

SLD1231VL

High Power Red Laser Diode

Preliminary

Unit: mm

Description

The SLD1231VL is a short wavelength high power laser diode, created as a light source for the next-generation high density magneto-optical discs.

Features

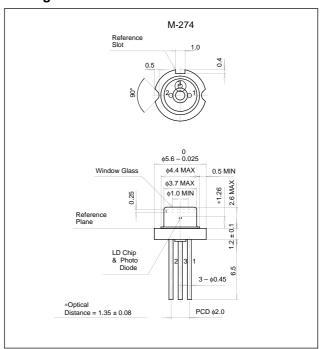
- Red visible light (685nm)
- · Longitudinal single mode
- High power (Recommended optical power output: 30mW)

Applications

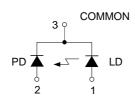
Magneto-optical discs

Structure

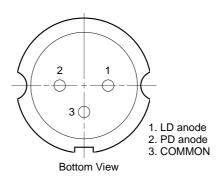
• AlGaInP quantum well structure laser diode


Recommended Optical Power Output

30mW


Absolute Maximum Ratings

 Optical power output 	Po		35	mW
 Reverse voltage 	V_{R}	LD	2	V
		PD	15	V
Operating temperature	Topr		-10 to +50	°C
Storage temperature	Tstg		-40 to +85	°C


Package Outline

Connection Diagram

Pin Configuration

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Electrical and Optical Characteristics (Tc = 25°C)

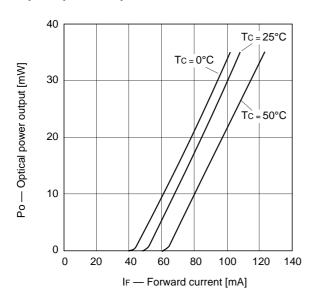

Tc: Case temperature

Į:	tem	Symbol	Conditions	Min.	Тур.	Max.	Unit
Threshold cui	rrent	Ith			55	70	mA
Operating cur	rrent	lop	Po = 30mW		95	120	mA
Operating vol	tage	Vop	Po = 30mW		2.4	3.0	V
Wavelength		λρ	Po = 30mW	670	685	699	nm
Radiation angle	Perpendicular	θΤ	Po = 30mW	19	23	27	degree
	Parallel	θ//	Po = 30mW	6	9	12	degree
Positional accuracy	Position	ΔΧ, ΔΥ, ΔΖ				±80	μm
	Angle	Δφ⊥	Po = 30mW			±3	degree
		Δφ//	Po = 30mW			±3	degree
Differential ef	ficiency	SE	Po = 30mW	0.15	0.60	1.0	mW/mA
Astigmatism		As	Po = 30mW		5	10	μm

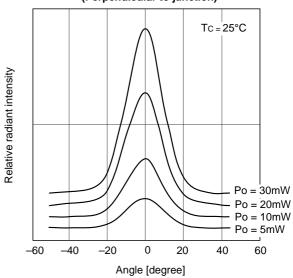
Handling Precautions

(1) Eye protection against laser beams

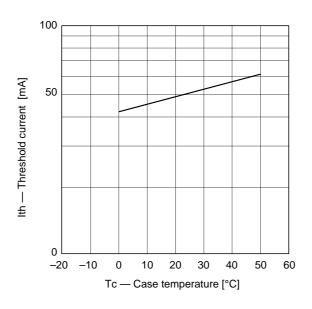
The optical output of laser diodes ranges from several mW to 3W. However the optical power density of the laser beam at the diode chip reaches 1MW/cm². Unlike gas lasers, since laser diode beams are divergent, uncollimated laser diode beams are fairly safe at a laser diode. For observing laser beams, ALWAYS use safety goggles that block infrared rays. Usage of IR scopes, IR cameras and fluorescent plates is also recommended for monitoring laser beams safely.

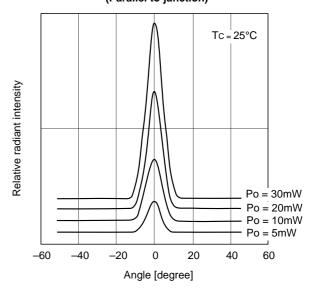


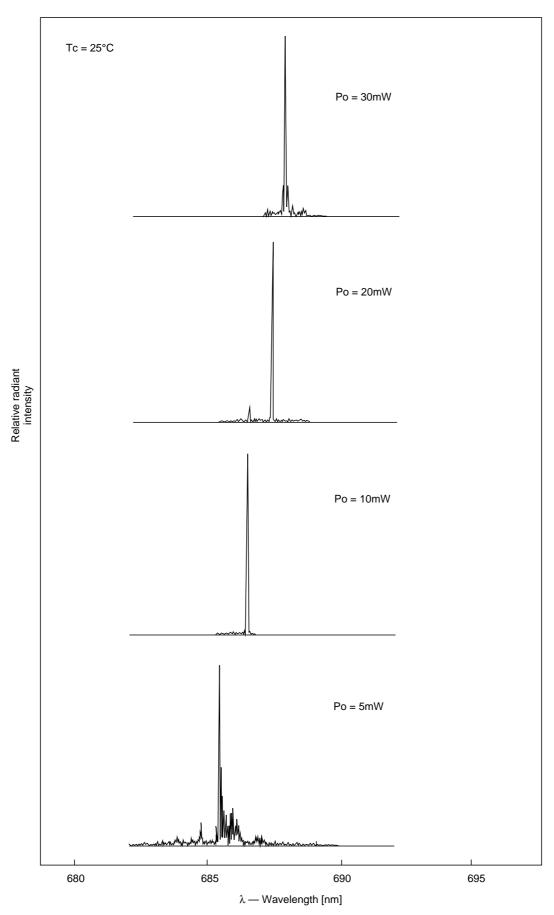
(2) Prevention of surge current and electrostatic discharge

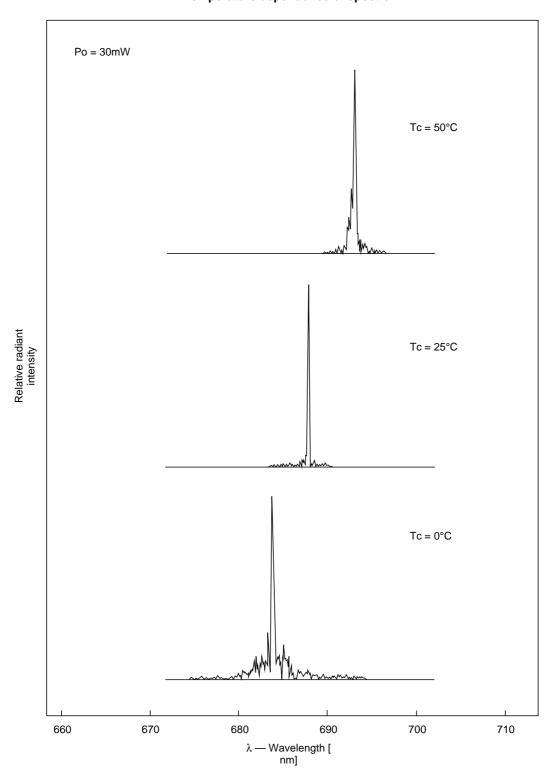

Laser diode is most sensitive to electrostatic discharge among semiconductors. When a large current is passed through the laser diode even for an extremely short time (in the order of nanosecond), the strong light emitted from the laser diode promotes deterioration and then laser diodes are destroyed. Therefore, note that the surge current should not flow the laser diode driving circuit from switches and others. Also, if the laser diode is handled carelessly, it may be destructed instantly because electrostatic discharge is easily applied by a human body. Be great careful about excess current and electrostatic discharge.

Example of Representative Characteristics


Optical power output vs. Forward current characteristics


Power dependence of far field pattern (Perpendicular to junction)


Threshold current vs. Temperature characteristics


Power dependence of far field pattern (Parallel to junction)

Power dependence of spectrum

Temperature dependence of spectrum

