

UP-TECH Robotics.

ProMotion[®] Series Brushed DC motor Controller

	目 录
1	关于本手册5
1.1	概述5
1.2	相关文档5
1.3	反馈意见5
1.4	版权声明5
1.5	安全声明5
1.6	特别提示6
1.7	版本历史6
2	概要介绍7
2.1	型号说明7
2.2	使用条件8
2.3	功能概述
2.4	应用领域9
3	基本参数和安装说明 10
3.1	BDMC3606SH/SL性能参数概述10
3.2	安装尺寸和电气连接11
3.3	内部原理框图12
4	功能说明13
4.1	工作模式和输入控制源说明13

4.2	使用前的初始设置	14
4.3	电流控制器工作模式	15
4.3.1	电流控制器工作模式	15
4.3.2	2 RS232 指令电流控制	15
4.3.3	3 I ² T电流限制	17
4.3.4	4 电流PI调节器参数调整	18
4.4	速度控制器工作模式	19
4.4.1	速度控制器工作模式	19
4.4.2	2 模拟速度控制	20
4.4.3	8 RS232 指令速度控制	23
4.4.4	PWM速度控制	25
4.4.5	5 PPM速度控制	28
4.4.6	5 速度PI调节器参数调整	30
4.5	位置控制器工作模式	31
4.5.1	位置控制器工作模式	31
4.5.2	2 RS232 指令位置控制	31
4.5.3	脉冲/方向控制(仿步进电机控制方式)	36
4.5.4	位置PD调节器参数调整	37
4.6	电压调节器工作模式	38
4.6.1	电压调节器模式	38
4.6.2	2 RS232 指令电压调节器模式	38
4.7	网络连接	40
4.8	保护与恢复	41
4.8.1	电压保护	
4.8.2	2. 温度保护	
4.8.3		42

4.9	状态输出			
5 指	令描述4	13		
5.1	通讯方式和ASCII指令概述4	13		
5.1.1	通讯方式说明4	13		
5.1.2	2 ASCII指令介绍4	14		
5.2	基本设置指令4	16		
5.2.1	工作模式和输入源设置4	16		
5.2.2	2 基本参数设置 4	17		
5.2.3	3 常规参数设置 4	18		
5.3	基本查询指令	50		
5.3.1	查询操作模式和常规参数	50		
5.3.2	2 查询运动控制指令5	52		
5.4	运动控制指令	52		
5.5	其他指令	53		
5.6	出厂指令设置	53		
6 快	·速上手 5	55		

1 关于本手册

1.1 概述

本手册为博创科技开发的 BDMC3606S 直流电机伺服驱动器详细使用说明。

1.2 相关文档

应用博创科技提供免费软件 Motion Terminal 调试时,需要参考以下文档:

◆ Motion Terminal 使用帮助

1.3 反馈意见

博创科技欢迎您对本手册提出反馈意见,您可以登陆:<u>http://robot.up-tech.com</u>反馈您的意见和建议。

1.4 版权声明

博创科技版权所有。未经博创科技书面许可,对本文(包括本文所有语种的译本)内 容的转载、摘录、引用和收录等行为,均有可能违反版权法。

尽管编著时几经审核,但博创科技并不保证本文所记载、描述的内容和通过本文内容 推断出的任何结果的正确性。同时,对用户误操作而导致的所有直接和间接损失,博 创科技不承担任何责任。

博创科技保留对本文内容的修改权。

1.5 安全声明

本产品不是为医疗设备/生命支持设备、航空航天设备、军用设备所设计。对于用户 将本产品用于这些类型设备上所导致的一切故障、危险和损失,博创科技不承担任何 责任。

使用前请仔细阅读本手册。对于超出本手册声明范围而使用本产品所导致的一切故 障、危险和损失, 博创科技不承担任何责任。

本手册专为 ProMotion 系列伺服驱动器编写。内容若有不准之处。请联系博创科技以获得最新信息与技术支持,我们的技术支持邮箱: PMSupport@126.com。

1.6 特别提示

我们在手册中用不同的符号,它们的含义如下:

1.7 版本历史

发布版本	日期	应用版本	备注
1.0	2008-10	BDMC firmware version1.0 MT Software version1.0	初始发布

6

2.1 型号说明

命名规则

	□…□ ■…■ □…□ ─ ■…■ ^{第一项} ^第 二项 ^第 三项 ¹ ¹ ₁ ₁ ₁		
项目	说明		
第一项	表示电机控制器类型,目前可选择类型:		
	BDMCBrushed DC Motor Controller		
第二项	表示控制器允许输入的最大电压和允许输出的最大持续电流		
	电压用 2 到 3 位表示,电流用 2 位表示。		
	例如 3606--最大额定电压 36V,最大持续电流 6A		
第三项	表示总线通讯接口和可选的高低 PWM 频率		
	SRS232 通讯接口		
	C——CAN 通讯接口		
	H较高的 PWM 频率(>=50KHz),可允许电机电感小		
	L较低的 PWM 频率(<50KHz),可允许电机电感大		
	例如 SH--表示采用 RS-232 通讯接口,有较高的 PWM 频率		
扩展项	用"一"和前面三项隔开,用来表示一些其他特殊信息,后续支持		

根据以上命名规则,本手册支持的驱动器型号含义如下:

BDMC3606SH: 直流有刷电机控制器,最大额定电压 36V,最大持续电流 6A 使用 RS232 通讯接口,采用较高的 PWM 频率;

BDMC3606SL: 直流有刷电机控制器,最大额定电压 36V,最大持续电流 6A 使用 RS232 通讯接口,采用较低的 PWM 频率;

2.2 使用条件

电源要求:

- ◆ 电源输入范围: +12~36V 直流电源;
- ♦ 能提供连续电流2倍的瞬间电流过载能力;
- ◆ 电压要波动不大于 5%。

反馈元件:

♦ 增量式光学编码器(用户若应用于开环模式或力矩模式时可不使用光学编码器)

使用环境:

- ◆ 保存温度: -40~85℃;
- ◆ 使用温度: -40~70℃(以驱动器壳体表面温度为准);
- ♦ 不防水;
- ◆ 无腐蚀性气体。

2.3 功能概述

本伺服驱动器基于 16 位 DSP 开发,适合驱动有刷永磁直流伺服电机,空心杯永磁 直流伺服电机,力矩电机。具备以下的特点:

- ◆ 输入直流电源+12~36V;最大连续电流 6A,最大峰值电流 10A
- ◆ 特别针对空心杯电机设计的 BDMC3606SH,采用高达 80Khz 的 PWM 频率 针对普通伺服电机设计 BDMC3606SL,采用 20Khz 的 PWM 频率
- ◆ 通过电流调节实现力矩控制
- ♦ 可选择开环控制,即电压控制器模式
- ◆ 可选择的速度控制: +/-10V 模拟电压, PWM, PPM (Hobby RC 信号), RS232 指令
- ◆ RS232 指令位置控制模式
- ♦ 脉冲/方向位置控制(仿步进电机工作模式)
- ◆ 参数保存功能
- ◆ 通过 RS232 接口和 Motion Terminal 软件进行控制、参数调整和在线监测
- ◆ 通过改进设计的 RS232 接口实现多个驱动器的组网控制

8

◆ 温度保护,过流、过压、欠压保护,I²T电流限制

本伺服驱动器使用一个开放的ASCII指令集,通过RS232通讯口与PC机或用户的上 位机/控制板连接,用户可对其设置、编程控制。我们提供的Motion Terminal软件可应 用于Windows 2K/XP: 方便的实现参数的配置和伺服模式切换,以及运动曲线的在线监 控。用户亦可以使用Windows的超级终端直接发送ASCII指令进行调试。

通过RS232接口设置为其他控制模式,如模拟电压速度控制或步进控制模式等各种 模式,保存设置后即可独立运行于相应设置的模式下。此时可以不需要使用RS232接口 而独立运行。用户亦可通过RS232接口再次设置为其他工作模式。

2.4 应用领域

本伺服驱动器具有易于安装、功能全面、连接灵活等显著特点。其理想应用领域是:

- ◆ 可用于高功率密度的小型机器人
- ◆ 可用于对重量和体积敏感、并需要高精度运动控制的其他小型设备
- ◆ 可用于 FAULHABER 系列伺服驱动器的低成本和更大功率替代方案

9

3 基本参数和安装说明

3.1 BDMC3606SH/SL 性能参数概述

项目	数值	单位
电源电压	1236	VDC
典型效率	>=95%	_
PWM 工作频率	80 (BDMC3606SH)	KHz
	20(BDMC3606SL)	KHz
最大持续输出电流	6	А
最大峰值输出电流	10	А
静态工作电流	60@24V	mA
绝对位置范围	+/- 180000000	Line
速度范围	030000	rpm
输出编码器电源	输出电压: 5	VDC
	输出电流:100(Max.)	mA
编码器信号输入(A,B)	高电平: 3-5, 低电平: 0-0.8	V
	4 倍频分辨率: <=65535	Lines/Rev
	最高频率: <=400	KHz
模拟电压输入	输入电压范围: -10+10	V
	输入阻抗: 13	KΩ
脉冲方向输入	高电平: 3-5, 低电平: 0-0.8	V
	脉冲频率: <=400	KHz
PWM 输入	高电平: 3-5, 低电平: 0-0.8	V
	PWM 频率: 100-2000	Hz
	占空比 50%停转,>50%正转,<50%反转	_
PPM 输入	高电平: 3-5, 低电平: 0-0.8	V
	周期: 20±10	ms
	正脉宽: 1-2	ms
	正脉宽 1.5ms 停转, >1.5ms 正转, <1.5ms 反转	_
状态输出端	集电极开路输出,最大值为 20V/30mA	_
尺寸	长 x 宽 x 高=109.7x71x25(带接线端子)	mm
重量	267(带接线端子)	g
工作温度	-2070	°C
贮存温度	-4085	°C

3.2 安装尺寸和电气连接

左侧接线端子 L1~L10			
编号	文字	定义	
L1	PGND	电源地	
L2	POWER	电源输入	
L3	MOTOR-	电机绕组-	
L4	MOTOR+	电机绕组+	
L5	SGND	信号地	
L6	CHB	通道 B	
L7	CHA	通道 A	
L8	5V	5V	
L9	R232-TX	RS232-发送	
L10	R232-RX	RS232-接收	

右侧接线端子 R1~R10			
编号	文字	定义	
R1	R232-RX	RS232-接收	
R2	R232-TX	RS232-发送	
R3	NC	不连接	
R4	NC	不连接	
R5	SGND	信号地	
R6	DIR	方向	
R7	PULSE	脉冲	
R8	Analog+	模拟输入+	
R9	Analog-	模拟输入-	
R10	State	状态输出	

3.3 内部原理框图

伺服驱动器内部原理框图

说明:

- 1、 R10(State)可以选择集电极开路输出或内部 5V 上拉输出,或者选择作为 I/O 输入
- 2、 可以通过 RS232 构成总线

4 功能说明

4.1 工作模式和输入控制源说明

本伺服驱动器可以工作在电流控制器,速度控制器和位置控制器模式。这几种模式 可以和不同的输入控制源进行组合。

输入源可以通过 SOR 指令指定,目前有以下几种输入源:

- ◆ SORO: 设为模拟电压输入源
- ◆ SOR1: 设为 RS232 输入源
- ♦ SOR2: 设为 PWM 输入源
- ◆ SOR4: 设为 PPM 输入源
- ◆ SOR5: 设为脉冲/方向输入源(仅用于位置模式) 而目前支持的工作模式有以下几种:
- ◆ C: 电流控制器模式
- ◆ V: 速度控制器模式
- ◆ M: 位置控制器模式
- ◆ U: 电压调节器模式

对于特定的工作模式,只能选择特定的输入控制源,比如电流控制器模式目前只能 选择 RS232 输入源;而某些输入控制源,也只能用于特定的工作模式,比如脉冲/方向 输入源只能用于位置模式。目前可以搭配的工作模式和输入控制源如下表所示:

	电流控制(C)	速度控制(V)	位置控制(M)	电压控制(U)
模拟电压(SORO)	—	\checkmark	—	—
RS232 (SOR1)	\checkmark	\checkmark	\checkmark	\checkmark
PWM(SOR2)	—	\checkmark	—	—
PPM(SOR4)	—	\checkmark		
脉冲/方向(SOR5)	—		\checkmark	

工作模式和输入控制源组合表

√:目前可用 -:目前不可用

4.2 使用前的初始设置

本伺服驱动器出厂时,默认设置的编码器分辨率为 512 线(ENCRES2048)。在设置 位置,速度和加速度等参数之前,必须先设置编码器的分辨率。

警告: 1、忽略初始设置将可能导致伺服驱动器或其它设备的损坏 2、如果工作 在电压控制器模式下,可以不用设置编码分辨率或随意设置即可。

编码器设置

指令	功能	详细说明	
ENCDEC	设置编码器分	设置编码器分辨率,输入值应为实际分辨率的4	
ENCRES	辨率	倍。默认设置: ENCRES2048	
CENCRES	查看所设置的	本毛氏设置的论证黑公藏室	
GENCKES	编码器分辨率	旦 旬 <u></u> 加以且的 调 时奋力拼举	

举例: ENCRES2048 设置编码器分辨率为 2048;

提示:由于编码器一个信号周期有四个临界点可被利用,所以设置的编码器分 辨率应为实际分辨率的4倍。例如分辨率为1024线的HEDS编码器,正确设置是 ENCRES4096。

由于编码器的设置和加速度,减速度,速度(包括最大速度),位置等信息直接相关, 和速度 PID 参数关系也很大,因此,根据您的编码器情况设置编码器分辨率非常重要。 需要注意的是:一旦您重新设置了编码器分辨率,建议您保存后再断电重启一次伺服驱 动器,然后再设置加速度,速度(包括最大速度)或位置参数,这样可以保证准确无误; 即使您不准备改变加速度,速度或位置参数,也建议您这么做,这样可以避免一些参数 更新带来的问题。

4.3 电流控制器工作模式

4.3.1 电流控制器工作模式

本伺服驱动器可以工作在电流控制器模式下,用于需要恒转矩控制的场合。在该模 式下I²T限制模式无效,电流限制只能由峰值限流限制LPC参数决定,持续电流限制参数 LCC无效。而在使用电压调节器模式,速度控制或者位置控制时,采用的是I²T限制方法, 此时,峰值电流限制和持续电流限制均需要设置。只有将驱动器工作在单一的电流控制 器模式时,I²T限制才会无效。

电流控制器的控制源可以选择:

♦ RS232 指令输入控制

4.3.2 RS232 指令电流控制

本伺服驱动器可以直接利用 RS232 接口通过 PC 或用户控制板控制电流,下面是 RS232 电流控制典型电路图:

RS232 电流控制典型电路图

RS232 连接端可以选择 L9(R232-TX)和 L10(R232-RX)或者 R2(R232-TX)和 R1(R232-RX), SGND 可以选择 L5 或 R5。

模式和输入源设置

要工作在 RS232 电流控制模式下,需要设置控制器输入模式为电流控制器模式,且 输入控制源为 RS232 指令输入。设置如下:

15

指令	功能	详细说明
с	设置控制器为 电流控制器模 式	设置电机控制模式为电流控制模式,如果后面不带参数,默认电流输出为O 带参数时,按照给定电流输出。
SOR1	设置 RS232 指 令控制模式	设置电机控制模式为 RS232 指令控制模式,该模式可以和电流控制模式组合为 RS232 电流控制。

电流控制指令:

指令	功能	详细说明
с	设置电机目标 电流	设置电机控制模式为电流控制模式,如果后面不带参数,默认电流为 O。单位:mA 带参数时,按照给定参数电流输出。

举例: C1000 设置电机输出电流为 1000mA(1A)。

C-500 设置电机输出电流为-500mA(-0.5A)。

提示:在电流控制器模式下,如果实际负载电流不够大时,电机会出现类似"飞 车"的现象。因此,该模式一般需要使用 SP 指令设定一个较小的最大速度,比 如 SP500,通过这样的最大速度限制,使得在电流模式下速度不会太大。

峰值电流限制设置

指令	功能	详细说明
LPC	设置峰值电流	设置峰值电流限制,不得小于持续电流限制。范围:
	限制	0~10000mA

16

举例: LPC10000 设置峰值电流限制为 10A。

其他相关指令:

在 RS232 指令电流控制模式下,电流 PI 调节指令 CPOR 和 CI;最大速度设置 指令 SP。

4.3.3 I²T电流限制

通过选择合适的持续电流限制和峰值电流限制,采用I²T限流功能既可防止电机过 热而损坏;又能保证电机在较大载荷时,依然有优异的动态响应性能。

I²T限流的简单示意如下图所示:

I²T限流示意图

用户需要设定峰值电流限制值(使用LPC指令),持续电流限制值(使用LCC指令), 系统模型根据此设置计算出I²T限流保护临界值。在驱动系统实际运行过程中,驱动器通 过采样实际负载,计算系统实际的I²T累积值。当该累积值达到I²T限流保护临界值时, 驱动器的电流限制值自动降至持续电流限制值;而一旦实际负载较小,使得系统I²T累积 值小于I²T限流保护临界值时,驱动器的电流限制值自动升至峰值电流限制值。

🚺 提示:1、采用I2T限流方法,利用一个相对小的持续电流限制值,可以防止因为

持续电流过大使得电机过热损坏;利用一个相对大的峰值电流限制值,保证在短暂的加减速过程有足够的驱动电流,提供优异的动态响应性能。2、峰值电流限制值不得小于持续电流限制值,当两者相等时,实际上等同于取消了I²T限流保护 的功能。

峰值电流限制设置

指令	功能	详细说明
L PC	设置峰值电流	设置峰值电流限制,不得小于持续电流限制
	限制	范围: 0~10000mA

举例:LPC10000 设置峰值电流限制为10A,如果系统的I²T累积值小于I²T限流 保护临界值时,实际电流限制为10A。

持续电流限制设置

指令	功能	详细说明
100	设置持续电流	设置持续电流限制,不得大于峰值电流限制
LUU	限制	范围: 0~10000mA

举例:LCC6000 设置持续电流限制为 6A,如果系统的I²T累积值大于I²T限流 保护临界值时,实际电流限制将会下降到 6A。

4.3.4 电流 PI 调节器参数调整

调整电流 PI 调节器参数可以改善电机的动态特性。一般说来,实际的驱动系统发 生变化后,通过使用 Motion Terminal 软件监控响应曲线,适当调整调节器参数,观 察动态响应曲线,以达到满意的效果。因为这将明显影响性能,所以请仔细调节。以下 是相关指令(也可以通过 Motion Terminal 软件菜单栏中相应选项设置)

指令	功能	详细说明
----	----	------

CPOR	设定电流比例 系数	设定比例系数,数值范围: 0~3000 缺省设置: POR8
СІ	设定电流积分 系数	设定积分系数,数值范围: 0~3000 缺省设置: 110

4.4 速度控制器工作模式

4.4.1 速度控制器工作模式

通过选择速度控制源,并给出原始目标速度,该速度经过速度处理器的限制和加 减速处理后产生一个最终给定速度给速度控制环,由 PI 速度调节器实现闭环速度控制。 控制器的控制源可以选择:

- ♦ +/-10V 模拟电压输入控制
- ♦ RS232 指令输入控制
- ♦ PWM 输入控制
- ♦ PPM 输入控制

以上四种控制源模式中任何一种都需要指定以下参数:

加减速度设置

指令	功能	详细说明
AC 设	设置加速度	设置电机加速度,应用于位置,速度模式,单位:r/s ²
	以 且,加述/这	范围: 0~30000
DEC 设置减;	识型试声度	设置电机减速度,应用于位置,速度模式,单位:r/s ²
	以且 (成述)反	范围: 0~30000

举例: AC100 设置加速度为 100r/s²,也就意味着电机从速度 0 到速度 100r/s (6000rpm) 需要 1s。

DEC100 设置减速度为 100r/s²,也就意味着电机从速度 100r/s(6000rpm)

Web:http://robot.up-tech.com 技术支持: PMSupport@126.com

¹⁹ Tel:86-10-82114887-800 Fax:86-10-82114887-828

到速度0需要1s。

提示:以上的加减速度只是一个设定值,实际能达到的加减速度受到真实系统 特性和电流限制的影响。

最大速度设置

指令	功能	详细说明
SP	设置最大速度	设置电机最高转速,应用于位置,速度模式,单位: rpm
		范围: 0~30000

举例: SP5000 设置最高速度为 5000rpm,如果设置电机目标速度绝对值大于该 速度,实际目标速度为 5000rpm;

最小速度设置

指令	功能	详细说明
MV	设置最小速度	设置电机最小转速,应用于位置,速度模式,单位: rpm,范围: 0~30000

举例: MV200 设置电机的最小速度为 200 rpm,如果设置电机目标速度绝对值小于该速度且大于 0,实际目标速度为 200 rpm;

4.4.2 模拟速度控制

模拟速度控制是指在控制器的模拟控制输入端输入±10V 范围变化的模拟电压,由 此电压值确定电机的转速。在模拟速度控制模式下不需要 RS232 串口通讯,但可以通 过它来修改驱动器的配置。下图是模拟速度控制典型电路图:

模拟速度控制典型电路图

注意模拟输入端 R8 和 R9 作为差分输入,可以不必将模拟负与电源地共地。

模式和输入源设置

要工作在模拟速度控制模式下,需要设置控制器输入模式为速度控制器模式,且 输入控制源为模拟电压控制。设置如下:

指令	功能	详细说明
V	设置控制器为速 度控制器模式	设置电机控制模式为速度控制模式,如果后面不带参数,则默认速度为O
SOR0	设置模拟电压控 制模式	设置电机控制模式为模拟电压控制模式,该模式可以 和速度控制模式组合为模拟速度控制。

模拟控制信号和对应速度值

模拟控制信号和对应速度示意图

使用 SP 指令设定最大速度值,模拟电压在+10V 和-10V 时分别对应正反转最 大速度。通过 MV 指令可以指定最小速度,该速度值可以设为 O。实际应用中,模拟输 入端电压为 OV 时,由于误差原因,电机不一定完全静止,通过 MAV 指令设置一个最 小设定电压值,只有输入电压绝对值大于该电压时电机才运动。

最小设定电压设置

模拟输入电压绝对值大于该电压时电机才运动,否则电机速度为0。

指令	功能	详细说明
MAV	设置最小设定	该置最小设定电压,仅用于模拟电压模式,单位:mV
	电压。	范围: 0~10000

举例: MAV500 设置最小设定电压为 500mV,模拟输入电压绝对值大于该电压时电机才运动,否则电机速度为 0。

运动方向设置

使用模拟电压输入时,可以指定输入电压极性对应的电机旋转方向。当为正电压 时,可以指定电机旋转方向为顺时针或逆时针。

指令	功能	详细说明
ADL	逆时针旋转	模拟电压为正时电机逆时针旋转
ADR	顺时针旋转	模拟电压为正时电机顺时针旋转

举例: ADL 模拟电压为正时电机逆时针旋转。

提示:使用 ADL 或者 ADR 指令时,如果发现方向不一致(恰好与指定方向相反)
时,这可能与您的电机接线有关,此时方向以实际方向为准。

其他相关指令:

在速度控制模式下,需要参考电流限制指令LPC和LCC(参考I²T电流限制),速度 PI调节。

4.4.3 RS232 指令速度控制

本伺服驱动器可以直接利用 RS232 接口通过 PC 或用户控制板控制,下面是 RS232 速度控制典型电路图:

RS232 速度控制典型电路图

23

RS232 连接端可以选择 L9(R232-TX)和 L10(R232-RX)或者 R2(R232-TX)和 R1(R232-RX), SGND 可以选择 L5或 R5。

模式和输入源设置

要工作在 RS232 速度控制模式下,需要设置控制器输入模式为速度控制器模式, 且输入控制源为 RS232 指令输入。设置如下:

指令	功能	详细说明
v	设置控制器为速 度控制器模式	设置电机控制模式为速度控制模式,如果后面不带参数,默认速度为O 带参数时,按照给定参数速度运动。
SOR1	设置 RS232 指令 控制模式	设置电机控制模式为 RS232 指令控制模式,该模式可以和速度控制模式组合为 RS232 速度控制。

速度控制指令:

指令	功能	详细说明
v	设置电机目标 速度	设置电机控制模式为速度控制模式,如果后面不带参数,默认速度为 0。单位: rpm 带参数时,按照给定参数速度运动。

举例: V1000 设置电机速度为 1000rpm。

V-1000 设置电机速度为-1000rpm,即反方向以 1000rpm 旋转。

速度应答指令

通过ANSW1或ANSW2启用了异步应答后,如果设置了速度应答,则当电机到达 指定速度时,通过RS232接口发出"v"字符作为应答。

指令 功能 详细说明

NV	速度应答,这是 一条异步指令	到达指定速度应答"v"。(实际上以 16 进制回送的是 0x76 0x0D 0x0A 三个字符)
NVOFF	关闭速度应答	关闭速度应答功能

举例: NV1000 当电机速度达到 1000rpm 时,通过 RS232 接口发出"v"字符。

其他相关指令:

在速度控制模式下,需要参考电流限制指令LPC和LCC(参考I²T电流限制),速度 PI调节。

4.4.4 PWM 速度控制

PWM 速度控制是输入占空比可调的 PWM 波,由占空比确定电机的转速。在该模 式下不需要 RS232 串口通讯,但可以通过它来修改驱动器的配置。下图是 PWM 速度 控制典型电路图:

PWM 输入端选择 R7 与 Pulse 输入端复用, SGND 可以选择 L5 或 R5。

模式和输入源设置

要工作在 PWM 速度控制模式下,需要设置控制器输入模式为速度控制器模式, 且输入控制源为 PWM 指令输入。设置如下:

指令	功能	详细说明
v	设置控制器为速 度控制器模式	设置电机控制模式为速度控制模式,如果后面不带参数,默认速度为O 带参数时,按照给定参数速度运动。
SOR2	设置PWM 控制模 式	设置电机控制模式为 PWM 控制模式,该模式可以和 速度控制模式组合为 PWM 速度控制。

PWM 信号说明

允许接受的 PWM 信号频率范围为 100-2000Hz,占空比实际范围为 1%-99%,根据占空比调节速度。占空比>50%时正转,占空比<50%时反转,占空比 =50%时停转,PWM 示意图如下所示。

PWM 信号示意图

PWM 控制信号和对应速度值

PWM 控制信号和对应速度示意图

使用 SP 指令设定最大速度值, PWM 在占空比 100%和 0 分别对应正反转最大 速度(实际范围为 1%~99%),为 50%是速度为 0。通过 MV 指令可以指定最小速度, 该速度值可以设为 0。

运动方向设置

使用模拟电压输入时,可以指定输入电压极性对应的电机旋转方向。当为正电压 时,可以指定电机旋转方向为顺时针或逆时针。

指令	功能	详细说明
ADL	逆时针旋转	PWM 占空比大于 50%时电机逆时针旋转
ADR	顺时针旋转	PWM 占空比小于 50%时电机顺时针旋转

举例: ADL PWM 占空比大于 50%时电机逆时针旋转

其他相关指令:

在速度控制模式下,需要参考电流限制指令LPC和LCC(参考I²T电流限制),速度 PI调节。

4.4.5 PPM 速度控制

PPM 速度控制是接收 PPM 调制信号,根据高脉宽确定电机的转速。在该模式下不需要 RS232 串口通讯,但可以通过它来修改驱动器的配置。下图是 PPM 速度控制典型电路图:

PPM 速度控制典型电路图

PPM 输入端与 R7 (Pulse) 输入端复用, SGND 可以选择 L5 或 R5。

模式和输入源设置

要工作在 PPM 速度控制模式下,需要设置控制器输入模式为速度控制器模式, 且输入控制源为 PPM 指令输入。设置如下:

指令	功能	详细说明
V	设置控制器为 速度控制器模 式	设置电机控制模式为速度控制模式,如果后面不带参数,默认速度为O 带参数时,按照给定参数速度运动。
SOR4	设置 PPM 控制 模式	设置电机控制模式为 PPM 控制模式,该模式可以和速度控制模式组合为 PPM 速度控制。

28

PPM 信号说明

一般说来,航模遥控器 PPM 信号的为周期为 20ms,脉宽为 1~2ms 变化的脉冲 波。示意图如下所示(示意图,未按照比例):

PPM 控制信号和对应速度值

PPM 控制信号和对应速度示意图

使用 SP 指令设定最大速度值, PPM 在高脉宽为 2ms 和 1ms 时分别对应正反转 最大速度。通过 MV 指令可以指定最小速度,该速度值可以设为 0。 高脉宽为 1.5ms 时速度为 0。实际应用中,可以在 1.5ms 附近使用 PPMD 指令设置一个死区范围,在 此范围内速度为 0,超过此范围才开始运动。

死区范围设置

输入 PPM 信号脉宽长度偏离中点超过此范围时,电机才会运动。

指令	功能	详细说明
29		
Tel:86-10-82114887-800 Fax:86-10-82114887-828		
Web:http://robot.up-tech.com 技术支持: PMSupport@126.com		

PPMD	PPM 死区时间 范围设置	设置 PPM 信号的死区范围,输入 PPM 信号脉宽长度
		偏离中点超过此范围时,电机才会运动。单位: us,范
		围: 0~1000

举例: PPMD20 死区范围为 20us,输入 PPM 信号脉宽长度大于 1.51ms 或小于 1.49ms 时电机才会运动。

运动方向设置

使用 PPM 输入时,可以指定输入脉宽高于中点脉宽对应的电机旋转方向。

指令	功能	详细说明
ADL	逆时针旋转	输入脉宽高于中点脉宽时电机逆时针旋转
ADR	顺时针旋转	输入脉宽高于中点脉宽时电机顺时针旋转

举例: ADL 输入脉宽高于中点脉宽时电机逆时针旋转

其他相关指令:

在速度控制模式下,需要参考电流限制指令LPC和LCC(参考I²T电流限制),速度 PI调节。

4.4.6 速度 PI 调节器参数调整

调整速度 PI 调节器参数可以改善电机的动态特性。一般说来,实际的驱动系统发 生变化后(如更换电机,编码器更换为更高精度),通过使用 Motion Terminal 软件监 控响应曲线,适当调整调节器参数,观察动态响应曲线,以达到满意的效果。因为这将 明显影响性能,所以请仔细调节。以下是相关指令(也可以通过 Motion Terminal 软件 菜单栏中相应选项设置)

指令	功能	详细说明
POR	设定速度比例	设定比例系数,数值范围: 0~3000
	系数	缺省设置: POR300

30

I	设定速度积分	设定积分系数,数值范围: 0~3000
	系数	缺省设置: 140

4.5 位置控制器工作模式

4.5.1 位置控制器工作模式

通过选择位置控制源,并给出位置命令。如果采用的是 RS232 指令输入控制则 使用曲线发生器,如果采用的是脉冲方向位置控制时,曲线发生器无效。曲线发生器或 直接从外部输入的位置信号作为设定位置,通过位置控制环实现精确的位置控制。位置 控制器的控制源可以选择:

位置控制器的控制源可以选择:

- ♦ RS232 指令输入控制
- ◆ 脉冲/方向控制

4.5.2 RS232 指令位置控制

本伺服驱动器可以直接利用 RS232 接口通过 PC 或用户控制板控制,下面是 RS232 位置控制典型电路图:

RS232 位置控制典型电路图

RS232 连接端可以选择 L9(R232-TX) 和 L10(R232-RX) 或者 R2(R232-TX) 和

31

R1 (R232-RX), SGND 可以选择 L5 或 R5。

在该方式下,是按照内建的梯形曲线来完成位置控制的。为此,需要指定运动过 程中的加减速,最大速度和目标位置。电机默认是以开机时刻为原点的,用户可以在运 动中的某一阶段(电机要静止),使用 HO 指令重新指定当前点为原点或者为某一特定 位置。其典型曲线如下所示:

典型梯形速度曲线图

模式和输入源设置

要工作在 RS232 位置控制模式下,需要设置控制器输入模式为位置控制器模式, 且输入控制源为 RS232 指令输入。设置如下:

指令	功能	详细说明
Μ	设置控制器为位置 控制器模式	设置电机控制模式为位置控制模式,后面不可带参数。
SOR1	设置 RS232 指令 控制模式	设置电机控制模式为 RS232 指令控制模式,该模式可以和位置控制模式组合为 RS232 位置控制。

建议:在切换电机为位置控制模式前,首先要确保电机完全静止,实际速度 和给定速度均为 0。

加减速度设置

指令	功能	详细说明
AC	设置加速度	设置电机加速度,应用于位置,速度模式,单位:r/s ²
		范围: 0~30000
DEC	设置减速度	设置电机减速度,应用于位置,速度模式,单位:r/s ²
		范围: 0~30000

举例: AC100 设置加速度为 100r/s²,也就意味着电机从速度 0 到速度 100r/s (6000rpm) 需要 1s。

DEC100 设置减速度为 100r/s²,也就意味着电机从速度 100r/s(6000rpm) 到速度 0 需要 1s。

最大速度设置

指令	功能	详细说明
SP	设置最大速度	设置电机最高转速,应用于位置,速度模式,单位: rpm
		范围: 0~30000

举例: SP5000 设置曲线发生器规划的最高速度为 5000rpm;

位置控制指令

位置控制可以使用绝对位置 LA 和相对位置 LR 指令。所谓绝对位置,是指相对于 实际位置原点的位置。所谓相对位置,指的是相对于前一次停止时的位置。驱动器默认 是以开机时刻为原点的,用户可以在运动中的某一时刻(此刻电机静止,比如前一目标 位置已到达),使用 HO 指令重新指定当前点为原点。使用了 LA 或者 LR 指令设置了目 标位置后,电机并不会马上运动,需要使用 M 指令启动电机。

指令	功能	详细说明
LA	设置绝对位置	设置绝对目标位置,单位为编码器线。
22		

33

LR	设置相对位置	设置相对目标位置,单位为编码器线。
НО	设置当前点为	当不带参数时:设置当前点为原点
	原点	当带参数时:设置当前点为参数值指定的位置

举例: LA20000 设置绝对目标位置为 20000 编码器线。

LR-20000 设置相对目标位置为-20000编码器线,也就是电机相对于上 一次位置反方向再转 20000编码器线。

HO 设置当前位置为原点,此时目标位置和实际位置均为 0。

提示: 1、使用 HO 指令时,电机一定要静止,否则会有不确定的情况。2、使用 了 LA 或者 LR 指令设置了目标位置后,电机并不会马上运动,需要使用 M 指令启 动电机。

位置应答指令

通过ANSW1或ANSW2启用了异步应答后,如果设置了位置应答,则当电机到达 指定位置时,通过RS232接口发出"p"字符作为应答。

指令	功能	详细说明
NP	位置应答,这是 一条异步指令。	到达指定位置应答"p"。(实际以 16 进制回送 0x70 0x0D 0x0A 三个字符)。 设定位置是绝对位置,单位是 <i>编码器线</i>
NPOFF	关闭位置应答	关闭位置应答功能

举例: NP12345 当电机位置到达 12345 编码器线时,通过 RS232 接口发出"p"

字符。

复合曲线运动

合理选择并设置参数(最大速度、加减速度、最终位置等),可以实现让电机按复

34

杂的速度曲线进行复合运动。在整个运动程序中,可以实时调整,使得参数发生了变化 (也就是当速度曲线出现了转折点,如下图)。运动中,可以使用 NP(查看位置状态) 和 NV(查看速度状态)来了解当前运动状态。

复合速度运行图

复合曲线控制指令序列示例(在不同的地方使用了 NV 和 NP 应答速度和位置):

启动	a.)	b.)	c.)	d.)
LA[POS3]	AC[AC2]	AC[AC1]	SP[SP2]	DEC[DEC4]
AC[AC1]	NV[V2]	NP[POS1]	DEC[DEC3]	NP[POS3]
DEC[DEC4]			NP[POS2]	
SP[SP1]				
NV[V1]				

其他相关指令:

可以参考电流限制指令LPC和LCC(参考I²T电流限制),可以使用POS指令查询实际位置,GPOS指令查询目标位置。参数调整需要参考位置PD调节器参数调整一节。

4.5.3 脉冲/方向控制(仿步进电机控制方式)

在脉冲/方向控制(仿步进电机控制方式)下,在脉冲输入端 Pulse 每输入一个脉冲,电机将按程序设定的角度值(步进角)前进,运动方向可以由方向控制引脚 DIR 确定。

步进控制模式典型电路图

R7(Pulse)作为脉冲输入端,R6(DIR)作为方向输入端,SGND可以选择L5或R5。 与普通步进电机相比,这种工作方式具有如下优点:

- ◆ 每转步数和步宽可编程设定,分辨率非常高;
- ♦ 没有由于齿槽效应而引起的转矩损失;
- ◆ 电机实际位置动态监测,不会产生"丢步"现象;
- ◆ 到达目标位置后电机不再耗电;

模式和输入源设置

要工作在脉冲方向位置控制模式下,需要设置控制器模式为位置控制器模式,且 输入控制源为脉冲方向输入。设置如下:

指令	功能	详细说明
Μ	设置控制器为位置 控制器模式	设置电机控制模式为位置控制模式,后面不可带参数。
SOR5	设置脉冲方向控制	设置脉冲方向控制模式,该模式可以和位置控制模式

36

模式 组合为脉冲方向位置控制。

控制参数说明

最高输入频率: 400KHz。

这种工作模式能同时实现位置和速度控制。由于允许设置步宽(STW)与步数(STN),输入频率和电机转速的比率可以根据需要设置。

下面的公式表明了转速和脉冲频率之间的关系:

电机转数 = 输入脉冲数×
$$\frac{STW}{STN}$$

- 电机转数: 电机输出端所旋转的圈数;
- 输入脉冲数: 在输入端所接收到的脉冲总数;
- STW: 步宽(每输入一个脉冲电机所走的步数);
- STN: 步数(每旋转一圈所需要前进的步数,等同于 360 度除以步进角)。STN 和 STW 的范围: 0 到 60000。

控制参数设置

指令	功能	详细说明
STW	设置步宽	设置每输入一个脉冲电机所走的步数
STN	设置步数	设置每旋转一圈所需要前进的步数

举例: STW1 设置每输入一个脉冲电机走一步。

STN2048 设置每旋转一圈需要前进 2048 步。

4.5.4 位置 PD 调节器参数调整

调整位置 PD 调节器参数可以改善电机的动态特性。一般说来,实际的驱动系统发 生变化后(如更换电机,编码器更换为更高精度),通过使用 Motion Terminal 软件监 控响应曲线,适当调整调节器参数,观察动态响应曲线,以达到满意的效果。因为这将

37

明显影响性能,所以请仔细调节。以下是相关指令(也可以通过 Motion Terminal 软件 菜单栏中相应选项设置)

指令	功能	详细说明
PP 设定位5	仍宣位罢业固乏粉	设定比例系数,数值范围: 0~3000
	反正位直比例示数	缺省设置: PP10
PD	设定位置微分系数	设定积分系数,数值范围: 0~3000
		缺省设置: PD5

4.6 电压调节器工作模式

4.6.1 电压调节器模式

伺服驱动器可以工作在开环控制模式下,也就是电压调节器模式,不需要任何反馈。控制器的控制源可以选择:

◆ RS232 指令输入控制

4.6.2 RS232 指令电压调节器模式

RS232 电压控制是通过指令给出占空比在-100%~100%可调的 PWM 控制电压,以此来确定电机的运动。在该方式下用 I2T 限流保护功能依旧有效。下图是 RS232 电压控制控制典型电路图:

RS232 电压控制典型电路图

RS232 连接端可以选择 L9(R232-TX)和 L10(R232-RX)或者 R2(R232-TX) 和 R1(R232-RX), SGND 可以选择 L5 或 R5。

该方式是一种开环控制方式,适合测定系统的开环响应。

模式和输入源设置

要工作在 RS232 指令电压调节器模式下,需要设置控制器工作模式为电压调节器模式,且输入控制源为 RS232 指令输入。设置如下:

指令	功能	详细说明
U	设置控制器为 电压调器模式	设置电机工作模式为电压调节器模式,如果后面不带参数,默认速度为 O 带参数时,按照给定参数速度运动。
SOR1	设置 RS232 指 令控制模式	设置电机控制模式为 RS232 指令控制模式,该模式可 以和电压调节器模式组合为 RS232 电压调节器模式。

电压控制指令

指令	功能	详细说明
U	设置驱动器输	设置驱动器输出电压,为实际占空比。范围:
	出电压	-100~+100

举例: U50 设置驱动器输出电压为 50%供电电压,方向为正。

U-50 设置驱动器输出电压为 50%供电电压,方向为负。

电压加减速指令

指令	功能	详细说明			
	에 5명 2명 ~~ 비미 소	设置驱动器电压加速度,按照一定的速率增加电压。			
UAC	设置 驱动 器 电 压加速度	范围: 1~100000			
		单位: (1%占空比)/s			
		设置驱动器电压减速度,按照一定的速率降低电压。			
UDEC	设 重 驱 动 器 电 压减速度	设置驱动器电压加速度,按照一定的速率增加电压。 范围: 1~100000 单位: (1%占空比)/s 设置驱动器电压减速度,按照一定的速率降低电压。 范围: 1~100000 单位: (1%占空比)/s			
		单位: (1%占空比)/s			

举例: UAC1000 设置驱动器电压加速度为 1000,也就意味着电压从 0 上升到 30% 电压需要 30ms。

其他相关指令:

可以参考电流限制指令LPC和LCC(参考 I²T电流限制)。

4.7 网络连接

驱动器具备节点地址编址功能,可以组成网络工作,当然也可以单台驱动器工作。 通过我们改进的设计,一个 RS232 主机可以连接多台驱动器从机,输入指令可 以带地址,也可以不带地址,当带有地址时,总线上只有与该指令地址一致的驱动器才

UDEC10 设置驱动器电压减速度为 10,也就意味着电压从 50%降低到 0 需 要 5s。

会有响应,当不带地址时,总线上所有驱动器都有响应。示意图如下所示:

驱动器的有效地址范围是 0~254, 而 255 或其他的地址数据是无效地址。 RS232 连接端可以选择 L9(R232-TX)和 L10(R232-RX)或者 R2(R232-TX)和 R1(R232-RX), SGND 可以选择 L5 或 R5。

驱动器的出厂设置为地址 0。

节点设置指令

指令	功能	详细说明
NODEADR	设置节点地址	设置驱动器的节点地址,范围: 0~254

举例: NODEADR3 设置驱动器的节点地址为 3。

4.8 保护与恢复

4.8.1 电压保护

本驱动器具备电压保护功能,当系统电压高于 42V 或者低于 10.5V 时,实施保 护动作。如果系统电压低于 10.5V,驱动器将自动切断功放输出,其余部分正常工作, 在状态输出端输出故障信号,同时置相应的故障标志位。当电压恢复到正常范围后,驱 动器继续正常工作。

如果系统电压高于 42V 但小于 54V 时,驱动器将自动切断功放输出,其余部分 正常工作,在状态输出端输出故障信号,同时置相应的故障标志位。当电压恢复到正常 范围后,驱动器继续正常工作。但是由于电机制动过程中导致的电压上升不在此列,系 统将自动识别这种情况。如果系统电压高于 54V,且持续时间超过 10s,此时会产生导 致驱动器损坏。

用户可以通过 GSV 指令查询系统电压,返回值为真实电压值,单位为 mV。

4.8.2 温度保护

本驱动器具备温度保护功能,如果功放模块温度超过规定值,驱动器将关闭功放 输出、电机停车,在状态输出端输出故障信号,同时置相应的故障标志位。。必须达到 以下条件后,电机方可恢复运行:

♦ 温度下降到规定值以下;

♦ 设置电机目标速度为零;

用户可以通过 GTEM 指令查询系统温度,返回值为真实温度值,单位为 °C。

4.8.3 过流保护

本驱动器具备过流保护功能,除了采用 I2T 限流保护的策略之外,对于电流长时间超过电流限制时(比如发生短路故障),系统将关闭功放输出,实施过流保护动作, 在状态输出端输出故障信号,同时置相应的故障标志位。发生过流故障后,驱动器必须 重启才能使用。

4.9 状态输出

R10(State)引脚目前被定义为输出口,用于故障或状态指示。该引脚为集电极 开路输出,正常状态下为高电平,发生以下故障中任意一种或几种时,引脚状态为低电 平:

- ♦ LPC 或 LCC 中任何一个发生过流
- ◆ 过压或欠压保护发生
- ◆ 过热保护发生

当故障清除后,引脚状态自动恢复为高电平。

5 指令描述

5.1 通讯方式和 ASCII 指令概述

5.1.1 通讯方式说明

通过 RS232 申口,本伺服驱动器可以方便地连接到个人计算机。通常可以通过 简易的 ASCII 码终端程序来配合使用,如常用的 Windows 操作系统就有这样的实用 程序(超级终端)。博创科技开发了 Motion Terminal 程序配合本驱动器使用,进行功 能配置和调试,能够产生动态图形来在线实时监控电机实际运行状况,使操作变得简单 易行、方便直观。

使用 Motion Terminal 可以:

- ◆ 配置电机和驱动器参数;
- ◆ 在线控制电机运行。
- ◆ 在线数据分析;

伺服驱动器 RS232 串口的默认设置为:

- ◆ 波特率为 9600;
- ♦ 8数据位;
- ♦ 1 停止位;
- ♦ 无奇偶校验。

用户也可以按照下面指令集的详细说明,自行编写上位机控制程序;也可以不使用 PC 机,采用自己的控制板发送指令控制。

提示:在计算机上使用 Windows 自带的超级终端及 RS232 串口时,需要激活本 地响应(local echo)及回车(carriage return)功能。

5.1.2 ASCII 指令介绍

当本伺服驱动器与计算机通讯时,传送的是 ASCII 码指令。驱动器所支持的所有 ASCII 码指令,都将在本章列出并详细解释其含义。

ASCII 码指令结构

节点序号	指令	参数	回车符(CR)
*			

指令说明:

- ◆ 节点地址:(一个 RS232 串口连接多个驱动器)下需要,如果只有一台驱动器可以不加节点地址;
- ♦ 指令:由英文字母组成的字符串;
- ◆ 参数:为阿拉伯数字,是否带参数以及参数范围与具体指令有关;
- ◆ 回车符:作为结束(CR,ASCII码的十进制代码为13,十六进制0X0D)。 指令不区分字母的大小写,空格会被自动删除。

指令发送后,可能会有应答。用于应答查询指令或者异步事件的内容,同样由 ASCII 码字符构成,其后跟随回车符(CR, ASCII 码的十进制代码为 13,十六进制 0X0D)和换 行符(LF, ASCII 码的十进制代码为 10,十六进制 0X0A)。

举例:

实际位置查询

- ◆ 发送: POS[CR]
- ◆ 接收: 98956[CR] [LF]
 设置电机速度为 500rpm:

发送:

发送: V500[CR]

♦ (可能)接收: OK[CR] [LF]

如果设置了 ANSW2,则每条指令成功执行后,都会收到一个 OK 的消息,如果执行失

败,则可能收到以下内容(不包括括号内的注释):

- Unknown command (未知的指令); •
- Invalid parameter (无效的参数); •

举例:

- 发送: SXXX500[CR]; ٠
- ◆ 接收: Unknown command [CR] [LF]。

EEPSAV 指令用以写入参数或程序到驱动器闪存,如果写入成功,则提示 EEPROM writing done! (写入 EEPROM 成功), 否则将提示 EEPROM Error! (EEPROM 错误)。

保存配置

设置的参数和配置都可保存在伺服驱动器内部的 EEPROM 中,这意味着所有修改 的设置不会因为断电而丢失。重新通电启动后,电机将按照写入的设置运行。

本文中提及的指令,凡后面带有"*)"标记的,都可通过 EEPSAV 指令写入伺服驱 动器讲行保存。

要把设置写入伺服驱动器,请使用 ASCII 指令 EEPSAV,该指令成功执行后,会 返回"EEPROM writing done"字符串。

🚺 提示: 输入 EEPSAV,将保存在该指令之前进行的所有可以保存的设置。在配置 参数或编程序过程中伺服驱动器若突然断电,设置可能会丢失。

通讯波特率修改

RS232 串口波特率可被设置为: 115200, 57600, 38400, 19200, 9600(缺省), 4800, 2400。

指令	功能	详细说明
BAUD	设置波特率	设置 RS232 串口数据传输的波特率

举例: BAUD19200 设置通讯波特率为 19200bps。

(i) 提示:用 BAUD 指令修改驱动器的波特率后,马上就会生效,此时直接使用 EEPSAV

保存该设置是无效的,因为波特率已经不一致了。因此,必须立刻修改计算机

RS232 串口波特率,保证二者一致,然后再使用 EEPSAV 指令保存,这样下次开

机时就是新的波特率了。

指令特别说明

下节将说明所有指令, 在阅读前, 特别说明如下:

- ◆ 指令后带有"*)"标记的,均可使用 EEPSAV 指令保存在 EEPROM 中。
- ◆ 回应指令中,凡是仅当特定事件发生后才生效的指令,这是异步指令。用"asynch" 作了标记。
- ◆ 所有回应指令在"参数"栏中,以"←"符号标记。

5.2 基本设置指令

5.2.1 工作模式和输入源设置

指令	参数	功能	描述
SOR*)	Value	指定输入控制源	设置输入控制源,可以和不同的工作模式有
			选择的组合
			SOR0: 设为模拟电压输入
			SOR1: 设为 RS232 输入(缺省)
			SOR2: 设为 PWM 输入
			SOR4: 设为 PPM 输入
			SOR5: 设为脉冲/方向输入(仅用于位置模式)
C*)	-/	设置为电流控制器工作模式	不带参数:设置为电流控制器工作模式
	Value		带参数:设置为电流控制器工作模式,若在
			RS232 模式下将按输出参数指定的电流
V*)	-/	设置为速度控制器工作模式	不带参数:设置为速度控制器工作模式

Tel:86-10-82114887-800 Fax:86-10-82114887-828 Web:http://robot.up-tech.com 技术支持: PMSupport@126.com

46

	Value		带参数:设置为速度控制器工作模式,若在
			RS232 模式下将按指令速度运动
M*)	-	设置为位置控制器工作模式	设置为位置控制器工作模式
			若在 RS232 模式,每次加载新位置后需要用
			该指令启动运行
U*)	-/	设置为电压调节器工作模式	不带参数:设置为电压调节器工作模式
	Value		带参数:设置为电压控制器工作模式,若在
			RS232 模式下将按输出参数指定的电压

5.2.2 基本参数设置

指令	参数	功能	描述
ENCRES*)	Value	设置编码器分辨率	设置编码器分辨率,四倍于实际分辨率
			范围: 0~65535
STW*)	Value	设置步宽	在脉冲方向模式下,每收到一个脉冲电机前
			进的步数。范围: 0 [~] 65535
STN*)	Value	设置步数	在脉冲方向模式下, 电机旋转一周需要要走
			的步数。范围: 0 [~] 65535
MAV*)	Value	设置最低启动电压	指在模拟速控时, 电机启动所需要的模拟电
			压最低绝对值,如果从模拟端输入的电压低
			于该值,电机不会转动。
			单位: mV, 范围: 0 [~] 10000
PPMD*)	Value	设置 PPM 死区时间范围	设置 PPM 信号的死区时间范围,输入 PPM 信
			号脉宽长度偏离中点超过此范围时, 电机才
			会运动。单位: us,范围: 0 [~] 1000
ADL*)	_	定义逆时针方向为正	输入正的电压信号, 电机逆时针方向旋转
			注意减速箱输出的速度方向可能相反。
			该指令对 PPM 信号, PWM 信号输入控制也有

			效。
ADR*)	-	定义顺时针方向为正	输入正的电压信号, 电机逆时针方向旋转
			注意减速箱输出的速度方向可能相反
			该指令对 PPM 信号, PWM 信号输入控制也有
			效
BAUD*)	Value	设置波特率	为 RS232 通讯设置合适的波特率。
			可选波特率范围:
			115200
			57600
			38400
			19200
			9600(缺省)
			4800
			2400
NODEADR*)	Value	设置节点地址	设置驱动器的节点地址,范围: 0~254
			缺省: 0
ANSW*)	0~2	设置应答功能	0: 关闭异步应答与指令执行的审核功能;
			1: 仅启用异步应答;
			2: 启用异步应答与指令执行的审核功能。

5.2.3 常规参数设置

指令	参数	功能	描述
PL*)	Value	位置范围上限设置	位置范围上限设置,不得小于 NL 设置值
			范围: -1.8x10e9~1.8x10e9
NL*)	Value	位置范围下限设置	位置范围下限设置,不得大于 PL 设置值
			范围: -1.8x10e9~1.8x10e9
APL*)	0~1	激活/不激活位置范围限制	设置位置范围限值是否生效

Tel:86-10-82114887-800 Fax:86-10-82114887-828 Web:http://robot.up-tech.com 技术支持: PMSupport@126.com

48

			0: 禁用位置范围限制;
			1: 激活启用位置范围限制;
SP*)	Value	设置最高速度	设置最高速度,适用于除电压调节器和电流
			控制器模式外的所有模式。
			范围: 0~30000rpm
MV*)	Value	设置最低启动速度	设置最低速度,适用于除电压调节器和电流
			控制器模式外的所有模式。
			范围: 0~30000rpm
AC*)	Value	设置加速度	设置电机加速度
			范围: 0~30000r/s ²
DEC*)	Value	设置减速度	设置电机减速度
			范围: 0~30000r/s ²
UAC*)	Value	设置驱动器电压加速度	设置驱动器电压加速度
			范围: 1 [~] 100000
			单位: (1%占空比)/s
UDEC*)	Value	设置驱动器电压减速度	设置驱动器电压减速度
			范围: 1 [~] 100000
			单位: (1%占空比)/s
LPC*)	Value	设置峰值电流限制	设置峰值电流限制:
			范围: 0~10000mA
LCC*)	Value	设置持续电流限制	设置持续电流限制:
			范围: 0~10000mA
PP*)	Value	设置位置控制比例系数	范围: 0~3000
PD*)	Value	设置位置控制微分系数	范围: 0 [~] 3000
POR*)	Value	设置速度控制比例系数	范围: 0 [~] 3000
I*)	Value	设置速度控制积分系数	范围: 0 [~] 3000

Tel:86-10-82114887-800 Fax:86-10-82114887-828 Web:http://robot.up-tech.com 技术支持: PMSupport@126.com

49

CPOR*)	Value	设置电流控制比例系数	范围: 0 [~] 3000
CI*)	Value	设置电流控制积分系数	范围: 0~3000

5.3 基本查询指令

5.3.1 查询操作模式和常规参数

指令	参数	功能	描述
GWMD	+	查询工作模式设置	查询工作模式,返回值含义如下:
			0: 位置模式
			1: 速度模式
			2: 电流模式
			3: 电压调节器模式
GSOR	+	查询输入源设置	查询输入源设置,返回值含义如下:
			0: 设为模拟电压输入
			1: 设为 RS232 输入(缺省)
			2: 设为 PWM 输入
			4: 设为 PPM 输入
			5: 设为脉冲/方向输入(仅用于位置模式)
GENCRES	¥	查询编码器分辨率	查询所设置的电机分辨率
GTYP	Ť	查寻型号	查询驱动器型号
GSER	+	查询序列号	查询驱动器序列号
GSTW	+	查询步宽	查询步宽
GSTN	_	查询步数	查询步数
GMAV	←	查询最低启动电压	查询最低启动电压
GPL	←	查询最高位置限制	查询最高位置限制
GNL	←	查询最低位置限制	查询最低位置限制
GSP	*	查询最高速度设置	查询最高速度设置
GMV	+	查询最低速度设置	查询最低速度设置

50

GAC	←	查询加速度	查询加速度		
GDEC	←	查询减速度	查询减速度		
GUAC	←	查询电压加速度	查询电压加速度		
GUDEC	←	查询电压减速度	查询电压减速度		
GPP	←	查询位置控制比例系数	查询位置控制比例系数		
GPD	←	查询位置控制微分系数	查询位置控制微分系数		
GPOR	←	查询速度控制比例系数	查询速度控制比例系数		
GI	←	查询速度控制积分系数	查询速度控制积分系数		
GCPOR	←	查询电流控制比例系数	查询电流控制比例系数		
GCI	←	查询电流控制积分系数	查询电流控制积分系数		
GPC	←	查询峰值电流限制设置	查询峰值电流限制设置		
GCC	←	查询持续电流限制设置	查询持续电流限制设置		
GNODEADER	←	查询节点设置	查询节点设置		
GTEM	←	查询系统温度	查询系统温度		
VER	←	查询版本号	查询版本号		
GMOD	←	兼容指令	兼容指令		
GFS	←	查询系统故障状态	查询系统故障状态,返回值为四位 ASCII 数		
			字: XXXX, "X" 是 0 或 1, 0 代表正常, 1 代		
			表有故障。		
			0001: 驱动器过热保护		
			0010: 驱动器过流保护		
			0100: 驱动器欠压保护		
			1000: 驱动器过压保护		
			故障可以是上述多种故障的组合,如0101。		
GMOD	+	兼容指令	兼容指令		

5.3.2 查询运动控制指令

指令	参数	功能	描述	
POS	←	查询实际位置	查询实际位置	
GPOS	←	查询给定目标位置	查询给定目标位置	
GV	←	查询给定速度	查询给定速度	
GN	←	查询实际速度	查询实际速度	
GCL	←	查询实际电流限制	查询实际电流限制,单位:mA	
GC	←	查询给定目标电流	查询给定目标电流,单位:mA	
GRC	←	查询实际电流	查询实际电流,单位:mA	
GU	←	查询给定电压	查询给定电压	
GRU	←	查询实际电压	查询实际电压	

5.4 运动控制指令

指令	参数	功能	描述			
DI	-	脱离控制	让电机与运控器脱离,电机停转。			
EN	-	接受控制	激活电机为受控状态			
DICP*)	0~1	过流异常保护	0: 关闭过流异常保护			
			1: 使能过流异常保护			
			推荐调试电流 PI 参数时使能过流异常保护;			
			如果追求较大的过载能力,可以关闭过流异			
			常保护,不推荐使用。			
LA*)	Value	加载绝对位置	加载绝对位置			
			范围: -1.8x10e9~1.8x10e9			
LR*)	Value	加载相对位置	加载相对位置			
			范围: -1.8x10e9~1.8x10e9			
NP*)	Value	位置应答,这是一条异步指令	到达指定位置应答"p"			
		asynch				

NPOFF*)	_	关闭位置应答	关闭位置应答		
NV*)	Value	速度应答,这是一条异步指令	到达指定速度应答 "v"		
		asynch			
NVOFF*)	_	关闭速度应答	关闭速度应答		
НО	-/	原点或指定点设置	不带参数:设置当前点为原点		
	Value		带参数:设置当前点为指定位置		

5.5 其他指令

指令	参数	功能	描述		
EEPSAV	_	将参数写入驱动器 EERPROM	将当前的参数设置和配置保存在驱动器		
			EERPROM 中, 驱动器断电重启后, 所有保存		
			的设置均不会丢失。		
			注意: EERPROM 的写入操作不可超过 10000		
			次,否则将无法保证其可靠性。		
RESET	-	重新启动	重启驱动器		
FCONFIG	_	恢复出厂默认设置	驱动器所有配置和参数全部恢复到出厂默		
			认值。 使用该指令后,驱动器将停止工作,		
			必须重新加电启动。		

5.6 出厂指令设置

驱动器恢复出厂设置时可用 FCONFIG 指令设置,并保存。出厂设置参数如下:

出厂对应指令	说明
VO	速度模式,且指令速度为0;
SOR1	输入控制源为 RS232 控制;
ADR	正电压输入电机向右转;
BAUD9600	波特率为 9600;
ENCRES2048	编码器分辨率设置为 2048;

53

MAV200	模拟最小设定电压为 200mV;
PPMD20	PPM 信号的死区范围为 20us;
STW1	步宽设置为1;
STN2048	每旋转一圈所需要前进的步数 2048;
NODEADRO	设置节点地址为 0;
ANSW2	启用异步应答与指令执行的审核功能
PL1800000000	位置范围上限为 180000000 编码器线
NL-1800000000	位置范围下限为-180000000 编码器线
APLO	不启用位置限制
SP6000	最大速度为 6000rpm;
MVO	最小速度为 Orpm;
AC1000	加速度 1000r/s ² ;
DEC1000	减速度 1000r/s ² ;
LPC10000	峰值电流限制 10000mA;
LCC6000	持续电流限制 6000mA;
PP10	位置比例常数为 10;
PD10	位置微分常数为 10;
POR300	速度比例常数为 300;
140	速度积分常数为 40;
CPOR50	电流比例常数为 50;
CI10	电流积分常数为 10;
DICP1	过流保护异常使能

6 快速上手

第一次使用本驱动器时,需要进行一些基本的设置。通过我们提供的 Motion Terminal 调试软件,您只需要按照说明连接好电源,驱动器和电机,以及串口调试线缆 和 PC,就可以轻松调试,快速上手。

🚺 警告: 使用前,请注意以下内容:

- 1、请仔细阅读驱动器用户手册!
- 2、请确认已经按照驱动器的电气连接说明接好硬件!
- 3、请确认电机在不通电的情况下可以自由流畅转动!

Step 1 硬件连接

第一次使用本驱动器时,使用 RS232 指令控制的方法,需要按照如下的硬件来连接。

说明:

- ◆ 电源部分连接 L1 (PGND) 和 L2 (POWER), 输入电源电压应在 12[~]36V 之间, 要有足够的输出能力
- ◆ 电机部分连接L3(MOTOR-), L3(MOTOR+)和编码器L6(CHB), L7(CHA), L8(5V), SGND
- ◆ 外接 PC 部分连接 L9 (R232-TX), L10 (R232-RX), SGND 检查连接无误后上电,此时电机应该锁定不动。用手轻拧电机,若感觉很紧,说

明连线正确,可以进入 Step 2; 如果电机飞车,说明编码器 AB 相接反(或者电机输出 MOTOR-和MOTOR+接反),此时交换编码器 A 和B线序(或者交换电机输出 MOTOR-和MOTOR+ 线序),再次检查电机是否锁定不动。

提示:如果上电后电机虽然锁定不动,但是有振荡,这是正常的。因为驱动器 默认的参数未必和您实际使用的参数相符合。此时,需要首先设置正确的编码器 分辨率,然后调节速度 PI 参数,这些操作需要在完成 Step 2 后进行

Step 2 软件连接

通过 RS232 接口连接好驱动器和您的 PC 后,此时打开安装好的 Motion Terminal 软件, 正常会出现如下界面:

否则,如果连接不正常,请做如下检查:

- ♦ 硬件连接,确保正确且上电
- ◆ 串口号和波特率设置正确
- ♦ 节点在所搜索范围内

一般连接不正常会有如下界面:

如果检查硬件无误,一般可以尝试如下设置,以便重新建立连接。

Step 3 初始参数设置

初次使用时,编码器参数一定需要注意!驱动器默认的编码器参数为2048(这是 对于 512 线的编码器四倍频处理后的结果),请根据您的电机编码器的实际参数进行设 置,否则可能出现严重后果。具体内容参考"使用前的初始设置"。

设置完参数后,可能需要进行 PI 参数的调整,如果您已经对于默认效果很满意,可以不用调整。

Step4 控制举例

可以通过在指令框中直接输入指令来控制,也可以在曲线框中监控曲线,如下图 所示:

其他一些功能可以直接使用 Motion Terminal 软件的菜单来完成,具体参考 "Motion Terminal 使用帮助"

说明: 以上是使用 Motion Terminal 软件进行,实际上也可以使用串口调试助手来调试,这时输入的是 ASCII 码。

例如, v1000 指令的 ASCII 码如下:

字符 V		1	0	0	0
ASCII (hex)	0x56 或 0x76	0x31	0x30	0x30	0x30

58

注意指令输入不区分大小写,因此用 v1000 和 V1000 是一样的效果,所以可以使 用小写 v (16 进制 ASCII 码为 0x76)或大写 V (16 进制 ASCII 码为 0x56)

指令是以回车(对应的 ASCII 码为 0x0D) 结束的。因此, 输入以下的 ASCII 码序列:

	0x56	0x31	0x30	0x30	0x30	0x0D
--	------	------	------	------	------	------

就实现了 v1000 的功能 。

其它的指令道理类似,此处不再赘述,具体指令请查看手册的指令说明。

在用户使用单片机或其它处理器来控制时,同样方法,发出如上所说的控制指令 序列即可。

(1) 提示:用户如果需要更多的调试功能,请参考"Motion Terminal 使用帮助"

北京博创科技集团 机器人事业部 版权所有(C)2008 (C) Beijing UPTECH Robotics. All Rights Reserved TEL:86-10-82114870/4887/4890/4944 FAX:86-10-82114870/4887/4890/4944 ext.828 Http://robot.up-tech.com robot@up-tech.com robotsales@up-tech.com