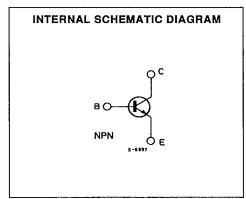

BFX73-2N918 2N3600


S G S-THOMSON

HIGH-FREQUENCY OSCILLATORS AND AMPLIFIERS

The BFX73, 2N918 and 2N3600 are silicon planar epitaxial NPN transistors in Jedec TO-72 metal case.

They are designed for low-noise VHF amplifiers, oscillators up to 1 GHz, non-neutralized IF amplifiers and non-saturating circuits with rise and fall times of less than 2.5 ns.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{СВО}	Collector-base Voltage (I _E = 0)	30	V
V _{CEO}	Collector-emitter Voltage (I _B = 0)	15	V
VEBO	Emitter-base Voltage (I _C = 0)	3	V
lc	Collector Current	50	mA
P _{tot}	Total Power Dissipation at T _{amb} ≤ 25 °C at T _{amb} ≤ 25 °C	200 300	mW mW
T _{stg} , T _j	Storage and Junction Temperature	- 65 to 200	°C

November 1988 1/5

30E D 7929237 003090 0

T-31-15

THERMAL DATA

Rth I-case	Thermal Resistance Junction-case	Max	584	°C/W
Rth j-amb	Thermal Resistance Junction-ambient	Max	875	°C/W

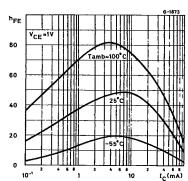
ELECTRICAL CHARACTERISTICS ($T_{amb} = 25 \, ^{\circ}\text{C}$ unless otherwise specified)

Symbol	Parameter	Test	Conditions	Min.	Тур.	Max.	Unit
Ісво	Collector Cutoff Current (I _E = 0)	V _{CB} = 15 V V _{CB} = 15 V	T _{amb} = 150 °C			10 1	nA μA
V _{(BR)CBO}	Collector-base Breakdown Voltage (I _E = 0)	l _C = 1 μA		30			٧
V _{CEO} (sus)	Collector-emitter Sustaining Voltage ($I_B = 0$)	Ic = 3 mA	·	15			٧
V _{(BR) EBO}	Emitter-base Breakdown Voltage (I _C = 0)	I _E = 10 μA		3			٧
V _{CE (sat)}	Collector-emitter Saturation Voltage	I _C = 10 mA	I _B = 1 mA			0.4	٧
V _{BE (sat)}	Base-emitter Saturation Voltage	I _C = 10 mA	I _B = 1 mA			1	٧
h _{FE}	DC Current Gain	I _C = 3 mA	V _{CE} = 1 V for 2N918/BFX73 for 2N3600	20 20	50	150	
f _T	Transition Frequency	for 2N918/I I _C = 4 mA f = 100 MHz for 2N3600 I _C = 5 mA f = 100 MHz	V _{CE} = 10 V V _{CE} = 6 V	600 850	900	1500	MHz
СЕВО	Emitter-base Capacitance	I _C = 0 f = 1 MHz	V _{E8} = 0.5 V for 2N918/BFX73 for 2N3600		1.4	2	pF pF
Ссво	Collector-base Capacitance (for 2N918/BFX73 only)	I _E = 0	f = 1 MHz V _{CE} = 0 V V _{CE} = 10 V		1.8 1	3 1.7	pF pF
Cre	Reverse Capacitance (for 2N3600 only)	l _C = 0 f = 1 MHz	V _{CB} = 10 V			1	pF
NF	Noise Figure	$I_{C} = 1.5 \text{ mA}$ $R_{g} = 50 \Omega$ $I_{C} = 1 \text{ mA}$ $R_{g} = 400 \Omega$	f = 200 MHz for 2N3600 V _{CE} = 6 V f = 60 MHz			4.5	dB
			for 2N918/BFX73 for 2N3600			6 3	dB dB
G _{pe}	Power Gain	for 2N918/I I _C = 6 mA	V _{CE} = 12 V	15	21		dB
		for 2N3600 I _C = 5 mA		17		24	dB

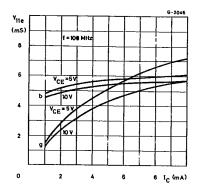
^{*} See test circuits.

2/5

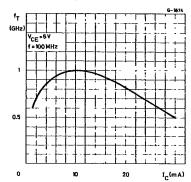
SGS-THOMSON MICROELECTRONICS

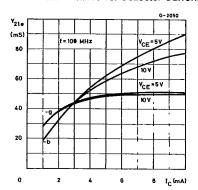

Z G Z-THOMZON

ELECTRICAL CHARACTERISTICS (continued)


T-31-15

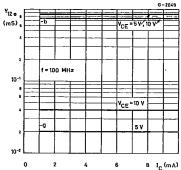
Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
P _o *	Output Power	I _C = 12 mA V _{CB} = 10 V f = 500MHz				
		for 2N918/BFX73 for 2N3600	30 20	40		mW mW
π	Collector Efficiency (for 2N918/BFX73 only)	I _C = 12 mA V _{CB} = 10 V f = 500 MHz	25			%
r _{b'b} ,C _{b'c}	Feedback Time Constant (for 2N3600 only)	I _C = 5 mA V _{CB} = 6 V f = 31.9 MHz	4		15	ps

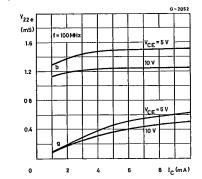

DC Current Gain.


Input Admittance vs. Collector Current.

Transition Frequency.

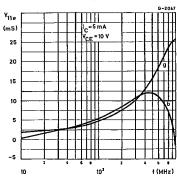
Forward Transadmittance vs. Collector Current.

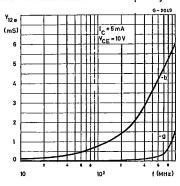



SGS-THOMSON

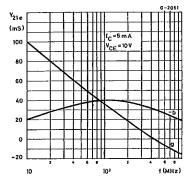
3/5

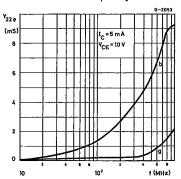
7929237 0030992 4


Reverse Transadmittance vs. Collector Current.



Output Admittance vs. Collector Current.


Input Admittance vs. Frequency.


Reverse Transadmittance vs. Frequency.

Forward Transadmittance vs. Frequency.

Output Admittance vs. Frequency.

4/5

SGS-THOMSON

S G S-THOMSON

Figure 1 : 500 MHz Oscillator Test Circuit.

T-31-15

RFC
RFC
VCC
S-1570

SGS-THOMSON NICROELECTRONICS

5/5