

CMOS 8-Bit Microcontroller TMP88CS34N/F, TMP88CP34N/F

The TMP88CS34/CP34 is the high speed and high performance 8-bit single chip microcomputers. This MCU contain CPU core, ROM, RAM, input/output ports, four Multi-function timer/counters, serial bus interface, on-screen display, PWM output, 8-bit AD converter, and remote control signal preprocessor on chip.

Product No.	ROM	RAM	Package	OTP MCU
TMP88CS34N/F	64 K × 8-bit	1.5 K × 8-bit	P-SDIP42-600-1.78	TMP88PS34N/F
TMP88CP34N/F	48 K × 8-bit	1.5 K × 0-bit	P-QFP44-1414-0.80D	TWF00F334N/F

Features

- ◆ 8-bit single chip microcomputer TLCS-870/X Series
- Instruction execution time: 0.25 μs (at 16 MHz)
- ◆ 842 basic instructions
 - Multiplication and Division (8 bits × 8 bits, 16 bits × 8 bits, 16 bits/8 bits)
 - Bit manipulations (Set/Clear/Complement/Move/Test/Exclusive or)
 - 16-bit data and 20-bit data operations
 - 1-byte jump/subroutine-call (Short relative jump/Vector call)
- ◆ I/O ports: Maximum 33 (High current output: 4)
- ◆ 15 interrupt sources: External 6, Internal 10
 - All sources have independent latches each, and nested interrupt control is available.
 - Edge-selectable external interrupts with noise reject
 - High-speed task switching by register bank changeover
- ◆ ROM corrective function
- ◆ Two 16-bit timer/counters: TC1, TC2
 - Timer, Event-counter, Pulse width measurement, External trigger timer, Window modes
- ◆ Two 8-bit timer/counters: TC3, TC4
 - Timer, Event counter, Capture (Pulse width/duty measurement) mode

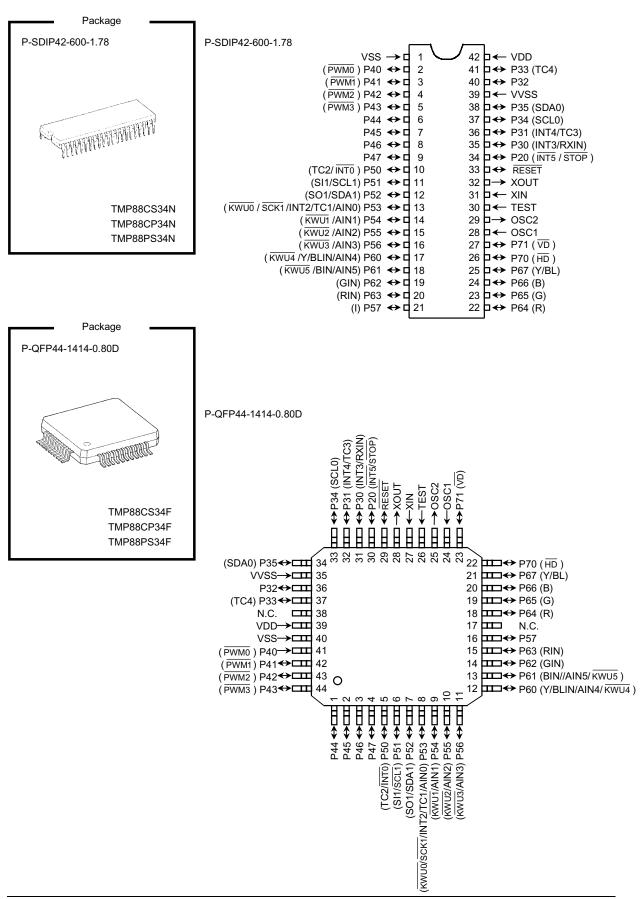
000707EBP1

- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance / Handling Precautions.
 TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general
 can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer,
 when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid
 situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to
 property

property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.



Purchase of TOSHIBA I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

- ◆ Time base timer (Interrupt frequency: 0.95 Hz to 31250 Hz)
- ◆ Watchdog timer
 - Interrupt source/reset output
- ◆ Serial bus interface
 - I²C bus, 8-bit SIO mode (Selectable two I/O channels)
- ♦ On-screen display circuit
 - Font ROM characters: Mono font 383 characters, color font 96 characters or mono font 447 characters, color font 64 characters
 - Characters display: 32 columns × 12 lines
 - Composition: 16 × 18 dots
 - Size of character: 4 kinds (line by line)
 - Color of character: 8 or 27 kinds (character by character)
 - Variable display position: Horizontal 256 steps, Vertical 625 steps
 - Fringing, Smoothing, Slant, Underline, Blinking function
- ♦ Jitter elimination
- ◆ DA conversion (Pulse Width Modulation) outputs
 - 14/12-bit resolution (2 channels)
 - 12-bit resolution (2 channels)
- ♦ 8-bit successive approximate type AD converter with sample and hold
- ♦ High current output: 1 pin (typ. 20 mA)
- ◆ Remote control signal preprocessor
- ◆ Two power saving operating modes
 - STOP mode: Oscillation stops. Battery/Capacitor back-up. Port output hold/high-impedance.
 - IDLE mode: CPU stops, and Peripherals operate using high-frequency clock. Release by interrupts.
- ♦ Operating voltage: 4.5 to 5.5 V at 16 MHz
- ◆ Emulation POD: BM88CS34N0A-M15

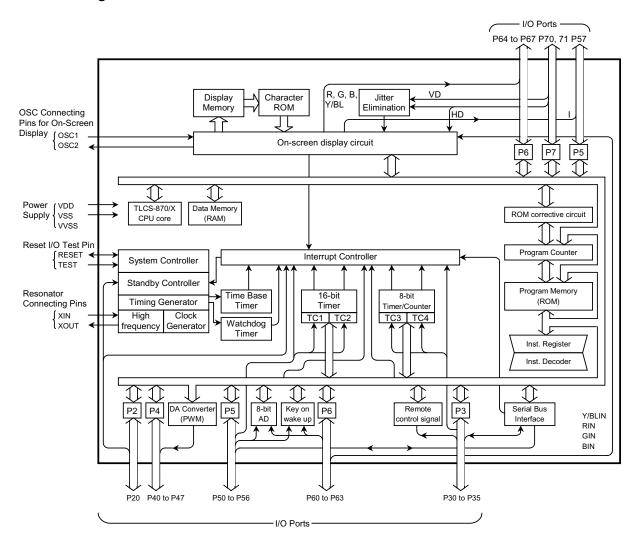
88CS34-2 2003-03-25

Pin Assignments

88CS34-3 2003-03-25

Pin Functions (1/2)

Pin Name	I/O	Fund	ction	
P20 (INT5 / STOP)	I/O (Input)	1-bit input/output port with latch. When used as an input port, the latch must be set to "1".	External interrupt input 5 or STOP mode release signal input	
P35 (SDA0)	I/O (Input/Output)	6-bit programmable input/output	I ² C bus serial data input/output 0	
P34 (SCL0)	I/O (Input/Output)	port. Each bit of these ports can be	I ² C bus serial clock input/output 0	
P33 (TC4)	I/O (Input)	individually configured as an input or an output under software control.		
P32	I/O	During reset, all bits are configured as inputs. When used as a serial bus	Video signal input 1 or Composite sync input	
P31 (INT4/TC3)	I/O (Input)	interface input/output, the latch must be set to "1".	External interrupt input 4 or Timer/Counter input 3	
P30 (INT3/RXIN)	I/O (Input)		External interrupt input 3 or Remote control signal preprocessor input	
P47	I/O	8-bit programmable input/output		
P46	I/O	port. Each bit of these ports can be		
P45	I/O	individually configured as an input or an output under software control.		
P44	I/O	During reset, all bits are configured		
P43 (PWM3)	I/O (Output)	as inputs.	12 bit DA conversion (DM/M) outputs	
P42 (PWM2)	I/O (Output)		12-bit DA conversion (PWM) outputs	
P41 (PWM1)	I/O (Output)		14/12-bit DA conversion (PWM)	
P40 (PWM0)	I/O (Output)		outputs	
P57 (I)	I/O (Output)	8-bit programmable input/output	Translucent signal output	
P56 (KWU3 /AIN3)	I/O (Input)	port. Each bit of these ports can be		
P55 (KWU2/AIN2)	I/O (Input)	individually configured as an input or an output under software control.	Key on wake-up inputs or AD converter analog inputs	
P54 (KWU1/AIN1)	I/O (Input)	During reset, all bits are configured	converter analog inputs	
P53 (KWU0 /AIN0/TC1 /INT2/ SCK1)	I/O (Input/Input/Input /Input/Output)	as inputs. When used as a serial bus interface input/output, the latch must be set to "1".	Key on wake-up input or AD converter analog input or Timer/counter input 1 or External interrupt input 2 or SIO serial clock input/output 1	
P52 (SDA1/SO1)	I/O (Input/Output/Output)		I ² C bus serial data Input/Output 1 or SIO serial data output 1	
P51 (SCL1/SI1)	I/O (Input/Output/Input)		I ² C bus serial data Input/Output 1 or SIO serial data input 1	
P50 (TC2/ INT0)	I/O (Input/Input)		Timer/Counter input 2 or External interrupt input 0	
P67 (Y/BL)	I/O (Output)	8-bit programmable input/output	Y or BL output	
P66 (B)	I/O (Output)	port. (P67 to 61: Tri-State, P60: High		
P65 (G)	I/O (Output)	current output) Each bit of these ports can be individually configured	R/G/B outputs	
P64 (R)	I/O (Output)	as an input or an output under		
P63 (RIN)	I/O (Input)	software control. During reset, all	R input	
P62 (GIN)	I/O (Input)	bits are configured as inputs. When used P64 to P67 as port, each bit of	G input	
P61 (KWU5 /BIN/AIN5)	I/O (Input)	the P6 port data selection register (bit 7 to 4 in ORP6S) must be set to "1"	Key on wake-up input 5 or B input or AD converter analog input 5	
P60 (KWU4 /YBLIN/AIN4)	I/O (Input)	P63 to P61 output "0" after a reset. When these dual-function pins are used as ports, be sure to set ORP6S2 to "1".	Key on wake-up input 4 or Y/BL input or AD converter analog input 4	


88CS34-4 2003-03-25

Pin Functions (2/2)

Pin Name	I/O	Function				
P71 (√D)	I/O (Input)	2-bit programmable input/output port. Each bit of these ports can be individually configured as an input or				
P70 (HD)	I/O (Input)	an output under software control. During reset, all bits are configured as inputs.	Horizontal synchronous signal input			
XIN, XOUT	Input, Output	Resonator connecting pins. For inputting external clock, XIN is used and XOUT is opened.				
RESET	I/O	Reset signal input or watchdog timer output/address-trap-reset output/system-clock-rest output				
TEST	Input	Test pin for out-going test. Be tied to low.				
OSC1, OSC2	Input, Output	Resonator connecting pins for on-screen display circuitry				
VDD, VSS, VVSS	Power Supply	+5 V, 0 V (GND)				

88CS34-5 2003-03-25

Block Diagram

Operational Description

CPU Core Functions

The CPU core consists of a CPU, a system clock controller, and an interrupt controller.

This section provides a description of the CPU core, the program memory, the data memory, the external memory interface, and the reset circuit.

1.1 Memory Address Map

The TMP88CS34/CP34 memory consists of four blocks: ROM, RAM, SFR (Special Function Register), and DBR (Data Buffer Register). They are all mapped to a 1-Mbyte address space. Figure 1.1.1 shows the TMP88CS34/CP34 memory address map. There are 16 banks of the general-purpose register. The register banks are also assigned to the RAM address space.

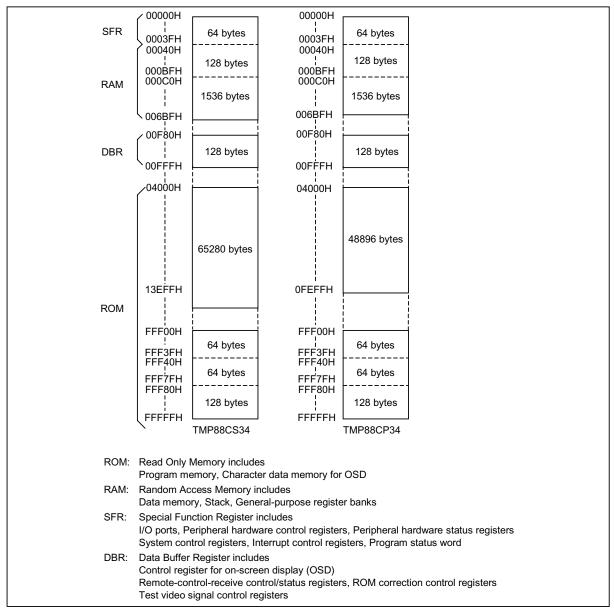


Figure 1.1.1 Memory Address Map

Electrical Characteristics

Absolute maximum ratings (V_{SS} = 0 V)

Parameter	Symbol	Pins	Ratings	Unit
Supply Voltage	V_{DD}	-	-0.3 to 6.5	
Input Voltage	V _{IN}	-	-0.3 to V _{DD} + 0.3	٧
Output Voltage	V _{OUT1}	=	-0.3 to V _{DD} + 0.3	
Output Current (Por 1 pin)	I _{OUT1}	Ports P2, P3, P4, P5, P61 to P67, P7	3.2	
Output Current (Per 1 pin)	I _{OUT2}	Ports P60	30	mA
Output Current (Total)	Σ l _{OUT1}	Ports P2, P3, P4, P5, P64 to P67, P7	30	IIIA
Output Current (Total)	Σ l _{OUT2}	Ports P60	30	
Power Dissipation [Topr = 70 °C]	PD	-	400	mW
Soldering Temperature (time)	Tsld	-	260 (10 s)	
Storage Temperature	Tstg	=	-55 to 125	°C
Operating Temperature	Topr	-	−30 to 70	

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

Recommended operating conditions

 $(V_{SS} = 0 \text{ V}, \text{Topr} = -30 \text{ to } 70 \,^{\circ}\text{C})$

Parameter	Symbol	Pins	Conditions		Min	Max	Unit	
			fc = 16 MHz	NOR	MAL mode			
Supply Voltage	V_{DD}		fc = 16 MHz	IDLE	mode	4.5	5.5	
				STO	P mode			
	V _{IH1}	Except hysteresis input	V _{DD} = 4.5 to 5.5V		$V_{DD} \times 0.70$			
Input High Voltage	V_{IH2}	Hysteresis input			$V_{DD}\times 0.75$	V_{DD}	V	
	V_{IH3}	Key-on Wake-up input			$V_{DD}\times 0.90$			
	V _{IL1}	Except hysteresis input	$V_{DD} = 4.5 \text{ to } 5$. 5 \/			$V_{DD}\times 0.30$	
Input Low Voltage	V_{IL2}	Hysteresis input	VDD = 4.5 to 5	1.5 V		0	$V_{DD}\times 0.25$	
	V_{IL3}	Key-on Wake-up input	V _{DD} = 4.5 to 5.5V				$V_{DD} \times 0.65$	
	fc	XIN, XOUT	$V_{DD} = 4.5 \text{ to } 5$.5V		8.0	16.0	
Clock Frequency	fooo	Internal clock	$V_{DD} = 4.5 \text{ to } 5$	51/	fc = 8 MHz	8.0	12.0	MHz
	fosc	Internal clock	v DD = 4.5 to 5	5.5 V	fc = 16 MHz	16.0	24.0	

- Note 1: The recommended operating conditions for a device are operating conditions under which it can be guaranteed that the device will operate as specified. If the device is used under operating conditions other than the recommended operating conditions (supply voltage, operating temperature range, specified AC/DC values etc.), malfunction may occur. Thus, when designing products which include this device, ensure that the recommended operating conditions for the device are always adhered to.
- Note 2: Clock frequency fc: Supply voltage range is specified in NORMAL mode and IDLE mode.
- Note 3: Smaller value is alternatively specified as the maximum value.

DC Characteristics	(V _{SS} = 0 V, Topr = -30 to 70 °C)
--------------------	--

Parameter	Symbol	Pins	Conditions	Min	Тур.	Max	Unit
Hysteresis voltage	V_{HS}	Hysteresis inputs		-	0.9	-	V
	I _{IN1}	TEST	V _{DD} = 5.5 V, V _{IN} = 5.5 V/0 V	-	_	± 2	
Input ourrent	I _{IN2}	Open drain ports	V _{DD} = 5.5 V, V _{IN} = 5.5 V/0 V	-	_	± 2	^
Input current	I _{IN3}	Tri-state ports	V _{DD} = 5.5 V, V _{IN} = 5.5 V/0 V	-	-	± 2	μА
	I _{IN4}	RESET, STOP	$V_{DD} = 5.5 \text{ V}, V_{IN} = 5.5 \text{ V/0 V}$	-	-	± 2	
Input resistance	R _{IN2}	RESET	$V_{DD} = 5.5 \text{ V}, V_{IN} = 0 \text{ V}$	100	220	450	kΩ
Output leakage	I _{LO1}	Sink open drain ports	V _{DD} = 5.5 V, V _{OUT} = 5.5 V	-	-	2	^
current	I _{LO2}	Tri-state ports	$V_{DD} = 5.5 \text{ V}, V_{OUT} = 5.5 \text{ V/0 V}$	-	-	± 2	μА
Output high voltage	V _{OH2}	Tri-state ports	$V_{DD} = 4.5 \text{ V}, I_{OH} = -0.7 \text{ mA}$	4.1	_	-	
Output low voltage	V _{OL}	Except XOUT and ports P60	$V_{DD} = 4.5 \text{ V}, I_{OL} = 1.6 \text{ mA}$	-	-	0.4	V
Output low current	I _{OL3}	Port P60	V _{DD} = 4.5 V, I _{OL} = 1.0 V	-	20	-	
Supply current in NORMAL mode			V _{DD} = 5.5 V fc = 16 MHz (Note3)	-	25	30	mA
Supply current in IDLE mode	I _{DD}	-	fc = 16 MHz (Note3) $V_{IN} = 5.3 \text{ V}/0.2 \text{ V}$	-	20	25	
Supply current in STOP mode			$V_{DD} = 5.5 \text{ V}$ $V_{IN} = 5.3 \text{ V}/0.2 \text{ V}$	-	0.5	10	μА

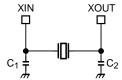
Note 1: Typical values show those at Topr = 25 $^{\circ}\text{C},~\text{V}_{DD}$ = 5 V.

Note 2: Input Current $I_{\mbox{\scriptsize IN}3}$; The current through resistor is not included.

Note 3: Supply Current I_{DD} ; The current (Typ. 0.5 mA) through ladder resistors of ADC is included in NORMAL mode and IDLE mode.

AD Conversion Characteristics	$(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}, \text{Topr} = -30 \text{ to } 70 ^{\circ}\text{C})$

Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Analog reference voltage	V _{AREF}	supplied from V _{DD} pin.	_	V_{DD}	-	
Analog reference voltage	V _{ASS}	supplied from V _{SS} pin.	_	0	ı	V
Analog reference voltage range	ΔV_{AREF}	$=V_{DD}-V_{SS}$	_	V_{DD}	ı	V
Analog input voltage	V _{AIN}		V _{SS}	_	V_{DD}	
Nonlinearity error			_	_	±1	
Zero point error		V50V	_	_	±2	LSB
Full scale error		V _{DD} = 5.0 V	_	_	±2	LOD
Total error			_	_	±3	

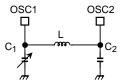

Note: The total error means all error except quanting error.

AC characteristics		$(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}, \text{Topr} = -30 \text{ to } 70 ^{\circ}\text{C})$				
Parameter	Symbol	Conditions	Min	Тур.	Max	Unit
Machine cycle time		In NORMAL mode	0.5	-	1.0	μS
wachine cycle time	t _{cy}	In IDLE mode	0.5			μδ
High level clock pulse width	t _{WCH}	For external clock operation	31.25			200
Low level clock pulse width	t _{WCL}	(XIN input), fc = 16 MHz	31.25	_	_	ns

Recommended oscillating conditions

(VSS = 0 V, VDD = 4.5 V to 5.5 V, Topr = –30 to 70
$$^{\circ}\text{C}$$
)

Parameter	Oscillator	Oscillation	Recommended Oscillator	Recommend	ded Constant
raiametei	Oscillator	Frequency	Neconimended Oscillator	C ₁	C ₂
High-frequency oscillation	Ceramic resonator	8 MHz	Murata CSA 8.00MTZ	30 pF	30 pF
		16 MHz	Murata CSA 16.00MXZ040	5 pF	5 pF


High-frequency Oscillation

- Note 1: To keep reliable operation, shield the device electrically with the metal plate on its package mold surface against the high electric field, for example, by CRT (Cathode Ray Tube) .
- Note 2: The product numbers and specifications of the resonators by Murata Manufacturing Co., Ltd. are subject to change. For up-to-date information, please refer to the following URL;
 - http://www.murata.co.jp/search/index.html

Recommended oscillating conditions

$$(V_{SS} = 0 \text{ V}, V_{DD} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}, \text{Topr} = -30 \text{ to } 70 \text{ }^{\circ}\text{C})$$

ltem	Resonator	Oscillation	Recom	mended paramete	r value
	Resortator	Frequency	L (μH)	C ₁ (pF)	C ₂ (pF)
Oscillation for OSD	DSD LC resonator	8 MHz	33	5 to 30	10
		12 MHz	15	5 to 30	10
		16 MHz	10	5 to 30	10
		20 MHz	6.8	5 to 25	10
		24 MHz	4.7	5 to 25	10

Oscillation for OSD

The frequency generated in LC oscillation can be obtained using the following equations.

$$f = \frac{1}{2\pi\sqrt{LC}}, C = \frac{C_1\boldsymbol{\cdot} C_2}{C_1 + C_2}$$

C1 is not fixed at a constant value. It can be changed to tune into the desired frequency.

Note 1: Toshiba's OSD circuit determines a horizontal display start position by counting clock pulses generated in LC oscillation. For this reason, the OSD circuit may fail to detect clock pulses normally, resulting in the horizontal start position becoming unstable, at the beginning of oscillation, if the oscillation amplitude is low.

Changing L and C_2 from the values recommended for a specific frequency may hamper a stable OSD display.

If the LC oscillation frequency is the same as a high-frequency clock value, the oscillation of the high-frequency oscillator may cause the LC oscillation frequency to fluctuate, thus making OSD displays flicker.

When determining these parameters, please check the oscillation frequency and the stability of oscillation on your TV sets.

Also check the determined parameters on your final products, because the optimum parameter values may vary from one product to another.

Note 2: When using the LSI package in a strong electric field, such as near a CRT, electrically shield the package so that its normal operation can be maintained.