Preliminary CMOS SRAM

K6F4016U4G Family

Document Title

256Kx16 bit Super Low Power and Low Voltage Full CMOS Static RAM

Revision History

Revision No.HistoryDraft DateRemark0.0Initial DraftOctober 15, 2003Preliminary

The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications and products. SAMSUNG Electronics will answer to your questions about device. If you have any questions, please contact the SAMSUNG branch offices.

256K x 16 bit Super Low Power and Low Voltage Full CMOS Static RAM

FEATURES

• Process Technology: Full CMOS

• Organization: 256K x16 bit

• Power Supply Voltage: 2.7~3.3V

• Low Data Retention Voltage: 1.5V(Min)

• Three State Outputs

• Package Type: 48-TBGA-6.00x7.00

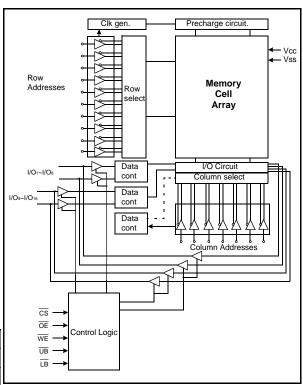
GENERAL DESCRIPTION

The K6F4016U4G families are fabricated by SAMSUNG's advanced full CMOS process technology. The families support industrial temperature range and 48 ball Chip Scale Package for user flexibility of system design. The family also supports low data retention voltage for battery back-up operation with low data retention current.

PRODUCT FAMILY

				Power Di	ssipation		
Product Family	Operating Temperature	Vcc Range	Speed	Standby (ISB1, Typ.)	Operating (Icc1, Max)	PKG Type	
K6F4016U4G-F	Industrial(-40~85°C)	2.7~3.3V	55 ¹⁾ /70ns	3μA ²⁾	4mA	48-TBGA-6.00x7.00	

- 1. The parameter is measured with 30pF test load.
- 2. Typical value is measured at Vcc=3.0V, TA=25°C and not 100% tested.


PIN DESCRIPTION

5 6 LB OE Α1 A2 DNU A0 CS В I/O9 UB АЗ A4 I/O1 I/O10 I/O11 A5 I/O2 I/O3 С A6 Vss I/O12 A17 Α7 I/O4 D Vcc Е I/O13 DNU A16 I/O5 Vcc Vss 1/015 I/O14 1/07 A14 A15 1/06 F G I/O16 DNU A12 A13 WE I/O8 Н DNU Α8 Α9 A10 A11 DNU

48-TBGA: Top View (Ball Down)

Name	Function	Name	Function
CS	Chip Select Inputs	Vcc	Power
ŌE	Output Enable Input	Vss	Ground
WE	Write Enable Input	UB	Upper Byte(I/O9~16)
A0~A17	Address Inputs	LB	Lower Byte(I/O1~8)
I/O1~I/O16	Data Inputs/Outputs	DNU	Do Not Use

FUNCTIONAL BLOCK DIAGRAM

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

PRODUCT LIST

Industrial Temperature Products(-40~85°C)					
Part Name	Function				
K6F4016U4G-EF55	48-TBGA, 55ns, 3.0V				
K6F4016U4G-EF70	48-TBGA, 70ns, 3.0V				

FUNCTIONAL DESCRIPTION

cs	OE	WE	LB	UB	I/O1~8	I/O9~16	Mode	Power
Н	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	High-Z	Deselected	Standby
X ¹⁾	X ¹⁾	X ¹⁾	Н	Н	High-Z	High-Z	Deselected	Standby
L	Н	Н	L	X ¹⁾	High-Z	High-Z	Output Disabled	Active
L	Н	Н	X ¹⁾	L	High-Z	High-Z	Output Disabled	Active
L	L	Н	L	Н	Dout	High-Z	Lower Byte Read	Active
L	L	Н	Н	L	High-Z	Dout	Upper Byte Read	Active
L	L	Н	L	L	Dout	Dout	Word Read	Active
L	X ¹⁾	L	L	Н	Din	High-Z	Lower Byte Write	Active
L	X ¹⁾	L	Н	L	High-Z	Din	Upper Byte Write	Active
L	X ¹⁾	L	L	L	Din	Din	Word Write	Active

^{1.} X means don't care. (Must be low or high state)

ABSOLUTE MAXIMUM RATINGS¹⁾

ltem	Symbol	Ratings	Unit
Voltage on any pin relative to Vss	VIN, VOUT	-0.3 to Vcc+0.3V(Max. 3.6V)	V
Voltage on Vcc supply relative to Vss	Vcc	-0.3 to 3.6	V
Power Dissipation	Pb	1.0	W
Storage temperature	Тѕтс	-65 to 150	°C
Operating Temperature	TA	-40 to 85	°C

^{1.} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted within recommended operating condition. Exposure to absolute maximum rating conditions for extended period may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS(1)

Item	Symbol	Min	Тур	Max	Unit
Supply voltage	Vcc	2.7	3.0	3.3	V
Ground	Vss	0	0	0	٧
Input high voltage	VIH	2.2	-	Vcc+0.3 ²⁾	٧
Input low voltage	VIL	-0.33)	-	0.6	V

Note:

- 1. Industrial Product: T_A=-40 to 85°C, otherwise specified.
- 2. Overshoot: Vcc+2.0V in case of pulse width ≤20ns.
- 3. Undershoot: -2.0V in case of pulse width ≤20ns.4. Overshoot and undershoot are sampled, not 100% tested.

CAPACITANCE1) (f=1MHz, TA=25°C)

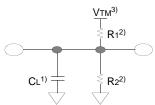
Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	CIN	VIN=0V	-	8	pF
Input/Output capacitance	Сю	Vio=0V	-	10	pF

^{1.} Capacitance is sampled, not 100% tested

DC AND OPERATING CHARACTERISTICS

Item	Symbol	Test Conditions			Typ¹)	Max	Unit
Input leakage current	ILI	VIN=Vss to Vcc		-1	-	1	μΑ
Output leakage current	lLO	CS=VIH or OE=VIH or WE=VIL or LB=UB=VIH, VIO=VSS to VCC	-1	1	1	μА	
lo lo		Cycle time=1μs, 100%duty, Iιο=0mA, CS≤0.2V, LB≤0.2V or/and UB≤0.2V, VIN≤0.2V or VIN≥Vcc-0.2V		-	-	4	mA
Average operating current	ICC2	Cycle time=Min, IIo=0mA, 100% duty, CS=VIL, LB=VIL or/and UB=VIL, VIN=VIL or VIH		-	-	22	mA
	1002			-	-	27	
Output low voltage	Vol	IOL = 2.1mA		-	-	0.4	V
Output high voltage	Voн	IOH = -1.0mA		2.4	-	-	V
Standby Current (CMOS)	ISB1	Oth <u>er input =0~Vcc</u> 1) <u>CS≥Vcc</u> -0.2V(CS <u>controlled</u>) <u>or</u> 2) LB=UB≥Vcc-0.2V, CS≤0.2V(LB/UB controlled)		-	3	10	μА

^{1.} Typical values are measured at Vcc=3.0V, Ta=25°C and not 100% tested.



AC OPERATING CONDITIONS

TEST CONDITIONS(Test Load and Test Input/Output Reference)

Input pulse level: 0.4 to 2.2V Input rising and falling time: 5ns Input and output reference voltage: 1.5V Output load (See right): CL= 100pF+1TTL

CL= 30pF+1TTL

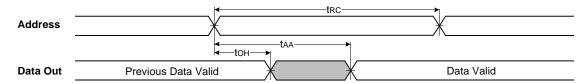
- 1. Including scope and jig capacitance
- 2. $R_1=3070\Omega$, $R_2=3150\Omega$
- 3. VTM = 2.8V

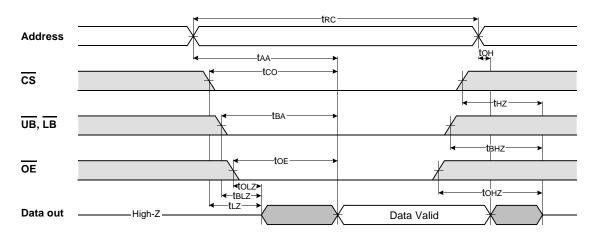
AC CHARACTERISTICS (Vcc=2.7~3.3V, Industrial product:TA=-40 to 85°C)

	Parameter List	Symbol	55	ins	70ns		Units
			Min	Max	Min	Max	
	Read cycle time	trc	55	-	70	-	ns
	Address access time	tAA	=	55	-	70	ns
	Chip select to output	tco	=	55	-	70	ns
	Output enable to valid output	toE	-	25	-	35	ns
	UB, LB Access Time	tва	-	55	-	70	ns
Read	Chip select to low-Z output	tLZ	10	-	10	-	ns
rtoda	UB, LB enable to low-Z output	tBLZ	10	-	10	-	ns
	Output enable to low-Z output	toLZ	5	-	5	-	ns
	Chip disable to high-Z output	tHZ	0	20	0	25	ns
	UB, LB disable to high-Z output	tBHZ	0	20	0	25	ns
	Output disable to high-Z output	tonz	0	20	0	25	ns
	Output hold from address change	tон	10	-	10	-	ns
	Write cycle time	twc	55	-	70	-	ns
	Chip select to end of write	tcw	45	-	60	-	ns
	Address set-up time	tas	0	-	0	-	ns
	Address valid to end of write	taw	45	-	60	-	ns
	UB, LB Valid to End of Write	tвw	45	-	60	-	ns
Write	Write pulse width	twp	40	-	50	-	ns
	Write recovery time	twr	0	-	0	-	ns
	Write to output high-Z	twHz	0	20	0	20	ns
	Data to write time overlap	tow	25	-	30	-	ns
	Data hold from write time	tDH	0	-	0	-	ns
	End write to output low-Z	tow	5	-	5	-	ns

DATA RETENTION CHARACTERISTICS

Item	Symbol	Test Condition	Min	Тур	Max	Unit
Vcc for data retention	VDR	CS≥Vcc-0.2V¹), VIN≥0V	1.5	-	3.3	V
Data retention current	IDR	Vcc=1.5V, CS ≥Vcc-0.2V¹), VIN≥0V	-	-	3	μΑ
Data retention set-up time	tSDR	See data retention waveform	0	-	-	20
Recovery time	tRDR	See data retention wavelorm	tRC	-	-	ns

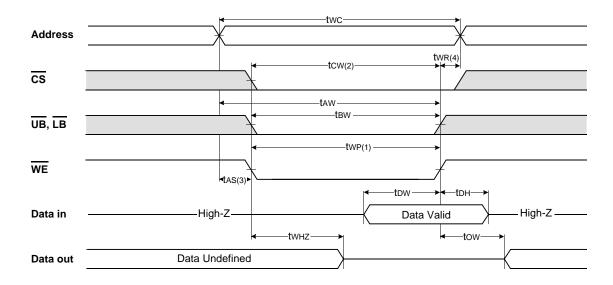

^{1. 1) &}lt;del>CS≥Vcc-0.2V(CS controlled) or


²⁾ LB=UB≥Vcc-0.2V, CS≤0.2V(LB/UB controlled)

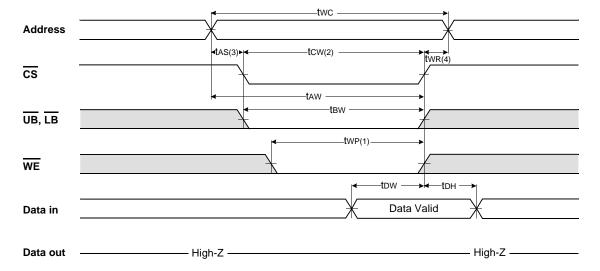
TIMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, $\overline{CS}=\overline{OE}=VIL$, $\overline{WE}=VIH$, \overline{UB} or/and $\overline{LB}=VIL$)

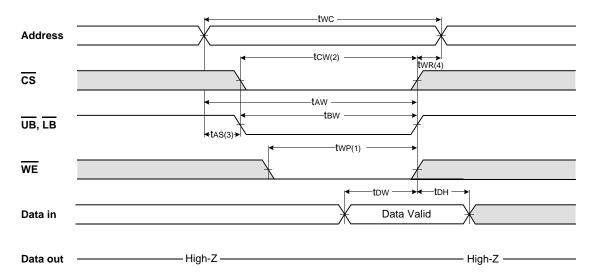
TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)



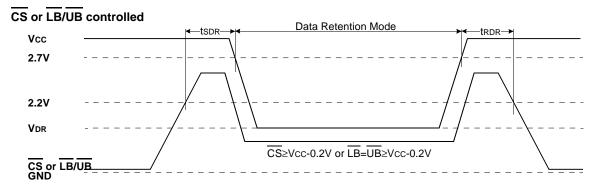
NOTES (READ CYCLE)


- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels
- 2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.

TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)



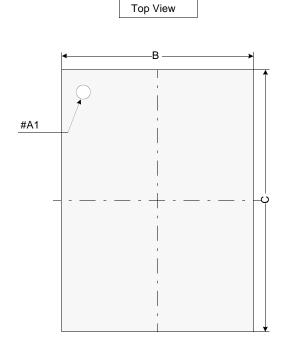
TIMING WAVEFORM OF WRITE CYCLE(2) (CS Controlled)

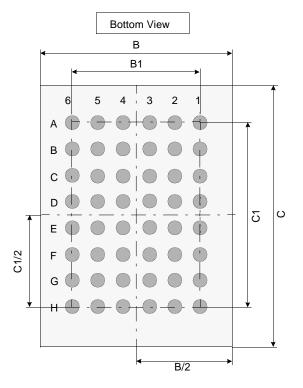

TIMING WAVEFORM OF WRITE CYCLE(3) (UB, LB Controlled)

NOTES (WRITE CYCLE)

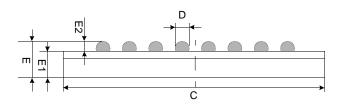
- 1. A write occurs during the overlap(twr) of low \overline{CS} and low \overline{WE} . A write begins when \overline{CS} goes low and \overline{WE} goes low with asserting \overline{UB} or \overline{LB} for single byte operation or simultaneously asserting \overline{UB} and \overline{LB} for double byte operation. A write ends at the earliest transition when \overline{CS} goes high and \overline{WE} goes high. The twr is measured from the beginning of write to the end of write.
- 2. tcw is measured from the $\overline{\text{CS}}$ going low to the end of write.
- 3. tas is measured from the address valid to the beginning of write.
- 4. twn is measured from the end of write to the address change. twn applied in case a write ends as $\overline{\text{CS}}$ or $\overline{\text{WE}}$ going high.

DATA RETENTION WAVE FORM

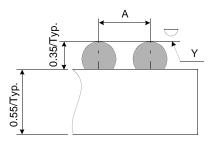




PACKAGE DIMENSION


Unit: millimeters

48 TAPE BALL GRID ARRAY(0.75mm ball pitch)



Side View

	Min	Тур	Max
Α	-	0.75	-
В	5.90	6.00	6.10
B1	-	3.75	-
С	6.90	7.00	7.10
C1	-	5.25	-
D	0.40	0.45	0.50
Е	0.80	0.90	1.00
E1	-	0.55	-
E2	0.30	0.35	0.40
Υ	-	-	0.10

Notes.

- 1. Bump counts: 48(8 row x 6 column)
- 2. Bump pitch: $(x,y)=(0.75 \times 0.75)(typ.)$
- 3. All tolerence are +/-0.050 unless otherwise specified.
- 4. Typ: Typical
- 5. Y is coplanarity: 0.10(Max)

