Preliminary

CMOS Low Power Consumption

Low Operating Supply Voltage 2.3V (MIN.) **Output Frequency** 32.768kHz

Oscillation Frequency 2MHz ~ 36MHz (fundamental)

Built-In Divider Circuit Selectable from divisions of

The XC25BS6 is a low operating voltage, low current consumption

series of CMOS ICs with built-in crystal oscillator and divider circuits

designed for clock generators. Oscillation capacitors Cg and Cd are

Output is selectable from any one of the following values for f0:f0/1024,

With oscillation feedback resistors built-in, it is possible to configure a

stable fundamental oscillator using about 10pF of external oscillation

The series has a stand-by function. The oscillation completely stops in

the stand-by state and output will be one of high-impedance.

1024, 512, 256, 128

Output 3-State Ultra Small Package SOT-26

GENERAL DESCRIPTION

f0/512, f0/256, and f0/128.

capacitor and an external crystal.

Chip Form

externally set up.

FEATURES

APPLICATIONS

Crystal Oscillation Modules

Communication Equipment

Various System Clocks

Clock Time-Base

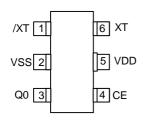
Clocks for Micro-computers, DSPs, etc.

Oscillation Frequency 2MHz ~ 36MHz (fundamental)

- Oscillation feedback resistor built-in

- External oscillation capacitor

Divider Ratio f0/1024, f0/512, f0/256, f0/128

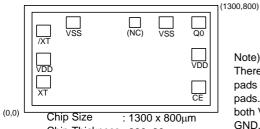

Output 3-State Operating Supply 2.3 ~ 4.0V

Voltage Range

Supply Current 0.5μA (MAX.) when stand-by mode

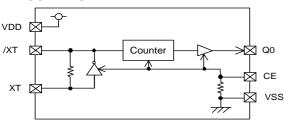
Chip size 1.3 x 0.8mm Chip Form SOT-26 mini mold Package

PIN CONFIGURATION



PIN ASSIGNMENT

PIN NUMBER	PIN NAME	FUNCTIONS
1	/ XT	Crystal Oscillator Connection (Output)
2	VSS	Ground
3	Q0	Clock Output
4	CE	Stand-by Control *
5	VDD	Power Supply
6	XT	Crystal Oscillator Connection (Input)


^{*} The stand-by control pin (pin #4) has a pull-down resistor built-in.

PAD LAYOUT FOR CHIP FORM

Chip Thickness: 280±20µm Chip Back : VDD level Pad Aperture : 88 x 88 µm Note) There are two VSS pads and two VDD pads. Please connect both VSS pads to GND, and connect both VDD pads to a power supply.

BLOCK DIAGRAM

DAD I OCATIONS

	PAD LOCATIONS (C						
	PIN NUMBER PIN FUN NAME FUN		FUNCTIONS	PAD DIM	PAD DIMENSIONS		
			1010110113	X	Υ		
	1	/ XT	Crystal Oscillator	128.0	610.0		
	Į.	/ / 1	Connection (Output)	120.0	010.0		
	2	VSS	Ground	328.0	672.0		
	3	(NC)	No Connection	741.0	672.0		
	4	VSS	Ground	952.0	672.0		
	5	Q0	Clock Output	1172.0	672.0		
	6	VDD	Power Supply	1172.0	430.0		
	7	CE	Stand-by Control *	1172.0	189.0		
	8 XT		Crystal Oscillator	128.0	187.0		
			Connection (Input)	120.0	107.0		
	9	VDD	Power Supply	128.0	399.0		

^{*} The stand-by control pin (pin #4) has a pull-down resistor built-in.

CE. Q0 PIN FUNCTION

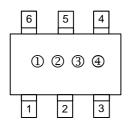
				
CE	Q0			
'H'	Clock Output			
'L' or Open	High Impedance			

■ ABSOLUTE MAXIMUM RATINGS

Ta=25°C

PARAMETER	SYMBOL	RATINGS	UNITS	
Supply Voltage	VDD	VSS -0.3 ~ VSS +7.0	V	
CE Pin Voltage	VCE	VSS -0.3 ~ VDD +0.3	V	
Q0 Pin Voltage	VQ0	VSS -0.3 ~ VDD +0.3	V	
Q0 Output Current	IQ0	± 50	mA	
Continuous Power Dissipation	Pd	150 **	mW	
Operating Temperature Range	Topr	- 40 ~ + 85	°C	
Storage Temperature Range	Tstg	- 65 ~ + 150 (Chip Form)	°C	
Storage Temperature Name	1319	- 55 ~ + 125 (SOT-26)		

^{**} SOT-26 package, When implemented on a glass epoxy PCB.


■ PRODUCT CLASSIFICATION

O Ordering Information

XC25BS6 ①②③④⑤

DESIGNATOR	DESCRIPTION	DESIGNATOR	DESCRIPTION
Divider Ratio:			Package:
	128 = 128 divider	4	C : Chip Form
023	256 = 256 divider	•	W : Wafer Form
	512 = 512 divider		M : SOT-26
	A24 = 1024 divider		Device Orientation:
			R : Embossed Tape : Standard Feed
		(5)	L : Embossed Tape : Reverse Feed
			T : Chip Tray
			W : Wafer

■ MARKING RULE

① Represents XC25BS6 Series

MARK	Product Name
В	XC25BS6

② Represents XC25BS6 Series

rtoprodor	NO ACCORDED CONC.
MARK	Product Name
6	XC25BS6

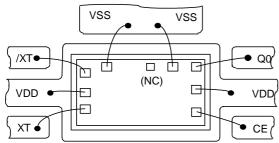
③ Represents divider ratio

MARK	Divider Ratio	MARK	Divider Ratio
1	1 f0/128		f0/256
5	f0/512	Α	f0/1024

Represents the assembly lot no.(Based on internal standards)

■ PACKAGING INFORMATION

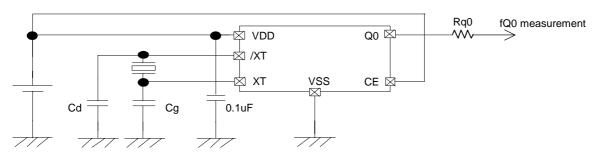
O SOT-26



TOREX Semiconductor Ltd.

XC25BS6 Series

Divider Signal Output Clock Generator ICs with Built-In Crystal Oscillator Circuit Preliminary


■ WIRE BONDING CONNECTION

* There are two VSS pads and VDD pads.

Please connect both VSS pads to GND, and connect both VDD pads to a power supply.

■ TYPICAL APPLICATION CIRCUIT

- * Please use oscillation capacitors Cg, Cd =10pF externally
- * The same power supply can be used for VDD and CE.

NOTES ON USE

(1) The oscillation circuit of this IC does not have internal oscillation capacitors.

Please make the oscillation circuitry using an external crystal transducer and oscillation capacitors Cg and Cd.

- *) A higher harmonic wave oscillation may occur without Cg and Cd.
- *) Cg and Cd can be connected either to GND or VDD. (Cg and Cd in the above circuit example are connected to GND.)
- *) It is recommended to use around for 10pF of Cg and Cd. For trimmer capacitors, 10pF as a standard value is appropriate.
- *) The crystal oscillation frequency should be measured at the output of the Q0 pin.

When a probe is directly connected to the XT pin or the /XT pin, oscillation frequency will change and a precise value can not be taken.

- (2) Please insert a by-pass capacitor of $0.1\mu F$ between VDD and GND.
- (3) The use of a matching resistor Rq0 of 50Ω connected in series to the Q0 pin is recommended in order to counter unwanted radiations.
- (4) Please place a by-pass capacitor and the matching resistor as close to the IC as possible. If the by-pass capacitor is placed away from the IC, it may cause abnormal oscillation. If the matching resistor is placed away from the IC, it may cause unwanted radiations in the pattern between the Q0 pin and the resistor.
- (5) When the CE pin is not controlled by external signals, please connect the CE pin to VDD power supply.
 - *) When the CE pin is not connected, the IC goes into stand-by mode due to the internal pull-down resistor.
- (6) As for the supply voltage, it is recommended to apply a low noise power supply, such as a series regulator. Using a power supply like a switching regulator might lead to an unstable oscillation jitter which in turn may lead the oscillation frequency to fluctuate due to the ripple of the switching regulator.

Semiconductor Ltd.

XC25BS6 Series

Divider Signal Output Clock Generator ICs with Built-In Crystal Oscillator Circuit

Preliminary

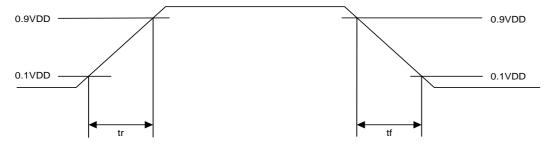
■ DC ELECTRICAL CHARACTERISTICS

XC25BS6xxxxx 3.0V Operation (unless otherwise stated, VDD=3.0V, fOSC=16MHz, No load, Ta=25°C)

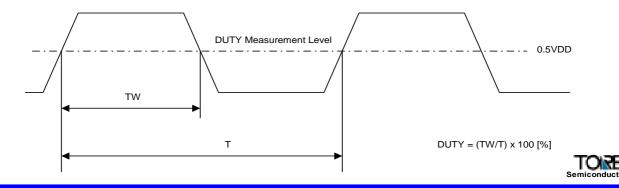
1.0 V Operation (directly stated, VBB-0.0 V, 1000-1014112, 110 10dd, 1d-20 0)							
PARAMETER	SYMBOL	FUNCTIONS		STANDARD VALUE			UNIT
TANAMETER	OTWIDOL			MIN	TYP	MAX	OIVII
Operating Supply Voltage	VDD				3.0	4.0	V
Crystal Oscillation Frequency	fOSC	С	f=Cd=10pF (External)	2	-	36	MHz
H Level Output Voltage	VOH	VI	DD=2.7V, IOH= - 4mA	2.3	ı	ı	V
L Level Output Voltage	VOL	\	/DD=2.7V, IOL=4mA	-	-	0.4	V
Supply Current 1	IDD1	CE=3.0V	fOSC=4MHz, XC25BS6128	-	(0.4)	(8.0)	mA
			fOSC=8MHz, XC25BS6256	=	(0.5)	(1.0)	
			fOSC=16MHz, XC25BS6512	-	(0.8)	(1.6)	
			fOSC=36MHz, XC25BS6A24	-	(1.0)	(1.8)	
Supply Current 2	IDD2	CE=0V		-	-	0.5	μΑ
CE H Level Voltage	VCEH			2.4	·	•	V
CE L Level Voltage	VCEL				-	0.6	V
CE Pull-Down Resistance 1	Rp1	CE=3.0V		0.5	1.6	3.0	ΜΩ
CE Pull-Down Resistance 2	Rp2	CE=0.3V		22	55	90	ΚΩ
Internal Oscillation Feedback Resistance	Rf	XT Pin, CE=/XT=3.0V		0.2	0.5	1.0	ΜΩ
Output Disable Leakage Current	IOZ	Q0	Pin, VDD=4.0V, CE=0V	-	-	0.5	μА

^{*} External oscillation capacitor

AC ELECTRICAL CHARACTERISTICS


XC25BS6xxxxx 3.0V Operation (unless otherwise stated, VDD=3.0V, fOSC=16MHz, CL=15pF, Ta=25°C)

PARAMETER	SYMBOL	FUNCTIONS	STANDARD VALUE			UNIT	
TARGUNETER	OTWIDOL	renene	MIN	TYP	MAX	Ortir	
Output Rise Time	Tr	VDD=3.0V (10% to 90%) *1	-	10	15	ns	
Output Fall Time	Tf	VDD=3.0V (10% to 90%) *1	-	10	15	ns	
Duty Cycle	DUTY		45	50	55	%	
Output Start Time	Ton	*1	-	-	3.0	ms	


^{*1} R&D guarantee

■ AC ELECTRICAL CHARACTERISTICS MEASUREMENT WAVE FORMS

(1) Output Rise Time , Output Fall Time

(2) Duty Cycle

