
 

 

 

 

Windows CE 6.0 
For  

BCT RE1 
User Guide 

 

 

 

 

 

Document Reference: Windows CE User Guide 

Document Issue: 1.02 

 



 

 

Contents 
Introduction ............................................................................................................................................ 3 

Windows CE 6.0 initialisation and booting overview ......................................................................... 3 

Development tool installation ................................................................................................................ 7 

Software development ......................................................................................................................... 11 

System and Development tools ............................................................................................................ 18 

Registry Settings ................................................................................................................................ 18 

Regedit .............................................................................................................................................. 18 

Touch Screen Calibration .................................................................................................................. 19 

Visual Studio 2005 Remote Tools ..................................................................................................... 19 

RE1 Hardware API Libraries .................................................................................................................. 20 

SMBUS API ........................................................................................................................................ 20 

LCD Brightness API ............................................................................................................................ 24 

GPIO API ............................................................................................................................................ 26 

Watchdog API.................................................................................................................................... 31 

System Reset ..................................................................................................................................... 33 

Appendix A – Windows CE components included in the generic Windows CE image for RE1 ............. 34 

 

 

 

 

 

 

 

 



 Introduction 

  Page 3 
 

 

Introduction 

The content of this document provides all the necessary information required to get started with 

application development under Windows CE 6.0 for the RE1 platform.  It covers: 

 An overview of the Windows CE 6.0 Boot Process 

 Peripheral support included in Windows CE 6.0 

 How to install the tools necessary to develop applications that run under Windows CE 6.0 

 How to start developing applications 

 How to use the Hardware API functions supported under RE1 

Windows CE 6.0 initialisation and booting overview 
The RE1 boot process begins with the execution of a Windows CE boot loader. The boot loader 

which is configurable using the RE1 USB device port in conjunction with accompanying desktop 

configuration utility performs the following initialisation steps: 

 Setup initial processor registers 

 Test for configuration mode or normal Windows CE boot 

 Setup LCD display and show a custom splash screen 

 Locate a Windows CE 6.0 image 

 Boot Windows CE 6.0 Image 

The boot loader can be used for updating Windows CE images, Splash screens and even the boot 

loader itself. The boot loader is also used to enable or disable peripherals, and configure the 

required LCD panel connected to a BCT RE1. The RISC engine supports booting from either onboard 

NOR flash or over Ethernet using Windows KITL. Again the boot source is selectable using the boot 

loader configuration utility. For full details on configuring the boot loader over USB using the 

desktop configuration utility please see the document, “RE1 Single Board Computer User Guide”.  

Windows CE 6.0 follows the standard boot process except drivers are configured to dynamically load 

dependent on their configuration in the boot loader.  If the Windows CE image supports the hive 

based registry, the registry is restored from SD Card media during boot. This allows the OS to persist 

registry settings through a cold boot.  

 

 

 

 

 



 Introduction 

  Page 4 
 

Windows CE 6.0 Peripheral Support 

The optional generic Windows CE 6.0 image included with an RE1 features support for the following 

on-board peripherals.  

USB Host 

The BCT RE1 features support for an OHCI compatible USB host. Operating system support for HID, 

and Mass storage devices is included in the image. 

USB Device 

In Windows CE the USB device port is implemented as a Microsoft ActiveSync device. Using 

ActiveSync 4.5 or greater, it is possible to debug and deploy applications using Visual Studio, as well 

as view the internal RISC engine files system in an explorer style interface. 

GPIO, IRDA, and I2S 

The Windows CE GPIO driver supports up to a maximum of 12 separate pins, all configurable as 

either inputs or outputs. Two GPIO pins are mutually exclusive with the IRDA port, and three pins are 

mutually exclusive with the I2S peripheral. The pins available to the GPIO driver are dynamically 

configured based on if the IRDA driver and I2S driver are enabled. By default the IRDA and I2S 

peripherals are disabled in the boot loader so all 12 GPIO pins are available 

The IRDA driver is configured to use COM6 when enabled and can be accessed in the same way as 

a serial port. Testing for COM6 being present in the system is a method of a custom application 

testing if the IRDA port is enabled. 

At time of writing, there is no I2S support implemented in the Windows CE image. Contact Blue Chip 

Technology sales for details. 

Real Time Clock 

The BCT RE1 includes a battery backed real time clock. This allows the system time to be 

remembered through a cold boot. Calls to either SetSystemTime() or SetLocalTime() automatically 

cause the new time to be saving into the battery backed clock.   

Serial Ports 

Two RS232 ports and one RS422 / 485 port are exposed as standard COM ports in Windows CE. 

Please see the following table for details of how each physical port is mapped in Windows CE. 

Header Signal Type Control Lines Windows CE COM port 

P11 RS422 / 485 RS422 / 485 No COM1 

P11 RS232 RS232 No COM2 (When not in kernel debugging mode ) 

P10  RS232 Yes COM3 

 

 



 Introduction 

  Page 5 
 

COM2 has a dual purpose in Windows CE. It can be configured as either a Windows CE standard 

COM port available to applications or as a kernel debug port useful during OS low level development. 

When configured for kernel debug, COM2 is unavailable for application development and is 

configured for 115200 baud, 8 data bits, 1 stop bit, and no parity. Please see, “RE1 Single Board 

Computer User Guide” for details on configuring this port using the configuration utility. 

From Windows CE 6.0 BSP 1.02, the transmit line of the RS422/485 interface is software controllable 

to be enabled or disabled by using the DTR control line. When DTR is enabled the TX line is enabled. 

When DTR is disabled the TX line is disabled. 

Backlight control 

A sample brightness control application is included in the Windows CE image to allow the brightness 

to be easily changed using the control panel in Windows Explorer. The sample application is included 

as source with the Windows CE SDK to demonstrate how to change the brightness using a custom 

application. To try the sample LCD Brightness application, navigate to the control panel and double 

click on „LCD Brightness‟. 

 

The backlight is also configurable in the “Display Properties” dialogue to allow the screen to be 

automatically dimmed after a set amount of time. This feature is useful for power saving when the 

device is not in use. Only the external power idle mode is implemented. In the below screen shot the 

device is configured to automatically dim the backlight after 2 minutes of inactivity.  



 Introduction 

  Page 6 
 

 

SD Card 

RE1 includes a Micro SD card interface which confirms to specification version 1.1 and supports 

cards up to 4GB in size. Note: SDHC cards are not supported at this time. 

Windows CE optionally includes hive registry support on the SD Card which allows registry settings to 

be persisted through a cold boot. If an SD card is used to hold the hive registry, the SD card becomes 

none removable and the must be inserted from system start-up.  

Other Peripherals 

The Windows CE 6.0 has support for, 10/100 Ethernet, stylus touch screen, and AC97 Audio, all of 

which are implemented as standard OS components.  

Watchdog and I2C support is also provided in the form of API‟s. 

  



 Installation 

  Page 7 
 

 

Development tool installation 

Application development targeting Windows CE 6 for RE1 requires Microsoft Visual Studio 2005 SP1, 

Microsoft Active sync 4.5 or greater, and the RE1 software development kit. The version of Visual 

Studio 2005 chosen must support smart device development. Ensure that Visual studio is fully 

installed along with active sync before following the steps below to install the BCT RE1 SDK. 

1. Launch the RE1 SDK installer file from the support CD  

 

2. Click next 

 

3. Accept the licence agreement and click next 

 

 

  



 Installation 

  Page 8 
 

 

4. Enter user and company name information and click next 

 

 

5. Choose complete installation 

 

 

6. Click next 

 

 

 

 



 Installation 

  Page 9 
 

 

7. Click install 

 

8. After the installation completes click the “Finish” button 

 

 

9. The installation of the BCT RE1 SDK is now complete. 

By default the RE1 SDK installs to location: C:\Program Files\Windows CE 

Tools\wce600\BCTRE1CE6SDKGeneric. In this location the following folders will be copied. 

Folder Description 

Include This folder holds all the header files required to build an application for 
the RE1 platform 

Lib This folder holds all the library files required to build an application for 
the RE1 platform 

Sample_applications This folder holds some sample applications that can be used as 
references while creating applications for RE1. The examples 
demonstrate how to interface to the RE1 hardware libraries. 

 

 



 Software Development 

  Page 10 
 

 

Sample Applications 

The Windows CE 6.0 SDK for RE1 includes four sample applications that demonstrate the 

use of RE1 specific API’s. The sample applications are detailed below. 

 
 

 

 

 

 

 

 

 

Application Description 
BrightnessController This sample can be used for evaluating the brightness 

control capability of the RE1 platform. A binary of this 
sample is included in the Windows CE 6 image and can be 
accessed from the control panel. 

 
GPIOSample This sample can be used for evaluating the general purpose 

input/outputs of the RE1 platform. This application makes 
use of the GPIOAPI.dll API library. 

 
WatchdogSample This sample demonstrates how to operate the RE1 

watchdog using the watchdog API. 

 
ResetSystemSample This sample demonstrates how to reset an RE1 system 

using system events. 

 



 Software Development 

  Page 11 
 

Software development 

This section describes how to create an RE1 Windows CE 6.0 application using the SDK and deploy 

the application to the RE1 device using Microsoft ActiveSync over USB. The sample application 

created will demonstrate how to use the RE1 GPIOapi to manipulate the GPIO bits.  

1. Open Visual Studio 2005. Click on File ->New ->Project to begin a new project. 

 

2. Under the “Visual C++” language click “smart device”. Select “Win32 Smart Device 

Project” and give the project the name “GPIOSample”. Click OK 

 

 

 

 



 Software Development 

  Page 12 
 

 

3. The smart device project wizard should now start. Click next to begin. The RE1 SDK 

installed in the previous section should now be populated in the “Installed SDKs” list. 

Arrange the list boxes so that “BCTRE1CE6SDKGeneric” is the only SDK in the 

“Selected SDK’s” list. Click Next. 

 

4. Select console application from the “Application type” selection box and click finish. 

 

 

  



 Software Development 

  Page 13 
 

5. Modify the GPIOSample.cpp file to include the following code: 

#include "stdafx.h" 

#include <windows.h> 

#include <commctrl.h> 

 

#include <gpio.h> 

 

int _tmain(int argc, TCHAR *argv[], TCHAR *envp[]) 

{ 

 DWORD dwReturnCode; 

 DWORD dwOption = 0; 

 DWORD dwValue; 

 DWORD dwBitMap; 

 WORD  wValue; 

 BOOL  iValue; 

  

 printf("BCT RE1 GPIO sample application V1.00\n"); 

 

 while(1) 

 { 

  fflush(stdin); 

  printf("\n\t1) Read PORT\n"); 

  printf("\t2) Write a WORD to PORT\n"); 

  printf("\t3) Set Pin directions\n"); 

  printf("\t4) Get bit\n"); 

  printf("\t5) Set bit\n"); 

  printf("\t6) Exit\n"); 

  printf("\t\tPlease enter an Option(1-6)"); 

  scanf_s("%d", &dwOption);  

  fflush(stdin); 

  if(dwOption == 1) 

  { 

   printf("\n\nReading Port....\n\t"); 

 

   dwReturnCode = BCTReadGPIOPort(&wValue); 

   if(dwReturnCode != GPIO_OK) 

   { 

    printf("Failed to read byte with error code: %d\n", 

dwReturnCode); 

   } 

   else 

   { 

    printf("Read value %.4xh\n", wValue); 

   } 

   printf("\n"); 

  } 

  else if(dwOption == 2) 

  { 

   printf("\n\nPlease enter the byte to write (HEX): "); 

   scanf_s("%x", &dwValue); 

   printf("\n\nWriting Port: %.4xh\n\t", (WORD) dwValue); 

   dwReturnCode = BCTWriteGPIOPort((WORD) dwValue); 

   if(dwReturnCode != GPIO_OK) 

   { 

    printf("Failed to write byte with error code: %d\n", 

dwReturnCode); 

   } 

   else 

   { 

    printf("Byte written\n"); 

   } 

   printf("\n"); 

  } 

  else if(dwOption == 3) 

  { 

   printf("\n\nPlease enter a bitmap for pin Directions (HEX): "); 

   scanf_s("%x", &dwBitMap); 

   printf("\n\nWriting Port directions: %.2xh\n\t", (WORD) dwBitMap); 

   dwReturnCode = BCTSetGPIOPinDirection((WORD) dwBitMap); 

   if(dwReturnCode != GPIO_OK) 

   { 

    printf("Failed to set pin directions with error code: %d\n", 

dwReturnCode); 

   } 



 Software Development 

  Page 14 
 

   else 

   { 

    printf("Bit directions written\n"); 

   } 

   printf("\n"); 

  } 

  else if(dwOption == 4) 

  { 

   printf("\n\nPlease enter which bit value to read (0-11): "); 

   scanf_s("%d", &dwBitMap); 

   printf("\n\nReading bit: %d\n\t", (BYTE)dwBitMap); 

   dwReturnCode = BCTGetGPIOBit((BYTE) dwBitMap, &iValue); 

   if(dwReturnCode != GPIO_OK) 

   { 

    printf("Failed to read bit with error code: %d\n", 

dwReturnCode); 

   } 

   else 

   { 

    printf("Read bit value: %d\n", iValue); 

   } 

   printf("\n"); 

  } 

  else if(dwOption == 5) 

  { 

   printf("\n\nPlease enter which bit value to write (0-11): "); 

   scanf_s("%d", &dwBitMap); 

   printf("\n\nPlease enter 1 to set or 0 to clear: "); 

   scanf_s("%d", &dwValue); 

    

   if(dwValue > 1) 

   { 

    dwValue = 1; 

   } 

   if(dwValue < 0) 

   { 

    dwValue = 0; 

   } 

 

   printf("\nWriting bit: %d with Value: %d\n\t", (BYTE)dwBitMap,(BOOL) 

dwValue); 

   dwReturnCode = BCTSetGPIOBit((BYTE) dwBitMap,(BOOL) dwValue); 

   if(dwReturnCode != GPIO_OK) 

   { 

    printf("Failed: %d\n", dwReturnCode); 

   } 

   else 

   { 

    printf("\nBit Written\n"); 

   } 

   printf("\n"); 

  } 

  else if(dwOption == 6) 

  { 

   break; 

  } 

  else 

  { 

   printf("\nInvalid Option\n"); 

  } 

 } 

 exit(0); 

} 
 

 
 

 

 
 

 

 
 

 



 Software Development 

  Page 15 
 

6. As this application is using functions exported by the GPIOAPI library we need to link 

this project to the file “GPIOAPI.lib”. From the “Project” menu click properties.  

 

 
 

 

 

7. Under “Configuration Properties -> Linker -> Input”, add “GPIOAPI.lib” to the 

“Additional dependencies”, and click OK. 

  



 Software Development 

  Page 16 
 

8. We are now ready to compile and build the sample application. From the “Build” menu 

click on “Rebuild Solution”. If the compile and build was successful the output window 

should state “1 succeeded, 0 failed”. 
 

  

 
 

  



 Software Development 

  Page 17 
 

9. Visual Studio 2005 SP1 supports deploying applications automatically to the target 

device and debugging applications remotely. This requires an ActiveSync connection. 

Using a USB A/B cable, attach the development machine to the RE1 device port and 

ensure that the RE1 is turned on.   

 
 

10.  Ensure Microsoft ActiveSync is connected.  

 

 

 

11. We can now deploy our application remotely from Visual Studio. From the “Debug” 

menu click on “Start Debugging”. Visual studio should now download the application to 

the target and run it. 
 

 
 

 

If deployment fails ensure that the USB A/B cable is attached and ActiveSync is connected.



 System & Development Tools 

  Page 18 
 

System and Development tools 

Registry Settings 

Windows CE 6.0 for RE1 optionally comes with hive based registry support. This allows 

registry settings to be persisted through a cold boot. The Registry Settings utility, accessible 

from the system control panel can be used to set how often the volatile registry is backed up 

to solid state media, and also perform manual commits. It is possible for a custom application 

to manage the persisting the hive registry using the Windows API function 

“RegFlushKey()”. In the event that a registry change makes the system unusable, a 

factory reset will force the registry to be restored to its default state on next boot. Refer 

to the RE1 user manual for details on how to achive this. 

 

 

 

 
 

Regedit 
Windows CE 6.0 for RE1 comes with a built in registry editor in the style of the standard 

Windows registry editor. To access it load “regedit” from either the command prompt or Run 

menu.  
 
 
 
 
 
 
 
 
 
 



 System & Development Tools 

  Page 19 
 

Touch Screen Calibration 
The touch screen can be calibrated using the built in calibration utility. To access it open the 

“Stylus Properties” window from the system control panel. 

 

 

Visual Studio 2005 Remote Tools 
Visual 2005 includes remote tools that can be used for managing Windows CE images and 

debugging Windows CE applications. All the remote tools require an ActiveSync connection. 

The remote tools must be run from the start menu rather than within Visual Studio at 

location: Start->Programs->Microsoft Visual Studio 2005->Visual Studio Remote Tools. 
 

 
 

The table below details the remote tools available and their purpose: 

 

Remote Tool Purpose 

Remote File Viewer Used to browse a remote CE device for files and 

folders. The same can be achieved using the Explore 

option in ActiveSync. 

Remote Registry Editor Used to remotely view and edit a Windows CE 

registry 

Remote Heap Walker Used to remotely view the memory allocation (heap) 

on a CE device 

Remote Spy Used to remotely view Windows/Messages on a CE 

device 

Remote Process Viewer Used to remotely view processes running on a 

Windows CE device 

Remote Zoom In Used to retreive a current snap shot of a CE device 

desktop 



 Hardware API libraries 

  Page 20 
 

RE1 Hardware API Libraries 
 

SMBUS API 
 

The SMBUSAPI is provided to give developers a simple mechanism for accessing devices 

attached the RE1 SMBUS compatible bus. The four SMBUSAPI functions provided are 

detailed over the next pages. 

 

 

BCTSmbusWriteByte 

Sends a command, and writes a byte of data to a device on the SMBUS.  

DWORD WINAPI BCTSmbusWriteByte (BYTE bDeviceAddress, BYTE bCommand, BYTE bData);  

Parameters 

bDeviceAddress 
[in] The slave address on the SMBUS to send the command to 

bCommand 
[in] The SMBUS command identifier 

bData 
[in] A byte of data to pass in with the command. For commands that do not require any data 
be passed in, set this value to 0x00 

Return Value 

If the function succeeds, the return value is SMBUS_OK. 

If the function fails, the return value is a nonzero error code defined in SMBUS.h. 

Remarks 

As the SMBUS architecture is a two wire interface it operates on a “first come first served” bases. For 
this reason the driver also operates in the same way and limits access to its functions to one process at 
a time. If the SMBUS is accessed while already in use the error code 

SMBUS_DRIVER_LOCKED_BY_OTHER_PROCESS will be returned and is normal. The application 

should wait for an undefined period before retrying.  

Requirements 

Header Declared in SMBUS.h  

Library Use SMBUSAPI.lib. 

DLL Requires SMBUSAPI.dll. 
 

 

 

 



 Hardware API libraries 

  Page 21 
 

 

 

  

BCTSmbusReadByte 

Sends a command, and reads a byte of data from a device on the SMBUS. 

DWORD WINAPI BCTSmbusReadByte (BYTE bDeviceAddress, BYTE bCommand, PBYTE pbData);  

Parameters 

bDeviceAddress 
[in] The slave address on the SMBUS to send the command to 

bCommand 
[in] The SMBUS command identifier 

pbData 
[out] A pointer to an 8 bit value to hold the data returned 

Return Value 

If the function succeeds, the return value is SMBUS_OK. 

If the function fails, the return value is a nonzero error code defined in SMBUS.h. 

Remarks 

As the SMBUS architecture is a two wire interface it operates on a “first come first served” bases. For 
this reason the driver also operates in the same way and limits access to its functions to one process at 
a time. If the SMBUS is accessed while already in use the error code 

SMBUS_DRIVER_LOCKED_BY_OTHER_PROCESS will be returned and is normal. The application 

should wait for an undefined period before retrying.  

Requirements 

Header Declared in SMBUS.h 

Library Use SMBUSAPI.lib. 

DLL Requires SMBUSAPI.dll. 
 



 Hardware API libraries 

  Page 22 
 

BCTSmbusBufferedWrite 

Sends a command, and writes up to 16 bytes of data. 

DWORD WINAPI BCTSmbusBufferedWrite(BYTE bDeviceAddress, BYTE bCommand, BYTE      

bdata[], BYTE bBytesToWrite); 

Parameters 

bDeviceAddress 
[in] The slave address on the SMBUS to send the command to 

bCommand 
[in] The SMBUS command identifier 

bdata 
[in]  An pointer to an array of bytes to write 

bBytesToWrite [in]  The number of bytes to write 

Return Value 

If the function succeeds, the return value is SMBUS_OK. 

If the function fails, the return value is a nonzero error code defined in SMBUS.h. 

Remarks 

As the SMBUS architecture is a two wire interface it operates on a “first come first served” bases. For 
this reason the driver also operates in the same way and limits access to its functions to one process at 
a time. If the SMBUS is accessed while already in use the error code 

SMBUS_DRIVER_LOCKED_BY_OTHER_PROCESS will be returned and is normal. The application 

should wait for an undefined period before retrying. This function supports sending a maximum of 16 
bytes at a time. This function can also be used for SMBUS quick writes, by setting the bBytesToWrite to 
0. This will cause the function to send the command without a data phase.  

Requirements 

Header Declared in SMBUS.h  

Library Use SMBUSAPI.lib. 

DLL Requires SMBUSAPI.dll. 
 

 

 

  



 Hardware API libraries 

  Page 23 
 

BCTSmbusBufferedRead  

Sends a command, and reads up to 16 bytes of data. 

DWORD WINAPI BCTSmbusBufferedRead(BYTE bDeviceAddress, BYTE bCommand, BYTE bdata[], 

BYTE bBytesToRead); 

Parameters 

bDeviceAddress 
[in] The slave address on the SMBUS to send the command to 

bCommand 
[in] The SMBUS command identifier 

bData 
[out] A pointer to an array of bytes to read into 

bBytesToRead 
             [in]  The number of bytes to read. 

Return Value 

If the function succeeds, the return value is SMBUS_OK. 

If the function fails, the return value is a nonzero error code defined in SMBUS.h. 

Remarks 

As the SMBUS architecture is a two wire interface it operates on a “first come first served” bases. For 
this reason the driver also operates in the same way and limits access to its functions to one process at 
a time. If the SMBUS is accessed while already in use the error code 

SMBUS_DRIVER_LOCKED_BY_OTHER_PROCESS will be returned and is normal. The application 

should wait for an undefined period before retrying. This function supports reading a maximum of 16 
bytes at a time. 

Requirements 

Header Declared in SMBUS.h  

Library Use SMBUSAPI.lib. 

DLL Requires SMBUSAPI.dll. 
 

 

 

  



 Hardware API libraries 

  Page 24 
 

LCD Brightness API 
 

The LCD brightness API library allows the brightness of compatible LCD’s to be changed. 

The library exports two functions which are detailed below. 

 

 

BCTSetLCDBrightness 

Sets the LCD brightness to the value specified 

DWORD WINAPI BCTSetLCDBrightness(BYTE bBrightness); 

Parameters 

bBrightness 
[in] The brightness value to write 

Return Value 

If the function succeeds, the return value is RE1_LCD_OK. 

If the function fails, the return value is a nonzero error code defined in BCTLCDBrightnessAPI.h. 

Remarks 

When bBrightness is set to 0 the LCD will be at its dimmest.  

Requirements 

Header Declared in BCTLCDBrightnessAPI.h 

Library BCTLCDBrightnessAPI.lib 

DLL BCTLCDBrightnessAPI.dll 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Hardware API libraries 

  Page 25 
 

BCTGetLCDBrightness 

Retrieves the current LCD brightness. 

DWORD WINAPI BCTGetLCDBrightness(PBYTE bBrightness); 

Parameters 

bBrightness 
[out] A pointer to a byte that will hold the current LCD brightness 

Return Value 

If the function succeeds, the return value is RE1_LCD_OK. 

If the function fails, the return value is a nonzero error code defined in BCTLCDBrightnessAPI.h. 

Remarks 

When bBrightness is set to 0 the LCD will be at its dimmest.  

Requirements 

Header Declared in BCTLCDBrightnessAPI.h 

Library BCTLCDBrightnessAPI.lib 

DLL BCTLCDBrightnessAPI.dll 
 

 

 

 

  



 Hardware API libraries 

  Page 26 
 

GPIO API 
 

The GPIO API library provides access to the 12 available GPIO pins on the RE1 platform. 

The library exports five functions which are detailed below.  

BCTSetGPIOPinDirection 

Sets the directions of GPIO bits to either input or output. 

DWORD WINAPI BCTSetGPIOPinDirection(WORD wVal); 

Parameters 

wVal 
[in] A bitmap of the required pin directions. Bit set = input. Bit cleared = output.  
 
E.g. Passing a value of 0x05 into the function would set bits 0 and 2 to inputs and other bits to 
outputs 
 

Return Value  

If the function succeeds, the return value is GPIO_OK or  

GPIO_OK_SOME_BITS_BELONG_TO_PERIPHERAL. 

If the function fails, the return value is a nonzero error code defined in gpio.h. 

Remarks 

Bits 12 – 15 of wVal are ignored. 

If some GPIO bits are shared with either the IRDA or I2S peripherals 

GPIO_OK_SOME_BITS_BELONG_TO_PERIPHERAL is returned. This should be considered a warning 

and not an error.  If the GPIO pins are sharing with either the IRDA or I2S peripherals the bits relating 
to the peripheral(s) will be ignored. 

Requirements 

Header Declared in GPIO.h 

Library Use GPIOapi.lib 

DLL Requires GPIOapi.dll 
 



 Hardware API libraries 

  Page 27 
 

BCTReadGPIOPort 

Reads the current state of the GPIO port 

DWORD WINAPI BCTReadGPIOPort (PWORD pwVal);  

Parameters 

pwVal 
[out] A pointer to an 16 bit value that will hold the value of the GPIO port. 
 

Return Value  

If the function succeeds, the return value is GPIO_OK or  

GPIO_OK_SOME_BITS_BELONG_TO_PERIPHERAL. 

If the function fails, the return value is a nonzero error code defined in gpio.h. 

Remarks 

Bits 12 – 15 of pwVal should be ignored. 

If some GPIO bits are shared with either the IRDA or I2S peripherals 

GPIO_OK_SOME_BITS_BELONG_TO_PERIPHERAL is returned. This should be considered a warning 

and not an error.  If the GPIO pins are sharing with either the IRDA or I2S peripherals the bits relating 
to the peripheral will be undefined. 

Requirements 

Header Declared in GPIO.h 

Library Use GPIOapi.lib. 

DLL Requires GPIOapi.dll. 
 

 

  



 Hardware API libraries 

  Page 28 
 

BCTWriteGPIOPort 

Writes to the GPIO port 

DWORD WINAPI BCTWriteGPIOPort (WORD wVal);  

Parameters 

wVal 
[in] The word that gets written to the GPIO port. 
 

Return Value  

If the function succeeds, the return value is GPIO_OK. 

If the function fails, the return value is a nonzero error code defined in gpio.h. 

Remarks 

Bits 12 – 15 of wVal are ignored. 

If some GPIO bits are shared with either the IRDA or I2S peripherals 

GPIO_OK_SOME_BITS_BELONG_TO_PERIPHERAL is returned. This should be considered a warning 

and not an error.  If the GPIO pins are sharing with either the IRDA or I2S peripherals the bits relating 
to the peripheral will be ignored.  

GPIO 11 belongs to a separate physical peripheral at the silicon level compared to the rest of the GPIO 
pins. This incurs a latency between bit 11 being set in relation to the rest of the port. 

Requirements 

Header Declared in GPIO.h 

Library Use GPIOapi.lib. 

DLL Requires GPIOapi.dll. 
 

 

  



 Hardware API libraries 

  Page 29 
 

BCTSetGPIOBit 

Sets an individual bit to a value specified 

DWORD WINAPI BCTSetGPIOBit (WORD wBitNumber, BOOL iVal);  

Parameters 

wBitNumber 
[in] The bit that should be written. Acceptable values 0-11 

iVal 
[in] The value to be written to the bit. TRUE = Set, FALSE = Clear 

 

Return Value  

If the function succeeds, the return value is GPIO_OK. 

If the function fails, the return value is a nonzero error code defined in gpio.h. 

Remarks 

Requirements 

Header Declared in GPIO.h 

Library Use GPIOapi.lib. 

DLL Requires GPIOapi.dll. 
 

 

  



 Hardware API libraries 

  Page 30 
 

BCTGetGPIOBit 

Gets the value of an individual bit 

DWORD WINAPI BCTGetGPIOBit (WORD wBitNumber, PBOOL piVal);  

Parameters 

wBitNumber 
[in] The bit that should be read. Acceptable values 0-11 

iVal 
[in] A pointer to a BOOL that will hold the state of the pin. TRUE = Set, FALSE = Clear  

 

Return Value  

If the function succeeds, the return value is GPIO_OK. 

If the function fails, the return value is a nonzero error code defined in gpio.h. 

Remarks 

Requirements 

Header Declared in GPIO.h 

Library Use GPIOapi.lib. 

DLL Requires GPIOapi.dll. 
 

 

  



 Hardware API libraries 

  Page 31 
 

Watchdog API 
 

The Watchdog API allows the system watchdog to be used to cause a system reset in the 

event of an unresponsive application. The library exports four functions which are detailed 

below.  

BCTEnableWatchdog 

Enables the RE1 watchdog to timeout in the time specified 

DWORD WINAPI BCTEnableWatchDog (BYTE bTimeout);  

Parameters 

bTimeout 

[in] The duration in 10’s of ms before a timeout is triggered. Must be greater than 0 and less 
than 128. 

Return Value  

If the function succeeds, the return value is WATCHDOG_OK. 

If the function fails, the return value is a nonzero error code defined in watchdog.h. 

Remarks 

Requirements 

Header Declared in Watchdog.h 

Library Use watchdog.lib 

DLL Requires watchdog.dll 
 



 Hardware API libraries 

  Page 32 
 

BCTDisableWatchdog 

Disables the RE1 watchdog. 

DWORD WINAPI BCTDisableWatchDog (VOID);  

Parameters 

Return Value  

If the function succeeds, the return value is WATCHDOG_OK. 

If the function fails, the return value is a nonzero error code defined in watchdog.h. 

Remarks 

Requirements 

Header Declared in Watchdog.h 

Library Use watchdog.lib. 

DLL Requires watchdog.dll. 
 

 

 

BCTRefreshWatchdog 

Resets the watchdog counter to the timeout value. 

DWORD WINAPI BCTRefreshWatchDog (VOID);  

Parameters 

Return Value  

If the function succeeds, the return value is WATCHDOG_OK. 

If the function fails, the return value is a nonzero error code defined in watchdog.h. 

Remarks 

Requirements 

Header Declared in Watchdog.h & azfavr.h 

Library Use watchdog.lib. 

DLL Requires watchdog.dll. 
 

 

 

 



 Hardware API libraries 

  Page 33 
 

System Reset 
The RE1 Windows CE 6 platform allows the system to be reset using system events.  

The two available system events are: 

Event Name Event Description 
RE1_EVENT_COLD_BOOT_RESET When set causes a system warm boot 

RE1_EVENT_WARM_BOOT_RESET When set causes a system cold boot 
 

Please see the ResetSystemSample application included in the Windows CE 6.0 SDK for 

details on how to use these events. 

 

 

  



 Hardware API libraries 

  Page 34 
 

Appendix A – Windows CE components included in the 

generic Windows CE image for RE1 
SYSGEN_ACM_MSFILTER, SYSGEN_ASYNCMAC, SYSGEN_AS_BASE, SYSGEN_ATL, 

SYSGEN_AUDIO, SYSGEN_AUDIO_ACM, SYSGEN_AUDIO_STDWAVEFILES, SYSGEN_AUTH, 

SYSGEN_AUTH_SCHANNEL, SYSGEN_AUTORAS, SYSGEN_AYGSHELL, SYSGEN_CEDDK, 

SYSGEN_CEPLAYER, SYSGEN_CERTS, SYSGEN_CMD, SYSGEN_COMMCTRL, SYSGEN_COMMDLG, 

SYSGEN_CONNMC, SYSGEN_CONSOLE, SYSGEN_CORELOC, SYSGEN_CORESTRA, 

SYSGEN_CPP_EH_AND_RTTI, SYSGEN_CREDMAN, SYSGEN_CRYPTO, SYSGEN_CTLPNL, 

SYSGEN_CURSOR, SYSGEN_DCOM, SYSGEN_DEVICE, SYSGEN_DEVLOAD, SYSGEN_DHCPSRV, 

SYSGEN_DISPLAY, SYSGEN_DOTNETV2, SYSGEN_DOTNETV2_SUPPORT, SYSGEN_DSHOW, 

SYSGEN_DSHOW_ACMWRAP, SYSGEN_DSHOW_DISPLAY, SYSGEN_DSHOW_DMO, 

SYSGEN_DSHOW_IMAADPCM, SYSGEN_DSHOW_MP3, SYSGEN_DSHOW_MPEGA, 

SYSGEN_DSHOW_MPEGSPLITTER, SYSGEN_DSHOW_MSADPCM, SYSGEN_DSHOW_MSG711, 

SYSGEN_DSHOW_MSGSM610, SYSGEN_DSHOW_WAV, SYSGEN_DSHOW_WAVEOUT, 

SYSGEN_DSHOW_WMA, SYSGEN_DSHOW_WMA_VOICE, SYSGEN_DSHOW_WMP, 

SYSGEN_DSHOW_WMT, SYSGEN_DSHOW_WMT_ASXV1, SYSGEN_DSHOW_WMT_ASXV2, 

SYSGEN_DSHOW_WMT_ASXV3, SYSGEN_DSHOW_WMT_HTTP, SYSGEN_DSHOW_WMT_LOCAL, 

SYSGEN_DSHOW_WMT_MMS, SYSGEN_DSHOW_WMT_MULTI, SYSGEN_DSHOW_WMT_NSC, 

SYSGEN_ETHERNET, SYSGEN_EXFAT, SYSGEN_FATFS, SYSGEN_FIBER, SYSGEN_FMTMSG, 

SYSGEN_FMTRES, SYSGEN_FONTS_ARIAL_1_30, SYSGEN_FONTS_COUR_1_30, 

SYSGEN_FONTS_SYMBOL, SYSGEN_FONTS_TAHOMA_1_07, SYSGEN_FONTS_TIMES_1_30, 

SYSGEN_FONTS_WEBDINGS, SYSGEN_FONTS_WINGDING, SYSGEN_FSDBASE, 

SYSGEN_FSPASSWORD, SYSGEN_FSRAMROM, SYSGEN_FSREGHIVE, SYSGEN_FSREPLBIT, 

SYSGEN_FULL_CRT, SYSGEN_GDI_ALPHABLEND, SYSGEN_GRADFILL, SYSGEN_HTTPD, 

SYSGEN_IESAMPLE, SYSGEN_IE_JSCRIPT, SYSGEN_IE_VBSCRIPT, SYSGEN_IMAGING, 

SYSGEN_IMAGING_BMP_DECODE, SYSGEN_IMAGING_BMP_ENCODE, 

SYSGEN_IMAGING_GIF_DECODE, SYSGEN_IMAGING_GIF_ENCODE, 

SYSGEN_IMAGING_JPG_DECODE, SYSGEN_IMAGING_JPG_ENCODE, 

SYSGEN_IMAGING_PNG_DECODE, SYSGEN_IMAGING_PNG_ENCODE, SYSGEN_IMM, 

SYSGEN_INETCPL, SYSGEN_IPHLPAPI, SYSGEN_IRDA, SYSGEN_JSCRIPT_AUTHOR, 

SYSGEN_JSCRIPT_ENCODE, SYSGEN_LOCALAUDIO, SYSGEN_MENU_OVERLAP, 

SYSGEN_MINGDI, SYSGEN_MINGWES, SYSGEN_MININPUT, SYSGEN_MINWMGR, 

SYSGEN_MLANG, SYSGEN_MODEM, SYSGEN_MSGQUEUE, SYSGEN_MSHTML, SYSGEN_MSMQ, 

SYSGEN_MSPART, SYSGEN_MSXML_DOM, SYSGEN_MSXML_XQL, SYSGEN_NDIS, 

SYSGEN_NDISUIO, SYSGEN_NETUTILS, SYSGEN_NKCOMPR, SYSGEN_NKMAPFILE, 

SYSGEN_NOTIFY, SYSGEN_PM, SYSGEN_PPP, SYSGEN_PRINTING, SYSGEN_PWORD, 

SYSGEN_QVGAP, SYSGEN_REDIR, SYSGEN_RELFSD, SYSGEN_SDBUS, SYSGEN_SD_MEMORY, 

SYSGEN_SERDEV, SYSGEN_SERVICES, SYSGEN_SHDOCVW, SYSGEN_SHELL, 

SYSGEN_STANDARDSHELL, SYSGEN_STDIO, SYSGEN_STDIOA, SYSGEN_STOREMGR, 

SYSGEN_STREAMAUDIO, SYSGEN_STRSAFE, SYSGEN_TAPI, SYSGEN_TCPIP, 

SYSGEN_TCPIP6, SYSGEN_TIMESVC_DST, SYSGEN_TOOLHELP, SYSGEN_TOUCH, 

SYSGEN_UIPROXY, SYSGEN_UNIMODEM, SYSGEN_URLMON, SYSGEN_USB, SYSGEN_USBFN, 

SYSGEN_USBFN_SERIAL, SYSGEN_USBFN_STORAGE, SYSGEN_USB_HID, 

SYSGEN_USB_HID_CLIENTS, SYSGEN_USB_HID_KEYBOARD, SYSGEN_USB_HID_MOUSE, 

SYSGEN_USB_PRINTER, SYSGEN_USB_STORAGE, SYSGEN_VBSCRIPT_AUTHOR, 

SYSGEN_VBSCRIPT_ENCODE, SYSGEN_VBSCRIPT_MSGBOX, SYSGEN_VEM, SYSGEN_WCELOAD, 

SYSGEN_WININET, SYSGEN_WINSOCK 


