- Ultra-Fast Operation . . . 10 ns (typ)
- Low Positive Supply Current 12.7 mA (Typ)
- Operates From a Single 5-V Supply or From a Split ±5-V Supply
- Complementary Outputs
- Input Common-Mode Voltage Includes Negative Rail
- Low Offset Voltage
- No Minimum Slew Rate Requirement
- Output Latch Capability
- Functional Replacement to the LT1116

description

The TL3116 is an ultra-fast comparator designed to interface directly to TTL logic while operating from either a single 5-V power supply or dual ±5-V supplies. The input common-mode voltage extends to the negative rail for ground sensing applications. It features extremely tight offset voltage and high gain for precision applications. It has complementary outputs that can be latched using the LATCH ENABLE terminal. Figure 1 shows the positive supply current of the comparator. The TL3116 only requires 12.7 mA (typical) to achieve a propagation delay of 10 ns.

The TL3116 is a pin-for-pin functional replacement for the LT1116 comparator, offering high-speed operation but consuming much less power.

AVAILABLE OPTIONS

	PACKAGED	0.00		
TA	SMALL OUTLINE† (D)	TSSOP (PW)	CHIP FORM [‡] (Y)	
0°C to 70°C	TL3116CD	TL3116CPWLE	TL3116Y	
-40°C to 85°C	TL3116ID	TL3116IPWLE	_	

[†]The PW packages are available left-ended taped and reeled only.

D AND PW PACKAGE (TOP VIEW)

symbol (each comparator)

POSITIVE SUPPLY CURRENT vs FREE-AIR TEMPERATURE

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

[‡] Chip forms are tested at $T_A = 25$ °C only.

TL3116Y chip information

This chip, when properly assembled, displays characteristics similar to the TL3116C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

COMPONENT COUNT					
Bipolars	53				
MOSFETs	49				
Resistors	46				
Capacitors	14				

TL3116, TL3116Y ULTRA-FAST LOW-POWER PRECISION COMPARATORS

SLCS132C - MARCH 1997 - REVISED MAY 1997

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{DD} (see Note 1)	
Differential input voltage, V _{ID} (see Note 2)	
Input voltage range, V _I	
Input voltage, V _I (LATCH ENABLE)	
Output current, I _O	± 20 mA
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	–40°C to 85°C
Storage temperature range, T _{stq}	– 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.

2. Differential voltages are at IN+ with respect to IN-.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW
PW	525 mW	4.2 mW/°C	336 mW

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

TL3116, TL3116Y ULTRA-FAST LOW-POWER PRECISION COMPARATORS

SLCS132C - MARCH 1997 - REVISED MAY 1997

electrical characteristics at specified operating free-air temperature, V_{DD} = ± 5 V, V_{LE} = 0 (unless otherwise noted)

DADAMETED TEST CONDITIONS!			TL3116C			TL3116I			
PARAMETER	TEST CONDITIONS!	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT	
lanut effect veltere	T _A = 25°C		0.5	3		0.5	3	mV	
input offset voltage	T _A = full range			3.5			3.5	mv	
Temperature coefficient of input offset voltage			-2.5			-2.8		μV/°C	
	T _A = 25°C		0.1	0.2		0.1	0.2		
Input offset current	T _A = full range			0.3			0.35	μΑ	
January I. Community	T _A = 25°C		0.7	1.1		0.7	1.1		
input bias current	T _A = full range			1.2			1.5	μΑ	
Common-mode input	V _{DD} = ±5 V	-5		2.5	-5		2.5	.,	
voltage range	V _{DD} = 5 V	0		2.5	0		2.5	V	
Common-mode rejection ratio	-5 ≤ V _{IC} ≤ 2.5 V	75	100		75	100		dB	
Supply-voltage rejection	Positive supply: $4.6 \text{ V} \le +\text{V}_{DD} \le 5.4 \text{ V}$, $T_A = 25^{\circ}\text{C}$	60	80		60	80		dB	
ratio	Negative supply: $-7 \text{ V} \le -\text{V}_{DD} \le -2 \text{ V}$, $T_A = 25^{\circ}\text{C}$	80	100		80	100			
Laveland autout valtage	$I_{(Sink)} = 4 \text{ mA},$ V+ $\leq 4.6 \text{ V},$ $T_A = 25^{\circ}\text{C}$		400	600		400	600	\/	
Low-level output voltage	$\begin{split} I_{\mbox{(sink)}} &= 10 \mbox{ mA}, & \mbox{V+} \leq 4.6 \mbox{ V}, \\ T_{\mbox{A}} &= 25^{\circ} \mbox{C} \end{split}$		750			750		mV	
High lavel output vales	$V+ \leq 4.6 \text{ V}, \\ T_A = 25^{\circ}\text{C}$ $I_O = 1 \text{ mA},$	3.6	3.9		3.6	3.9		V	
nign-ievei output voitage	$V+ \leq 4.6 \ V, \\ T_{\mbox{\scriptsize A}} = 25 \mbox{\rm °C} \label{eq:total_obj}$	3.4	3.8		3.4	3.8		V	
Positive supply current	ply current		12.7	14.7		12.7	15	A	
Negative supply current	TA = ruii range	-2.6			-3			mA	
Low-level input voltage (LATCH ENABLE)				0.8			0.8	V	
High-level input voltage (LATCH ENABLE)		2			2			V	
Low-level input current	V _{LE} = 0		0	1		0	1	μΑ	
(LATCH ENABLE)	V _{LE} = 2 V		24	39		24	45	μΑ	
	of input offset voltage Input offset current Input bias current Common-mode input voltage range Common-mode rejection ratio Supply-voltage rejection ratio Low-level output voltage Positive supply current Negative supply current Low-level input voltage (LATCH ENABLE) Low-level input current	$ \begin{array}{c} \text{Input offset voltage} & \begin{array}{c} T_{A} = 25^{\circ}\text{C} \\ \hline T_{A} = \text{full range} \end{array} \\ \hline \text{Temperature coefficient of input offset voltage} \\ \hline \text{Input offset current} & \begin{array}{c} T_{A} = 25^{\circ}\text{C} \\ \hline T_{A} = \text{full range} \end{array} \\ \hline \text{Input offset current} & \begin{array}{c} T_{A} = 25^{\circ}\text{C} \\ \hline T_{A} = \text{full range} \end{array} \\ \hline \text{Input bias current} & \begin{array}{c} T_{A} = 25^{\circ}\text{C} \\ \hline T_{A} = \text{full range} \end{array} \\ \hline \text{Common-mode input voltage range} & \begin{array}{c} V_{DD} = \pm 5 \text{ V} \\ V_{DD} = 5 \text{ V} \end{array} \\ \hline \text{Common-mode rejection ratio} & \begin{array}{c} -5 \leq \text{V}_{ C} \leq 2.5 \text{ V} \\ \hline \text{Positive supply: } 4.6 \text{ V} \leq +\text{V}_{DD} \leq 5.4 \text{ V}, \\ T_{A} = 25^{\circ}\text{C} \\ \hline \text{Negative supply: } -7 \text{ V} \leq -\text{V}_{DD} \leq -2 \text{ V}, \\ T_{A} = 25^{\circ}\text{C} \\ \hline \text{I(sink)} = 4 \text{ mA}, & \text{V+} \leq 4.6 \text{ V}, \\ T_{A} = 25^{\circ}\text{C} \\ \hline \text{I(sink)} = 10 \text{ mA}, & \text{V+} \leq 4.6 \text{ V}, \\ T_{A} = 25^{\circ}\text{C} \\ \hline \end{array} \\ \hline \text{I(sink)} = 10 \text{ mA}, & \text{V+} \leq 4.6 \text{ V}, \\ T_{A} = 25^{\circ}\text{C} \\ \hline \end{array}$	$ \begin{array}{c} \text{Input offset voltage} \\ \text{Ta} = 25^{\circ}\text{C} \\ \hline T_{A} = \text{full range} \\ \\ \text{Input offset current} \\ \\ \text{Input offset current} \\ \\ \text{Input offset current} \\ \\ \text{Input bias current} \\ \\ \text{Input bias current} \\ \\ \text{Input bias current} \\ \\ \text{Ta} = 25^{\circ}\text{C} \\ \hline T_{A} = \text{full range} \\ \\ \text{Common-mode input voltage range} \\ \\ \text{Common-mode rejection ratio} \\ \\ \text{Common-mode rejection ratio} \\ \\ \text{Supply-voltage rejection ratio} \\ \\ \text{Supply-voltage rejection ratio} \\ \\ \text{Do Supply-voltage supply: } -7 \text{ V} \leq -\text{V}_{DD} \leq 5.4 \text{ V}, } \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{Negative supply: } -7 \text{ V} \leq -\text{V}_{DD} \leq -2 \text{ V}, } \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{I(sink)} = 10 \text{ mA}, \qquad \text{V+} \leq 4.6 \text{ V}, } \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \qquad \text{IO} = 1 \text{ mA}, } \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \qquad \text{IO} = 10 \text{ mA}, } \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V+} \leq 4.6 \text{ V}, \qquad \text{IO} = 10 \text{ mA}, } \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V-} \leq 4.6 \text{ V}, \qquad \text{IO} = 10 \text{ mA}, } \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V-} \leq 4.6 \text{ V}, \qquad \text{IO} = 10 \text{ mA}, } \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V-} \leq 4.6 \text{ V}, \qquad \text{IO} = 10 \text{ mA}, } \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V-} \leq 4.6 \text{ V}, \qquad \text{IO} = 10 \text{ mA}, } \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V-} \leq 4.6 \text{ V}, \qquad \text{IO} = 10 \text{ mA}, } \\ \text{Ta} = 5^{\circ}\text{C} \\ \\ \text{V-} \leq 4.6 \text{ V}, \qquad \text{IO} = 10 \text{ mA}, } \\ \text{Ta} = 5^{\circ}\text{C} \\ \\ \text{V-} \leq 4.6 \text{ V}, \qquad \text{IO} = 10 \text{ mA}, } \\ \text{Ta} = 5^{\circ}\text{C} \\ \\ \text{V-} \leq 4.6 \text{ V}, \qquad \text{IO} = 10 \text{ mA}, } \\ \text{Ta} = 5^{\circ}\text{C} \\ \\ \text{V-} \leq 4.6 \text{ V}, \qquad \text{IO} = 10 \text{ mA}, \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V-} \leq 4.6 \text{ V}, \qquad \text{IO} = 10 \text{ mA}, \\ \text{Ta} = 25^{\circ}\text{C} \\ \\ \text{V-} \leq 4.6 \text{ V}, \qquad \text{IO} = 10 \text{ mA}, \\ \text{Ta} = 100 \text{ mA}, \\ \text$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	

[†] Full range for the TL3116C is $T_A = 0^{\circ}$ C to 70° C. Full range for the TL3116I is $T_A = -40^{\circ}$ C to 85° C. ‡ All typical values are measures with $T_A = 25^{\circ}$ C.

switching characteristics, $V_{DD} = \pm 5 \text{ V}$, $V_{LE} = 0$

24244555		TEST SOUDITIONS!		TL3116C		TL3116I				
	PARAMETER	TEST CONDITIONS†		MIN	TYP	MAX	MIN	TYP	MAX	UNIT
t _{pd1} Propagation delay time‡	$\Delta V_{\parallel} = 100 \text{ mV},$	T _A = 25°C		9.9	12		9.9	12		
	Propagation delay time‡	$V_{OD} = 5 \text{ mV}$	T _A = full range		9.9	14		9.9	15	ns
		$\Delta V_I = 100 \text{ mV},$ $V_{OD} = 20 \text{ mV}$	T _A = 25°C		8.2	10.3		8.2	10.3	
			T _A = full range		8.2	12.7		8.2	13.7	
t _{sk(p)}	Pulse skew ($ t_{pd+} - t_{pd-} $)	$\Delta V_I = 100 \text{ mV},$ $T_A = 25^{\circ}\text{C}$	$V_{OD} = 5 \text{ mV},$		0.5			0.5		ns
t _{su}	Setup time, LATCH ENABLE				3.4			3.4		ns

[†] Full range for the TL3116C is 0°C to 70°C. Full range for the TL3116I is –40°C to 85°C.

TYPICAL CHARACTERISTICS

Table of Graphs

			FIGURE
		vs Input voltage	2
ICC	Positive supply current	vs Frequency	3
		vs Free-air temperature	4
ICC	Negative supply current	vs Free-air temperature	5
^t pd		vs Overdrive voltage	6
	Propagation delay time	vs Supply voltage	7
		vs Input impedance	8
		vs Load capacitance	9
		vs Free-air temperature	10
VIС	Common-mode input voltage	vs Free-air temperature	11
V _{IT}	Input threshold voltage (LATCH ENABLE)	vs Free-air temperature	12
,,	0	vs Output source current	13
Vo	Output voltage	vs Output sink current	14
lį	Input current (LATCH ENABLE)	vs Input voltage	15

[‡] t_{pd1} cannot be measured in automatic handling equipment with low values of overdrive. The TL3116 is 100% tested with a 1-V step and 500-mV overdrive at T_A = 25°C only. Correlation tests have shown that t_{pd1} limits given can be ensured with this test, if additional dc tests are performed to ensure that all internal bias conditions are correct. For low overdrive conditions, V_{OS} is added to the overdrive.

20

18

16

14

12

10

8

2

0

ICC - Positive Supply Current - mA

TYPICAL CHARACTERISTICS

8

POSITIVE SUPPLY CURRENT INPUT VOLTAGE $V_{CC} = \pm 5 V$ T_A = 25°C T_A = 85°C T_A = 25°C $T_A = -40^{\circ}C$

V_I - Input Voltage - V

TYPICAL CHARACTERISTICS

Figure 9

Figure 8

TYPICAL CHARACTERISTICS

PROPAGATION DELAY TIME FREE-AIR TEMPERATURE 25 $V_{CC} = \pm 5 V$ tpd - Propagation Delay Time - ns 20 15 Rising Edge 10 **Falling Edge** 5 75 100 125 - 50 - 25 50 T_A - Free-Air Temperature - °C

INPUT THRESHOLD VOLTAGE (LATCH ENABLE)

Figure 10

TYPICAL CHARACTERISTICS

MECHANICAL INFORMATION

D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
- D. Four center pins are connected to die mount pad.
- E. Falls within JEDEC MS-012

MECHANICAL INFORMATION

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PIN SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

e
d
trol
work
d trol wo

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated