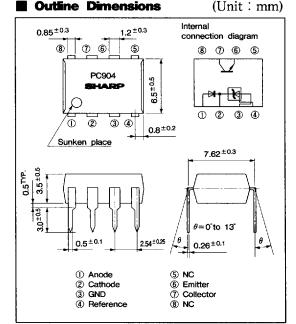
PC904

Built-in Voltage Detection Circuit Type Photocoupler


*Lead forming type (I type) and taping reel type (P type) are also available. (PC904I/PC904P) (Page 656)

■ Features

- 1. Built-in voltage detection circuit
- 2. High isolation voltage between input and output ($V_{\rm iso}$: 5 000 $V_{\rm rms}$)
- 3. Standard 8-pin dual-in-line package
- 4. Recognizerd by UL, file No. E64380

Applications

1. Switching power supplies

Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

	Parameter	Symbol	Rating	Unit
Input	Anode current	IA	50	mA
	Anode voltage	VA	30	V
	Reference input current	I _{REF}	10	mA
	Power dissipation	P	250	mW
	Collector-emitter voltage	VCEO	35	V
0.4.4	Emitter-collector voltage	VECO	6	V
Output	Collector current	Ic	50	mA
	Collector power dissipation	Pc	150	mW
,	Total power dissipation	P _{tot}	350	mW
	*1Isolation voltage	Viso	5 000	V _{rms}
	Operating temperature	T_{opr}	-25 to +85	°C
	Storage temperature	T_{stg}	-40 to $+125$	°C
	*2Soldering temperature	$T_{ m sol}$	260	°C

^{*1 40} to 60%RH AC for 1 minute

■ 8180798 DO11787 1TT ■

"In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device."

483

^{*2} For 10 seconds

Electro-optical Characteristics

 $(Ta=25^{\circ}C)$

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Fig.
Input	Reference voltage	Vref	$V_K = V_{REF}$, $I_A = 10 \text{mA}$	2.40	2.495	2.60	V	1
	*3Temperature change in reference voltage	V _{REF(dev)}	$V_{K}=V_{REF}$, $I_{A}=10$ mA, $T_{A}=-25$ to $+85$ °C	_	8	40	mV	1
	Voltage variation ratio in reference voltage	$\Delta V_{REF}/\Delta V_A$	$I_A\!=\!10mA,~\Delta V_A\!=\!30V\!-\!V_{REF}$	_	-1.4	-5	mV/V	2
	Reference input current	IREF	$I_A=10\text{mA}, R_3=10\text{k}\Omega$	***	2	10	μА	3
	*4Temperature change in reference input current	I _{REF(dev)}	$I_A=10mA$, $R_3=10k\Omega$, $T_a=-25$ to $+85$ °C	_	0.4	3	μA	3
	Minimum drive current	I _{MIN}	$V_{K} = V_{REF}$	_	1	2	mA	1
	OFF-state anode current	Ioff	$V_A=30V$, $V_{REF}=GND$	_	0.1	2	μΑ	4
	Anode-cathode forward voltage	V_{F}	$V_K = V_{REF}$, $I_A = 10mA$	_	1.2	1.4	V	1
Output	Collector dark current	ICEO	$V_{CE} = 35V$	_	1×10 ⁻⁹	1×10^{-7}	Α	5
Transfer charac- teristics	*5Current transfer ratio	CTR	$V_K = V_{REF}$, $I_A = 5mA$, $V_{CE} = 5V$	50	_	600	%	6
	Collector-emitter saturation voltage	V _{CE(sat)}	$V_{K}\!=\!V_{REF},\;I_{A}\!=\!10mA,\;I_{C}\!=\!1mA$	_	0.1	0.2	v	6
	Isolation resistance	Riso	40 to 60%RH, DC500V	5×10^{10}	1×10^{11}	_	Ω	_
	Floating capacitance	Cf	V=0, $f=1kHz$	_	0.6	1.0	pF	_

^{*3} $V_{REF(dev)} = V_{REF(MAX.)} - V_{REF(MIN.)}$ *4 $I_{REF(dev)} = I_{REF(MAX.)} - I_{REF(MIN.)}$ *5 $CTR = I_C/I_A \times 100$ (%)

Classification table of current transfer ratio is shown below. (4 models)

Model No.	Rank mark	CTR (%)		
PC904A	A	50 to 150		
PC904B	В	100 to 300		
PC904C	С	250 to 600		
PC904	A, B or C	50 to 600		

Test Circuit

Fig. 1

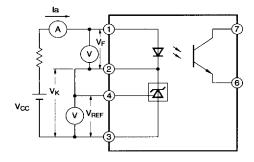


Fig. 2

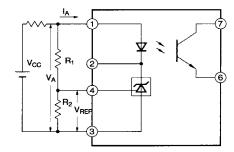


Fig. 3

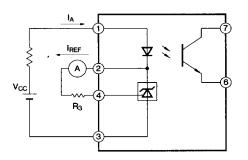


Fig. 4

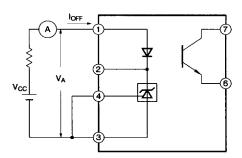


Fig. 5

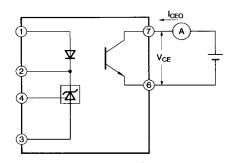


Fig. 6

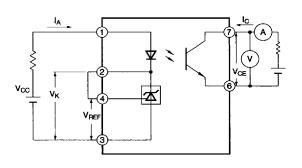


Fig. 7 Anode Current vs. Ambient

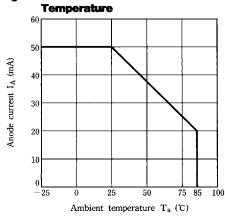
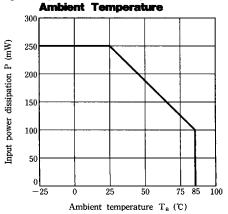



Fig. 8 Input Power Dissipation vs.
Ambient Temperature

8180798 0011789 T72 **=**

485

Fig. 9 Collector Power Dissipation vs.
Ambient Temperature

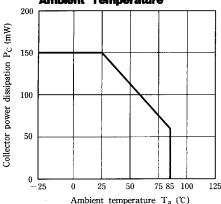


Fig.11 Relative Current Transfer Ratio vs. Ambient Temperature

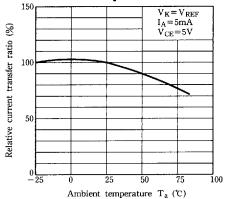


Fig.13-a Anode Current vs. Reference Voltage

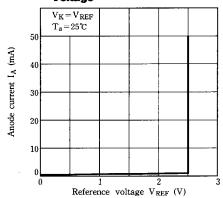


Fig.10 Power Dissipation vs. Ambient Temperature

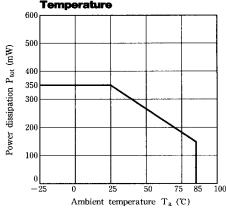


Fig.12 Collector Dark Current vs.

Ambient Temperature

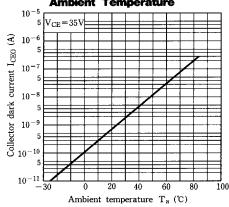
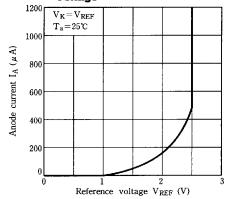



Fig.13-b Anode Current vs. Reference Voltage

486

= 8180798 0011790 794 **=**

Fig.14 OFF-state Anode Current vs.
Ambient Temperature

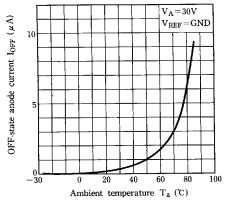


Fig.16 Reference Input Current vs.
Ambient Temperature

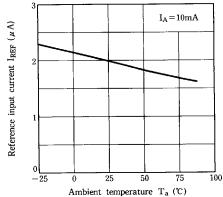


Fig.18-a Voltage Gain (1) vs. Frequency

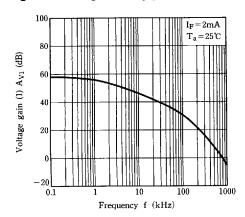


Fig.15 Reference Voltage Change vs. Ambient Temperature

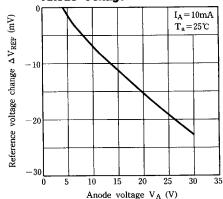
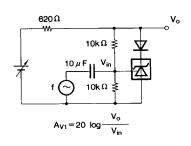




Fig.17 Reference Voltage Change vs. Anode Voltage

Test Circuit for Voltage Gain (1) vs. Frequency

487

Fig.18-b Voltage Gain (2) vs. Frequency

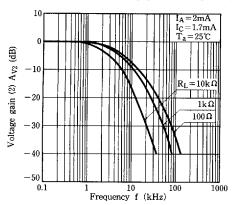


Fig.19 Anode Current vs. Load Capacitance

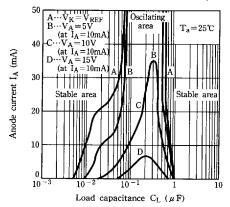
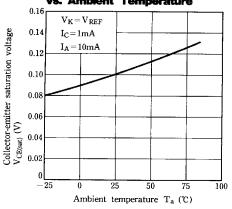
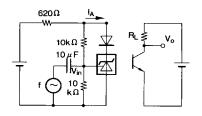




Fig.20 Collector-emitter Saturation Voltage vs. Ambient Temperature

Test Circuit for Voltage Gain (2) vs. Frequency

Test Circuit for Anode Current vs. Load Capacitance

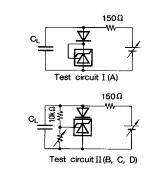
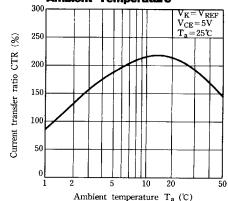



Fig.21 Current Transfer Ratio vs.
Ambient Temperature

Precautions for Use

Handle this product the same as with other integrated circuits against static electricity.

• As for other general cautions, refer to the chapter "Precautions for Use" (Page 78 to 93).

488

■ 8180798 0011792 567 **■**