PRELIMINARY - July 25, 2000

TEL:805-498-2111 FAX:805-498-3804 WEB:http://www.semtech.com

DESCRIPTION

The SC112 is a 150mA ultra low dropout linear regulator with a built in CMOS/TTL logic level enable, designed specifically for battery powered applications where low quiescent current and low dropout are critical for battery longevity.

The SC112 uses a Semtech proprietary internal PNP device for the pass element, providing a low dropout voltage of 130mV at a load of 60mA.

The output noise is reduced to $30\mu V$ (typical) by placing a very low leakage 10nF capacitor on pin 3 (noise bypass).

Each device contains a bandgap reference, error amplifier, PNP pass element, thermal and current limiting circuitry and resistor divider network for setting output voltage.

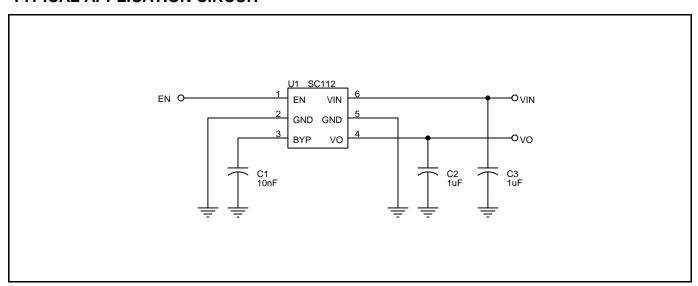
The SC112 is packaged in a six lead SOT-23 surface mount package for a very small footprint and it requires only a $1\mu F$ capacitor on the output and a $0.01\mu F$ on the bypass pin for a minimum number of external components.

FEATURES

- Low dropout voltage
- CMOS/TTL compatible control switch
- Very low quiescent current 60μA (ON, no load)
- Internal thermal shutdown
- Short circuit protection
- Very low standby current 0.1µA maximum (OFF)
- Low noise with external bypass capacitor
- Industrial temperature range

APPLICATIONS

- Battery powered systems
- Cellular telephones
- Cordless telephones
- Pagers, personal digital assistants
- Portable instrumentation
- Low voltage systems


ORDERING INFORMATION

DEVICE ⁽¹⁾⁽²⁾	PACKAGE		
SC112XXCSK.TR	6 pin SOT-23		

Notes:

- (1) Where XX denotes voltage options. Available voltages are: 2.2V, 2.5V, 2.8V, 3.0V, 3.3V, 3.6V, 3.8V, 4.0V and 5.0V. Contact factory for additional voltage options.
- (2) Only available in tape and reel packaging. A reel contains 3000 devices

TYPICAL APPLICATION CIRCUIT

PRELIMINARY - July 25, 2000

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Maximum	Units	
Input Supply Voltage	VIN	-0.3 to +16	V	
Enable Input Voltage	V _{EN}	-0.3 to VIN	V	
Power Dissipation	P _D	Internally Limited	W	
Thermal Resistance Junction to Ambient	$\theta_{\sf JA}$	230	°C/W	
Operating Ambient Temperature Range	T _A	-40 to +85	°C	
Operating Junction Temperature Range	T _A	-40 to +125	°C	
Storage Temperature Range	T _{STG}	-55 to +150	°C	
Lead Temperature (Soldering) 10 sec.	T _{LEAD}	300	°C	
ESD Rating	ESD	2	kV	

ELECTRICAL CHARACTERISTICS

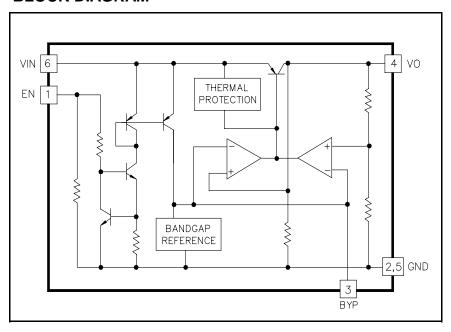
Unless specified, T_A = 25°C, VIN = VO $_{(NOM)}$ + 1V, C_{IN} = 1 $\mu F,\,C_{BYP}$ = 10nF, C_O = 1 $\mu F.$ Values in **bold** apply over full operating temperature range.

Parameter	Symbol	Test Conditions	MIN	TYP	MAX	Units
VIN	,					1
Supply Voltage Range	VIN		2.5		14.5	V
Ground Pin Current	I _{GND}	I _O = 0mA		60	75	μΑ
					90	
		I _o = 60mA		1.0	1.25	mA
					1.5	
		I _O = 100mA		2.1	2.5	
					3.0	
		I _O = 150mA		4.2	4.75	
					5.25	
		V _{IN} = 8V, Output OFF			0.1	μA
vo	,		1	1		1
Output Voltage	VO	I _O = 30 mA	-2.5	VO	+2.5	%
			-3.0		+3.0	
Line Regulation	REG _(LINE)	$VIN = (VO_{(NOM)} + 1V)$ to $(VO_{(NOM)} + 6V)$,		5	10	mV
		I _O = 1mA			20	
Load Regulation	REG _(LOAD)	$I_{O} = 1$ mA to 60mA		7.5	35	mV
		I _o = 1mA to 100mA		20	65	
		I _O = 1mA to 150mA		35	110	
Temperature Coefficient	ΔVΟ/ΔΤ	I _O = 10mA		40		ppm/°C

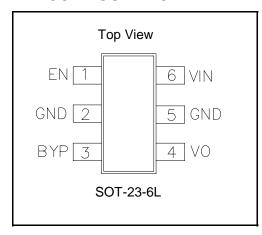
PRELIMINARY - July 25, 2000

ELECTRICAL CHARACTERISTICS

Unless specified, T_A = 25°C, VIN = VO $_{(NOM)}$ + 1V, C_{IN} = 1µF, C_{BYP} = 10nF, C_O = 1µF. Values in **bold** apply over full operating temperature range.


Parameter	Symbol	Test Conditions	MIN	TYP	MAX	Units
VO (Cont.)	1			1		1
Current Limit ⁽¹⁾	I _{LIM}		180	200		mA
Dropout Voltage	V _D	I _o = 60mA		130	150	mV
					180	
		I _O = 100mA		165	195	
					225	
		I _O = 150mA		200	245	
					275	
Power Supply Rejection Ratio	RR	$V_{RIPPLE} = 100 \text{mV(rms)}, f = 400 \text{Hz},$		60		dB
		$I_{O} = 30 \text{mA}$				
Output Noise Voltage	e _n	10 Hz ≤ f ≤ 80 kHz,		30		μV(rms)
		$I_{O} = 60 \text{mA}$				
ВҮР				Ш	I	1
Noise Bypass Terminal Voltage	V_{BYP}			1.250		V
EN	1		1	1	ı	1
Enable Input Threshold Voltage	V _{IH}	Output ON	1.8			V
	V _{IL}	Output OFF			0.5	
Enable Input Bias Current	I _{EN}	V _{EN} = 1.8V, Output ON		6	10	μΑ

NOTE:


(1) As the load resistance further decreases, the SC112 folds back the output current to approximately 100mA at VO = 0V.

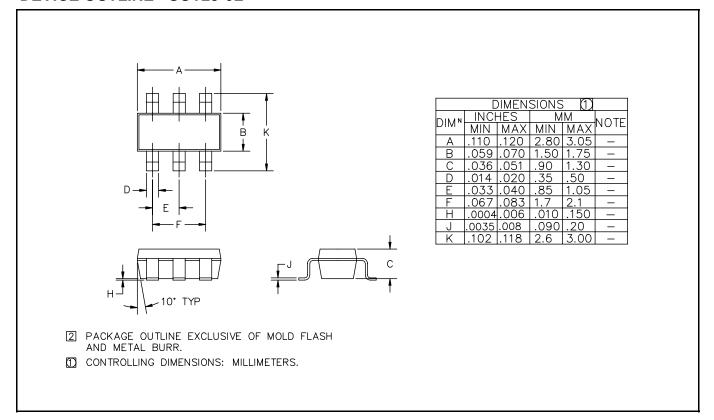
PRELIMINARY - July 25, 2000

BLOCK DIAGRAM

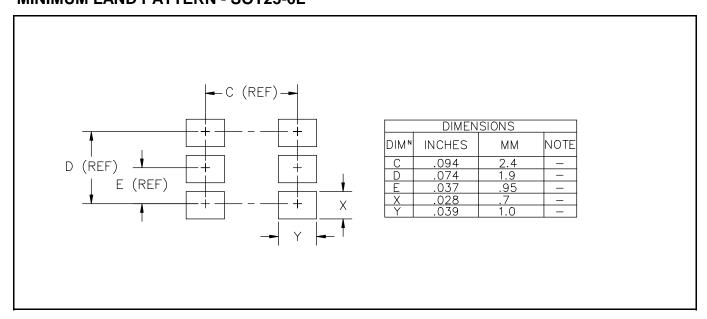
PIN CONFIGURATION

APPLICATION HINTS (Refer to Sheet 1):

- (1) C_{IN} (C3) is needed if the device is far from the supply's filter capacitors, or for operation from a battery. A value of 1.0 μ F or greater should be used. C_{IN} may be tantalum or ceramic.
- (2) $C_{\rm O}$ (C2) should be a 1µF or greater tantalum or ceramic capacitor, with an Equivalent Series Resistance (ESR) between 10m Ω and 1 Ω over temperature. Larger value capacitors will improve the overall transient response.
- (3) C_{BYP} (C1 required) should be placed as close as possible to pin 3 and ground. A 10nF ceramic capacitor is recommended.
- (4) EN may be tied to V_{IN} if the shutdown feature is not required. Maximum EN voltage = V_{IN} .
- (5) Connect both ground pins (2 and 5) to ground to maximize heat conduction.


PIN DESCRIPTION

Pin #	Pin Name	Description		
1	EN	Active high enable pin. Connect to VIN if not being used.		
2	GND	Ground pin. Use for heatsinking along with Pin #5.		
3	BYP	Noise bypass pin. Connect a 10nF capacitor (required) between this pin and GND.		
4	VO	Regulator output, supplying a guaranteed 150mA.		
5	GND	Ground pin. Use for heatsinking along with Pin #2.		
6	VIN	Power input pin.		



PRELIMINARY - July 25, 2000

DEVICE OUTLINE - SOT23-6L

MINIMUM LAND PATTERN - SOT23-6L

ECN00-1203