

Quad Sine-Wave Clock Buffer With LDO

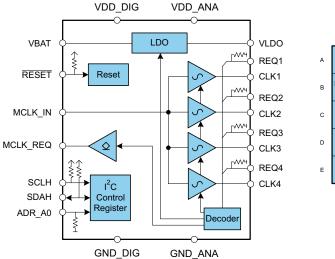
Check for Samples: CDC3S04

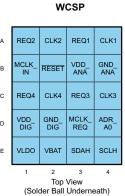
FEATURES

- 1:4 Low-Jitter Clock Buffer
- Single-Ended Sine-Wave Clock Input and Outputs
- Ultralow Phase Noise and Standby Current
- Individual Clock Request Inputs for Each Output
- On-Chip Low-Dropout Output (LDO) for Low-Noise TCXO Supply
- Serial I²C Interface (Compatible With High-Speed Mode, 3.4 Mbit/s)
- 1.8-V Device Power Supply
- Wide Temperature Range, –30°C to 85°C
- ESD Protection: 2 KV HBM, 750 V CDM, and 100 V MM
- Small 20-Pin Chip-Scale Package: 0.4-mm
 Pitch WCSP (1.6 mm x 2 mm)

APPLICATIONS

- Cellular Phones
- Smart Phones
- Mobile Handsets
- Portable Systems
- Wireless Modems Including GPS, WLAN, W-BT, D-TV, DVB-H, FM Radio, WiMAX, and System Clock


DESCRIPTION


The CDC3S04 is a four-channel low-power low-jitter sine-wave clock buffer. It can be used to buffer a single master clock to multiple peripherals. The four sine-wave outputs (CLK1–CLK4) are designed for minimal channel-to-channel skew and ultralow additive output jitter.

Each output has its own clock request inputs which enables the dedicated clock output. These clock requests are active-high (can also be changed to be active-low via I²C), and an output signal is generated that can be sent back to the master clock to request the clock (MCLK_REQ). MCKL_REQ is an open-source output and supports the wired-OR function (default mode). It needs an external pulldown resistor. MCKL_REQ can be changed to wired-AND or push-pull functionality via I²C.

The CDC3S04 also provides an I²C interface (Hs-mode) that can be used to enable or disable the outputs, select the polarity of the REQ inputs, and allow control of internal decoding.

The CDC3S04 features an on-chip high-performance LDO that accepts voltages from 2.3 V to 5.5 V and outputs a 1.8-V supply. This 1.8-V supply can be used to power an external 1.8-V TCXO. It can be enabled or disabled for power saving at the TCXO.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

DESCRIPTION (CONTINUED)

A low signal at the $\overline{\text{RESET}}$ input switches the outputs CLK1 and CLK4 into the default state. In this <u>configuration</u>, CLK1 and CLK4 are ON (see <u>Table 1</u>); the remaining device function is not affected. Also, the RESET input provides a glitch filter which rejects spikes of typical 300 ns on the RESET line to preserve false reset. A complete device reset to the default condition can be initiated by a power-up cycle of $V_{DD\ DIG}$.

The CDC3S04 operates from two 1.8-V supplies. There is a core supply (VDD_DIG/GND_DIG) for the core logic and a low-noise analog supply (VDD_ANA/GND_ANA) for the sine-wave outputs. The CDC3S04 is designed for sequence-less power up. Both supply voltages may be applied in any order.

The CDC3S04 is offered in a 0.4-mm pitch WCSP package (1.6 mm \times 2 mm) and is optimized for low standby current (0.5 μ A). It is characterized for operation from -30° C to 85°C.

DEVICE INFORMATION

PIN FUNCTIONS

NAME	BALL NO.	TYPE	FUNCTION
ADR_A0	D4	Input	Selectable address bit A0 of slave-address register; internal 500-kΩ pulldown resistor
CLK1	A4	Output	Clock output 1
CLK2	A2	Output	Clock output 2
CLK3	C4	Output	Clock output 3
CLK4	C2	Output	Clock output 4
GND_ANA	B4	Ground	Ground for sine-wave buffer
GND_DIG	D2	Ground	Ground for core logic
MCLK_IN	B1	Input	Master clock input
MCLK_RE Q	D3	Output	Clock request to the master clock source; active-high; open-source output for wired-OR connection (default condition). Can be changed to push-pull output or wired-AND output via I ² C.
REQ1	A3	Input	Clock request from peripheral 1; internal 500-kΩ pulldown resistor
REQ2	A1	Input	Clock request from peripheral 2; internal 500-kΩ pulldown resistor
REQ3	C3	Input	Clock request from peripheral 3; internal 500-kΩ pulldown resistor
REQ4	C1	Input	Clock request from peripheral 4; internal 500-kΩ pulldown resistor
RESET	B2	Input	Peripheral reset signal provided by application processor. The signal is active-low and switches CLK1 and CLK4 outputs to ON (see Table 1). On-chip LDO is enabled. Internal 1-M Ω pullup resistor and 300-ns (typ) glitch filter.
SCLH	E4	Input	I^2 C clock input – Hs-mode. Internal 1-M Ω pullup resistor
SDAH	E3	Input/output	I ² C data input/output – Hs-mode. Internal 1-MΩ pullup resistor
VBAT	E2	Power	Supply pin to internal LDO
VDD_ANA	В3	Power	1.8-V power supply for sine-wave buffer
VDD_DIG	D1	Power	1.8-V power supply for core logic. Power up of VDD_DIG resets the whole device to the default condition.
VLDO	E1	Output	1.8-V supply for external TCXO; LDO is enabled if RESET (default mode) or REQx is active. LDO is not enabled if only VBAT is on.

Submit Documentation Feedback

FUNCTION SELECTION TABLES

Table 1. Reset and Request (REQx) Conditions for Clock Outputs (1)

RESET ⁽²⁾	PRIORITY BIT ⁽³⁾	CLK1	CLK2	CLK3	CLK4
0	0		Controlled by REQ2 Controlled by REQ3		05
0	1	On	Controlled by REQ2INT	Controlled by REQ3INT	On
. 0		Controlled by REQ1	Controlled by REQ2	Controlled by REQ3	Controlled by REQ4
1	1	Controlled by REQ1INT	Controlled by REQ2INT	Controlled by REQ3INT	Controlled by REQ4INT

Table 2. Request Signal Condition for Clock Outputs (1)

REQ-Signals (2)	REQx (REQ1/2/3/4)	CLKx (CLK1/2/3/4)	MCLK_REQ	LDO ⁽³⁾
Active-low	0	Clock	High	On
	1	Disabled to high	Low (if all REQx are high)	Off (if all REQx are high)
A ations binds	0	Disabled to high (4)	Low (if all REQx are low)	Off (if all REQx are low)
Active-high	1	Clock ⁽⁴⁾	High	On

Shaded cells show the default setting after power up.

- The LDO is controlled by an on-chip decoder, but can also be SW controlled (see Table 3, Byte 2, Bits 4-5).
- CLK1 and CLK4 are ON after device power up (default condition). CLK2 and CLK3 are controlled by external REQ2 and REQ3, respectively.

POWER GROUPS

NAME	DESCRIPTION
VBAT	Supply pin for LDO provided by main battery. LDO is not working if only VBAT is on.
VLDO	1.8-V low-drop output voltage for external TCXO. LDO is enabled if VBAT and VDD_DIG are on and REQx or RESET is active (see Table 2).
VDD_DIG	1.8-V power supply for core logic and I ² C logic. VDD_DIG must be supplied for correct device operation. Power up of VDD_DIG resets the whole device to the default condition.
VDD_ANA	1.8-V power supply for sine-wave buffers. For correct sine-wave buffer function, all three power supplies (VBAT, V_{DD_DIG} and V_{DD_ANA}) must be on. But, V_{DD_ANA} can be switched on and off at any time. If off, the sine-wave outputs are switched to high-impedance.

POWER-UP SEQUENCE

The CDC3S04 is designed for sequence-less power up. VBAT, V_{DD_DIG} , and V_{DD_ANA} may be applied in any order. Recommended power-on sequence is VBAT first, followed by V_{DD_DIG} and V_{DD_ANA} . Recommended power-off sequence is in reverse order.

Copyright © 2009-2010, Texas Instruments Incorporated

 ⁽¹⁾ Shaded cells show the default setting after power up.
 (2) RESET resets REQ1PRIO/REQ4PRIO and REQ1INT/REQ4INT bits to their default values (CLK1/4 is ON) but does not change the remaining internal SW bits. During RESET, any I²C operation is blocked until RESET is deactivated. A minimum pulse duration of 500 ns must be applied to activate RESET (the internal glitch-filter suppresses spikes of typical 300 ns).

Priority bit defines if the external control pins (HW controlled) or the SW bits (SW controlled) have priority. It can be set in the configuration register, Byte 2, Bits 0-3.

Polarity of REQ1, REQ2, REQ3, and REQ4 are register-configurable via 1²C (see Table 3, Byte 0, Bits 0–3). Default setting is

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) (1)

		VALUE	UNIT
$V_{DD_ANA} \ V_{DD_DIG}$	Supply voltage range	-0.5 to 2.5	V
V_{BAT}	Battery supply voltage range	-0.5 to 6.5	٧
VI	Input voltage range ^{(2) (3)}	-0.5 to V _{DD} + 0.5	V
Vo	Output voltage range ⁽²⁾ (3)	-0.5 to V _{DD} + 0.5	V
V_{LDO}	Output voltage range	-0.5 to V _{BAT} + 0.5	٧
	Input current ($V_i < 0, V_i > V_{DD}$)	±20	mA
Io	Continuous output current	±20	mA
I _{LDO}	Continuous output current	±20	mA
T _{stg}	Storage temperature range	-65 to 150	°C

- (1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute—maximum—rated conditions for extended periods may affect device reliability.
- (2) The input and output negative voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- (3) The input V_I and output V_O positive voltages are limited to the absolute maximum rating for V_{DD} = 2.5 V.

THERMAL CHARACTERISTICS for 20-pin WCSP (YFF)(1)

	PARAMETER	AIRFLOW (Ifm)	20-PIN WCSP	UNIT
		0	71	
T_{JA}	Thermal resistance, junction-to-ambient	200	62	°C/W
		400	59	
T_{JC}	Thermal resistance, junction-to- case	_	17.5	°C/W
T_{JB}	Thermal resistance, junction-to-board	_	20.5	°C/W
T _J	Maximum junction temperature	_	125	°C

⁽¹⁾ The package thermal impedance is calculated in accordance with JESD 51 and JEDEC2S2P (high-k board).

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
V _{DD_ANA}	Device supply voltage	1.65	1.8	1.95	V
V_{DD_DIG}	Device supply voltage	1.65	1.8	1.95	V
V _{IH}	Input voltage ADD, AO DEOV DESET	0.65 V _{DD_DIG}			V
V _{IL}	Input voltage ADR_A0, REQx, RESET			$0.35\ V_{DD_DIG}$	V
V _{IS}	Sine-wave input voltage – MCLK_IN; ac-coupled amplitude	0.5		1.2	V_{PP}
C _L	Sine-wave output load ⁽¹⁾		10	30	pF
C _{OUT}	LDO output capacitance (stabilize the internal control loop)	0.8	2.2		μF
T _A	Operating free-air temperature	-30		85	°C

(1) 10 pF is the typical load-driving capability. The drive capability can be optimized for 30 pF by the I²C register (Byte 3, Bits 7–4).

Submit Documentation Feedback

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
		OVERALL PARAM	METER	1			
		V _{BAT} = 5.5 V;	Off (no REQ)		0.1	0.2	
I _{DD_ANA}	Analog supply current ⁽¹⁾ (seeFigure 8 through Figure 12)	$ \begin{array}{l} V_{DD_ANA} = 1.95 \; V; \\ LDO \; is \; on; \; V_{IS} = 1 \; V_{PP}; \\ f_{MCLK_IN} = 38.4 \; MHz; \\ R_L = 10 \; k\Omega; \; C_L = 10 \; pF^{(2)} \\ \end{array} $	Per output		2	2.6	mA
I _{DD_DIG}	Digital supply current (see Figure 8 through Figure 12)	$V_{BAT} = 5.5 \text{ V}; V_{DD_DIG} = 1$ = off; LDO = off; $V_{IS} = 1 \text{ Vpp}; f_{M}$ MHz; $C_{L} = 10 \text{ pF}; R_{L} = 10 \text{ k}\Omega$	_			0.1	mA
I _{SB}	Standby current	V _{BAT} = 5.5 V; V _{DD_DIG} /V _{DL} All outputs disabled (no in off; no REQ; RESET is ina idle mode); includes 1-MΩ and RESET		0.5	10	μΑ	
f _{MCLK_IN}	Input frequency	Sine wave		0.01	38.4	52	MHz
V _{OH}	MCLK_REQ high-level output	Wired-OR output;		V _{DD_DIG} – 0.45			V
	voltage			V _{DD_DIG} – 0.45			
V	MCLK_REQ low-level output	Wired-AND output; $I_{OL} = 2 \text{ mA}$ $V_{DD_DIG} = 1.65 \text{ V}$				0.45	V
V _{OL}	voltage	Push-pull output; $V_{DD_DIG} = 1.65 \text{ V}$, $I_{OL} = 2 \text{ mA}$		0		0.45	٧
V_{IK}	LVCMOS input voltage	$V_{DD_DIG} = 1.65 \text{ V}; I_I = -18$	mA			-1.2	>
L.	Input current ADR_A0, REQx (500-kΩ pulldown)	$V_{I} = V_{DD DIG}$; $V_{DD DIG} = 1$.	95 V			6	μA
I _{IH}	Input current $\overline{\text{RESET}}$ (1-M Ω pullup)	vi – vDD_DiG, vDD_DiG – 1.	.90 V			2	μΛ
L.	Input current ADR_A0, REQx (500- $k\Omega$ pulldown)	V _I = 0 V; V _{DD DIG} = 1.95 V	/			-2	μA
I _{IL}	Input current $\overline{\text{RESET}}$ (1-M Ω pullup)	V = 0 V, VDD_DIG = 1.33 V				-3	μΛ
C _I	Input capacitance ADR_A0, REQx, RESET	$V_I = 0 \text{ V or } V_{DD_DIG}$			3		pF
		SDAH/SCLH PARAM	METER (Hs-Mode	e)			
V_{IK}	SCLH/SDAH input clamp voltage	$V_{DD_DIG} = 1.65 \text{ V}; I_I = -18$	mA			-1.2	V
I _I	SCLH/SDAH input current	0.1 V _{DD_DIG} < V _I < 0.9 V _{DD_DIG}				10	μΑ
V_{IH}	SDA/SCL input high voltage			0.7 V _{DD_DIG}			V
V_{IL}	SDAH/SCLH input low voltage					$0.3~V_{DD_DIG}$	V
V_{hys}	Hysteresis of Schmitt-trigger inputs			0.1 V _{DD_DIG}			V
V_{OL}	SDAH low-level output voltage	$I_{OL} = 3 \text{ mA}, V_{DD_DIG} = 1.6$	5 V			$0.2~V_{DD_DIG}$	V
Cı —	SCLH input capacitance	$V_I = 0 \text{ V or } V_I = V_{DD_DIG}^{(3)}$			3	5	pF
Cı	SDAH input capacitance	$V_I = 0 \text{ V or } V_I = V_{DD_DIG}^{(3)}$			8	10	ρΓ

⁽¹⁾ The total current consumption when no output is active is calculated by $I_{DD_ANA}(off) + I_{DD_DIG}$.

 ⁽²⁾ For C_L = 30 pF, the typical current for one output is 2.2 mA (see Figure 8).
 (3) The I²C standard specifies a maximum C_I of 10 pF.

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT	
	SINE-WAV	E PARAMETER (MCLK_IN	is sine-wave s	ignal, C _L = 10 pF)		•	
f _{OUT}	Output frequency					52	MHz	
V _{OS}	Output gain level (see Figure 17)	MCLK_IN-to-CLKx; 10 kΩ, 10 pF; ac-coupled;	0.5 ≤ V _{IS} ≤ 1.2 V _{PP}	-1	-0.3	0	dB	
00	Output voltage	f _{MCLK_IN} > 1 MHz	$V_{IS} = 0.5 V_{PP}$	445	490	500	mV_{PP}	
	A -1-1111 (4)	10 Hz to 10 MHz; f _{OUT} = 38	3.4 MHz		0.3	0.6		
t _{jitadd(rms)}	Additive rms jitter (4)	10 kHz to 10 MHz; f _{OUT} = 3	88.4 MHz		0.1	0.2	ps _{RMS}	
		At offset = 1 kHz			-142	-135		
pn _{add}	Additive phase noise at f _{OUT} = 38.4 MHz ⁽⁵⁾	At offset = 10 kHz			-152	-145	dBc/Hz	
	30.4 WH 12	At offset = 100 kHz			-157	-150		
R _{IN}	Input resistance	At dc level		12	15		kΩ	
C _{IN}	Input capacitance	f _{MCLK IN} = 38.4 MHz			5	7	pF	
	ELECTF	RICAL CHARACTERISTIC of	of LDO (C _{OUT} =	0.8 to 2.7 μF) ⁽⁶⁾			-	
V_{BAT}	Input voltage range			2.3		5.5	V	
V_{LDO}	LDO output voltage ⁽⁷⁾	2.3 V < V _{BAT} < 5.5 V, I _{LOAD}	= 5 mA	1.72	1.8	1.9	V	
	Maximum line regulation	2.3 V < V _{BAT} ≤ 5.5 V, I _{LOAD}	= 5 mA		0.5%			
ΔV_{LDO}	Maximum load regulation	0 < I _{LOAD} < 5 mA, V _{BAT} = 2 T _J = 25°C	.3 V or 5.5 V;		0.5%			
I _{LOAD}	Load current	$C_{OUT} = 0.8 \mu F$ to 2.7 μF		0	5		mA	
I _{LCL}	LDO output current limit	$V_{LDO} = 0.9 \times V_{LDO(TYP)}$		10		60	mA	
I_{LGND}	LDO ground pin current ⁽⁸⁾	$V_{BAT} = 3.6 \text{ V}; 0 < I_{LOAD} < 5$	mA		50	150	μΑ	
I _{LSHDN}	LDO shutdown current	2.3 V < V _{BAT} < 5.5 V				0.2	μA	
			100 Hz	60	68			
		V _{BAT} = 2.3 V (for min)	1 kHz	55	62			
DODD	Power-supply rejection ratio	$V_{BAT} = 2.5 \text{ V (for typ)}$	10 kHz	45	52		dB	
PSRR	(ripple rejection) (see Figure 20)	$V_{LDO} = 1.8 \text{ V}$ $I_{LOAD} = 5 \text{ mA}$	100 kHz	33	40			
		$V_{ripple} = 0.1 \text{ Vpp}$	1 MHz	37	46			
			10 MHz	60	67			
V _N	Output noise voltage (see Figure 21)	BW = 10 Hz to 100 kHz; V_l I_{LOAD} = 5 mA	_{_DO} = 1.8 V;			30	μV _{RMS}	

(4) Additive rms jitter is the integrated rms jitter that the device adds to the signal chain. It is calculated by t_{jitadd(rms)} = √(t_{jitout(rms)}² - t_{jitin(rms)}²). Specified with the supply ripple noise of 30 μV(rms) from 10 Hz to 100 kHz.

(5) Additive phase noise is the amount of phase noise that the device adds to the signal chain. It is calculated by L_{add} (dB) = 10 log (10^{0.1 Lout} – 10^{0.1 Lin}).

(6) Minimum C_{OUT} should be 100 nF to allow for stable LDO operation.

- LDO output voltage includes maximum line and load regulation.
- (8) LDO ground pin current does not change over V_{BAT}.

TIMING REQUIREMENTS

over operating free-air temperature range (unless otherwise noted) $V_{LDO} = 1.8 \text{ V}$; $C_L = 10 \text{ pF}$; $R_L = 10 \text{ k}\Omega$

PARAMETER		TEST CONDITIONS	MIN TYP	1) MAX	UNIT			
TIMING PARAMETER								
t _{PD}	Propagation delay time	MCLK_IN-to-CLKx; f _{MCLK_IN} = 38.4 MHz		3	ns			
t _{LH}	Propagation delay time, low-to-high	REQx-to-MCLK_REQ (wired-OR, C_L = 15 pF, R_L = 10 k Ω);		15	ns			
	CLKx on-time – REQ-to-CLKx	f _{MCLK IN} = 38.4 MHz; V _{VDD ANA} is on;	0	.3 0.4	μs			
t _{CLK} ⁽²⁾	CLKx on-time – RESET-to-CLKx ⁽³⁾	$V_{IS} = 1 \text{ V}$; $V_{OS} = -1 \text{ dB}$ (see Figure 5 and	0	.6 0.8	μs			
	CLKx off-time – REQ-to-CLKx	Figure 6)		25	ns			
	CLKx on-time – V _{DD_ANA} to-CLKx	$\begin{split} f_{MCLK_IN} &= 38.4 \text{ MHz} \; ; \; V_{IS} = 1 \; V; \\ V_{OS} &= -1 \; dB; \; \text{measurement starts when} \\ V_{DD_ANA} \; \text{is } 90\% \; \text{of } 1.7 \; V \; \text{(see Figure 7)} \end{split}$	2	20 50	μs			
t _{SP}	Pulse duration of spikes that must be suppressed by the input filter for RESET (3)			100	ns			
t _{sk(o)}	Output skew ⁽⁴⁾	f _{MCLK_IN} = 38.4 MHz; CLK1-to-CLK4	2	25 50	ps			
t _{LDO}	LDO on-time ⁽⁵⁾ – REQ-to-LDO; – RESET-to-LDO	$V_{LDO} = 1.7 \text{ V}, I_{LDO} = 5 \text{ mA}, \\ 2.3 \text{ V} < V_{BAT} < 5.5 \text{ V}; C_{OUT} = 2.7 \mu\text{F}$	10	00 300	μs			

- All typical values are at nominal V_{DD_ANA} and V_{DD_DIG} . CLK on-time is measured with valid input signal ($\overline{V}_{IS}=1$ Vpp). In case a TXCO is used, the LDO and TCXO are already on. Pulses above 500 ns are interpreted as a valid reset signal. Total time from RESET-to-CLKx is the sum of tsp + tclk_/RESET.
- Output skew is calculated as the greater of the difference between the fastest and the slowest t_{PLH} or the difference between the fastest and the slowest t_{PHL} . LDO off-time depends on the discharge time of the R-C components (seeFigure 4).

	PARAMETER	MIN	MAX	UNIT		
SDAH/SCLH TIMING REQUIREMENTS, Hs-Mode (C _{BUS} = 100 pF for each I ² C line; see Figure 24 and Figure 25)						
f _{SCLH}	SCLH clock frequency	0	3.4	MHz		
t _{su(START)}	START setup time (SCLH high before SDAH low)	160		ns		
t _{h(START)}	START hold time (SCLH low after SDAH low)	160		ns		
t _{LOW}	Low period of the SCLH clock	160		ns		
t _{HIGH}	High period of the SCLH clock	60		ns		
t _{h(SDAH)}	SDAH hold time (SDAH valid after SCLH low)	0 ⁽¹⁾	70	ns		
t _{su(SDAH)}	SDAH setup time	10		ns		
	SCLH rise time	10	40	ns		
t _r	SDAH rise time	10	80			
	SCLH fall time	10	40	ns		
t _f	SDAH fall time	10	80			
t _{su(STOP)}	STOP setup time	160		ns		
t _{SP}	Pulse duration of spikes that must be suppressed by the input filter for SDAH and SCLH	0	10	ns		

(1) A device must internally provide a data hold time to bridge the undefined period between V_{IH} and V_{IL} of the falling edge of the SCLH signal. An input circuit with a threshold as low as possible for the falling edge of the SCLH signal minimizes this hold time.

PARAMETER MEASUREMENT INFORMATION

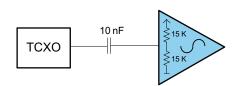


Figure 1. Input Circuit

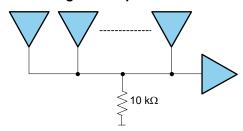


Figure 3. Wired OR

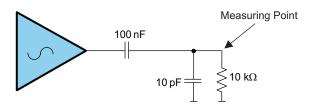
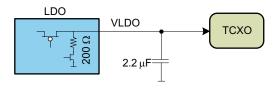



Figure 2. Output Circuit

i.e. time constant(RxC) is 440 μs for 63% discharge.

Figure 4. LDO Output Circuit

TYPICAL CHARACTERISTICS

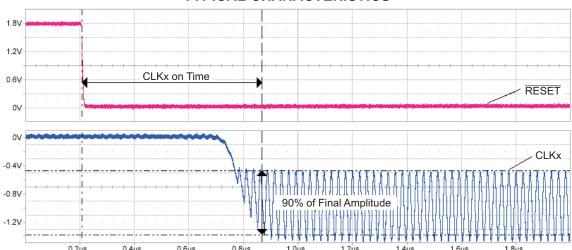


Figure 5. CLKx On-Time From RESET Off-to-On

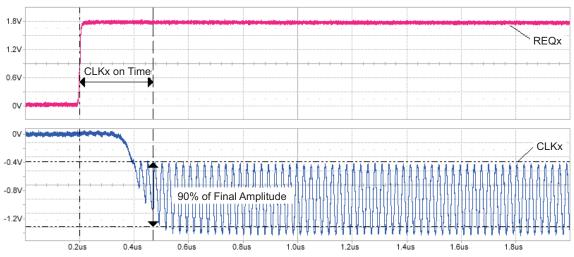
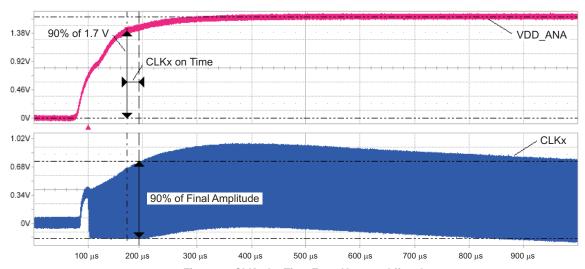
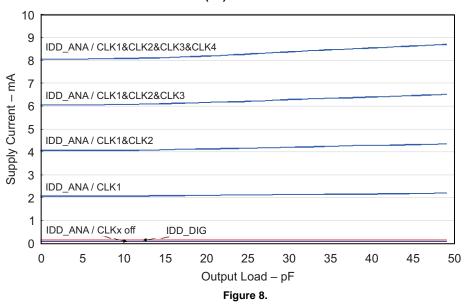
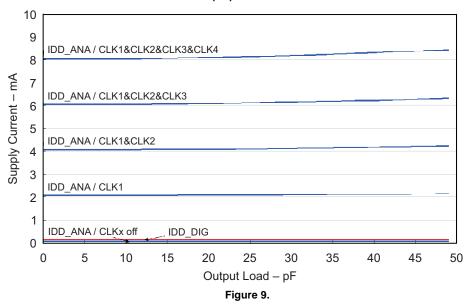
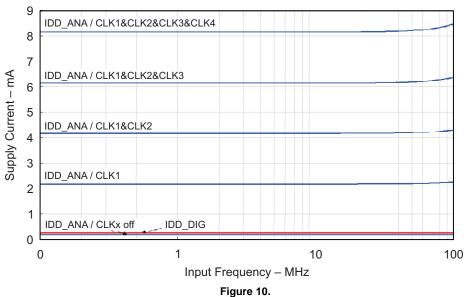


Figure 6. CLKx On-Time From REQ Off-to-On


Figure 7. CLKx On-Time From V_{DD_ANA} Off-to-On

SUPPLY CURRENT (IDD_ANA, IDD_DIG)
vs
OUTPUT LOAD (CL) AT 38.4 MHz INPUT CLOCK



SUPPLY CURRENT (IDD_ANA, IDD_DIG) vs OUTPUT LOAD (CL) AT 26 MHz INPUT CLOCK

SUPPLY CURRENT (IDD_ANA, IDD_DIG) INPUT FREQUENCY (MCLK_IN)

SUPPLY CURRENT (IDD_ANA, IDD_DIG) **INPUT VOLTAGE LEVEL AT 38.4 MHz INPUT CLOCK**

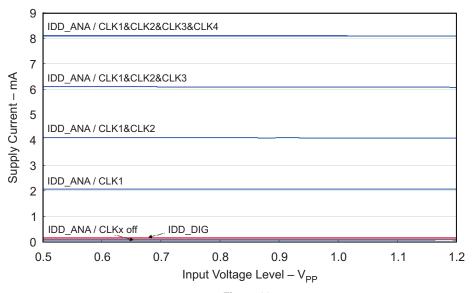


Figure 11.

SUPPLY CURRENT (IDD_ANA, IDD_DIG)
vs
INPUT VOLTAGE LEVEL AT 26 MHz INPUT CLOCK

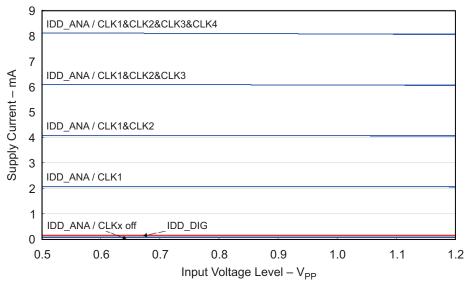


Figure 12.

TCXO INPUT CLOCK

OUTPUT CLOCK AT 38.4 MHz MCLK_IN input signal from TCXO CDC3504 output signal at CLKx

Figure 13.

Submit Documentation Feedback

5.0 ns Trigger

TCXO INPUT CLOCK vs OUTPUT CLOCK AT 26 MHz

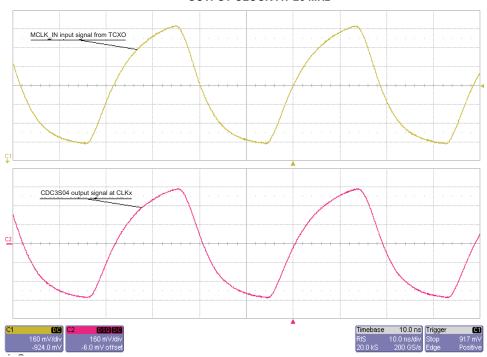


Figure 14.

SINE WAVE INPUT CLOCK vs OUTPUT CLOCK AT 38.4 MHz

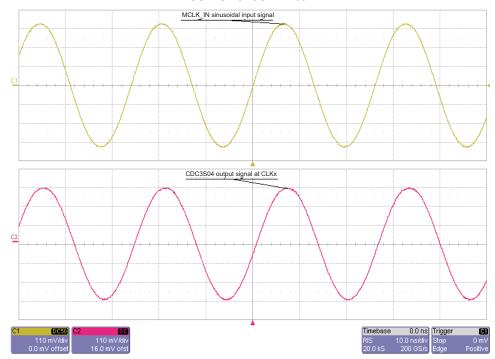


Figure 15.

SINE WAVE INPUT CLOCK vs OUTPUT CLOCK AT 26 MHz



Figure 16.

OUTPUT GAIN vs INPUT FREQUENCY (MCLK_IN)

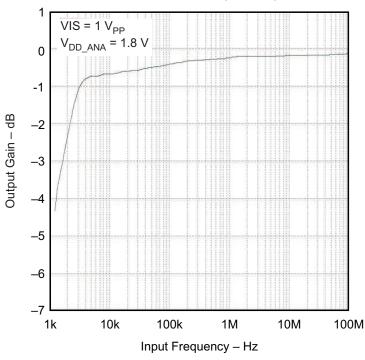


Figure 17.

INPUT vs

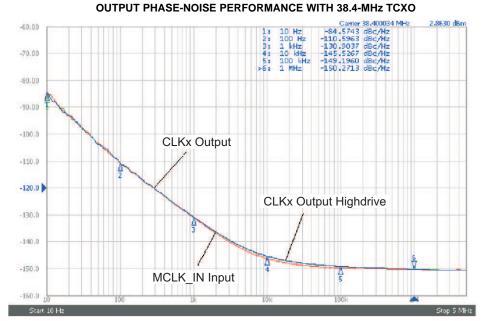


Figure 18.

INPUT vs OUTPUT PHASE-NOISE PERFORMANCE WITH 26-MHz TCXO

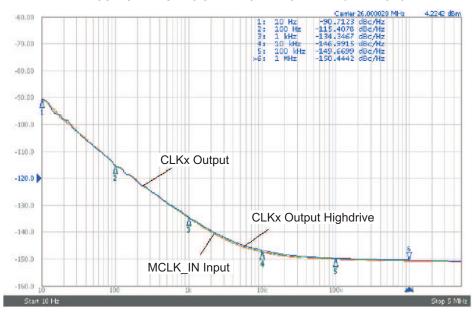
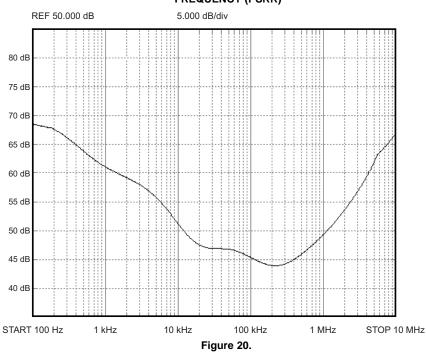



Figure 19.

LDO POWER SUPPLY REJECTION

FREQUENCY (PSRR)

LDO OUTPUT SPECTRAL NOISE DENSITY

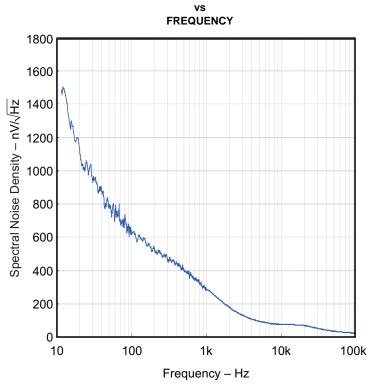


Figure 21.

DETAILED DESCRIPTION

SDAH/SCLH SERIAL INTERFACE (Hs-Mode)

This section describes the SDAH/SCLH interface of the CDC3S04 device. The CDC3S04 operates as a slave device of the two-wire serial SDAH/SCLH bus, compatible with the popular I²C specification (UM10204-I²C-bus specification and user manual Rev. 03–19 June 2007). It operates in the high-speed mode (up to 3.4 Mbit/s) and supports 7-bit addressing. The CDC3S04 is fully downward compatible with fast- and standard-mode (F/S) devices for bidirectional communication in a mixed-speed bus system.

Data Protocol

The device supports byte-write and byte-read operations only. There is no block-write or block-read operation supported; therefore, no command code byte is needed.

When a byte has been sent, it is written into the internal register and is immediately effective.

Slave Receiver Address (7 bits)

Device	A6	A5	A4	A3	A2	A1	A0 ⁽¹⁾	R/W
CDC3S04	1	1	0	1	1	0	0	1/0

⁽¹⁾ Address bit A0 is selectable by the ADR_A0 input (pin D1). This allows addressing of two devices connected to the same I²C bus. The default value is 0, set by an internal pulldown resistor.

Byte-Write Programming Sequence

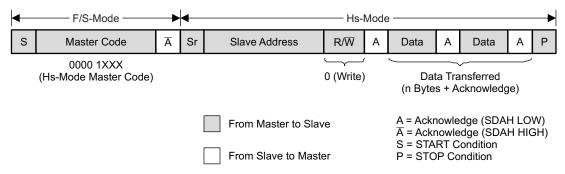


Figure 22. Byte-Write Protocol

Byte-Read Programming Sequence

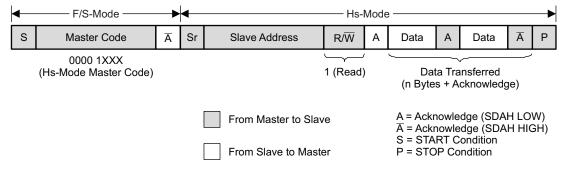
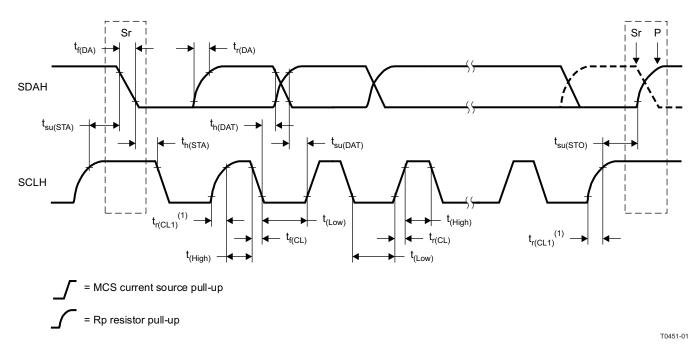



Figure 23. Byte-Read Protocol

Submit Documentation Feedback

(1) First rising edge of the SCLH signal after Sr and after each acknowledge bit.

Figure 24. Definition of Timing for a Complete Hs-Mode Transfer

The following diagram shows how the CDC3S04 clock buffer is connected to the SDAH/SCLH serial interface bus. Multiple devices can be connected to the bus, but the speed may need to be reduced (3.4 MHz is the maximum) if many devices are connected.

Note that the pullup resistors (R_P) depend on the supply voltage, bus capacitance, and number of connected devices. For more details, see the I^2C bus specification.

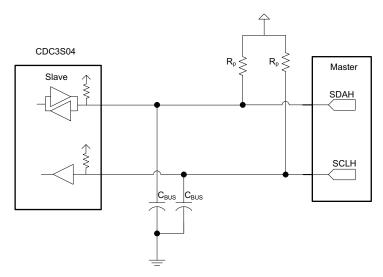


Figure 25. SDAH/SCLH Hardware Interface

SDAH/SCLH Configuration Registers

The output stages are user configurable. Table 3 explains the programmable functions of the CDC3S04.

Submit Documentation Feedback

Table 3. Configuration Register (Shaded Cells Marks Power-Up/Default Setting)

Offset	BIT ⁽¹⁾	Acronym	Default (2)	RESET (3)	Description	0	1	Туре		
	7	REQ4INT	1h	1h	CLK4 off/on ⁽⁴⁾	Off	On	R/W		
00h	6	REQ3INT	0h	_	CLK3 off/on ⁽⁴⁾	Off	On			
	5	REQ2INT	0h	_	CLK2 off/on ⁽⁴⁾	Off	On			
	4	REQ1INT	1h	1h	CLK1 off/on ⁽⁴⁾	Off	On			
	3	REQ4POL	1h	_	Selects polarity of REQ4	Active-low	F/W			
	2	REQ3POL	1h	-	Selects polarity of REQ3	Active-low	Active-high			
	1	REQ2POL	1h	 Selects polarity of REQ2 Active-low 						
	0	REQ1POL	1h	-	Selects polarity of REQ1	Active-high				
01h	7	MREQ4	1h	-	Defines if REQ4 is used to decode MCLK_REQ		Used for decoding			
	6	MREQ3	1h	-	Defines if REQ3 is used to decode MCLK_REQ	Not used for				
	5	MREQ2	1h	-	Defines if REQ2 is used to decode MCLK_REQ	decoding				
	4	MREQ1	1h	_ Defines if REQ1 is used to decode MCLK_REQ						
	3	MCLKOUT1			Selects MCLK_REQ output type	-				
	2	MCLKOUT0	0h	_	00 = wired-OR (default setting) 01 = wired-AND 1x = push-pull					
	0–1	_	0h	_	Reserved					
	7	MREQCTRL1		-	MCLK_REQ generation (see Figure 27)					
	6	MREQCTRL0	0h		0x = decoder controlled (default setting) 10 = low 11 = high					
	5	LDOEN1			Switches LDO on or off:			\neg		
02h	4	LDOEN0	0h	_	00 = LDO is on (default setting) 01 = LDO is off 1x = decoder controlled (see Figure 27)			R/W		
	3	REQ4PRIO	1h	1h	Defines external vs internal REQ4 priority	REQ4	REQ4INT			
	2	REQ3PRIO	0h	Defines external vs internal REQ3 priority REQ3		REQ3INT	7			
	1	REQ2PRIO	0h	-	Defines external vs internal REQ2 priority REQ2		REQ2INT	1		
	0	REQ1PRIO	1h	1h	Defines external vs internal REQ1 priority	REQ1	REQ1INT			
03h	7	HIGHDRIVE4	0h	-	Enables high-drive capability CLK4	Typical	High			
	6	HIGHDRIVE3	0h	-	Enables high-drive capability CLK3	Typical	High	ih		
	5	HIGHDRIVE2	0h	-	Enables high-drive capability CLK2	Typical	High	R/W		
	4	HIGHDRIVE1	0h	-	Enables high-drive capability CLK1	Typical	High			
	0–3	_	0h	-	Reserved		1			
04h-Bh (5)		_		-	Reserved			R/W		

All data is transferred with the MSB first.

⁽²⁾

A device reset to default condition is initiated by a V_{DD_DIG} power-up sequence.

"-" means that dedicated bits do not change at RESET.

Inactive as long as the REQxPRIO bit is low, external REQx pins are valid (see Figure 26)

Writing data beyond 03h may affect device function.

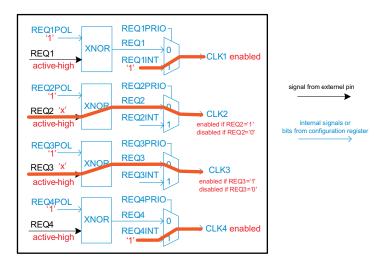


Figure 26. Clock Output Enable Signal (Shaded Line Marks Power-Up/Default Setting)

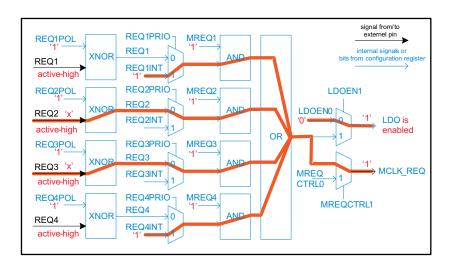


Figure 27. Decoding Scheme for MCLK_REQ and LDOEN (Shaded Line Marks Power-Up/Default Setting)

APPLICATION INFORMATION

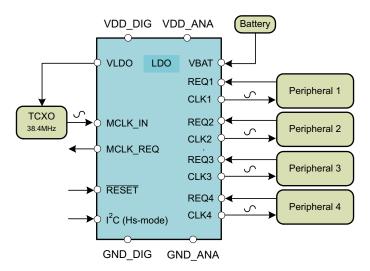


Figure 28. Clock Distribution Scheme

REVISION HISTORY

Changes from Original (October 2009) to Revision A							
•	Changed the format on page 1 (moved 2 paragraphs from page 2 to page 1)	1					
•	Changed the X axis from 0.1us to 100us900us	9					
•	Changed Offset 00h Bit 4 Default value from 0h to 1h	19					

PACKAGE OPTION ADDENDUM

17-Jul-2010

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
CDC3S04YFFR	ACTIVE	DSBGA	YFF	20	3000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	Request Free Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

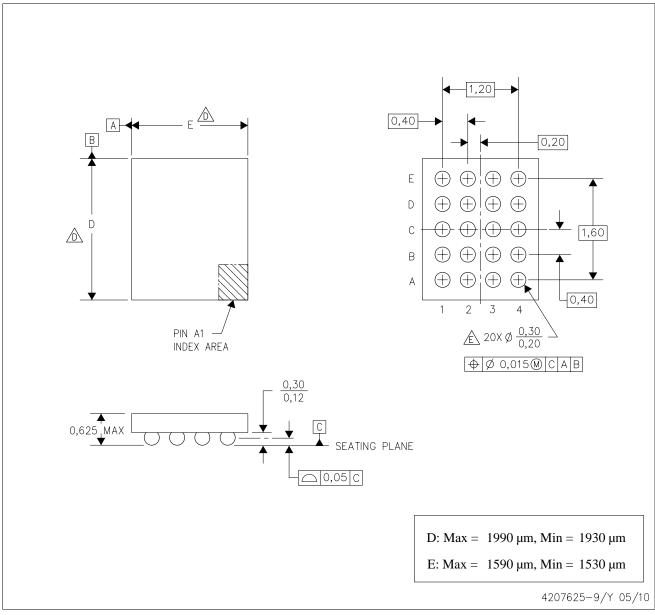
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

YFF (R-XBGA-N20)

DIE-SIZE BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. NanoFree™ package configuration.

Devices in YFF package can have dimension D ranging from 1.96 to 2.65 mm and dimension E ranging from 1.56 to 2.25mm.

To determine the exact package size of a particular device, refer to the device datasheet or contact a local TI representative.

- E. Reference Product Data Sheet for array population. 5 x 4 matrix pattern is shown for illustration only.
- F. This package contains Pb—free balls.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	<u>dsp.ti.com</u>	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps