass	1	0	0	PLLCLK	PLLCLKB				
Test	1	1	0	REFCLK	REFCLKB				
Output test (OE)	0	1	Х	Hi-Z	Hi-Z				
Reserved	0	0	1	—	—				
Reserved	1	0	1	_					
Reserved	1	1	1	Hi-Z	Hi-Z				

 $\frac{1}{X}$ = don't care, Hi-Z = high impedance

SCAS665A - APRIL 2001 REVISED MARCH 2002

TERMI	NAL		
NAME	NO.	I/O	DESCRIPTION
CLK	20	0	Output clock
CLKB	18	0	Output clock (complement)
GNDC	8		GND for phase aligner
GNDI	5		GND for control inputs
GNDO	17, 21		GND for clock outputs
GNDP	4		GND for PLL
MULT0	15	I	PLL multiplier select
MULT1	14	I	PLL multiplier select
NC	19		Not used
PCLKM	6	Ι	Phase detector input
PWRDNB	12	Ι	Active low power down
REFCLK	2	I	Reference clock
S0	24	I	Mode control
S1	23	I	Mode control
S2	13	I	Mode control
STOPB	11	Ι	Active low output disable
SYNCLKN	7	Ι	Phase detector input
V _{DD} C	9		V _{DD} for phase aligner
V _{DD} IPD	10		Reference voltage for phase detector inputs and STOPB
V _{DD} IR	1		Reference voltage for REFCLK
V _{DD} O	16, 22		V _{DD} for clock outputs
VDDP	3		V _{DD} for PLL

Terminal Functions

SCAS665A - APRIL 2001 REVISED MARCH 2002

PLL divider selection

Table 1 lists the supported REFCLK and BUSCLK frequencies. Other REFCLK frequencies are permitted, provided that (267 MHz < BUSCLK < 533 MHz) and (33 MHz < REFCLK < 100 MHz).

MULTO	MULT1	REFCLK (MHz)	MULTIPLY RATIO	BUSCLK (MHz)
0	0	67	4	267
0	1	50	6	300
0	1	67	6	400
1	1	33	8	267
1	1	50	8	400
1	1	67	8	533
1	0	67	16/3	356

Table 1. REFCLK and BUSCLK Frequencies

Table 2. Clock Output Driver States

STATE	PWRDNB	STOPB	CLK	CLKB
Powerdown	0	Х	GND	GND
CLK stop	1	0	VX, STOP	VX, STOP
Normal	1	1	PACLK/PLLCLK/ REFCLK [†]	PACLKB/PLLCLKB/ REFCLKB

[†] Depending on the state of S0, S1, and S2

absolute maximum ratings over operating free-air temperature (unless otherwise noted)[†]

Supply voltage range, V _{DD} (see Note 1)	–0.5 V to 4 V
Output voltage range, V _O , at any output terminal	–0.5 V to V _{DD} + 0.5 V
Input voltage range, V _I , at any input terminal	
Continuous total power dissipation	see Dissipation Rating Table
Operating free-air temperature range, TA	–40°C to 85°C
Storage temperature range, T _{stg}	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to the GND terminals.

DISSIPATION RATING TABLE

PACKAGE I	POWER RATING	ABOVE T _A = 25°C‡	POWER RATING	POWER RATING
DBQ	1400 mW	11 mW/°C	905 mW	740 mW

[‡] This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

SCAS665A - APRIL 2001 REVISED MARCH 2002

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{DD}	3.135	3.3	3.465	V
High-level input voltage, VIH (CMOS)	$0.7 \times V_{DD}$			V
Low-level input voltage, VIL (CMOS)			$0.3 \times V_{DD}$	V
Initial phase error at phase detector inputs (required range for phase aligner)	$-0.5 \times t_{C(PD)}$		0.5×t _{c(PD)}	
REFCLK low-level input voltage, VIL			$0.3 \times V_{DD}IR$	V
REFCLK high-level input voltage, VIH	$0.7 \times V_{DD}IR$			V
Input signal low voltage, VIL (STOPB)			$0.3 \times V_{DD}IPD$	V
Input signal high voltage, VIH (STOPB)	$0.7 \times V_{DD}IPD$			V
Input reference voltage for (REFCLK) (VDDIR)	1.235		3.465	V
Input reference voltage for (PCLKM and SYSCLKN) (VDDIPD)	1.235		3.465	V
High-level output current, I _{OH}			–16	mA
Low-level output current, IOL			16	mA
Operating free-air temperature, TA	-40		85	°C

timing requirements

	MIN	MAX	UNIT
Input cycle time, t _{C(in)}	10	40	ns
Input cycle-to-cycle jitter		250	ps
Input duty cycle over 10,000 cycles	40%	60%	
Input frequency modulation, fmod	30	33	kHz
Modulation index, nonlinear maximum 0.5%		0.6%	
Phase detector input cycle time (PCLKM and SYNCLKN)	30	100	ns
Input slew rate, SR	1	4	V/ns
Input duty cycle (PCLKM and SYNCLKN)	25%	75%	

SCAS665A – APRIL 2001 REVISED MARCH 2002

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETE	R	TEST CO	NDITIONS	MIN	TYP‡	MAX	UNIT	
V _{O(STOP)}	Output voltage (STOPB = 0)	e during CLK Stop	See Figure 1		1.1		2		
V _{O(X)}	Output crossin	ng-point voltage	See Figure 1 and F	1.3		1.8	V		
Vo	Output voltage	e swing	See Figure 1		0.4		0.6	V	
V _{IK}	Input clamp ve	oltage	$V_{DD} = 3.135 \text{ V}, \qquad I_{I} = -18 \text{ mA}$				-1.2	V	
			See Figure 1				2		
Vон	High-level out	put voltage	V _{DD} = min to max,	I _{OH} = –1 mA	V _{DD} – 0.1 V			V	
			V _{DD} = 3.135 V,	I _{OH} = -16 mA	2.4				
			See Figure 1		1				
Vol	Low-level out	out voltage	V_{DD} = min to max,	I _{OL} = 1 mA			0.1	V	
			V _{DD} = 3.135 V,	I _{OL} = 16 mA			0.5		
			V _{DD} = 3.135 V,	V _O = 1 V	-32	-52			
ЮН	High-level out	put current	V _{DD} = 3.3 V,	V _O = 1.65 V		-51		mA	
			V _{DD} = 3.465 V,	V _O = 3.135 V		-14.5	-21		
			V _{DD} = 3.135 V,	V _O = 1.95 V	43	61.5			
IOL	Low-level out	out current	V _{DD} = 3.3 V,	V _O = 1.65 V		65		mA	
			V _{DD} = 3.465 V,	V _O = 0.4 V		25.5	36	36	
loz	High-impedance-state output current		S0 = 0, S1 = 1				±10	μΑ	
IOZ(STOP)	High-impedance-state output current during CLK stop		Stop = 0, $V_0 = GN$	D or V _{DD}			±100	μA	
IOZ(PD)	High-impedance-state output current in power-down state		$\begin{array}{l} PWRDNB = \ 0, \\ V_O = GND \ or \ V_DD \end{array}$		-10		100	μΑ	
I	High-level	REFCLK, PCLKM, SYNCLKN, STOPB	V _{DD} = 3.465 V,	$V_I = V_{DD}$			10		
lΉ	input current	PWRDNB, S0, S1, S2, MULT0, MULT1	V _{DD} = 3.465 V,	$V_I = V_{DD}$			10	μA	
	Low-level	REFCLK, PCLKM, SYNCLKN, STOPB	V _{DD} = 3.465 V,	V _I = 0			-10	۵	
liL	input current	PWRDNB, S0, S1, S2, MULT0, MULT1	V _{DD} = 3.465 V,	V _I = 0			-10	μA	
7-	Output	High state	R _I at IO –14.5 mA t	o –16.5 mA	15	35	50	0	
ZO	impedance	Low state	R _I at IO 14.5 mA to	16.5 mA	11	17	35	Ω	
	Reference			PWRDNB = 0			50	μA	
	current	V _{DD} IR, V _{DD} IPD	V _{DD} = 3.465 V	PWRDNB = 1			0.5	mA	
Cl	Input capacita	ince	$V_{I} = V_{DD}$ or GND			2		pF	
с _о	Output capaci	tance	$V_{O} = V_{DD}$ or GND			3		pF	
IDD(PD)	Supply curren	t in power-down state	REFCLK = 0 MHz t PWDNB = 0,	o 100 MHz, STOPB = 1			100	μA	
DD(CLKSTOP)	Supply curren	t in CLK stop state	BUSCLK configured	d for 533 MHz			45	mA	
DD(NORMAL)		t in normal state	BUSCLK = 533 MH	Z			100	mA	

[†] V_{DD} refers to any of the following; V_{DD}, V_{DD}IPD, V_{DD}IR, V_{DD}O, V_{DD}C, and V_{DD}P [‡] All typical values are at V_{DD} = 3.3 V, T_A = 25° C.

CDCFR83 DIRECT RAMBUSTM CLOCK GENERATOR

SCAS665A - APRIL 2001 REVISED MARCH 2002

switching characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	l		TEST CONDITIONS	MIN	ΤΥΡ [†] ΜΑΧ	UNIT	
^t c(out)	Clock output cycle time				1.87	3.75	ns	
	Total cycle jitter over 1, 2, 3, 4, 5, or 6 clock cycles		267 MHz			80		
		Infinite and	300 MHz			70		
^t (jitter)		stopped phase	356 MHz	See Figure 3		60	ps	
-		alignment	400 MHz			50		
			533 MHz§			40		
^t (phase)	Phase detector phase error for distributed loop			Static phase error [‡]	-100	100	ps	
^t (phase, SSC)	PLL output phase error when tracking SSC			Dynamic phase error [‡]	-100	100	ps	
^t (DC)	Output duty cycle over 10,000 cycles			See Figure 4	45%	55%		
	Output cycle-to-cycle duty cycle error	Infinite and stopped phase alignment	267 MHz	See Figure 5		80		
			300 MHz			70		
^t (DC, err)			356 MHz			60	ps	
			400 MHz			50	1	
			533 MHz			50		
t _r , t _f	Output rise and fall times (measured at 20%–80% of output voltage)			See Figure 7	160	400	ps	
Δt	Difference between rise an (20%–80%) t _f – t _r	d fall times on a s	ingle device	See Figure 7		100	ps	

[†] All typical values are at $V_{DD} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. [‡] Assured by design

§ Jitter measurement according to Rambus validation specification

state transition latency specifications

PARAMETER		FROM	то	TEST CONDITIONS	MIN	түр†	МАХ	UNIT
^t (powerup)	Delay time, PWRDNB [↑] to CLK/CLKB output settled (excluding t _(DISTLOCK))	Powerdown	Normal	See Figure 8			3	
	Delay time, PWRDNB↑ to internal PLL and clock are on and settled						3	ms
^t (VDDpowerup)	Delay time, power up to CLK/CLKB output settled	- V _{DD}	Normal	See Figure 8			3	
	Delay time, power up to internal PLL and clock are on and settled						3	ms
^t (MULT)	MULT0 and MULT1 change to CLK/CLKB output resettled (excluding t(DISTLOCK))	Normal	Normal	See Figure 9			1	ms
^t (CLKON)	STOPB [↑] to CLK/CLKB glitch-free clock edges	CLK Stop	Normal	See Figure 10			10	ns
^t (CLKSETL)	STOPB [↑] to CLK/CLKB output settled to within 50 ps of the phase before STOPB was disabled	CLK Stop	Normal	See Figure 10			20	cycles
^t (CLKOFF)	STOPB \downarrow to CLK/CLKB output disabled	Normal	CLK Stop	See Figure 10			5	ns

[†] All typical values are at V_{DD} = 3.3 V, T_A = 25°C.

SCAS665A - APRIL 2001 REVISED MARCH 2002

state transition latency specifications (continued)

	PARAMETER	FROM	то	TEST CONDITIONS	MIN	түр†	МАХ	UNIT
^t (powerdown)	Delay time, PWRDNB↓ to the device in the power-down mode	Normal	Powerdown	See Figure 8			1	ms
^t (STOP)	Maximum time in CLKSTOP (STOPB = 0) before reentering normal mode (STOPB = 1)	STOPB	Normal	See Figure 10			100	μs
^t (ON)	Minimum time in normal mode (STOPB = 1) before reentering CLKSTOP (STOPB = 0)	Normal	CLK stop	See Figure 10	100			ms
^t (DISTLOCK)	Time from when CLK/CLKB output is settled to when the phase error between SYNCLKN and PCLKM falls within t _(phase)	Unlocked	Locked				5	ms

[†] All typical values are at V_{DD} = 3.3 V, T_A = 25°C.

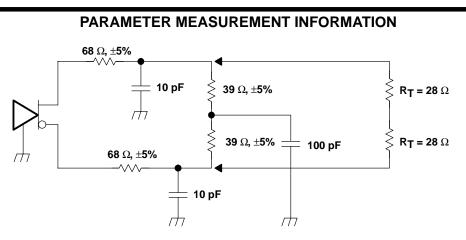
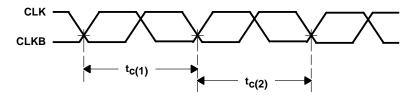



Figure 1. Test Load and Voltage Definitions (V_{O(STOP)}, V_{O(X)}, V_O, V_{OH}, V_{OL})

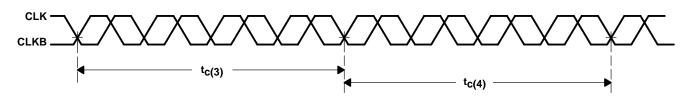
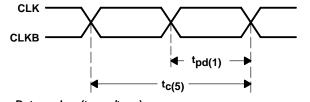

Cycle-to-cycle jitter = $|t_{C(1)} - t_{C(2)}|$ over 10000 consecutive cycles

Figure 2. Cycle-to-Cycle Jitter


SCAS665A - APRIL 2001 REVISED MARCH 2002

PARAMETER MEASUREMENT INFORMATION

Cycle-to-cycle jitter = $|t_{C(3)} - t_{C(4)}|$ over 10000 consecutive cycles

Figure 3. Short Term Cycle-to-Cycle Jitter Over Four Cycles

Duty cycle = $(t_{pd(1)}/t_{c(5)})$

Figure 4. Output Duty Cycle

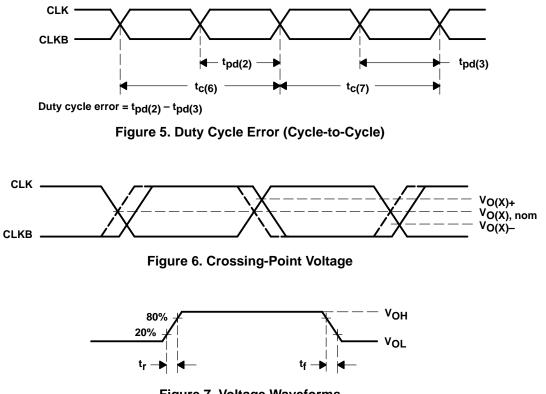


Figure 7. Voltage Waveforms

SCAS665A - APRIL 2001 REVISED MARCH 2002

PARAMETER MEASUREMENT INFORMATION

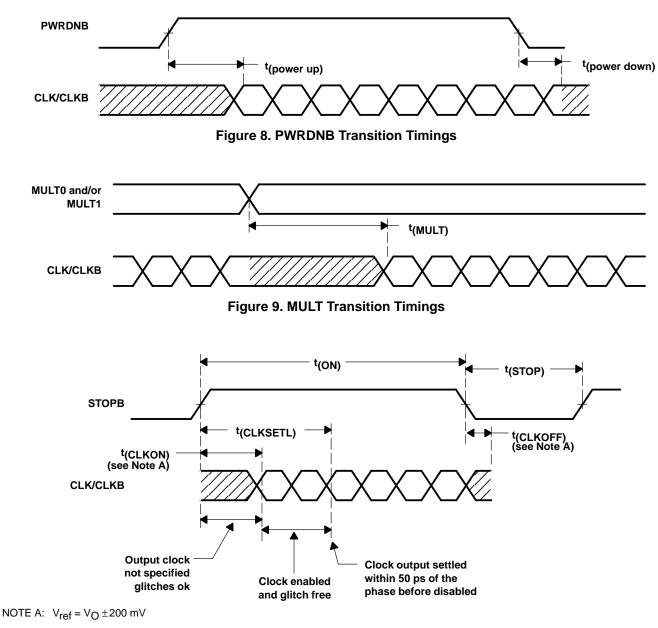
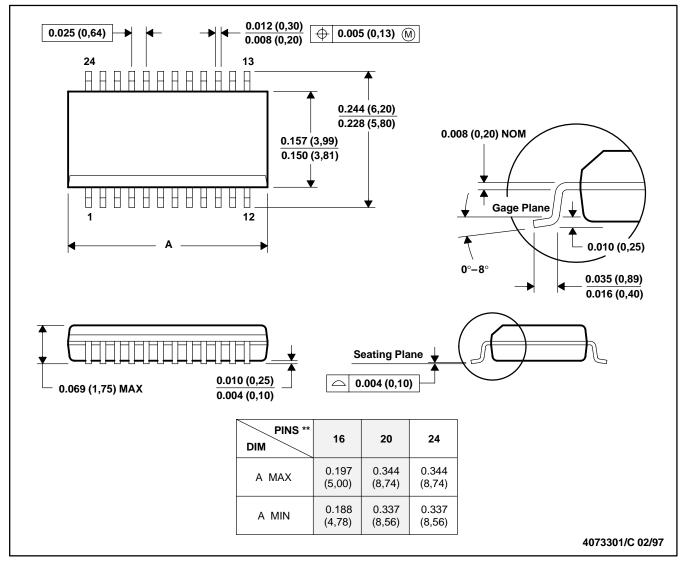


Figure 10. STOPB Transition Timings



SCAS665A - APRIL 2001 REVISED MARCH 2002

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

DBQ (R-PDSO-G**) 24-PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-137

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated