

R8C/1A Group, R8C/1B Group Hardware Manual

RENESAS 16-BIT SINGLE-CHIP MICROCOMPUTER M16C FAMILY / R8C/Tiny SERIES

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Technology Corp. without notice. Please review the latest information published by Renesas Technology Corp. through various means, including the Renesas Technology Corp. website (http://www.renesas.com).

Rev.1.10 Revision Date: Mar 17, 2006

RenesasTechnology www.renesas.com

16

Keep safety first in your circuit designs!

 Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
- 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
- 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

- 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
- 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
- 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
 - Any diversion or reexport contrary to the export control laws and regulations of Japan and/ or the country of destination is prohibited.
- 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on
 - The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

- The reserved addresses are provided for the possible future expansion of functions. Do not access
 these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to one with a different type number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different type numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different type numbers, implement a system-evaluation test for each of the products.

How to Use This Manual

1. Purpose and Target Readers

This manual is designed to provide the user with an understanding of the hardware functions and electrical characteristics of the MCU. It is intended for users designing application systems incorporating the MCU. A basic knowledge of electric circuits, logical circuits, and MCUs is necessary in order to use this manual. The manual comprises an overview of the product; descriptions of the CPU, system control functions, peripheral functions, and electrical characteristics; and usage notes.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of the manual for details.

The following documents apply to the R8C/1A Group, R8C/1B Group. Make sure to refer to the latest versions of these documents. The newest versions of the documents listed may be obtained from the Renesas Technology Web site.

Document Type	Description	Document Title	Document No.
Datasheet	Hardware overview and electrical characteristics	R8C/1A Group, R8C/1B Group Datasheet	REJ03B0144
Hardware manual	Hardware specifications (pin assignments, memory maps, peripheral function specifications, electrical characteristics, timing charts) and operation description Note: Refer to the application notes for details on using peripheral functions.	R8C/1A Group, R8C/1B Group Hardware Manual	This hardware manual
Software manual	Description of CPU instruction set	R8C/Tiny Series Software Manual	REJ09B0001
Application note	Information on using peripheral functions and application examples Sample programs Information on writing programs in assembly language and C	Available from Ren Technology Web si	
Renesas technical update	Product specifications, updates on documents, etc.		

2. Notation of Numbers and Symbols

The notation conventions for register names, bit names, numbers, and symbols used in this manual are described below.

(1)	Register Names, Bit Names, and Pin Names Registers, bits, and pins are referred to in the text by symbols. The symbol is accompanied by the word "register," "bit," or "pin" to distinguish the three categories. Examples the PM03 bit in the PM0 register P3_5 pin, VCC pin	
(2)	Notation of Numbers The indication "b" is appended to numeric values given in binary format. However, nothing is appended to the values of single bits. The indication "h" is appended to numeric values given in hexadecimal format. Nothing is appended to numeric values given in decimal format. Examples Binary: 11b Hexadecimal: EFA0h	

Decimal: 1234

3. Register Notation

The symbols and terms used in register diagrams are described below.

	F	Symbol XXX	Address After Reset XXX 00h	
	Bit Symbol	Bit Name	Function	RW
	XXX0	XXX bits	b1 b0 1 0: XXX 0 1: XXX	RW
	XXX1		1 0: Do not set. 1 1: XXX	RW
	(b2)	Nothing is assigned. When read, the cont	If necessary, set to 0. ent is undefined.	_
	(b3)	Reserved bits	Set to 0.	RW
	XXX4	XXX bits	Function varies according to the operating mode.	RW
 	XXX5			wo
	XXX6			RW
	XXX7	XXX bit	0: XXX 1: XXX	RO

*1

Blank: Set to 0 or 1 according to the application.0: Set to 0.1: Set to 1.

X: Nothing is assigned.

*2

RW: Read and write. RO: Read only. WO: Write only. -: Nothing is assigned.

*3

• Reserved bit

Reserved bit. Set to specified value.

*4

• Nothing is assigned

Nothing is assigned to the bit. As the bit may be used for future functions, if necessary, set to 0.

• Do not set to a value

Operation is not guaranteed when a value is set.

• Function varies according to the operating mode.

The function of the bit varies with the peripheral function mode. Refer to the register diagram for information on the individual modes.

4. List of Abbreviations and Acronyms

Abbreviation	Full Form
ACIA	Asynchronous Communication Interface Adapter
bps	bits per second
CRC	Cyclic Redundancy Check
DMA	Direct Memory Access
DMAC	Direct Memory Access Controller
GSM	Global System for Mobile Communications
Hi-Z	High Impedance
IEBus	Inter Equipment bus
I/O	Input/Output
IrDA	Infrared Data Association
LSB	Least Significant Bit
MSB	Most Significant Bit
NC	Non-Connection
PLL	Phase Locked Loop
PWM	Pulse Width Modulation
SFR	Special Function Registers
SIM	Subscriber Identity Module
UART	Universal Asynchronous Receiver/Transmitter
VCO	Voltage Controlled Oscillator

Table of Contents

S	R Pa	ge Reference	B - 1
1.	Ove	rview	1
	1.1	Applications	1
	1.2	Performance Overview	2
	1.3	Block Diagram	4
	1.4	Product Information	5
	1.5	Pin Assignments	7
	1.6	Pin Functions	10
2.	Cer	tral Processing Unit (CPU)	13
	2.1	Data Registers (R0, R1, R2, and R3)	14
	2.2	Address Registers (A0 and A1)	14
	2.3	Frame Base Register (FB)	14
	2.4	Interrupt Table Register (INTB)	14
	2.5	Program Counter (PC)	14
	2.6	User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)	14
	2.7	Static Base Register (SB)	14
	2.8	Flag Register (FLG)	14
	2.8.	1 Carry Flag (C)	14
	2.8.	2 Debug Flag (D)	14
	2.8.	3 Zero Flag (Z)	14
	2.8.	4 Sign Flag (S)	14
	2.8.	5 Register Bank Select Flag (B)	14
	2.8.	6 Overflow Flag (O)	14
	2.8.		
	2.8.	8 Stack Pointer Select Flag (U)	15
	2.8.		
	2.8.	10 Reserved Bit	15
3.	Mer	nory	16
	3.1	R8C/1A Group	16
	3.2	R8C/1B Group	17

4.	Spe	cial Function Registers (SFRs)	18
5.	Pro	grammable I/O Ports	22
	5.1	Functions of Programmable I/O Ports	22
	5.2	Effect on Peripheral Functions	22
	5.3	Pins Other than Programmable I/O Ports	22
	5.4	Port Settings	30
	5.5	Unassigned Pin Handling	35
6.	Res	ets	36
	6.1	Hardware Reset	38
	6.1.	1 When Power Supply is Stable	38
	6.1.	2 Power On	38
	6.2	Power-On Reset Function	40
	6.3	Voltage Monitor 1 Reset	41
	6.4	Voltage Monitor 2 Reset	41
	6.5	Watchdog Timer Reset	41
	6.6	Software Reset	41
7.	Volt	age Detection Circuit	42
	7.1	VCC Input Voltage	48
	7.1.	1 Monitoring Vdet1	48
	7.1.	2 Monitoring Vdet2	48
	7.1.	3 Digital Filter	48
	7.2	Voltage Monitor 1 Reset	50
	7.3	Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset	51
8.	Pro	cessor Mode	53
	8.1	Processor Modes	53
9.	Bus		55
10). Clo	ck Generation Circuit	56
	10.1	Main Clock	63
	10.2	On-Chip Oscillator Clocks	64
	10.2	2.1 Low-Speed On-Chip Oscillator Clock	64
	10.2	2.2 High-Speed On-Chip Oscillator Clock	64

10.3 CP	U Clock and Peripheral Function Clock	65
10.3.1	System Clock	65
10.3.2	CPU Clock	65
10.3.3	Peripheral Function Clock (f1, f2, f4, f8, f32)	65
10.3.4	fRING and fRING128	65
10.3.5	fRING-fast	65
10.3.6	fRING-S	65
10.4 Pov	wer Control	66
10.4.1	Standard Operating Mode	66
10.4.2	Wait Mode	67
10.4.3	Stop Mode	69
10.5 Os	cillation Stop Detection Function	71
10.5.1	How to Use Oscillation Stop Detection Function	71
10.6 Not	tes on Clock Generation Circuit	73
10.6.1	Stop Mode and Wait Mode	73
10.6.2	Oscillation Stop Detection Function	73
10.6.3	Oscillation Circuit Constants	73
10 0 1	High-Speed On-Chip Oscillator Clock	73
10.6.4	nigh-opeen on-onip oscillator olock	
10.6.4 11. Protect		74
	ion	
11. Protect 12. Interrup	ion	74 75
11. Protect 12. Interrup 12.1 Inte	ion ots	74 75 75
11. Protect 12. Interrup 12.1 Inte	ion ots errupt Overview	74 75 75
 Protect Interrup 12.1 Interrup 12.1.1 	ion ots errupt Overview Types of Interrupts	74 75 75 75
 Protect Interrup 12.1 Interrup 12.1.1 12.1.2 	ion ots errupt Overview Types of Interrupts Software Interrupts	74 75 75 75
 Protect Interrup 12.1 Interrup 12.1.1 12.1.2 12.1.3 	ion ots errupt Overview Types of Interrupts Software Interrupts Special Interrupts	74 75 75 75
 Protect Interrup 12.1 Interrup 12.1.1 12.1.2 12.1.3 12.1.4 	ion ots errupt Overview Types of Interrupts Software Interrupts Special Interrupts Peripheral Function Interrupt	74 75 75 75 76 77 77
11. Protect 12. Interrup 12.1 Inte 12.1.1 12.1.2 12.1.3 12.1.4 12.1.5 12.1.6	ion ots errupt Overview Types of Interrupts Software Interrupts Special Interrupts Peripheral Function Interrupt Interrupts and Interrupt Vectors	74 75 75 75 76 77 77 78
11. Protect 12. Interrup 12.1 Inte 12.1.1 12.1.2 12.1.3 12.1.4 12.1.5 12.1.6	ion ots errupt Overview Types of Interrupts Software Interrupts Special Interrupts Peripheral Function Interrupt Interrupts and Interrupt Vectors Interrupt Control	74 75 75 75 76 77 77 78
11. Protect 12. Interrup 12.1 Inte 12.1.1 12.1.2 12.1.3 12.1.3 12.1.4 12.1.5 12.1.6 12.2 INT	ion ots errupt Overview Types of Interrupts Software Interrupts Special Interrupts Peripheral Function Interrupt Interrupts and Interrupt Vectors Interrupt Control	74 75 75 75 76 77 77 77 78 80 88 88
11. Protect 12. Interrup 12.1 Inte 12.1.1 12.1.2 12.1.3 12.1.4 12.1.5 12.1.6 12.2 INT 12.2.1	ion ots errupt Overview	74 75 75 75 76 77 77 77 78 80 88 88 88
 Protect Interrup Interrup<!--</td--><td>ion ots errupt Overview</td><td>74 75 75 75 76 77 77 77 78 80 88 88 88 88 </td>	ion ots errupt Overview	74 75 75 75 76 77 77 77 78 80 88 88 88 88
11. Protect 12. Interrup 12.1 Inte 12.1.1 12.1.2 12.1.3 12.1.4 12.1.5 12.1.6 12.2 INT 12.2.1 12.2.2 12.2.3 12.2.4	ion ots errupt Overview	74 75 75 75 76 77 77 77 78 80 88 88 88 89 90 90 91

12.	.5 N	otes on Interrupts	
	12.5.1	Reading Address 00000h	
	12.5.2	SP Setting	97
	12.5.3	External Interrupt and Key Input Interrupt	97
	12.5.4	Watchdog Timer Interrupt	97
	12.5.5	Changing Interrupt Sources	
	12.5.6	Changing Interrupt Control Register Contents	
13. \	Watch	ndog Timer	100
13.	.1 C	ount Source Protection Mode Disabled	
13.	.2 C	ount Source Protection Mode Enabled	104
14. 7	Timer	S	105
14.	.1 T	imer X	
	14.1.1	Timer Mode	109
	14.1.2	Pulse Output Mode	110
	14.1.3	Event Counter Mode	112
	14.1.4	Pulse Width Measurement Mode	113
	14.1.5	Pulse Period Measurement Mode	116
	14.1.6	Notes on Timer X	119
14.	.2 T	imer Z	120
	14.2.1	Timer Mode	
	14.2.2	Programmable Waveform Generation Mode	
	14.2.3	Programmable One-shot Generation Mode	130
	14.2.4	Programmable Wait One-Shot Generation Mode	133
	14.2.5	Notes on Timer Z	137
14.	.3 T	imer C	
	14.3.1	Input Capture Mode	144
	14.3.2	Output Compare Mode	146
	14.3.3	Notes on Timer C	148
15. 8	Serial	Interface	149
15.	.1 C	lock Synchronous Serial I/O Mode	155
	15.1.1	Polarity Select Function	
	15.1.2	LSB First/MSB First Select Function	158
	15.1.3	Continuous Receive Mode	159

	15.2	Clock Asynchronous Serial I/O (UART) Mode	160
	15.2	.1 CNTR0 Pin Select Function	163
	15.2	.2 Bit Rate	164
	15.3	Notes on Serial Interface	165
16	. Cloc	k Synchronous Serial Interface	166
	16.1	Mode Selection	166
	16.2	Clock Synchronous Serial I/O with Chip Select (SSU)	167
	16.2	.1 Transfer Clock	176
	16.2	.2 SS Shift Register (SSTRSR)	178
	16.2	.3 Interrupt Requests	179
	16.2	.4 Communication Modes and Pin Functions	180
	16.2	.5 Clock Synchronous Communication Mode	181
	16.2	.6 Operation in 4-Wire Bus Communication Mode	188
	16.2	.7 SCS Pin Control and Arbitration	194
	16.2	.8 Notes on Clock Synchronous Serial I/O with Chip Select	195
	16.3	I ² C bus Interface	196
	16.3	.1 Transfer Clock	206
	16.3	.2 Interrupt Requests	207
	16.3	.3 I ² C bus Interface Mode	208
	16.3	.4 Clock Synchronous Serial Mode	219
	16.3	.5 Noise Canceller	222
	16.3	.6 Bit Synchronization Circuit	223
	16.3	.7 Examples of Register Setting	224
	16.3	.8 Notes on I ² C bus Interface	228
17	. A/D	Converter	229
	17.1	One-Shot Mode	233
	17.2	Repeat Mode	235
	17.3	Sample and Hold	237
	17.4	A/D Conversion Cycles	237
	17.5	Internal Equivalent Circuit of Analog Input Block	
	17.6	Inflow Current Bypass Circuit	
	17.7	Output Impedance of Sensor under A/D Conversion	240
	17.8	Notes on A/D Converter	

18. Fla	sh N	<i>l</i> emory	243
18.1	Ov	erview	243
18.2	Me	mory Map	245
18.3	Fur	nctions to Prevent Rewriting of Flash Memory	247
18.	3.1	ID Code Check Function	247
18.	3.2	ROM Code Protect Function	248
18.4	CP	U Rewrite Mode	249
18.	4.1	EW0 Mode	250
18.	4.2	EW1 Mode	250
18.	4.3	Software Commands	259
18.	4.4	Status Register	
18.	4.5	Full Status Check	264
18.5	Sta	ndard Serial I/O Mode	
18.	5.1	ID Code Check Function	
18.6	Pa	rallel I/O Mode	270
18.	6.1	ROM Code Protect Function	270
18.7	No	tes on Flash Memory	271
18.	7.1	CPU Rewrite Mode	271
19. Ele	ctric	al Characteristics	273
20. Usa	age	Notes	293
20.1	No	tes on Clock Generation Circuit	
20.	1.1	Stop Mode and Wait Mode	293
20.		Oscillation Stop Detection Function	
20.	1.3	Oscillation Circuit Constants	
20.	1.4	High-Speed On-Chip Oscillator Clock	293
20.2	No	tes on Interrupts	294
20.	2.1	Reading Address 00000h	294
20.	2.2	SP Setting	294
20.	2.3	External Interrupt and Key Input Interrupt	294
20.	2.4	Watchdog Timer Interrupt	294
20.	2.5	Changing Interrupt Sources	295
20.	2.6	Changing Interrupt Control Register Contents	296
20.3	Pre	ecautions on Timers	297
20.	3.1	Notes on Timer X	

20.	3.2	Notes on Timer Z	297
20.	3.3	Notes on Timer C	298
20.4	Not	es on Serial Interface	299
20.5	Pre	cautions on Clock Synchronous Serial Interface	300
20.	5.1	Notes on Clock Synchronous Serial I/O with Chip Select	300
20.	5.2	Notes on I ² C bus Interface	301
20.6	Not	es on A/D Converter	302
20.7	Not	es on Flash Memory	303
20.	7.1	CPU Rewrite Mode	303
20.8	Not	es on Noise	305
20.	8.1	Inserting a Bypass Capacitor between VCC and VSS Pins as a Countermeasure against Noise and Latch-Up	305
20.	8.2	Countermeasures against Noise Error of Port Control Registers	305
21. Not	es o	n On-Chip Debugger	306
Append	ix 1.	Package Dimensions	307
Append	ix 2.	Connection Examples between Serial Writer and On-Chi Debugging Emulator	ip 309
Append	ix 3.	Example of Oscillation Evaluation Circuit	310
Registe	r Ind	ex	311

SFR Page Reference

Address Register Symbol Page Address Register Symbol Page 00000	0000h 0 <th>80 80 2AIC 80 80 80 80 80 80 80 80 80 80 80</th>	80 80 2AIC 80 80 80 80 80 80 80 80 80 80 80
0001h Concertion Processor Mode Suggier / PKR 53 0000h Frosssor Mode Suggier / PKR 54 0000h Frosssor Mode Suggier / PKR 54 0000h Frosssor Mode Suggier / PKR 54 0000h Frosssor Mode Suggier / PKR 74 0000h Frosssor Mode Suggier / PKR SUR 0000h <td>0001h 004h <t< td=""><td>80 2AIC 80 80 80 80 80 80 80 80 80</td></t<></td>	0001h 004h 004h <t< td=""><td>80 2AIC 80 80 80 80 80 80 80 80 80</td></t<>	80 2AIC 80 80 80 80 80 80 80 80 80
06080 00420 00420 00420 00420 06040 Processor Mode Register 1 PMC 034 00420 00420 06040 Processor Mode Register 1 PMC 044 00440 <t< td=""><td>0002h 004h <t< td=""><td>80 2AIC 80 80 80 80 80 80 80 80 80</td></t<></td></t<>	0002h 004h 004h <t< td=""><td>80 2AIC 80 80 80 80 80 80 80 80 80</td></t<>	80 2AIC 80 80 80 80 80 80 80 80 80
0000h Processor Mode Register 1 PM0 653 0000h Fysiem Clock Corrol Register 1 PM1 64 0000h System Clock Corrol Register 1 CM1 28 0000h System Clock Corrol Register 1 CM1 28 0000h Address Match Imange Register 1 PMCR 74 0000h Address Match Imange Register 1 PMCR 74 0000h Address Match Imange Register 0 CD 60 0001h Address Match Imange Register 0 PMCR 74 0001h Address Match Imange Register 1 RMAD0 86 0011h Address Match Imange Register 1 RMAD1 96 0011h Address Matc	0003h Processor Mode Register 0 PM0 53 0005h Processor Mode Register 1 PM1 54 0006h System Clock Control Register 0 CM0 58 0007h System Clock Control Register 1 CM1 59 0008h O048h 0048h 0048h 0008h Protect Register PRCR 74 0008h Protect Register PRCR 74 0000h Oodah O049h 0049h 0000h Station Stop Detection Register OCD 60 0000h Watchdog Timer Reset Register WDTR 102 0000h Watchdog Timer Control Register WDTS 102 0047h SUJIIC Interrupt Control Register KUPIC 0010h Address Match Interrupt Register 0 WDTS 102 0047h SUJIIC Interrupt Control Register SUJIIC 0012h Address Match Interrupt Register 1 RMAD0 96 0013h O014h Address Match Interrupt Register 1 RMAD1 96 <	80 2AIC 80 80 80 80 80 80 80 80 80
Bookson Hooks Register 0 PMO S33 D064h Cancel Construction Register 0 PMO S34 00050 Processon Mode Register 1 CM0 S36 004h C C 00070 System Clock Corrol Register 1 CM1 S9 C	0004h Processor Mode Register 0 PM0 53 0005h Processor Mode Register 1 PM1 54 0006h System Clock Control Register 0 CM0 58 0007h System Clock Control Register 1 CM1 59 0008h 0044h 0045h 0046h 0008h 0007h System Clock Control Register PRCR 74 0008h 0008h 0048h 0048h 0048h 00008h 00000h Watchdog Timer Register WDTR 102 0000Fh Watchdog Timer Register WDTS 102 000Fh Watchdog Timer Control Register WDTS 102 000Fh Watchdog Timer Control Register WDC 101 0011h Address Match Interrupt Register 0 RMAD0 96 0012h 0015h UARTO Transmit Interrupt Control Register SUIC/ 0013h Address Match Interrupt Register 1 RMAD1 96 0055h UARTO Transmit Interrupt Control Register SUIC 0018h UARTO Receive I	80 2AIC 80 80 80 80 80 80 80 80 80
00050 Processor Mode Register 1 PM1 944 00050 System Clack Corrol Register 1 CM0 63 00050 System Clack Corrol Register 1 CM1 59 00050 Mathews Match Interrupt Register 1 CM1 59 00050 Processor Mode Register 1 CM1 59 00050 Address Match Interrupt Register 2 CCD 60 00050 Processor Mode Register 3 CCD 60 00050 Processor Mode Register 4 CCD 60 00050 Processor Mode Register 4 CCD 60 00050 Processor Mode Register 4 CCD 60 00050 Matchog Timer Stare Register 0 RMADD 90 00150 Address Match Interrupt Register 1 RMAD1 96 00150 Address Match Interrupt Register 1 RMAD1 96 00150 Court Source Protection Mode Register 1 RMAD1 96 00150 Court Source Protection Mode Register 1 RMAD1 96 00150 Court Source Protect	0005h Processor Mode Register 1 PM1 54 0006h System Clock Control Register 0 CM0 58 0007h System Clock Control Register 1 CM1 59 0008h	80 2AIC 80 80 80 80 80 80 80 80 80
00060 System Clock Currol Register 0 CM0 58 00070 System Clock Currol Register 1 ALER 0 00081 Address Match Interrupt Enable Register 7 ALER 0 00080 Address Match Interrupt Enable Register 7 ALER 0 00080 Address Match Interrupt Enable Register 7 ALER 0 00080 Address Match Interrupt Register 7 ALER 0 00080 Address Match Interrupt Register 7 VITR 0 00080 Matching Timer Stat Register 0 RMAD0 0 00170 Address Match Interrupt Register 1 RMAD0 0 00171 Address Match Interrupt Register 1 RMAD1 0 00176 Currupt State Register 1 RMAD1 0 00176 Currupt State Register 1 RMAD1 0 0	0006h System Clock Control Register 0 CM0 58 0007h System Clock Control Register 1 CM1 59 0008h 0007h System Clock Control Register 1 CM1 59 0008h 0046h 0047h 0048h 0048h 0008h 0048h 0048h 0048h 0048h 0048h 0008h 0048h	80 2AIC 80 80 80 80 80 80 80 80 80
0007h System Clock Cornel Register 1 CM1 99 0008h Address Match Interrupt Endle Register 1 CM1 99 0007h Address Match Interrupt Endle Register 2 CM1 604 0008h Control Register 4 CM1 604 0008h Matching Three Start Register 4 CM1 604 0008h Matching Three Start Register 4 CM1 604 0008h Matching Three Start Register 4 CM1 604 0017h Address Match Interrupt Register 3 RMADD 605 0017h Address Match Interrupt Register 4 RMADD 605 0017h Address Match Interrupt Register 3 RMADD 605 0017h Address Match Interrupt Register 4 RMADD 605 0017h Address Match Interrupt Register 3 RMADD 605 0017h Address Match Interrupt Register 4 RMADD 605 0017h Corner Source Protection Mode Register 7 CCR 102 0017h Corner Source Protection Mode Register 7 CCR 102	0007hSystem Clock Control Register 1CM1590008h0009hAddress Match Interrupt Enable RegisterAIER960008hProtect RegisterPRCR740008h004Ah004Ah0008h0000h0scillation Stop Detection RegisterOCD0000hWatchdog Timer Reset RegisterWDTR102000EhWatchdog Timer Control RegisterWDTS102000FhWatchdog Timer Control RegisterWDTS102001AhAddress Match Interrupt Register 0RMAD0960011h001AhAddress Match Interrupt Register 1RMAD00013h0014hAddress Match Interrupt Register 1RMAD10018h0018h0058hUART0 Transmit Interrupt Control RegisterSORIC0018h0019h0058hTimer X Interrupt Control RegisterS1RIC0018h0019h0058hTimer X Interrupt Control RegisterS1RIC0018h0019h0058hTimer Z Interrupt Control RegisterTZIC0018h0019h0058hTimer Z Interrupt Control RegisterTZIC0018h0058hTimer Z Interrupt Control RegisterTZIC0018h0058hTimer C Interrupt Control RegisterTZIC0058hTimer Z Interrupt Control RegisterINT3IC0058hTimer Z Interrupt Control RegisterINT3IC0058hTimer Z Interrupt Control RegisterINT3IC0058hTimer C Interrupt Control RegisterTZIC0058hTimer C Int	80 2AIC 80 80 80 80 80 80 80 80 80
0008h	0008h 0048h 0048h 0048h 0048h 0048h 0048h 0048h 0049h 0048h 0049h 0048h 005h 005h 005h 005h 005h 005h 005h 005h 005h <td>80 2AIC 80 80 80 80 80 80 80 80 80</td>	80 2AIC 80 80 80 80 80 80 80 80 80
0008h	0008h 0048h 0048h 0048h 0048h 0048h 0048h 0048h 0049h 0048h 0049h 0048h 005h 005h 005h 005h 005h 005h 005h 005h 005h <td>80 2AIC 80 80 80 80 80 80 80 80 80</td>	80 2AIC 80 80 80 80 80 80 80 80 80
0000h Address Match Interrupt Enable Register AIR 96 0000h Protection Register OCC 0000h 0000h <td>0009hAddress Match Interrupt Enable RegisterAIER96000AhProtect RegisterPRCR74000Bh004Ah004Ah000ChOscillation Stop Detection RegisterOCD000DhWatchdog Timer Reset RegisterWDTR102000EhWatchdog Timer Start RegisterWDTS102000FhWatchdog Timer Control RegisterWDC101001AhAddress Match Interrupt Register 0RMAD0960013h0014hAddress Match Interrupt Register 1RMAD1960018h0014hAddress Match Interrupt Register 1RMAD1960018h0019hUART0 Receive Interrupt Control RegisterSORIC0019h0019h005hUART1 Transmit Interrupt Control RegisterSORIC0019h0019h005h005hUART1 Receive Interrupt Control RegisterSIRIC0019h005h005h005h005h005h0019h0019h005h11mer Z Interrupt Control RegisterTXIC0019h0019h005h1005h005h1005h0019h0019h005h11mer Z Interrupt Control RegisterTXIC0019h0019h005h11mer Z Interrupt Control Register11T1IC0019h005h11mer Z Interrupt Control Register11T1IC0019h005h11mer Z Interrupt Control Register11T1IC0019h005h11mer C Interrupt Control Register11T1IC005h005h11mer C Interrupt Control</td> <td>80 2AIC 80 80 80 80 80 80 80 80 80</td>	0009hAddress Match Interrupt Enable RegisterAIER96000AhProtect RegisterPRCR74000Bh004Ah004Ah000ChOscillation Stop Detection RegisterOCD000DhWatchdog Timer Reset RegisterWDTR102000EhWatchdog Timer Start RegisterWDTS102000FhWatchdog Timer Control RegisterWDC101001AhAddress Match Interrupt Register 0RMAD0960013h0014hAddress Match Interrupt Register 1RMAD1960018h0014hAddress Match Interrupt Register 1RMAD1960018h0019hUART0 Receive Interrupt Control RegisterSORIC0019h0019h005hUART1 Transmit Interrupt Control RegisterSORIC0019h0019h005h005hUART1 Receive Interrupt Control RegisterSIRIC0019h005h005h005h005h005h0019h0019h005h11mer Z Interrupt Control RegisterTXIC0019h0019h005h1005h005h1005h0019h0019h005h11mer Z Interrupt Control RegisterTXIC0019h0019h005h11mer Z Interrupt Control Register11T1IC0019h005h11mer Z Interrupt Control Register11T1IC0019h005h11mer Z Interrupt Control Register11T1IC0019h005h11mer C Interrupt Control Register11T1IC005h005h11mer C Interrupt Control	80 2AIC 80 80 80 80 80 80 80 80 80
Boots Protect Register PRCR 74 0000h Matchag Timer Base Register OCD 60 0000h Watchag Timer Base Register WDTR 102 0010h Address Match Interrupt Register 0 RMAD0 96 0010h Address Match Interrupt Register 1 RMAD1 96 0010h Control Register TDIC 80 0010h Control Register TDIC 80 0010h Control Register TDIC 80 0010h Madress Match Interrupt Control Register	000AhProtect RegisterPRCR74000Bh000ChOscillation Stop Detection RegisterOCD60000DhWatchdog Timer Reset RegisterWDTR102000FhWatchdog Timer Statt RegisterWDTS102000FhWatchdog Timer Control RegisterWDC101001AhAddress Match Interrupt Register 0RMAD0960013h0014hAddress Match Interrupt Register 1RMAD0960013h0014hAddress Match Interrupt Register 1RMAD1960015h0016h005hCompare 1 Interrupt Control RegisterSORIC0017h0018h005hCompare 1 Interrupt Control RegisterSORIC0018h0019h005h005hCompare 1 Interrupt Control RegisterSIRIC0019h005h005hUART1 Receive Interrupt Control RegisterSIRIC0019h005h005hTimer Z Interrupt Control RegisterTXIC0018h005h005hTimer Z Interrupt Control RegisterTXIC0018h005h005hINT1 Interrupt Control RegisterINT1IC0018h005h005hIINT2 Interrupt Control RegisterIINT1IC0018h0018h005hIINT2 Interrupt Control RegisterIINT1IC0018h0018h005hIINT2 Interrupt Control RegisterIINT1IC0017h005h005hIINT2 Interrupt Control RegisterIINT2IC0018h005h005hIINT2 Interrupt Control RegisterIINT2IC	80 2AIC 80 80 80 80 80 80 80 80 80
0000h 0000h <th< td=""><td>000Bh 000Ch 0scillation Stop Detection Register 0CD 60 000Dh Watchdog Timer Reset Register WDTR 102 004Bh 004Ch 004Dh Well Interrupt Control Register WDIC 004Dh Key Input Interrupt Control Register AUPC 000Fh Watchdog Timer Control Register WDC 101 004Eh A/D Conversion Interrupt Control Register SUAIC/ 0010h Address Match Interrupt Register 0 RMAD0 96 0050h Compare 1 Interrupt Control Register SUAIC/ 0011h 0013h 0014h Address Match Interrupt Register 1 RMAD1 96 0053h UART0 Transmit Interrupt Control Register SORIC 0015h 0016h 0015h 0053h UART1 Transmit Interrupt Control Register SIRIC 0015h 0016h 0057h 0058h Timer X Interrupt Control Register SIRIC 0019h 0019h 0019h 0058h Timer Z Interrupt Control Register TZIC 0058h Timer Z Interrupt Control Register TZIC 0058h Timer Z Interrupt Control Register</td><td>80 2AIC 80 80 80 80 80 80 80 80 80</td></th<>	000Bh 000Ch 0scillation Stop Detection Register 0CD 60 000Dh Watchdog Timer Reset Register WDTR 102 004Bh 004Ch 004Dh Well Interrupt Control Register WDIC 004Dh Key Input Interrupt Control Register AUPC 000Fh Watchdog Timer Control Register WDC 101 004Eh A/D Conversion Interrupt Control Register SUAIC/ 0010h Address Match Interrupt Register 0 RMAD0 96 0050h Compare 1 Interrupt Control Register SUAIC/ 0011h 0013h 0014h Address Match Interrupt Register 1 RMAD1 96 0053h UART0 Transmit Interrupt Control Register SORIC 0015h 0016h 0015h 0053h UART1 Transmit Interrupt Control Register SIRIC 0015h 0016h 0057h 0058h Timer X Interrupt Control Register SIRIC 0019h 0019h 0019h 0058h Timer Z Interrupt Control Register TZIC 0058h Timer Z Interrupt Control Register TZIC 0058h Timer Z Interrupt Control Register	80 2AIC 80 80 80 80 80 80 80 80 80
0000h Oscillation Stop Detection Register OCD 600 0000h Watchdog Timer Start Register WDTK 102 0000h Matchdog Timer Start Register WDC 101 0001h Address Match Interrupt Register 0 RMAD0 96 0011h Address Match Interrupt Register 1 RMAD1 96 0015h Cours Course Protection Mode Register SPRC 80 0015h Cours Source Protection Mode Register SPRC 102 0015h Cours Source Protection Mode Register NTOF 88 0015h Timer Z Interrupt Control Register NTOIC 80 0015h Timer Z Interrupt Control Register NTOIC 80 0015h Timer Z Interrupt Control Register NTOIC 80	000ChOscillation Stop Detection RegisterOCD60000DhWatchdog Timer Reset RegisterWDTR102000EhWatchdog Timer Start RegisterWDTS102000FhWatchdog Timer Control RegisterWDC101001PhAddress Match Interrupt Register 0RMAD0960013h0013h005hCompare 1 Interrupt Control RegisterSUAIC/0013h0013h005hCompare 1 Interrupt Control RegisterSORIC0013h0013h005h005hUART0 Receive Interrupt Control RegisterSORIC0017h0018h005h005hTimer X Interrupt Control RegisterSTIC0019h0018h005h005h1005h1005h0019h0018h005h1005h1005h1005h0019h0018h005h005h1007rol RegisterTZIC0019h0018h005h10058h110710 RegisterTZIC0019h005h005h10058h110710 Register107100018h005h005h10058h110710 Register117100019h005h0059h110711 Interrupt Control Register11711C0018h005h0058h110721 Control Register11711C0018h0059h100710 Register121C0058h110721 Control Register11711C0018h0059h100710 Register107101055H1055H1055H1055H1055H0018h0059h100710 Register	80 2AIC 80 80 80 80 80 80 80 80 80
0000h Watchdog Timer Reset Register WDTS 102 0006h Watchdog Timer Start Register WDTS 1012 0006h Watchdog Timer Start Register WDC 1012 0007h Address Match Interrupt Register NVDC 1012 0017h Address Match Interrupt Register NVDC 101 0017h Address Match Interrupt Register NVDC 101 0017h Address Match Interrupt Register NVDC 100 0017h Address Match Interrupt Register NVDC 80 0017h Count Surrup Control Register NVDC 80 0017h Count Surrup Control Register NV16 80 0017h High-Speed On-Chip Goollakor Control HRA2 62 0025h	000DhWatchdog Timer Reset RegisterWDTR102000EhWatchdog Timer Start RegisterWDTS102000FhWatchdog Timer Control RegisterWDC1010010hAddress Match Interrupt Register 0RMAD0960011hAddress Match Interrupt Register 0RMAD0960012h0013h0013h0013h0013h0013h0052hUART0 Transmit Interrupt Control RegisterSORIC0013h0015h0058hUART1 Transmit Interrupt Control RegisterSORIC0018h0018h0056h0057h0058h0019h0018h0058hTimer Z Interrupt Control RegisterS1RIC0019h0058hTimer Z Interrupt Control RegisterTXIC0018h0058hTimer Z Interrupt Control RegisterTXIC0018h0058hTimer Z Interrupt Control RegisterTXIC0018h0058hTimer Z Interrupt Control RegisterTXIC0018h0058hTimer Z Interrupt Control RegisterINT1IC0018h0058hTimer Z Interrupt Control RegisterTZIC0058hTimer Z Interrupt Control RegisterINT1IC0058hTimer Z Interrupt Control RegisterINT1IC0058hTimer C Interrupt Control RegisterINT3IC0058hTimer C Interrupt Control RegisterTCIC0058hTimer C Interrupt Control RegisterTCIC0058hTimer C Interrupt Control RegisterTCIC0058hTimer C Interrupt Control RegisterTCIC<	80 2AIC 80 80 80 80 80 80 80 80 80
000Eh Watchsig Timer Start Register WDC 102 000Fh Matchig Timer Start Register 0 RMAD0 96 001h Address Match Interrupt Register 0 RMAD0 96 001h Address Match Interrupt Register 0 RMAD0 96 001h Address Match Interrupt Register 1 RMAD1 96 001h Corrupt Register 1 RMAD1 96 001h RMAD1 RMAD1	000Eh Watchdog Timer Start Register WDTS 102 000Fh Watchdog Timer Control Register WDC 101 0010h Address Match Interrupt Register 0 RMAD0 96 0011h 0005h Compare 1 Interrupt Control Register SSUAIC/ 0011h 0014h Address Match Interrupt Register 0 RMAD0 96 0013h 0014h Address Match Interrupt Register 1 RMAD1 96 0014h Address Match Interrupt Register 1 RMAD1 96 0054h UART0 Receive Interrupt Control Register SORIC 0014h Address Match Interrupt Register 1 RMAD1 96 0054h UART1 Transmit Interrupt Control Register SITIC 005h 0017h 005h 0058h UART1 Receive Interrupt Control Register SIRIC 0018h 0018h 0058h Timer Z Interrupt Control Register TXIC 0058h Timer Z Interrupt Control Register INT1IC 0058h Timer Z Interrupt Control Register INT1IC 0018h 0018h 005h Timer Z Interrupt Control Register <td>80 2AIC 80 80 80 80 80 80 80 80 80</td>	80 2AIC 80 80 80 80 80 80 80 80 80
000Fh Watchog Timer Control Register WBC 101 001bh Address Match Interrupt Register 0 RMAD0 96 001bh Address Match Interrupt Register 0 RMAD0 96 001bh Address Match Interrupt Register 1 RMAD1 96 001bh Address Match Interrupt Control Register STIC 80 001bh Control Mode Register TMC 80 001bh Control Register TMC 80 001bh Control Register TMC 80 001bh Control Register TMTIC 80 001bh Control Register TMTIC 80 001bh Files State Register TMTIC 80 001bh MTI Interrupt Control Register TMTIC 80 001bh MTI Interrupt Control Register TMTIC<	000Fh Watchdog Timer Control Register WDC 101 0010h Address Match Interrupt Register 0 RMAD0 96 0011h 005h Compare 1 Interrupt Control Register CMP1IC 0011h 0014h Address Match Interrupt Register 1 RMAD0 96 0013h 0014h Address Match Interrupt Register 1 RMAD1 96 0015h 0053h UART0 Receive Interrupt Control Register S0RC 0015h 0053h UART1 Receive Interrupt Control Register S1RIC 0015h 0054h UART1 Receive Interrupt Control Register S1RIC 0015h 0054h UART1 Receive Interrupt Control Register S1RIC 0017h 0058h Timer X Interrupt Control Register TXIC 0018h 0058h Timer Z Interrupt Control Register TZIC 0019h 0058h Timer Z Interrupt Control Register INT1IC 0018h 0058h Timer Z Interrupt Control Register INT1IC 0018h 0058h Timer Z Interrupt Control Register INT1IC 0018h </td <td>2AIC 80 80 80 80 80 80 80 80 80</td>	2AIC 80 80 80 80 80 80 80 80 80
0010h Address Match Interrupt Register 0 RMAD0 96 0011h ODSP Compace 1 Interrupt Control Register 3071C 80 0014h Address Match Interrupt Register 1 RMAD1 96 0055h UART Receive Interrupt Control Register 3071C 80 0014h Address Match Interrupt Register 1 RMAD1 96 0055h UART Receive Interrupt Control Register 3171C 80 0016h Compace 11 Interrupt Control Register 3171C 80 00 80 0016h Compace 11 Interrupt Control Register 3171C 80 00 80 0016h Compace 11 Interrupt Control Register 3171C 80 00 80 100	0010h 0011hAddress Match Interrupt Register 0RMAD0960050hCompare 1 Interrupt Control RegisterCMP1IC0011h0012h0013h0050hUART0 Receive Interrupt Control RegisterS0RIC0013h0014hAddress Match Interrupt Register 1RMAD1960053hUART1 Receive Interrupt Control RegisterS0RIC0016h0016h005hUART1 Receive Interrupt Control RegisterS1RIC0055h0056h10056h0017h0018h0056h10057h0057h0058h10057h0058h10057h0018h0018h0059h10058hTimer Z Interrupt Control RegisterTZIC0058h10058h <td< td=""><td>80 80 80 80 80 80 80</br></td></td<>	80 80 80
0011h Address Match Interrupt Register 1 RMAD1 96 0013h Address Match Interrupt Register 1 RMAD1 96 0013h Address Match Interrupt Register 1 80 005 NUAR1 Transmit Interrupt Control Register 8110C 80 0013h Address Match Interrupt Register 1 71C 80 005 1005 1007 1005 1007 80 005 1005 1007 80 005 1005	0011h 0051h UART0 Transmit Interrupt Control Register S0TIC 0012h 0051h UART0 Receive Interrupt Control Register S0RC 0013h 0052h UART0 Receive Interrupt Control Register S0RC 0014h Address Match Interrupt Register 1 RMAD1 96 0053h UART1 Transmit Interrupt Control Register S1RIC 0016h 0016h 0056h Timer X Interrupt Control Register TXIC 0018h 0058h Timer Z Interrupt Control Register TZIC 0019h 0058h Timer Z Interrupt Control Register TZIC 0018h 0058h Timer Z Interrupt Control Register TZIC 0018h 0059h INT1 Interrupt Control Register TZIC 0018h 0059h INT3 Interrupt Control Register INT1IC 0018h 0059h INT1 Interrupt Control Register INT3IC 0018h 0058h Timer Z Interrupt Control Register INT3IC 0018h 0058h Timer C Interrupt Control Register INT3IC 0058h 0058h Timer C Interrupt Control Register INT3IC 0058h Timer C Interrupt Con	80 80 80 80 80 80
0011h 0015h 0015h <td< td=""><td>0011h 0051h UART0 Transmit Interrupt Control Register S0TIC 0012h 0052h UART0 Receive Interrupt Control Register S0RIC 0013h 0052h UART0 Receive Interrupt Control Register S0RIC 0014h Address Match Interrupt Register 1 RMAD1 96 0054h UART1 Transmit Interrupt Control Register S1RIC 0016h 0055h 0056h 10056h 10056h 10056h 0017h 0018h 0058h 10057h 0057h 10058h 10057h 0018h 0059h 10058h 1100058h 11011C 10058h 11011C 0018h 0059h 1102 0058h 1102 10711 1101100058H 1100058H 11010</td><td>80 80 80 80 80</td></td<>	0011h 0051h UART0 Transmit Interrupt Control Register S0TIC 0012h 0052h UART0 Receive Interrupt Control Register S0RIC 0013h 0052h UART0 Receive Interrupt Control Register S0RIC 0014h Address Match Interrupt Register 1 RMAD1 96 0054h UART1 Transmit Interrupt Control Register S1RIC 0016h 0055h 0056h 10056h 10056h 10056h 0017h 0018h 0058h 10057h 0057h 10058h 10057h 0018h 0059h 10058h 1100058h 11011C 10058h 11011C 0018h 0059h 1102 0058h 1102 10711 1101100058H 1100058H 11010	80 80 80 80 80
0013h 0013h <td< td=""><td>0012h 0052h UART0 Receive Interrupt Control Register SORIC 0013h 0013h 0053h UART1 Transmit Interrupt Control Register S1TIC 0014h Address Match Interrupt Register 1 RMAD1 96 0054h UART1 Receive Interrupt Control Register S1TIC 0015h 0016h 0056h Timer X Interrupt Control Register TXIC 0018h 0058h Timer Z Interrupt Control Register TZIC 0019h 0058h Timer Z Interrupt Control Register TZIC 0018h 0059h INT1 Interrupt Control Register TZIC 0018h 0058h Timer Z Interrupt Control Register TZIC 0018h 0059h INT1 Interrupt Control Register INT1IC 0018h 0059h Timer Z Interrupt Control Register INT3IC 0018h 0059h INT3 Interrupt Control Register INT3IC 0018h 0058h Timer C Interrupt Control Register INT3IC 0018h 0058h Timer C Interrupt Control Register INT3IC 0058h Timer C Interrupt Control Reg</td><td>80 80 80 80 80</td></td<>	0012h 0052h UART0 Receive Interrupt Control Register SORIC 0013h 0013h 0053h UART1 Transmit Interrupt Control Register S1TIC 0014h Address Match Interrupt Register 1 RMAD1 96 0054h UART1 Receive Interrupt Control Register S1TIC 0015h 0016h 0056h Timer X Interrupt Control Register TXIC 0018h 0058h Timer Z Interrupt Control Register TZIC 0019h 0058h Timer Z Interrupt Control Register TZIC 0018h 0059h INT1 Interrupt Control Register TZIC 0018h 0058h Timer Z Interrupt Control Register TZIC 0018h 0059h INT1 Interrupt Control Register INT1IC 0018h 0059h Timer Z Interrupt Control Register INT3IC 0018h 0059h INT3 Interrupt Control Register INT3IC 0018h 0058h Timer C Interrupt Control Register INT3IC 0018h 0058h Timer C Interrupt Control Register INT3IC 0058h Timer C Interrupt Control Reg	80 80 80 80 80
0014h Adverse Part of the register STRIC 80 0014h Adverse StRIC 80 0015h Adverse StRIC 80 0015h Construction Register StRIC 80 0015h Construction Register TXIC 80 0015h Construction Register INT3IC 80 0015h Timer X Interrupt Control Register INT3IC 80 0015h INT0 Input Filter Select Register INT3IC 80 0015h INT0 Interrupt Control Register INT0IC 81 0015h INT0 Interrupt Control Register INT0IC 81 0015h INT0 Interrupt Control Register INT0IC 81 0015h INT0 Interrupt Control Register INT0IC 81 <td>0013h 0053h UART1 Transmit Interrupt Control Register S1TIC 0014h Address Match Interrupt Register 1 RMAD1 96 0054h UART1 Transmit Interrupt Control Register S1RIC 0015h 0056h UART1 Receive Interrupt Control Register S1RIC 0016h 0057h 0057h 0057h 0018h 0058h Timer Z Interrupt Control Register TZIC 0019h 0058h Timer Z Interrupt Control Register TZIC 0018h 0058h Timer Z Interrupt Control Register INT1IC 0018h 0058h Timer C Interrupt Control Register INT3IC 0018h 0018h 0058h Timer C Interrupt Control Register INT3IC 0018h 0018h 0058h Timer C Interrupt Control Register CICIC 0018h 0018h 0058h Time</td> <td>80 80 80</td>	0013h 0053h UART1 Transmit Interrupt Control Register S1TIC 0014h Address Match Interrupt Register 1 RMAD1 96 0054h UART1 Transmit Interrupt Control Register S1RIC 0015h 0056h UART1 Receive Interrupt Control Register S1RIC 0016h 0057h 0057h 0057h 0018h 0058h Timer Z Interrupt Control Register TZIC 0019h 0058h Timer Z Interrupt Control Register TZIC 0018h 0058h Timer Z Interrupt Control Register INT1IC 0018h 0058h Timer C Interrupt Control Register INT3IC 0018h 0018h 0058h Timer C Interrupt Control Register INT3IC 0018h 0018h 0058h Timer C Interrupt Control Register CICIC 0018h 0018h 0058h Time	80 80 80
0014h Address Match Interrupt Register 1 RMAD1 96 0016h 0005h	0014h Address Match Interrupt Register 1 RMAD1 96 0015h 0054h UART1 Receive Interrupt Control Register \$1RIC 0016h 0055h 0056h 10056h 0017h 0058h 10058h 10058h 0018h 0058h 10058h 10058h 0019h 0058h 10059h 10058h 0018h 0058h 11011 Interrupt Control Register 1111C 0018h 0058h 11011 Interrupt Control Register 11011C 0058h 0059h 11011 Interrupt Control Register 11012 0010h 0010h 0058h 102 0050h 1001000000000000000000000000000000000	80 80
0016h 0 <td>0015h 0055h 0055h 0016h 0056h Timer X Interrupt Control Register TXIC 0017h 0057h 0057h 0057h 0019h 0058h Timer Z Interrupt Control Register TZIC 0019h 0059h INT1 Interrupt Control Register TZIC 0017h 0058h Timer Z Interrupt Control Register INT1IC 0018h 0059h INT3 Interrupt Control Register INT3IC 0018h 0058h Timer C Interrupt Control Register INT3IC 0018h 0058h 0058h Timer C Interrupt Control Register INT3IC 0018h 0058h 0058h Timer C Interrupt Control Register TCIC 0058h 0058h Timer C Interrupt Control Register TCIC 0058h Compare 0 Interrupt Control Register CMP0IC</td> <td>80</td>	0015h 0055h 0055h 0016h 0056h Timer X Interrupt Control Register TXIC 0017h 0057h 0057h 0057h 0019h 0058h Timer Z Interrupt Control Register TZIC 0019h 0059h INT1 Interrupt Control Register TZIC 0017h 0058h Timer Z Interrupt Control Register INT1IC 0018h 0059h INT3 Interrupt Control Register INT3IC 0018h 0058h Timer C Interrupt Control Register INT3IC 0018h 0058h 0058h Timer C Interrupt Control Register INT3IC 0018h 0058h 0058h Timer C Interrupt Control Register TCIC 0058h 0058h Timer C Interrupt Control Register TCIC 0058h Compare 0 Interrupt Control Register CMP0IC	80
Other Constant Constant <t< td=""><td>0016h 0056h Timer X Interrupt Control Register TXIC 0017h 0057h 0057h 0057h 0057h 0058h Timer Z Interrupt Control Register TZIC 0058h Timer Z Interrupt Control Register TZIC 0058h INT1 Interrupt Control Register TZIC 0058h NINT1 Interrupt Control Register INT1IC 0059h INT3 Interrupt Control Register INT3IC 0058h NINT3 Interrupt Control Register INT3IC 0058h Timer C Interrupt Control Register INT3IC 0058h Timer C Interrupt Control Register TCIC 0058h Timer C Interrupt Control Register TCIC 0058h Timer C Interrupt Control Register CMPOIC 001Ch Count Source Protection Mode Register CSPR 102 005Ch Compare 0 Interrupt Control Register CMPOIC</td><td></td></t<>	0016h 0056h Timer X Interrupt Control Register TXIC 0017h 0057h 0057h 0057h 0057h 0058h Timer Z Interrupt Control Register TZIC 0058h Timer Z Interrupt Control Register TZIC 0058h INT1 Interrupt Control Register TZIC 0058h NINT1 Interrupt Control Register INT1IC 0059h INT3 Interrupt Control Register INT3IC 0058h NINT3 Interrupt Control Register INT3IC 0058h Timer C Interrupt Control Register INT3IC 0058h Timer C Interrupt Control Register TCIC 0058h Timer C Interrupt Control Register TCIC 0058h Timer C Interrupt Control Register CMPOIC 001Ch Count Source Protection Mode Register CSPR 102 005Ch Compare 0 Interrupt Control Register CMPOIC	
0017h	0017h 0057h 0018h 0058h 0019h 0059h 0019h 0059h 0014h 0059h 0018h 0059h 0019h 0059h 0018h 0059h 0018h 0059h 0018h 0058h 0018h 0058h 0018h 0058h 0018h 0058h 0018h 0058h 0018h 0058h 0058h Timer C Interrupt Control Register 0018h 0058h 0058h Timer C Interrupt Control Register 0058h Compare 0 Interrupt Control Register	
0016h 0058h Time Z 80 0014h 0058h Time Z 80 0014h 0058h INT 1 Interrup Control Register 1NT3/C 80 0016h Court Source Protection Mode Register CSPR 102 0058h INT3 interrup Control Register INT3/C 80 0017h INT0 input Fitter Select Register INT0 F 88 0058h Interrup Control Register CMP0/C 80 0017h INT0 input Fitter Select Register INT0 F 88 0058h Interrup Control Register CMP0/C 80 0017h INT0 Speed On-Chip Oscillator Control HRA0 61 0065h 0056h	0018h 0058h Timer Z Interrupt Control Register TZIC 0019h 0058h IINT 1 Interrupt Control Register INT1IC 001Ah 005Ah INT3 Interrupt Control Register INT3IC 001Bh 005Ah INT3 Interrupt Control Register INT3IC 001Ch Count Source Protection Mode Register CSPR 102 005Ch Compare 0 Interrupt Control Register CMP0IC	00
1019h 0059h 0059h INT1 Interupt Control Register INT3 C 80 0018h 0059h INT3 Interupt Control Register INT3 C 80 0017h 0059h INT3 Interupt Control Register INT3 C 80 0017h 0059h INT3 Interupt Control Register INT3 C 80 0017h 0059h INT3 Interupt Control Register INT3 C 80 0017h 0059h INT3 Interupt Control Register INT3 C 80 0020h High-Speed On-Chip Oscillator Control HRA 61 0058h INT3 C 80 0021h High-Speed On-Chip Oscillator Control HRA2 62 0068h 0060h <	0019h 0059h INT1 Interrupt Control Register INT1IC 001Ah 005Ah INT3 Interrupt Control Register INT3IC 001Bh 005Bh Timer C Interrupt Control Register TCIC 001Ch Count Source Protection Mode Register CSPR 102 005Ch Compare 0 Interrupt Control Register CMP0IC	00
0019h 0059h INT1 Interput Control Register INT3 Interput Control Register 080 0018h 0059h INT3 Interput Control Register 170C 80 0017h 0059h INT3 Interput Control Register 170C 80 0017h 0059h INT0 Input Filter Select Register 170C 80 0017h 0059h INT0 Input Filter Select Register 170C 80 0020h INT0 Input Filter Select Register 170C 81 0055h 170FC 80 0021h INT0 Input Filter Select Register 170C 81 0055h 170FC 81 0021h High-Speed On-Chip Oscillator Control HRA2 62 0055h 170FC 81 0022h 0023h 0055h 100 10056h 10056h 10057h 0022h 0024h 170FC 18 10056h 10056h 10056h 10057h 0022h 10025h 170FC 18 10056h 10056h 10056h 10056h 10056h 10056h	0019h 0059h INT1 Interrupt Control Register INT1IC 001Ah 005Ah INT3 Interrupt Control Register INT3IC 001Bh 005Bh Timer C Interrupt Control Register TCIC 001Ch Count Source Protection Mode Register CSPR 102 005Ch Compare 0 Interrupt Control Register CMP0IC	80
001Ah 005Ah INT3 inc 80 001Bh 005Ah INT3 inc 80 001Ch Count Source Protection Mode Register CSPR 102 001Eh INT0 input Filter Select Register INT0F 80 001Fh Infy-Speed On-Chip Oscillator Control HRA1 62 002h High-Speed On-Chip Oscillator Control HRA2 62 Register 2 Color Color Color 0022h Color Color	001Ah 005Ah INT3 Interrupt Control Register INT3IC 001Bh 005Bh Timer C Interrupt Control Register TCIC 001Ch Count Source Protection Mode Register CSPR 102 005Ch Compare 0 Interrupt Control Register CMP0IC	80
0016h Company Company <thc< td=""><td>001Bh 005Bh Timer C Interrupt Control Register TCIC 001Ch Count Source Protection Mode Register CSPR 102 005Ch Compare 0 Interrupt Control Register CMP0IC</td><td>80</td></thc<>	001Bh 005Bh Timer C Interrupt Control Register TCIC 001Ch Count Source Protection Mode Register CSPR 102 005Ch Compare 0 Interrupt Control Register CMP0IC	80
101Ch Court Source Protection Mode Register CSPR 102 001Dh INTO input Filter Select Register INTOF 88 001Fh INTO input Filter Select Register INTOF 88 001Fh INTO input Filter Select Register INTOF 81 001Fh INTO input Filter Select Register INTOF 81 001Fh INTO input Filter Select Register INTOF 81 0021h High-Speed On-Chip Oscillator Control HRA1 62 0022h High-Speed On-Chip Oscillator Control HRA2 62 0025h INTO E 005h INTO Interrupt Control Register INTOIC 0022h High-Speed On-Chip Oscillator Control HRA2 62 005h INTOIC 1005h 0025h Interrupt Control Register INTOIC 1005h INTOIC 1005h 0025h Interrupt Control Register INTOIC 1005h INTOIC 1005h 0025h Interrupt Control Register INTOIC 1005h INTOIC 1005h <td< td=""><td>001Ch Count Source Protection Mode Register CSPR 102 005Ch Compare 0 Interrupt Control Register CMP0IC</td><td></td></td<>	001Ch Count Source Protection Mode Register CSPR 102 005Ch Compare 0 Interrupt Control Register CMP0IC	
001Dh		
Other INTO INTO INTO INTO 001Fh Intro Intro </td <td></td> <td></td>		
001Fh 0005Fh 0005Fh 0005Fh 0021h High-Speed On-Chip Oscillator Control HRA0 61 0021h High-Speed On-Chip Oscillator Control HRA1 62 0022h High-Speed On-Chip Oscillator Control HRA2 62 0023h Image: Control on the control		81
Oozen Register 0 High-Speed On-Chip Oscillator Control Register 1 HRA0 61 OOZ1h High-Speed On-Chip Oscillator Control Register 1 HRA1 62 OOZ2h High-Speed On-Chip Oscillator Control Register 2 HRA2 62 OOZ3h High-Speed On-Chip Oscillator Control Register 2 HRA2 62 OOZ4h HRA2 62 OO66h 0067h OOZ5h Image Detection Register 2 OO66h 0068h 0068h OOZ2h Image Detection Register 1 VCA1 45 0077h 0077h OOZ2h Image Detection Register 1 VCA2 45 0077h 0077h 0077h OOZ3h Voltage Detection Register 1 VCA2 45 0077h 0077h 0077h 0077h OO33h Image Monitor 1 Circuit Control Register VW1C 46 0077h <		
Outcome Instruction <		
Register 0 Image: Control Register 1 Image: Control Register 2 Image: Control Re	0020h High-Speed On-Chip Oscillator Control HRA0 61 0060h	
10021h High-Speed On-Chip Oscillator Control HRA1 62 0022h High-Speed On-Chip Oscillator Control HRA2 62 0023h 0024h 0064h 0065h 0024h 0066h 0066h 0066h 0027h 0066h 0066h 0066h 0027h 0068h 0068h 0068h 0027h 0068h 0068h 0068h 0027h 0068h 0068h 0068h 0027h 0077h 0068h 0068h 0028h 0077h 0068h 0077h 0022h 0077h 0068h 0077h 0022h 0077h 0068h 0077h 0022h 0077h 0068h 0077h 0022h 0077h 0077h 0077h 0027h 0077h 0077h 0077h 0027h 0077h 0077h 0077h 0027h 0077h 0077h 0077h 0027h 0077h 0077h 0077h		
Register 1 Colored Migh-Speed On-Chip Oscillator Control Register 2 HRA2 62 0022h High-Speed On-Chip Oscillator Control Register 2 HRA2 62 0063h 0064h 0065h 0005h 0007h 0005h 0007h 0005h 0007h 0005h 0007h 0005h 0007h 0005h 0007h 0007h 0007h 0007h 0007h 0007h 007h		
0022h High-Speed On-Chip Oscillator Control Register 2 HRA2 62 0023h 0065h 0024h 0065h 0027h 0028h <td></td> <td></td>		
Register 2 0023h 0065h 0066h 0066h 0023h 0066h 0066h 0066h 0066h 0025h 0067h 0068h 0076h 0078h 0078h 0078h 0077h 0078h 0077h 0078h 0077h 0078h 0077h 0078h 0077h 0078h 0078h 00		
0023h 0066h 0067h 0026h 0067h 0068h 0027h 0068h 0068h 0028h 0068h 0068h 0028h 0068h 0068h 0028h 0066h 0068h 0028h 0068h 0068h 0028h 0066h 0068h 0028h 0066h 0068h 0028h 0068h 0068h 0028h 0068h 0068h 0028h 0068h 0068h 0028h 0068h 0068h 0028h 0067h 0068h 0028h 0067h 0068h 0028h 0077h 0067h 0028h 0071h 0071h 0037h Voltage Detection Register 1 VCA1 45 0038h 0078h 0078h 0078h 0038h 0078h 0078h 0078h 0038h 0078h 0078h 0078h 0038h 0078h 0078h		
0024h 0025h 0067h 0086h 0076h 0076h 0076h 0078h 0078h <td< td=""><td></td><td></td></td<>		
0025h 0026h 008h 007h <		
0026h 0027h 0028h 0028h 0068h 0071h 0071h 0077h 0077h 0077h 0077h 0077h 0077h 0077h 0078h 0077h 0078h 0078h <td< td=""><td></td><td></td></td<>		
0027h 0028h 0068h 0068h 0028h 0068h 0068h 0068h 0028h 0068h 0068h 0068h 0028h 0068h 0068h 0068h 0028h 0020h 0068h 0068h 0022h 0028h 0068h 0068h 0022h 0028h 0068h 0068h 0022h 0028h 0068h 0068h 0022h 0028h 0068h 0068h 0028h 0028h 0068h 0068h 0028h 0028h 0068h 0068h 0028h 0028h 0070h 0070h 0031h Voltage Detection Register 1 VCA1 45 0033h 0073h 0073h 0073h 0033h 0074h 0078h 0078h 0038h 0078h 0078h 0078h 0038h 0078h 0078h 0078h 0038h 0078h 0078h 0078h 0038h<		
0028h 0028h 006Bh 006Ch 002Ah 006Ch 006Ch 006Ch 002Ch 006Eh 006Fh 006Fh 002Eh 006Fh 006Fh 006Fh 002Fh 0070h 0070h 0070h 0030h 0077h 0077h 0077h 0033h 0074h 0077h 0077h 0033h 0074h 0077h 0077h 0033h 0077h 0076h 0077h 0033h 0076h 0077h 0076h 0033h 0077h 0076h 0076h 0033h 0076h 0076h 0076h 0033h 0076h 0076h 0076h 0033h 0076h 0076h 0076h 0038h 0078h 0078h 0078h 0038h 0078h 0078h 0078h 0038h 0076h 0076h 0078h 0038h 0077h 0078h 0077h 0038h 00	000011	
0029h 0062h 0062h 0022h 0062h 0062h 0022h 0062h 0062h 0022h 0062h 0067h 0027h 0071h 0067h 0030h 0071h 0071h 0031h Voltage Detection Register 1 VCA1 45 0033h 0074h 0074h 0074h 0033h 0074h 0078h 0078h 0033h 0078h 0078h 0078h 0038h 0078h 0078h 0078h 0038h 0079h 0078h 0078h 0038h 0070h 0078h 0079h 0038h 0070h 0078h 0079h 0038h 0070h 0078h 0079h 0038h 0070h 0078h 0079h 0038h 0070h 0078h 0078h 0038h 0070h 0078h 0078h 0038h 0070h 0078h 0078h 0038h 0070h		
002Ah 002Bh 006Bh 006Bh 002Ch 006Bh 006Bh 006Bh 002Dh 006Fh 0070h 0070h 002Fh 0070h 0070h 0070h 0030h 0077h 0073h 0078h 0033h 0077h 0076h 0077h 0033h 0077h 0077h 0077h 0033h 0077h 0078h 0078h 0038h 0078h 0078h 0078h 0038h 0078h 0078h 0078h 0038h 0078h 0078h 0078h 0038h 0077h 0078h 0077h 0038h 00		
002Bh 006Eh 006Fh 006Fh 002Ch 0070h 0070h 0070h 002Fh 0070h 0070h 0070h 0030h 0070h 0070h 0070h 0031h Voltage Detection Register 1 VCA1 45 0074h 0073h 0033h 0034h 0074h 0073h 0074h 0073h 0033h 0034h 0076h 0074h 0073h 0033h 0074h 0078h 0076h 0077h 0038h 0078h 0079h 0078h 0079h 0038h 0079h 0078h 0078h 0078h 0038h 0079h 0078h 0078h 0078h 0038h 0079h 0078h 0078h 0078h 0078h 0038h 0070h 0078h	0029h 006Ch	
002Bh 006Eh 006Fh 006Fh 002Ch 0070h 0070h 0070h 002Fh 0070h 0070h 0070h 0030h 0070h 0070h 0070h 0031h Voltage Detection Register 1 VCA1 45 0074h 0073h 0033h 0034h 0074h 0073h 0074h 0073h 0033h 0034h 0076h 0074h 0073h 0033h 0074h 0078h 0076h 0077h 0038h 0078h 0079h 0078h 0079h 0038h 0079h 0078h 0078h 0078h 0038h 0079h 0078h 0078h 0078h 0038h 0079h 0078h 0078h 0078h 0078h 0038h 0070h 0078h	002Ah 006Dh	
002Ch 002Bh 006Fh 0070h 002Eh 0070h 0071h 0071h 0030h 0072h 0072h 0073h 0031h Voltage Detection Register 1 VCA1 45 0032h Voltage Detection Register 2 VCA2 45 0033h 0078h 0078h 0078h 0038h 0078h 0078h 0078h 0038h 0078h 0078h 0078h 0038h 0078h 0078h 0078h 0038h 0077h 0078h 0078h 0038h 0077h 0078h 0077h 0038h 0077h 0078h 0077h 0038h 0077h 0078h 0077h 0038h 0076h 0077h 0077h		
002Dh 002Eh 0070h 0071h 002Fh 0030h 0072h 0071h 0030h 0072h 0072h 0072h 0031h Voltage Detection Register 1 VCA1 45 0032h Voltage Detection Register 2 VCA2 45 0033h 0078h 0078h 0078h 0038h 0078h 0078h 0078h 0038h 0076h 0078h 0078h	0002.1	
002Eh 002Fh 003h 0071h 0072h 0030h 0031h Voltage Detection Register 1 VCA1 45 0032h Voltage Detection Register 2 VCA2 45 0033h 0 0074h 0074h 0033h 0 0076h 0078h 0033h 0 0078h 0078h 0033h 0077h 0078h 0078h 0033h 0078h 0078h 0078h 0038h 0078h 0078h 0078h 0033h 0038h 0078h 0078h 0078h 0038h 0078h 0078h 0078h 0078h 0038h 0078h 0078h 0078h 0078h 0038h 0078h 0078h 0078h 0078h 0032h 0078h 0078h 0078h 0078h 0038h 0078h 0078h 0078h 0078h 0032h 0078h 0078h 0078h 0078h 0038h		
002Fh 0030h 0072h 0072h 0030h 0072h 0073h 0073h 0073h 0031h Voltage Detection Register 1 VCA1 45 0074h 0074h 0074h 0078h		
0030h 0031h Voltage Detection Register 1 VCA1 45 0032h Voltage Detection Register 2 VCA2 45 0033h 0073h 0073h 0073h 0033h 0073h 0073h 0073h 0033h 0076h 0077h 0078h 0033h 0077h 0078h 0078h 0038h 0077h 0078h 0078h 0038h 0078h 0078h 0078h 0038h 0078h 0078h 0078h 0038h 0078h 0078h 0078h 0038h 0078h 0078h 0078h 0038h 0070h 0078h 0078h 0038h 0070h 0070h 0070h 0038h 0070h 0070h 0070h<		
0031h Voltage Detection Register 1 VCA1 45 0032h Voltage Detection Register 2 VCA2 45 0033h 0075h 0076h 0033h 0077h 0076h 0033h 0077h 0078h 0033h 0077h 0033h 0077h 0038h		
0032h Voltage Detection Register 2 VCA2 45 0033h 0075h 0076h 0034h 0077h 0077h 0035h 0077h 0078h 0037h Voltage Monitor 1 Circuit Control Register VW1C 46 0037h Voltage Monitor 2 Circuit Control Register VW2C 47 0038h 0078h 0078h 0078h 0039h 007Ah 007Ah 007Ah 0038h 007Ch 007Dh 007Dh 0038h 007Ch 007Ch 007Ch 0032h 007Ch 007Fh 007Fh 0032h 007Ch 007Fh 007Fh 0032h 007Fh 007Fh 007Fh 0032h 007Fh 007Fh 007Fh		
0033h 0 00000 00000 00000 000000 000000 000000 000000 000000 000000 000000 000000 000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 0000000 00000000 00000000 000000000 0000000000 0000000000000 0000000000000000000 000000000000000000000000000000000000		
0034h 0035h 0077h 0077h 00336h Voltage Monitor 1 Circuit Control Register VW1C 46 0078h 0078h 00337h Voltage Monitor 2 Circuit Control Register VW2C 47 007Ah 007Ah 007Ah 0038h 0038h 007Bh 007Bh 007Bh 007Bh 007Bh 007Bh 007Bh 007Bh 007Ch 007Dh 007Dh 007Dh 007Dh 007Eh	0032h Voltage Detection Register 2 VCA2 45 0075h	
0034h 0035h 0077h 0077h 00336h Voltage Monitor 1 Circuit Control Register VW1C 46 0078h 0078h 00337h Voltage Monitor 2 Circuit Control Register VW2C 47 007Ah 007Ah 007Ah 0038h 0038h 007Bh 007Bh 007Bh 007Bh 007Bh 007Bh 007Bh 007Bh 007Ch 007Dh 007Dh 007Dh 007Dh 007Eh	0033h 0076h 0076h	
0035h 0038h 0078h 0078h 0078h 0036h Voltage Monitor 1 Circuit Control Register VW1C 46 0079h 0079h 0038h 0038h 0078h 0078h 0078h 0078h 0078h 0038h 00078h 0078h		
0036h Voltage Monitor 1 Circuit Control Register VW1C 46 0037h Voltage Monitor 2 Circuit Control Register VW2C 47 0038h 0079h 007Ah 0039h 007Bh 007Bh 0030h 007Ch 007Dh 0038h 007Dh 007Dh 0038h 007Ch 007Dh 0038h 007Ch 007Dh 0032h 007Eh 007Eh 0032h 007Eh 007Eh		
0037h Voltage Monitor 2 Circuit Control Register VW2C 47 0038h 007Ah 007Ah 0039h 007Bh 007Bh 0038h 007Ch 007Ch 0038h 007Dh 007Dh 0032h 007Ch 007Dh 0032h 007Ch 007Dh 0032h 007Ch 007Dh 0032h 007Fh 007Fh 0032h 007Fh 007Fh		
0038h 0039h 007Bh 007Bh 0039h 007Ch 007Ch 007Ch 003Bh 007Dh 007Dh 007Eh 003Ch 007Fh 007Fh 007Fh 003Ch 007Fh 007Fh 007Fh 003Eh 007Fh 007Fh 007Fh		
0039h 007Ch 007Ch 003Ah 007Dh 007Dh 003Bh 007Ch 007Dh 003Ch 007Eh 007Eh 003Dh 007Fh 007Fh 003Eh 007Fh 007Fh	0 0 000 Mil	
003Ah 007Dh 0 003Bh 007Eh 0 003Ch 007Fh 0 003Bh 007Fh 0		
003Bh 007Eh 0 003Ch 007Fh 0 003Dh 007Fh 0		
003Ch 007Fh 007Fh 003Dh 007Fh 007Fh		
003Dh 003Eh 003Eh		
003Dh 003Eh	003Ch 007Fh 007Fh	
003Eh		
	003Fh	

NOTE:

1. The blank regions are reserved.

Do not access locations in these regions.

Address	Register	Symbol	Page
0080h	Timer Z Mode Register	TZMR	121
0081h			
0082h			
0083h			
0084h	Timer Z Waveform Output Control Register	PUM	123
0085h	Prescaler Z Register	PREZ	122
0086h	Timer Z Secondary Register	TZSC	122
0087h	Timer Z Primary Register	TZPR	122
0088h			
0089h 008Ah	Timer Z Output Control Register	TZOC	123
008An	Timer X Mode Register	TXMR	123
008Ch	Prescaler X Register	PREX	107
008Dh	Timer X Register	TX	108
008Eh	Timer Count Source Setting Register	TCSS	108,124
008Fh		1000	100,124
0090h	Timer C Register	тс	140
0091h			
0092h			
0093h			
0094h			
0095h			
0096h	External Input Enable Register	INTEN	88
0097h			
0098h	Key Input Enable Register	KIEN	94
0099h			
009Ah	Timer C Control Register 0	TCC0	141
009Bh	Timer C Control Register 1	TCC1	142
009Ch	Capture, Compare 0 Register	TM0	140
009Dh 009Eh	Compare 1 Register	TM1	140
009Eh	Compare 1 Register		140
009FN 00A0h	UART0 Transmit/Receive Mode Register	U0MR	152
00A0h	UARTO Bit Rate Register	UOBRG	152
00A2h	UART0 Transmit Buffer Register	UOTB	151
00A3h		0010	101
00A4h	UART0 Transmit/Receive Control Register 0	U0C0	153
00A5h	UART0 Transmit/Receive Control Register 1	U0C1	154
00A6h	UART0 Receive Buffer Register	U0RB	151
00A7h			
00A8h	UART1 Transmit/Receive Mode Register	U1MR	152
00A9h	UART1 Bit Rate Register	U1BRG	151
00AAh	UART1 Transmit Buffer Register	U1TB	151
00ABh			
00ACh	UART1 Transmit/Receive Control Register 0	U1C0	153
00ADh	UART1 Transmit/Receive Control Register 1	U1C1	154
00AEh	UART1 Receive Buffer Register	U1RB	151
00AFh 00B0h	LIAPT Tropomit/Popping Control Desister C	UCON	154
00B0h 00B1h	UART Transmit/Receive Control Register 2	UCUN	104
00B1h 00B2h			
00B2h			
00B3h			-
00B4h			
00B6h			
00B7h			
00B8h	SS Control Register H / IIC bus Control Register 1	SSCRH / ICCR1	169, 199
00B9h	SS Control Register L / IIC bus Control Register 2	SSCRL / ICCR2	170, 200
00BAh	SS Mode Register / IIC bus Mode Register	SSMR / ICMR	171, 201
00BBh	SS Enable Register / IIC bus Interrupt Enable Register	SSER / ICIER	172, 202
00BCh	SS Status Register / IIC bus Status Register	SSSR / ICSR	173, 203
00BDh	SS Mode Register 2 / Slave Address	SSMR2 / SAR	174, 204
00BEh	Register SS Transmit Data Register / IIC bus	SSTDR / ICDRT	175, 204
00BFh	Transmit Data Register SS Receive Data Register / IIC bus Receive	SSRDR / ICDRR	175, 205
JUBEII	Data Register	JOINDIN / IODKK	175, 205

Address	Register	Symbol	Page
00C0h	A/D Register	AD	232
00C1h			
00C2h			
00C3h			
00C4h			
00C5h			
00C6h			
00C7h			
00C8h			
00C9h			
00CAh			
00CBh			
00CCh			
00CDh			
00CEh 00CFh			
00CFN 00D0h			
00D1h 00D2h			-
00D2h			-
00D3h 00D4h	A/D Control Register 2	ADCON2	232
00D4h 00D5h	A/D Control Register 2	ADGOINZ	232
00D5h	A/D Control Register 0	ADCON0	231
00D6h	A/D Control Register 0	ADCON0 ADCON1	231
00D7h 00D8h		ADOUNT	231
00D9h	1		+
00DAh		-	
00DBh			
00DCh			
00DDh			
00DEh			
00DFh			
00E0h			
00E1h	Port P1 Register	P1	27
00E2h			
00E3h	Port P1 Direction Register	PD1	27
00E4h	Ŭ		
00E5h	Port P3 Register	P3	27
00E6h	-		
00E7h	Port P3 Direction Register	PD3	27
00E8h	Port P4 Register	P4	28
00E9h			
00EAh	Port P4 Direction Register	PD4	27
00EBh			
00ECh			
00EDh			
00EEh			
00EFh			
00F0h			
00F1h			
00F2h			
00F3h			
00F4h			
00F5h			
00F6h			
00F7h			
00F8h	Port Mode Register	PMR	28, 175, 205
00F9h			
00FAh			
00FBh			
00FCh	Pull-Up Control Register 0	PUR0	29
00FDh	Pull-Up Control Register 1	PUR1	29
00FEh	Port P1 Drive Capacity Control Register	DRR	29
00FFh	Timer C Output Control Register	TCOUT	143
01B3h	Flash Memory Control Register 4	FMR4	255
		ENE:	
01B4h	Flash Memory Control Register 1	FMR1	254
01B5h	, ,		
01B5h 01B6h		EMDA	050
01B5h	Flash Memory Control Register 0	FMR0	253
01B5h 01B6h	Flash Memory Control Register 0 Optional Function Select Register	FMR0 OFS	253

O mark at

NOTE:

1. The blank regions, 0100h to 01B2h, and 01C0h to 02FFh are reserved.

Do not access locations in these regions.

RENESAS

R8C/1A Group, R8C/1B Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

REJ09B0252-0110 Rev.1.10 Mar 17, 2006

1. Overview

These MCUs are fabricated using the high-performance silicon gate CMOS process, embedding the R8C/ Tiny Series CPU core, and is packaged in a 20-pin molded-plastic LSSOP, SDIP or a 28-pin plastic molded-HWQFN. It implements sophisticated instructions for a high level of instruction efficiency. With 1 Mbyte of address space, they are capable of executing instructions at high speed.

Furthermore, the R8C/1B Group has on-chip data flash ROM (1 KB × 2 blocks).

The difference between the R8C/1A Group and R8C/1B Group is only the presence or absence of data flash ROM. Their peripheral functions are the same.

1.1 Applications

Electric household appliances, office equipment, housing equipment (sensors, security systems), general industrial equipment, audio equipment, etc.

1.2 Performance Overview

Table 1.1 outlines the Functions and Specifications for R8C/1A Group and Table 1.2 outlines the Functions and Specifications for R8C/1B Group.

	Item	Specification
CPU	Number of fundamental	89 instructions
	instructions	
	Minimum instruction execution	50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V)
	time	100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)
	Operating mode	Single-chip
	Address space	1 Mbyte
	Memory capacity	See Table 1.3 Product Information for R8C/1A Group
Peripheral	Ports	I/O ports: 13 pins (including LED drive port)
Functions		Input port: 3 pins
	LED drive ports	I/O ports: 4 pins
	Timers	Timer X: 8 bits x 1 channel, timer Z: 8 bits x 1 channel
		(Each timer equipped with 8-bit prescaler)
		Timer C: 16 bits × 1 channel
		(Input capture and output compare circuits)
	Serial interfaces	1 channel
		Clock synchronous serial I/O, UART
		1 channel
		UART
	Clock synchronous serial interface	1 channel
		I ² C bus Interface ⁽¹⁾
		Clock synchronous serial I/O with chip select (SSU)
	A/D converter	10-bit A/D converter: 1 circuit, 4 channels
	Watchdog timer	15 bits x 1 channel (with prescaler)
		Reset start selectable, count source protection mode
	Interrupts	Internal: 9 sources, External: 4 sources, Software: 4 sources,
		Priority levels: 7 levels
	Clock generation circuits	2 circuits
		 Main clock oscillation circuit (with on-chip feedback
		resistor)
		 On-chip oscillator (high speed, low speed)
		High-speed on-chip oscillator has frequency adjustment
		function
	Oscillation stop detection function	Main clock oscillation stop detection function
	Voltage detection circuit	On-chip
	Power-on reset circuit	On-chip
Electric	Supply voltage	VCC = 3.0 to 5.5 V (f(XIN) = 20 MHz)
Characteristics		VCC = 2.7 to 5.5 V (f(XIN) = 10 MHz)
	Current consumption	Typ. 9 mA (VCC = 5.0 V, f(XIN) = 20 MHz, A/D converter stopped)
		Typ. 5 mA (VCC = 3.0 V, f(XIN) = 10 MHz, A/D converter stopped)
		Typ. 35 μ A (VCC = 3.0 V, wait mode, peripheral clock off)
		Typ. 0.7 μA (VCC = 3.0 V, stop mode)
Flash Memory	Programming and erasure voltage	VCC = 2.7 to 5.5 V
	Programming and erasure	100 times
_	endurance	
Operating Ambie	ent Temperature	-20 to 85°C
		-40 to 85°C (D version)
Package		20-pin molded-plastic LSSOP
		20-pin molded-plastic SDIP
		28-pin molded-plastic HWQFN

 Table 1.1
 Functions and Specifications for R8C/1A Group

NOTE:

1. I²C bus is a trademark of Koninklijke Philips Electronics N. V.

	Item	Specification		
CPU	Number of fundamental	89 instructions		
	instructions			
	Minimum instruction execution	50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V)		
	time	100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)		
	Operating mode	Single-chip		
	Address space	1 Mbyte		
	Memory capacity	See Table 1.4 Product Information for R8C/1B Group		
Peripheral	Ports	I/O ports: 13 pins (including LED drive port)		
Functions		Input port: 3 pins		
	LED drive ports	I/O ports: 4 pins		
	Timers	Timer X: 8 bits x 1 channel, timer Z: 8 bits x 1 channel		
		(Each timer equipped with 8-bit prescaler)		
		Timer C: 16 bits × 1 channel		
		(Input capture and output compare circuits)		
	Serial interfaces	1 channel		
		Clock synchronous serial I/O, UART		
		1 channel		
		UART		
	Clock synchronous serial interface	1 channel		
		I ² C bus Interface ⁽¹⁾		
		Clock synchronous serial I/O with chip select (SSU)		
	A/D converter	10-bit A/D converter: 1 circuit, 4 channels		
	Watchdog timer	15 bits × 1 channel (with prescaler)		
	, C	Reset start selectable, count source protection mode		
	Interrupts	Internal: 9 sources, External: 4 sources, Software: 4 sources,		
		Priority levels: 7 levels		
	Clock generation circuits	2 circuits		
		 Main clock generation circuit (with on-chip feedback resistor) 		
		On-chip oscillator (high speed, low speed)		
		High-speed on-chip oscillator has frequency adjustment		
		function		
	Oscillation stop detection function	Main clock oscillation stop detection function		
	Voltage detection circuit	On-chip		
	Power on reset circuit	On-chip		
Electric	Supply voltage	VCC = 3.0 to 5.5 V (f(XIN) = 20 MHz)		
Characteristics		VCC = 2.7 to 5.5 V $(f(XIN) = 10 \text{ MHz})$		
	Current consumption	Typ. 9 mA (VCC = 5.0 V, f(XIN) = 20 MHz, A/D converter stopped)		
	·	Typ. 5 mA (VCC = 3.0 V, f(XIN) = 10 MHz, A/D converter stopped)		
		Typ. 35 μ A (VCC = 3.0 V, wait mode, peripheral clock off)		
		Typ. 0.7 μ A (VCC = 3.0 V, stop mode)		
Flash Memory	Programming and erasure voltage	VCC = 2.7 to 5.5 V		
· · · · · ·	Programming and erasure	10,000 times (data flash)		
	endurance	1,000 times (program ROM)		
Operating Ambie		-20 to 85°C		
. 3		-40 to 85°C (D version)		
Package		20-pin molded-plastic LSSOP		
Раскаде				
5		20-pin molded-plastic SDIP		

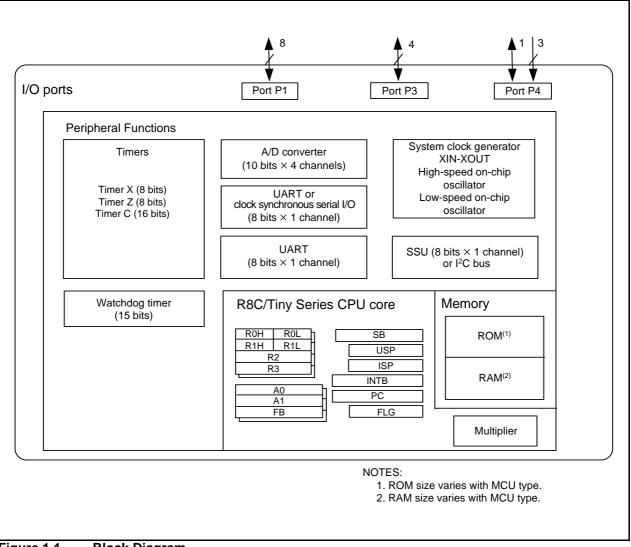
Table 1.2 Functions and Specifications for R8C/1B Group

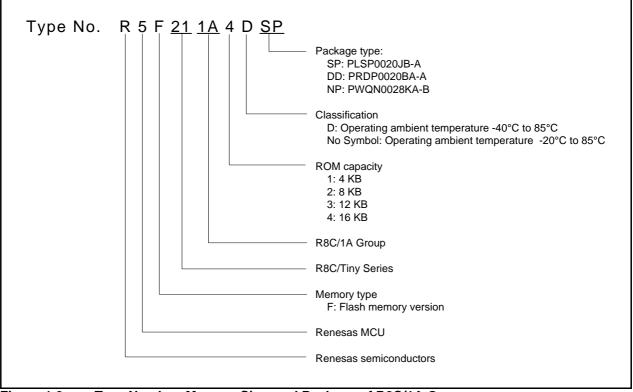
NOTE:

1. I^2C bus is a trademark of Koninklijke Philips Electronics N. V.

1.3 Block Diagram

Figure 1.1 shows a Block Diagram.




Figure 1.1 Block Diagram

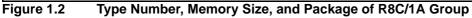

1.4 **Product Information**

Table 1.3 lists Product Information for R8C/1A Group and Table 1.4 lists Product Information for R8C/1B Group.

Table 1.3 Produ	Current of Mar 200			
Type No.	ROM Capacity	RAM Capacity	Package Type	Remarks
R5F211A1SP	4 Kbytes	384 bytes	PLSP0020JB-A	Flash memory version
R5F211A2SP	8 Kbytes	512 bytes	PLSP0020JB-A	
R5F211A3SP	12 Kbytes	768 bytes	PLSP0020JB-A	
R5F211A4SP	16 Kbytes	1 Kbyte	PLSP0020JB-A	
R5F211A1DSP (D)	4 Kbytes	384 bytes	PLSP0020JB-A	D version
R5F211A2DSP (D)	8 Kbytes	512 bytes	PLSP0020JB-A	
R5F211A3DSP (D)	12 Kbytes	768 bytes	PLSP0020JB-A	
R5F211A4DSP (D)	16 Kbytes	1 Kbyte	PLSP0020JB-A	
R5F211A1DD	4 Kbytes	384 bytes	PRDP0020BA-A	Flash memory version
R5F211A2DD	8 Kbytes	512 bytes	PRDP0020BA-A	
R5F211A3DD	12 Kbytes	768 bytes	PRDP0020BA-A	
R5F211A4DD	16 Kbytes	1 Kbyte	PRDP0020BA-A	
R5F211A2NP	8 Kbytes	512 bytes	PWQN0028KA-B	Flash memory version
R5F211A3NP	12 Kbytes	768 bytes	PWQN0028KA-B]
R5F211A4NP	16 Kbytes	1 Kbyte	PWQN0028KA-B	<u> </u>

(D): Under development

Type No.	ROM Capacity		RAM	Dookogo Typo	Remarks	
Type No.	Program ROM	Data Flash	Capacity	Package Type	Remarks	
R5F211B1SP	4 Kbytes	1 kbyte x 2	384 bytes	PLSP0020JB-A	Flash memory version	
R5F211B2SP	8 Kbytes	1 kbyte x 2	512 bytes	PLSP0020JB-A		
R5F211B3SP	12 Kbytes	1 kbyte x 2	768 bytes	PLSP0020JB-A		
R5F211B4SP	16 Kbytes	1 kbyte x 2	1 Kbyte	PLSP0020JB-A		
R5F211B1DSP (D)	4 Kbytes	1 kbyte x 2	384 bytes	PLSP0020JB-A	D version	
R5F211B2DSP (D)	8 Kbytes	1 kbyte x 2	512 bytes	PLSP0020JB-A		
R5F211B3DSP (D)	12 Kbytes	1 kbyte x 2	768 bytes	PLSP0020JB-A		
R5F211B4DSP (D)	16 Kbytes	1 kbyte x 2	1 Kbyte	PLSP0020JB-A		
R5F211B1DD	4 Kbytes	1 kbyte x 2	384 bytes	PRDP0020BA-A	Flash memory version	
R5F211B2DD	8 Kbytes	1 kbyte x 2	512 bytes	PRDP0020BA-A		
R5F211B3DD	12 Kbytes	1 kbyte x 2	768 bytes	PRDP0020BA-A		
R5F211B4DD	16 Kbytes	1 kbyte x 2	1 Kbyte	PRDP0020BA-A		
R5F211B2NP	8 Kbytes	1 kbyte x 2	512 bytes	PWQN0028KA-B	Flash memory version	
R5F211B3NP	12 Kbytes	1 kbyte x 2	768 bytes	PWQN0028KA-B		
R5F211B4NP	16 Kbytes	1 kbyte x 2	1 Kbyte	PWQN0028KA-B		

Table 1.4 Product Information for R8C/1B Group

Current of Mar 2006

(D): Under development

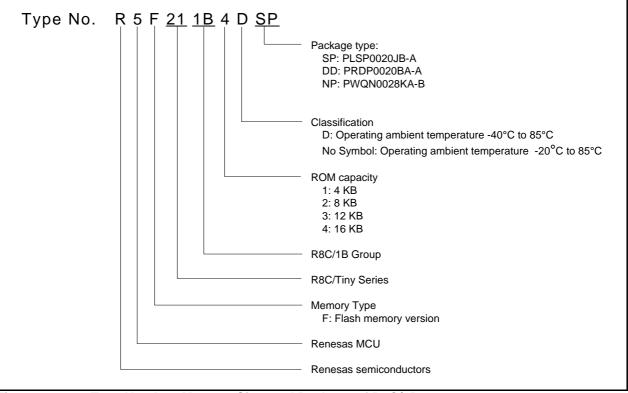


Figure 1.3

Type Number, Memory Size, and Package of R8C/1B Group

RENESAS

1.5 Pin Assignments

Figure 1.4 shows Pin Assignments for PLSP0020JB-A Package (Top View), Figure 1.5 shows Pin Assignments for PRDP0020BA-A Package (Top View) and Figure 1.6 shows Pin Assignments for PWQN0028KA-B Package (Top View).

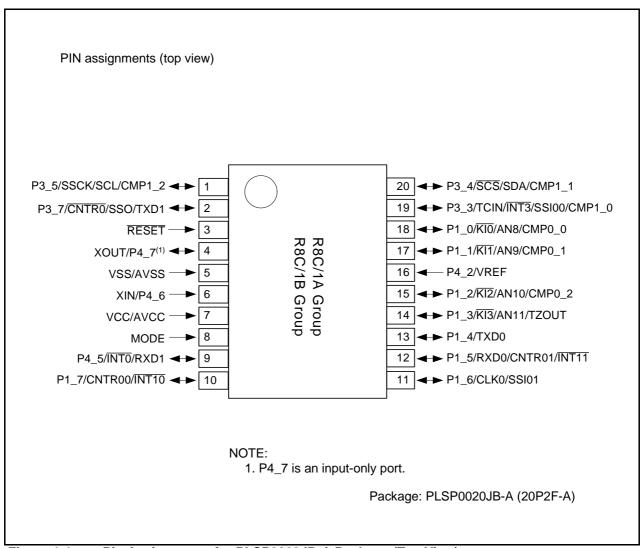


Figure 1.4 Pin Assignments for PLSP0020JB-A Package (Top View)

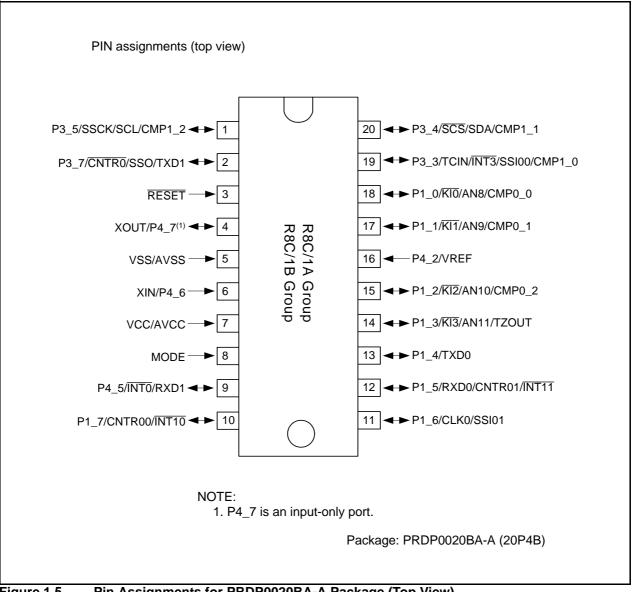


Figure 1.5 Pin Assignments for PRDP0020BA-A Package (Top View)

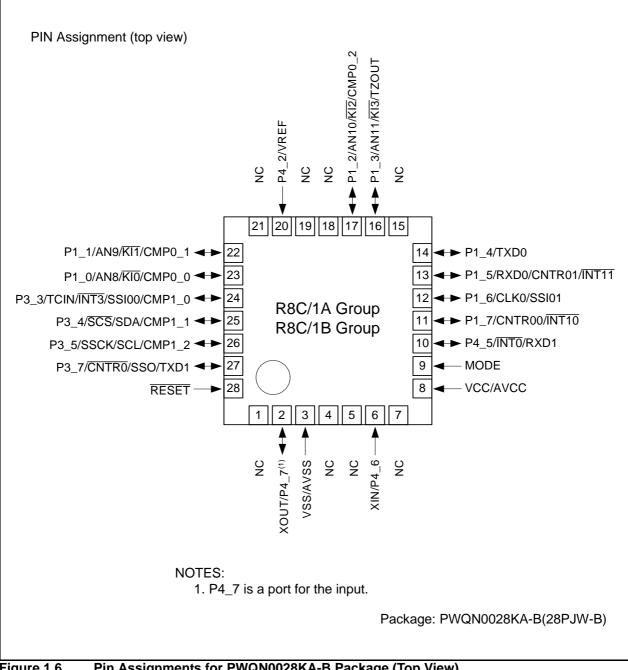


Figure 1.6 Pin Assignments for PWQN0028KA-B Package (Top View)

1.6 Pin Functions

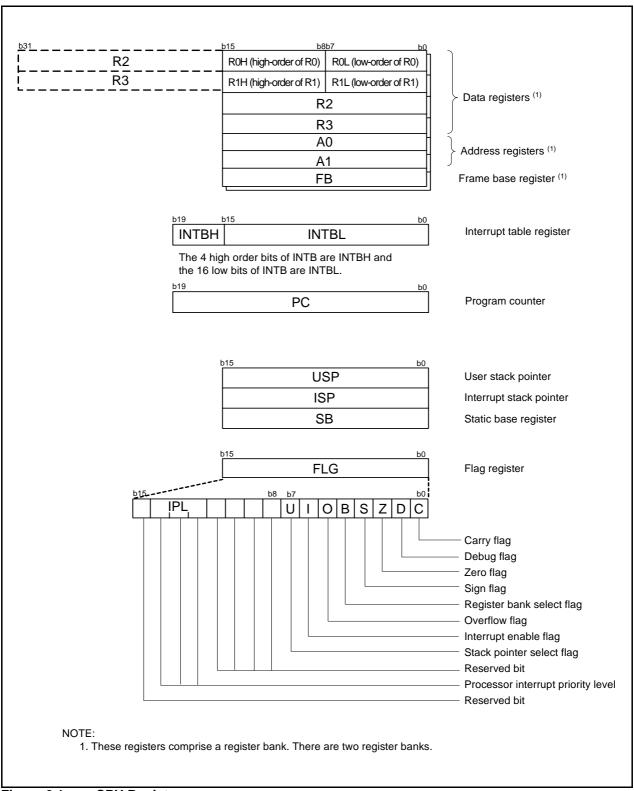
Table 1.5 lists Pin Functions, Table 1.6 lists Pin Name Information by Pin Number of PLSP0020JB-A, PRDP0020BA-A Packages and Table 1.7 lists Pin Name Information by Pin Number of PWQN0028KA-B Package.

Туре	Symbol	I/O Type	Description
Power Supply Input	VCC, VSS	I	Apply 2.7 V to 5.5 V to the VCC pin. Apply 0 V to the VSS pin.
Analog Power Supply Input	AVCC, AVSS	Ι	Power supply for the A/D converter Connect a capacitor between AVCC and AVSS.
Reset Input	RESET	I	Input "L" on this pin resets the MCU.
MODE	MODE	I	Connect this pin to VCC via a resistor.
Main Clock Input	XIN	I	These pins are provided for main clock generation
Main Clock Output	XOUT	0	circuit I/O. Connect a ceramic resonator or a crystal oscillator between the XIN and XOUT pins. To use an external clock, input it to the XIN pin and leave the XOUT pin open.
INT Interrupt	INTO, INT1, INT3	I	INT interrupt input pins
Key Input Interrupt	KI0 to KI3	I	Key input interrupt input pins
Timer X	CNTR0	I/O	Timer X I/O pin
	CNTR0	0	Timer X output pin
Timer Z	TZOUT	0	Timer Z output pin
Timer C	TCIN	I	Timer C input pin
	CMP0_0 to CMP0_2, CMP1_0 to CMP1_2	0	Timer C output pins
Serial Interface	CLK0	I/O	Transfer clock I/O pin
	RXD0, RXD1	I	Serial data input pins
	TXD0, TXD1	0	Serial data output pins
Clock synchronous	SSI00, SSI01	I/O	Data I/O pin.
serial I/O with chip	SCS	I/O	Chip-select signal I/O pin
select (SSU)	SSCK	I/O	Clock I/O pin
	SSO	I/O	Data I/O pin
I ² C bus Interface	SCL	I/O	Clock I/O pin
	SDA	I/O	Data I/O pin
Reference Voltage Input	VREF	I	Reference voltage input pin to A/D converter
A/D Converter	AN8 to AN11	I	Analog input pins to A/D converter
I/O Port	P1_0 to P1_7, P3_3 to P3_5, P3_7, P4_5	I/O	CMOS I/O ports. Each port has an I/O select direction register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program. P1_0 to P1_3 also function as LED drive ports.
Input Port	P4_2, P4_6, P4_7	I	Input-only ports

Table 1.5 Pin Functions

I: Input O: Output I/O: Input and output

			I/O Pin Functions for Peripheral Modules					
Pin Number	Control Pin	Port	Interrupt	Timer	Serial Interface	Clock Synchronous Serial I/O with Chip Select	l ² C bus Interface	A/D Converter
1		P3_5		CMP1_2		SSCK	SCL	
2		P3_7		CNTR0	TXD1	SSO		
3	RESET							
4	XOUT	P4_7						
5	VSS/AVSS							
6	XIN	P4_6						
7	VCC/AVCC							
8	MODE							
9		P4_5	INT0		RXD1			
10		P1_7	INT10	CNTR00				
11		P1_6			CLK0	SSI01		
12		P1_5	INT11	CNTR01	RXD0			
13		P1_4			TXD0			
14		P1_3	KI3	TZOUT				AN11
15		P1_2	KI2	CMP0_2				AN10
16	VREF	P4_2						
17		P1_1	KI1	CMP0_1				AN9
18		P1_0	KI0	CMP0_0				AN8
19		P3_3	INT3	TCIN/ CMP1_0		SSI00		
20		P3_4		CMP1_1		SCS	SDA	


Table 1.6 Pin Name Information by Pin Number of PLSP0020JB-A, PRDP0020BA-A Packages

			I/O Pin Functions for Peripheral Modules					
Pin Number	Control Pin	Port	Interrupt	Timer	Serial Interface	Clock Synchronous Serial I/O with Chip Select	l ² C bus Interface	A/D Converter
1	NC							
2	XOUT	P4_7						
3	VSS/AVSS							
4	NC							
5	NC							
6	XIN	P4_6						
7	NC							
8	VCC/AVCC							
9	MODE							
10		P4_5	INT0		RXD1			
11		P1_7	INT10	CNTR00				
12		P1_6			CLK0	SSI01		
13		P1_5	INT11	CNTR01	RXD0			
14		P1_4			TXD0			
15	NC							
16		P1_3	KI3	TZOUT				AN11
17		P1_2	KI2	CMP0_2				AN10
18	NC							
19	NC							
20	VREF	P4_2						
21	NC							
22		P1_1	KI1	CMP0_1				AN9
23		P1_0	KI0	CMP0_0				AN8
24		P3_3	INT3	TCIN/CMP1_0		SSI00		
25		P3_4		CMP1_1		SCS	SDA	
26		P3_5		CMP1_2		SSCK	SCL	
27		P3_7		CNTR0	TXD1	SSO		
28	RESET							

 Table 1.7
 Pin Name Information by Pin Number of PWQN0028KA-B Package

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

CPU Register

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer and arithmetic and logic operations. A1 is analogous to A0. A1 can be combined with A0 and used as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointer (SP), USP, and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains a carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when the operation results in an overflow; otherwise to 0.

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupts are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

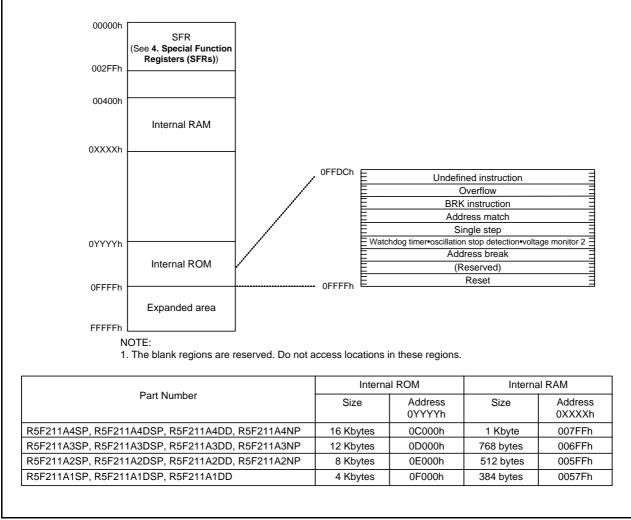
IPL is 3 bits wide, assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

3. Memory

3.1 R8C/1A Group


Figure 3.1 is a Memory Map of R8C/1A Group. The R8C/1A Group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.

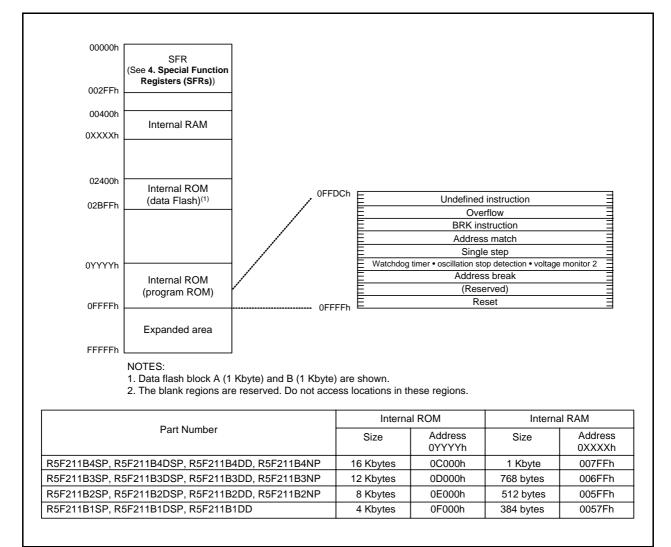
The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 1-Kbyte internal RAM area is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

3.2 R8C/1B Group

Figure 3.2 is a Memory Map of R8C/1B Group. The R8C/1B Group has 1 Mbyte of address space from addresses 00000h to FFFFFh.


The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM is allocated higher addresses beginning with address 00400h. For example, a 1-Kbyte internal RAM area is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

4. Special Function Registers (SFRs)

An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.4 list the special function registers.

Table 4.1SFR Information (1)(1)

Addroop	Pogiator	Symbol	After report
Address	Register	Symbol	After reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	00h
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	01101000b
0007h	System Clock Control Register 1	CM1	0010000b
0008h	,		
0009h	Address Match Interrupt Enable Register	AIER	00h
000Ah	Protect Register	PRCR	00h
000Bh			
000Ch	Oscillation Stop Detection Register	OCD	00000100b
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
			000XXXXXb
000Fh	Watchdog Timer Control Register	WDC	
0010h	Address Match Interrupt Register 0	RMAD0	00h
0011h			00h
0012h			X0h
0013h			
0014h	Address Match Interrupt Register 1	RMAD1	00h
0015h			00h
0016h			X0h
0017h			
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protection Mode Register	CSPR	00h
001Dh		00.11	
001Eh		INTOF	00h
	INTO Input Filter Select Register		0011
001Fh			
0020h	High-Speed On-Chip Oscillator Control Register 0	HRA0	00h
0021h	High-Speed On-Chip Oscillator Control Register 1	HRA1	When shipping
0022h	High-Speed On-Chip Oscillator Control Register 2	HRA2	00h
0023h			
002Ah			
002Bh			
002Ch			
002Dh			
002Eh			
002Fh			
0030h			
0031h	Voltage Detection Register 1 ⁽²⁾	VCA1	00001000b
0032h	Voltage Detection Register 1 ⁽²⁾	VCA2	00h ⁽³⁾
003211		VORZ	
			0100000b ⁽⁴⁾
0033h			
0034h			
0035h			
0036h	Voltage Monitor 1 Circuit Control Register (2)	VW1C	0000X000b ⁽³⁾
			0100X001b ⁽⁴⁾
0037h	Voltage Monitor 2 Circuit Control Register ⁽⁵⁾	VW2C	00h
0038h			
0030h			
003Ah			
003Bh			
003Ch			
003Dh			
003Eh			
003Fh			

X: Undefined

NOTES:

- 1. The blank regions are reserved. Do not access locations in these regions.
- 2. Software reset, watchdog timer reset, and voltage monitor 2 reset do not affect this register.

3. After hardware reset.

- 4. After power-on reset or voltage monitor 1 reset.
- 5. Software reset, watchdog timer reset, and voltage monitor 2 reset do not affect b2 and b3.

Address	Register	Symbol	After reset
0040h			
0041h			
0042h			
0043h			
0044h			
0045h			
0046h			
0047h			
0048h			
0040h			
004Ah			
004Bh			
004Ch			
004Dh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXXX000b
004Fh	SSU/IIC Interrupt Control Register ⁽²⁾	SSUAIC/IIC2AIC	XXXXX000b
0050h	Compare 1 Interrupt Control Register	CMP1IC	XXXXX000b
0051h	UART0 Transmit Interrupt Control Register	SOTIC	XXXXX000b
0052h	UART0 Receive Interrupt Control Register	SORIC	XXXXX000b
0053h	UART1 Transmit Interrupt Control Register	S1TIC	XXXXX000b
0054h	UART1 Receive Interrupt Control Register	S1RIC	XXXXX000b
0055h		-	
0056h	Timer X Interrupt Control Register	TXIC	XXXXX000b
		1710	~~~~~
0057h		7710	2000000
0058h	Timer Z Interrupt Control Register	TZIC	XXXXX000b
0059h	INT1 Interrupt Control Register	INT1IC	XXXXX000b
005Ah	INT3 Interrupt Control Register	INT3IC	XXXXX000b
005Bh	Timer C Interrupt Control Register	TCIC	XXXXX000b
005Ch	Compare 0 Interrupt Control Register	CMPOIC	XXXXX000b
005Dh	INTO Interrupt Control Register	INTOIC	XX00X000b
		INTOIC	~~000000
005Eh			
005Fh			
0060h			
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			
0069h			
006Ah			
006Bh			
006Ch			
006Dh			
006Eh			
006Fh			
0070h			
0071h			1
0072h			
0072h			
0074h			
0075h			
0076h			
0077h			
0078h			1
0079h			
007Ah			
007Bh			
007Ch			
007Dh			
007Eh			
007Fh			
	1		

SFR Information (2)⁽¹⁾ Table 4.2

X: Undefined

NOTES:

The blank regions are reserved. Do not access locations in these regions.
 Selected by the IICSEL bit in the PMR register.

Address	Pagiatar	Symbol	After reset
0080h	Register	Symbol TZMR	O0h
		TZIVIR	0011
0081h			
0082h			
0083h			
0084h	Timer Z Waveform Output Control Register	PUM	00h
0085h	Prescaler Z Register	PREZ	FFh
0086h	Timer Z Secondary Register	TZSC	FFh
0087h	Timer Z Primary Register	TZPR	FFh
0088h			
0089h			
008Ah	Timer Z Output Control Register	TZOC	00h
008Bh	Timer X Mode Register	TXMR	00h
008Ch	Prescaler X Register	PREX	FFh
008Dh	Timer X Register	ТХ	FFh
008Eh	Timer Count Source Setting Register	TCSS	00h
008Fh			
0090h	Timer C Register	тс	00h
0091h			00h
0092h			0011
0092h			
0093h 0094h			
0094n 0095h			
	Evternel Input Enchle Register		00b
0096h	External Input Enable Register	INTEN	00h
0097h			
0098h	Key Input Enable Register	KIEN	00h
0099h			
009Ah	Timer C Control Register 0	TCC0	00h
009Bh	Timer C Control Register 1	TCC1	00h
009Ch	Capture, Compare 0 Register	TMO	0000h ⁽²⁾
009Dh			FFFFh ⁽³⁾
009Eh	Compare 1 Register	TM1	FFh
009Fh			FFh
00A0h	UART0 Transmit/Receive Mode Register	U0MR	00h
00A1h	UARTO Bit Rate Generator	U0BRG	XXh
00A2h	UART0 Transmit Buffer Register	UOTB	XXh
00A3h		0012	XXh
00A4h	UART0 Transmit/Receive Control Register 0	U0C0	00001000b
00A4H	UARTO Transmit/Receive Control Register 1	U0C1	0000010b
00A5h	UARTO Receive Buffer Register	UORB	XXh
		UUKB	
00A7h			XXh
00A8h	UART1 Transmit/Receive Mode Register	U1MR	00h
00A9h	UART1 Bit Rate Generator	U1BRG	XXh
00AAh	UART1 Transmit Buffer Register	U1TB	XXh
00ABh			XXh
00ACh	UART1 Transmit/Receive Control Register 0	U1C0	00001000b
00ADh	UART1 Transmit/Receive Control Register 1	U1C1	00000010b
00AEh	UART1 Receive Buffer Register	U1RB	XXh
00AFh			XXh
00B0h	UART Transmit/Receive Control Register 2	UCON	00h
00B1h			
00B2h			
00B3h			
00B4h			
00B5h			1
00B6h			
00B7h			+
00B8h	SS Control Register H / IIC bus Control Register 1 ⁽⁴⁾	SSCRH / ICCR1	00h
00B9h	SS Control Register L / IIC bus Control Register 2 ⁽⁴⁾	SSCRL / ICCR2	01111101b
00BAh	5 5	SSORE / ICOR	00011000b
	SS Mode Register / IIC bus Mode Register ⁽⁴⁾		
00BBh	SS Enable Register / IIC bus Interrupt Enable Register ⁽⁴⁾	SSER / ICIER	00h
00BCh	SS Status Register / IIC bus Status Register ⁽⁴⁾	SSSR / ICSR	00h / 0000X000b
00BDh	SS Mode Register 2 / Slave Address Register ⁽⁴⁾	SSMR2 / SAR	00h
00BEh	SS Transmit Data Register / IIC bus Transmit Data Register ⁽⁴⁾	SSTDR / ICDRT	FFh
00BFh	SS Receive Data Register / IIC bus Receive Data Register ⁽⁴⁾	SSRDR / ICDRR	FFh
			1

Table 4.3SFR Information (3)(1)

X: Undefined

NOTES:

1. The blank regions are reserved. Do not access locations in these regions.

2. In input capture mode.

3. In output compare mode.

4. Selected by the IICSEL bit in the PMR register.

Address	Register	Symbol	After reset
00C0h	A/D Register	AD	XXh
00C1h			XXh
00C2h			
00C3h			
00C4h			
00C5h 00C6h			
00C6h			
00C7h			
00C9h			
00CAh			
00CBh			
00CCh			
00CDh			
00CEh			
00CFh			
00D0h			
00D1h			
00D2h			
00D3h	A/D Control Deviator 2		00h
00D4h 00D5h	A/D Control Register 2	ADCON2	00h
00D5n	A/D Control Register 0	ADCON0	00000XXXb
00D8h	A/D Control Register 1	ADCON0 ADCON1	000007770
00D7h			
00D9h			
00DAh		1	1
00DBh			
00DCh			
00DDh			
00DEh			
00DFh			
00E0h 00E1h	Port P1 Register	P1	XXh
00E1h		PI	××n
00E3h	Port P1 Direction Register	PD1	00h
00E4h		1.51	0011
00E5h	Port P3 Register	P3	XXh
00E6h		-	
00E7h	Port P3 Direction Register	PD3	00h
00E8h	Port P4 Register	P4	XXh
00E9h			
00EAh	Port P4 Direction Register	PD4	00h
00EBh			
00ECh			
00EDh 00EEh			
00EFh			
00F0h			
00F1h			
00F2h		1	1
00F3h			
00F4h			
00F5h			
00F6h			
00F7h	Dert Made Davieter	DMD	0.01
00F8h	Port Mode Register	PMR	00h
00F9h 00FAh			+
00FBh			1
00FCh	Pull-Up Control Register 0	PUR0	00XX0000b
00FDh	Pull-Up Control Register 1	PUR1	XXXXXX0Xb
00FEh	Port P1 Drive Capacity Control Register	DRR	00h
00FFh	Timer C Output Control Register	TCOUT	00h
		•	
01B3h	Flash Memory Control Register 4	FMR4	0100000b
01B4h			
01B5h	Flash Memory Control Register 1	FMR1	1000000Xb
01B6h		ENDO	00000001
01B7h	Flash Memory Control Register 0	FMR0	0000001b
0FFFFh	Ontional Eurotian Salast Pagistar		(2)
VEEEN	Optional Function Select Register	OFS	(2)

SFR Information (4)⁽¹⁾ Table 4.4

X: Undefined

NOTES:

Blank regions, 0100h to 01B2h and 01B8h to 02FFh are all reserved. Do not access locations in these regions.
 The OFS register cannot be changed by a user program. Use a flash programmer to write to it.

5. Programmable I/O Ports

There are 13 programmable Input/Output ports (I/O ports) P1, P3_3 to P3_5, P3_7, and P4_5. 4_2 can be used as an input-only port. Also, P4_6 and P4_7 can be used as input-only ports if the main clock oscillation circuit is not used. Table 5.1 lists an Overview of Programmable I/O Ports.

Ports	I/O	Type of Output	I/O Setting	Internal Pull-Up Resistor	Drive Capacity Selection
P1	I/O	CMOS3 state	Set per bit	Set every 4 bits ⁽¹⁾	Set every bit ⁽²⁾ of P1_0 to P1_3
P3_3, P4_5	I/O	CMOS3 state	Set per bit	Set every bit ⁽¹⁾	None
P3_4, P3_5, P3_7	I/O	CMOS3 state	Set per bit	Set every 3 bits ⁽¹⁾	None
P4_2, P4_6, P4_7 ⁽³⁾	I	(No output function)	None	None	None

NOTES:

1. In input mode, whether an internal pull-up resistor is connected or not can be selected by registers PUR0 and PUR1.

2. These ports can be used as the LED drive port by setting the DRR register to 1 (high).

3. When the main clock oscillation circuit is not used, P4_6 and P4_7 can be used as input -only ports.

5.1 Functions of Programmable I/O Ports

The PDi_j (j=0 to 7) bit in the PDi (i=1, 3, and 4) register controls I/O of ports P1, P3_3 to P3_5, P3_7, and P4_5. The Pi register consists of a port latch to hold output data and a circuit to read pin states. Figures 5.1 to 5.3 show the Configurations of Programmable I/O Ports.

Table 5.2 lists the Functions of Programmable I/O Ports. Also, Figure 5.5 shows Registers PD1, PD3, and PD4. Figure 5.6 shows Registers P1 and P3, Figure 5.9 shows Registers PUR0 and PUR1 and Figure 5.10 shows the DRR Register.

Table 5.2	Functions of Programmable I/O Ports
-----------	-------------------------------------

Operation when	Value of PDi_j Bit in PDi Register ⁽¹⁾					
Accessing Pi Register	When PDi_j Bit is Set to 0 (Input Mode)	When PDi_j Bit is Set to 1 (Output Mode)				
Reading	Read pin input level	Read the port latch				
Writing	Write to the port latch	Write to the port latch. The value written to the port latch is output from the pin.				

NOTE:

1. Nothing is assigned to bits PD3_0 to PD3_2, PD3_6, PD4_0 to PD4_4, PD4_6, and PD4_7.

5.2 Effect on Peripheral Functions

Programmable I/O ports function as I/O ports for peripheral functions (Refer to **Table 1.6** Pin Name Information by Pin Number of PLSP0020JB-A, PRDP0020BA-A Packages). Table 5.3 lists the Settings of PDi_j Bit when Functioning as I/O Ports for Peripheral Functions. Refer to the description of each function for information on how to set peripheral functions.

Table 5.3 Settings of PDi_j Bit when Functioning as I/O Ports for Peripheral Functions

I/O of Peripheral Functions	PDi_j Bit Settings for Shared Pin Functions
Input	Set this bit to 0 (input mode).
Output	This bit can be set to either 0 or 1 (output regardless of the port setting).

5.3 Pins Other than Programmable I/O Ports

Figure 5.4 shows the Configuration of I/O Pins.

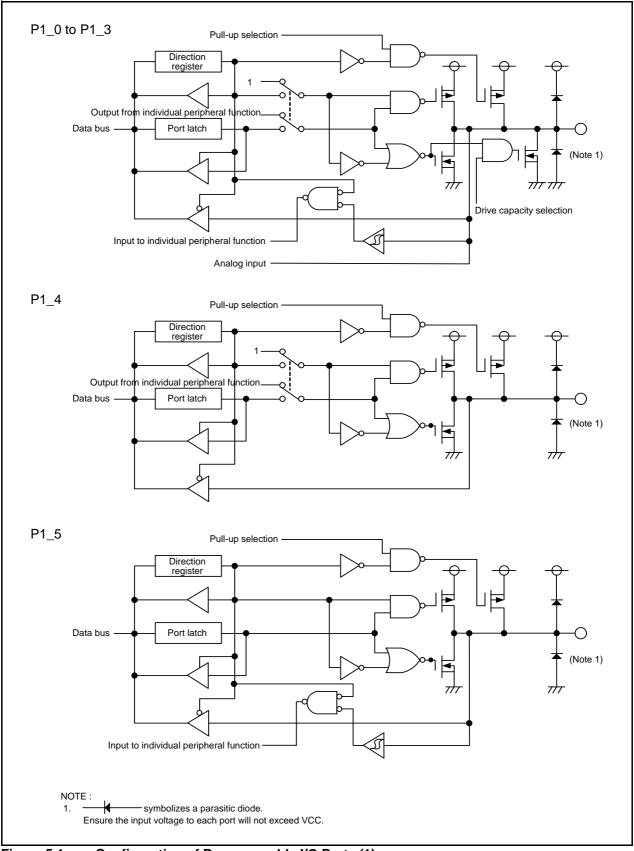
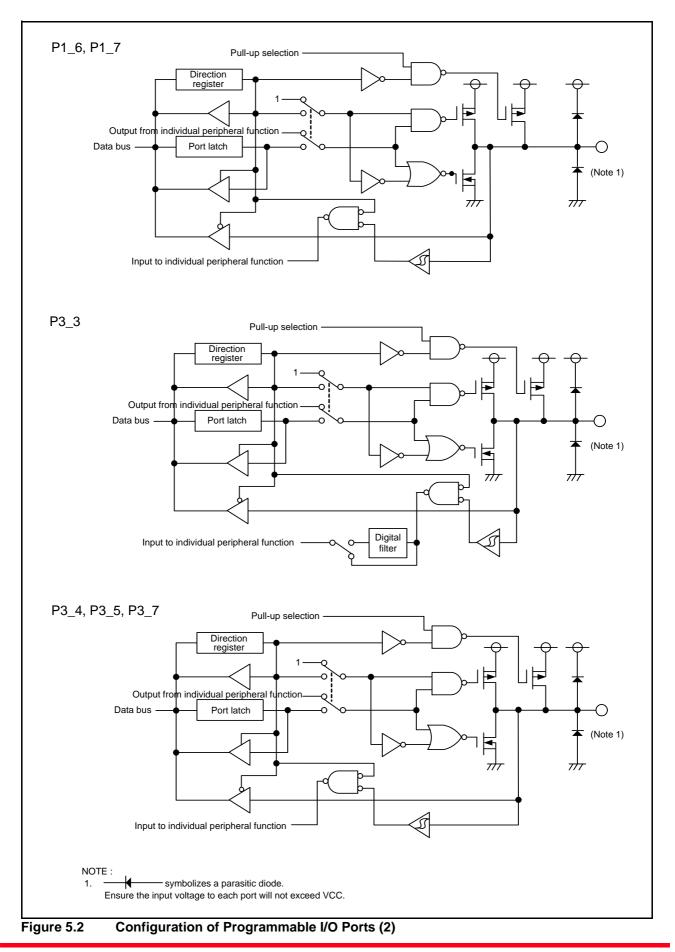
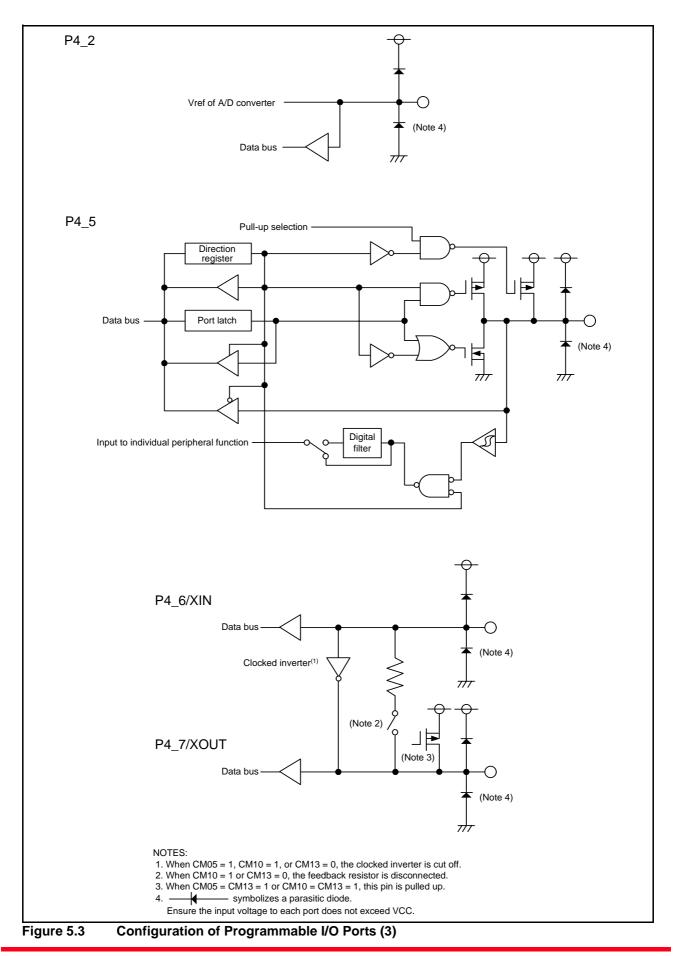




Figure 5.1 Configuration of Programmable I/O Ports (1)

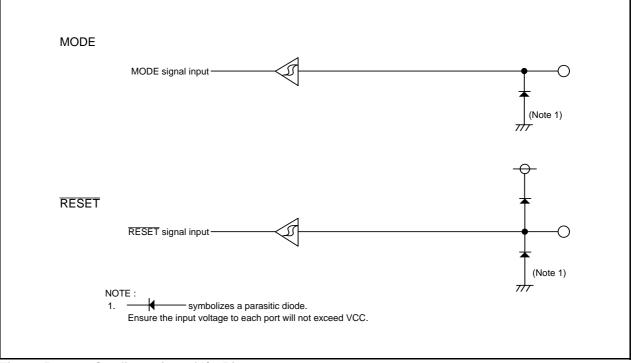
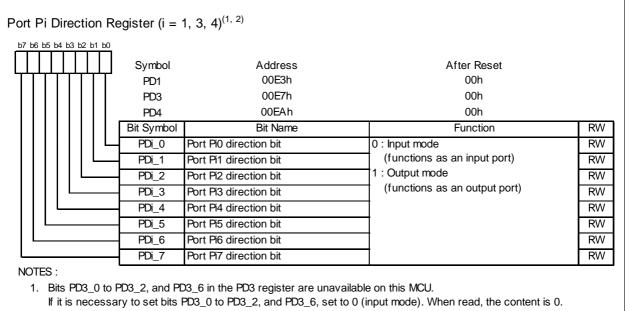
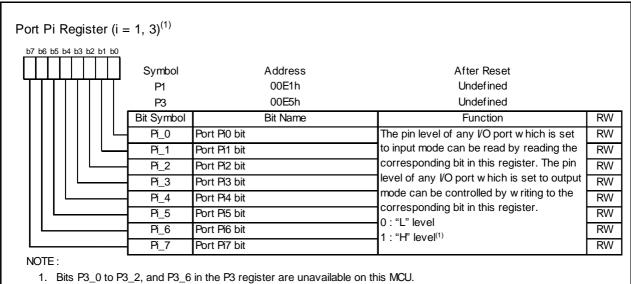
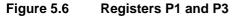
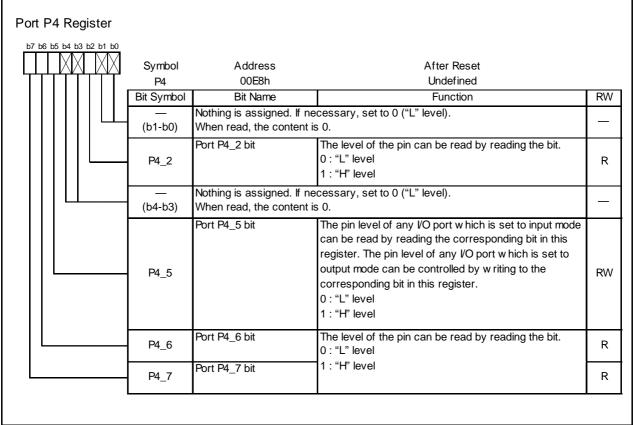
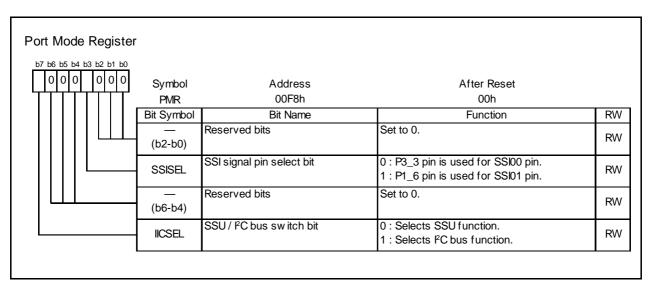




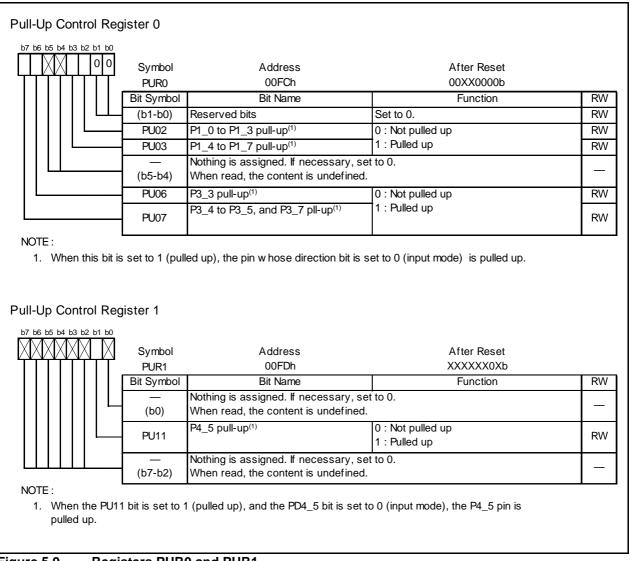
Figure 5.4 Configuration of I/O Pins




2. Bits PD4_0 to PD4_4, PD4_6, and PD4_7 in the PD4 register are unavailable on this MCU. If it is necessary to set bits PD4_0 to PD4_4, PD4_6, and PD4_7, set to 0 (input mode). When read, the content is 0.



If it is necessary to set bits P3_0 to P3_2, and P3_6, set to 0 ("L" level). When read, the content is 0.



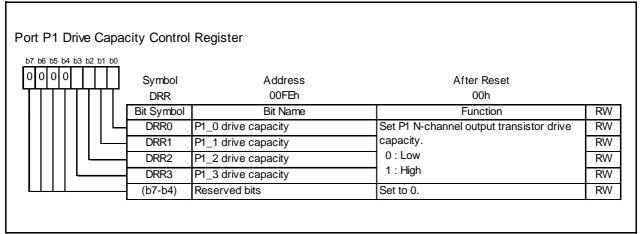


Figure 5.10 DRR Register

5.4 Port Settings

Tables 5.4 to 5.17 list the port settings.

Table 5.4	Port P1_0/KI0/	AN8/CMP0_0
-----------	----------------	------------

Register	PD1	PUR0	DRR	KIEN	ADCON0	TCOUT	P1	Function
Bit	PD1_0	PU02	DRR0	KI0EN	CH2, CH1, CH0, ADGSEL0	TCOUT0	P1_0	FUNCTION
	0	0	Х	Х	XXXXb	0	Х	Input port (not pulled up)
	0	1	Х	Х	XXXXb	0	Х	Input port (pulled up)
	0	0	Х	1	XXXXb	0	Х	KI0 input
	0	0	Х	Х	1001b	0	Х	A/D Converter input (AN8)
Setting Value	1	Х	0	Х	XXXXb	0	Х	Output port
raide	1	Х	1	Х	XXXXb	0	Х	Output port (High drive)
	Х	Х	0	Х	XXXXb	1	0	Output port
	Х	Х	1	Х	XXXXb	1	0	Output port (High drive)
	Х	Х	Х	Х	XXXXb	1	1	CMP0_0 output

X: 0 or 1

Table 5.5 Port P1_1/KI1/AN9/CMP0_1

Register	PD1	PUR0	DRR	KIEN	ADCON0	TCOUT	P1	Function
Bit	PD1_1	PU02	DRR1	KI1EN	CH2, CH1, CH0, ADGSEL0	TCOUT1	P1_1	FUNCTION
	0	0	Х	Х	XXXXb	0	Х	Input port (not pulled up)
	0	1	Х	Х	XXXXb	0	Х	Input port (pulled up)
	0	0	Х	1	XXXXb	0	Х	KI1 input
	0	0	Х	Х	1011b	0	Х	A/D converter input (AN9)
Setting Value	1	Х	0	Х	XXXXb	0	Х	Output port
Value	1	Х	1	Х	XXXXb	0	Х	Output port (high drive)
	Х	Х	0	Х	XXXXb	1	0	Output port
	Х	Х	1	Х	XXXXb	1	0	Output port (high drive)
	Х	Х	Х	Х	XXXXb	1	1	CMP0_1 output

X: 0 or 1

Table 5.6 Port P1_2/KI2/AN10/CMP0_2

Register	PD1	PUR0	DRR	KIEN	ADCON0	TCOUT	P1	Function
Bit	PD1_2	PU02	DRR2	KI2EN	CH2, CH1, CH0, ADGSEL0	TCOUT2	P1_2	FUNCTION
	0	0	Х	Х	XXXXb	0	Х	Input port (not pulled up)
	0	1	Х	Х	XXXXb	0	Х	Input port (pulled up)
	0	0	Х	1	XXXXb	0	Х	KI2 input
	0	0	Х	Х	1101b	0	Х	A/D converter input (AN10)
Setting Value	1	Х	0	Х	XXXXb	0	Х	Output port
, and e	1	Х	1	Х	XXXXb	0	Х	Output port (high drive)
	Х	Х	0	Х	XXXXb	1	0	Output port
	Х	Х	1	Х	XXXXb	1	0	Output port (high drive)
	Х	Х	Х	Х	XXXXb	1	1	CMP0_2 input

Register	PD1	PUR0	DRR	KIEN	ADCON0	TZMR	TZOC	
Bit	PD1_3	PU02	DRR3	KI3EN	CH2, CH1, CH0, ADGSEL0	TZMOD1, TZMOD0	TZOCNT	Function
	0	0	Х	Х	XXXXb	00b	Х	Input port (not pulled up)
	0	1	Х	Х	XXXXb	00b	Х	Input port (pulled up)
	0	0	Х	1	XXXXb	00b	Х	KI3 input
	0	0	Х	Х	1111b	00b	Х	A/D converter input (AN11)
Setting	1	Х	0	Х	XXXXb	00b	Х	Output port
Value	1	Х	1	Х	XXXXb	00b	Х	Output port (high drive)
	Х	Х	0	Х	XXXXb	01b	1	Output port
	Х	Х	1	Х	XXXXb	01b	1	Output port (high drive)
	Х	Х	Х	Х	XXXXb	01b	0	TZOUT output
	Х	Х	Х	Х	XXXXb	1Xb	Х	TZOUT output

Table 5.7 Port P1_3/KI3/AN11/TZOUT

X: 0 or 1

Table 5.8 Port P1_4/TXD0

Register	PD1	PUR0	U0MR	U0C0	Function	
Bit	PD1_4	PU03	SMD2, SMD1, SMD0	NCH	Function	
	0	0	000b	Х	Input port (not pulled up)	
	0	1	000b	Х	Input port (pulled up)	
	1	Х	000b	Х	Output port	
			001b			
0	х	х	100b	0	TXD0 output, CMOS output	
Setting Value	~		101b			
			110b			
		x	001b			
	х		100b	1	TXD0 output, N-channel open output	
	~		101b	1		
			110b			

X: 0 or 1

Table 5.9 Port P1_5/RXD0/CNTR01/INT11

Register	PD1	PUR0	UCON	TXMR	Function
Bit	PD1_5	PU03	CNTRSEL	TXMOD1, TXMOD0	Function
	0	0	Х	XXb	Input port (not pulled up)
	0	1	Х	XXb	Input port (pulled up)
Setting	0	Х	Х	Other than 01b	RXD0 input
Value	0	Х	1	Other than 01b	CNTR01/INT11 input
	1	Х	Х	Other than 01b	Output port
	1	Х	1	Other than 01b	CNTR01 output

Register	PD1	PUR0	U0MR	SSU (Refer to Table 16.4 Association between Communication Modes and I/O Pins)		PMR	Function
Bit	PD1_6	PU03	SMD2, SMD1, SMD0, CKDIR	SSI Output Control SSI Input Control		SSISEL	
	0	0	Other than 0X10b	0	0	Х	Input port (not pulled up)
	0	1	Other than 0X10b	0	0	Х	Input port (pulled up)
	0	0	XXX1b	0	0	Х	CLK0 (external clock) input
Setting	1	Х	Other than 0X10b	0	0	Х	Output port
Value	х	х	0X10b	0	0	х	CLK0 (internal clock) output
	Х	Х	XXXXb	0	1	1	SSI01 input
	Х	Х	XXXXb	1	0	1	SSI01 output

Table 5.10 Port P1_6/CLK0/SSI01

X: 0 or 1

Table 5.11 Port P1_7/CNTR00/INT10

Register	PD1	PUR0	TXMR	UCON	Function
Bit	PD1_7	PU03	TXMOD1, TXMOD0	CNTRSEL	Function
	0	0	Other than 01b	Х	Input port (not pulled up)
	0	1	Other than 01b	Х	Input port (pulled up)
Setting Value	0	0	Other than 01b	0	CNTR00/INT10 input
Value	1	Х	Other than 01b	Х	Output port
	Х	Х	Other than 01b	0	CNTR00 output

X: 0 or 1

Table 5.12 Port P3_3/TCIN/INT3/SSI00/CMP1_0

Register	PD3	PUR0	`		TCOUT	P3	PMR	Function
Bit	PD3_3	PU06	SSI Output Control	SSI Input Control	TCOUT3	P3_3	SSISEL	
	0	0	0	0	0	Х	х	Input port (not pulled up)
	0	1	0	0	0	Х	х	Input port (pulled up)
	Х	0	0	1	Х	Х	0	SSI00 input
Setting	1	Х	0	0	0	Х	Х	Output port
Value	Х	Х	0	0	1	0	х	Output port
	Х	Х	0	0	1	1	х	CMP1_0 output
	Х	Х	1	0	Х	Х	0	SSI00 output
	0	Х	1	1	0	Х	Х	TCIN input/INT3

Register	PD3	PUR0		n between ation Modes	тсоит	P3	ICCR1	Function
Bit	PD3_4	PU07	SCS Output Control	SCS Input Control	TCOUT4	P3_4	ICE	
	0	0	0	0	0	Х	0	Input port (not pulled up)
	0	1	0	0	0	Х	0	Input port (pulled up)
	0	0	0	1	0	Х	0	SCS input
Setting	Х	Х	0	0	Х	Х	1	SDA input/output
Value	1	Х	0	0	0	Х	0	Output port
	Х	Х	0	0	1	0	0	Output port
	Х	Х	0	0	1	1	0	CMP1_1 output
	Х	Х	1	0	Х	Х	0	SCS output

Table 5.13 Port P3_4/SCS/SDA/CMP1_1

X: 0 or 1

Table 5.14 Port P3_5/SSCK/SCL/CMP1_2

Register	PD3	PUR0	SSU (Refer to Table 16.4 Association between Communication Modes and I/O Pins)		тсоит	P3	ICCR1	Function
Bit	PD3_5	PU07	SSCK Output Control	SSCK Input Control	TCOUT5	P3_5	ICE	
	0	0	0	0	0	Х	0	Input port (not pulled up)
	0	1	0	0	0	Х	0	Input port (pulled up)
	0	0	0	1	0	Х	0	SSCK input
Setting	Х	Х	0	0	Х	Х	1	SCL input/output
Value	1	Х	0	0	0	Х	0	Output port
	Х	Х	0	0	1	0	0	Output port
	Х	Х	0	0	1	1	0	CMP1_2 output
	Х	Х	1	0	Х	Х	0	SSCK output

Register	PD3	PUR0	U1MR	SSU (Refer to Associatio Communica and I/O	n between tion Modes	TXMR	UCON	Function
Bit	PD3_7	PU07	SMD2, SMD1, SMD0	SSO Output Control	SSO Input Control	TXOCNT	U1SEL1, U1SEL0	
	0	0	000b	0	0	0	0Xb	Input port (not pulled up)
	0	1	000b	0	0	0	0Xb	Input port (pulled up)
	1	Х	000b	0	0	0	0Xb	Output port
			001b		0	x	11b	
Setting	х	х	100b	0				
Value	^	^	101b	0	0	^	IID	TXD1 output pin
			110b					
	Х	Х	000b	0	0	1	XXb	CNTR0 output pin
	Х	Х	XXXb	0	1	Х	XXb	SSO input pin
	Х	Х	XXXb	1	0	Х	XXb	SSO output pin

Table 5.15 Port P3_7/CNTR0/SSO/TXD1

X: 0 or 1

Table 5.16 Port XIN/P4_6, XOUT/P4_7

Register	CM1	CM1	CM0	Circuit Specification		
Bit	CM13	CM10	CM05	Oscillation Buffer	Feedback Resistance	Function
	1	1	1	OFF	OFF	XIN-XOUT oscillation stop
Setting	1	0	1	OFF	ON	External input to XIN pin, "H" output from XOUT pin
Value	1	0	1	OFF	ON	XIN-XOUT oscillation stop
	1	0	0	ON	ON	XIN-XOUT oscillation
	0	Х	Х	OFF	OFF	Input port

X: 0 or 1

Table 5.17 Port P4_5/INT0/RXD1

Register	PD4	PUR1	UCON	INTEN	Function
Bit	PD4_5	PU11	U1SEL1, U1SEL0	INT0EN	Function
	0	0	00b	0	Input port (not pulled up)
	0	1	00b	0	Input port (pulled up)
Setting	0	0	00b	1	INTO input
Value	Х	0	01b	0	RXD1 input
	^	0	11b	0	KAD I liiput
	1	Х	00b	Х	Output port

5.5 Unassigned Pin Handling

Table 5.18 lists Unassigned Pin Handling. Figure 5.11 shows Unassigned Pin Handling.

····· · ··· · ··· · ··· · ··· · ···· · ····· · ······	
Pin Name	Connection
Ports P1, P3_3 to P3_5,	 After setting to input mode, connect each pin to VSS via a resistor (pull-
P3_7, P4_5	down) or connect each pin to VCC via a resistor (pull-up). ⁽²⁾
	• After setting to output mode, leave these pins open. ^(1, 2)
Ports P4_6, P4_7	Connect to VCC via a pull-up resistor ⁽²⁾
Port P4_2/VREF	Connect to VCC
RESET (3)	Connect to VCC via a pull-up resistor ⁽²⁾

Table 5.18 Unassigned Pin Handling

NOTES:

 If these ports are set to output mode and left open, they remain in input mode until they are switched to output mode by a program. The voltage level of these pins may be undefined and the power supply current may increase while the ports remain in input mode. The content of the direction registers may change due to noise or program runaway caused by

noise. In order to enhance program reliability, the program should periodically repeat the setting of the direction registers.

- 2. Connect these unassigned pins to the MCU using the shortest wire length (2 cm or less) possible.
- 3. When the power-on reset function is in use.

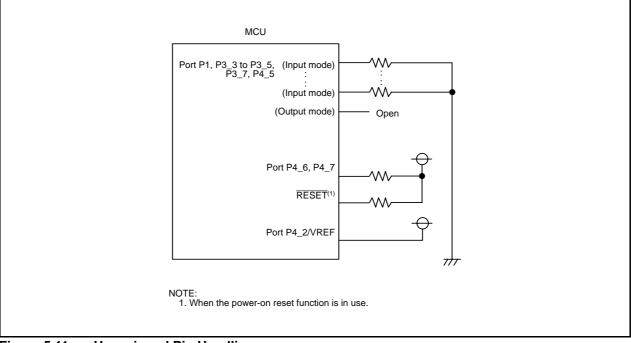


Figure 5.11 Unassigned Pin Handling

6. Resets

The following resets are implemented: hardware reset, power-on reset, voltage monitor 1 reset, voltage monitor 2 reset, watchdog timer reset, and software reset. Table 6.1 lists the Reset Names and Sources.

Table 6.1	Reset Names	and Sources

Reset Name	Source	
Hardware reset	Input voltage of RESET pin is held "L".	
Power-on reset	VCC rises.	
Voltage monitor 1 reset	VCC falls (monitor voltage: Vdet1).	
Voltage monitor 2 reset	VCC falls (monitor voltage: Vdet2).	
Watchdog timer reset	Underflow of watchdog timer	
Software reset	Write 1 to PM03 bit in PM0 register.	

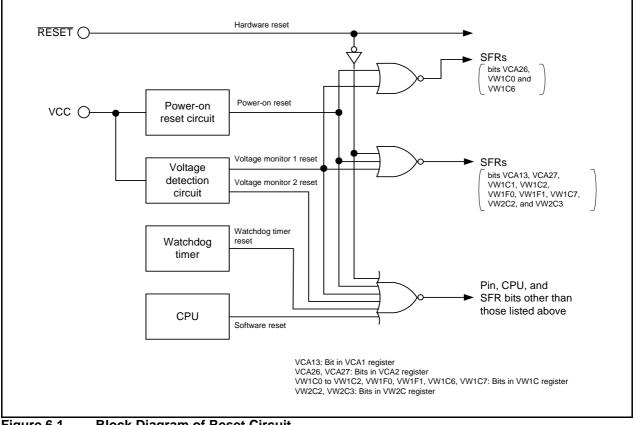


Figure 6.1 Block Diagram of Reset Circuit

Table 6.2 shows the Pin Functions after Reset, Figure 6.2 shows CPU Register Status after Reset and Figure 6.3 shows Reset Sequence.

Pin Name	Pin Functions
P1	Input port
P3_3 to P3_5, P3_7	Input port
P4_2, P4_5 to P4_7	Input port

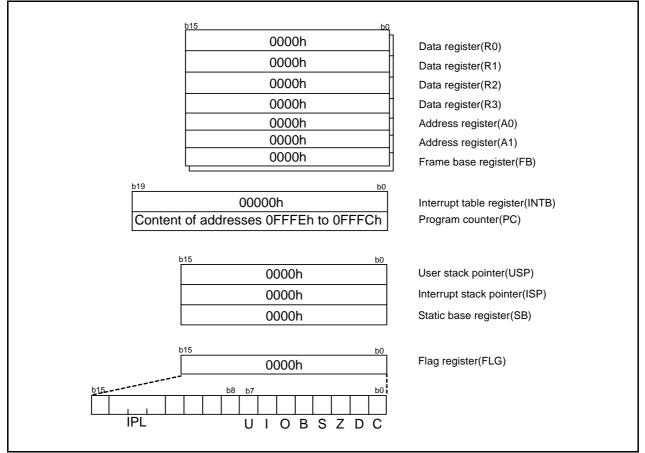


Figure 6.2 CPU Register Status after Reset

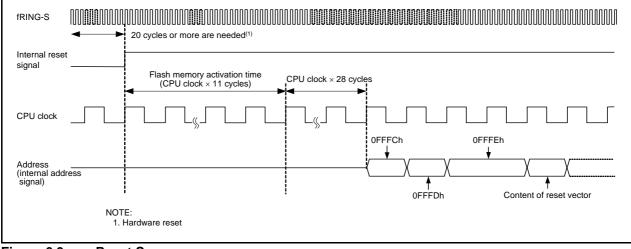


Figure 6.3 Reset Sequence

6.1 Hardware Reset

A reset is applied using the $\overline{\text{RESET}}$ pin. When an "L" signal is applied to the $\overline{\text{RESET}}$ pin while the supply voltage meets the recommended operating conditions, pins, CPU, and SFRs are reset (refer to **Table 6.2 Pin Functions after Reset**). When the input level applied to the $\overline{\text{RESET}}$ pin changes from "L" to "H", a program is executed beginning with the address indicated by the reset vector. After reset, the low-speed on-chip oscillator clock divided by 8 is automatically selected as the CPU clock.

Refer to 4. Special Function Registers (SFRs) for the state of the SFRs after reset.

The internal RAM is not reset. If the **RESET** pin is pulled "L" while writing to the internal RAM is in progress, the contents of internal RAM will be undefined.

Figure 6.4 shows an Example of Hardware Reset Circuit and Operation and Figure 6.5 shows an Example of Hardware Reset Circuit (Usage Example of External Supply Voltage Detection Circuit) and Operation.

6.1.1 When Power Supply is Stable

- (1) Apply "L" to the $\overline{\text{RESET}}$ pin.
- (2) Wait for 500 μ s (1/fRING-S \times 20).
- (3) Apply "H" to the $\overline{\text{RESET}}$ pin.

6.1.2 Power On

- (1) Apply "L" to the $\overline{\text{RESET}}$ pin.
- (2) Let the supply voltage increase until it meets the recommended operating condition.
- (3) Wait for td(P-R) or more to allow the internal power supply to stabilize (refer to **19. Electrical Characteristics**).
- (4) Wait for 500 μs (1/fRING-S \times 20).
- (5) Apply "H" to the $\overline{\text{RESET}}$ pin.

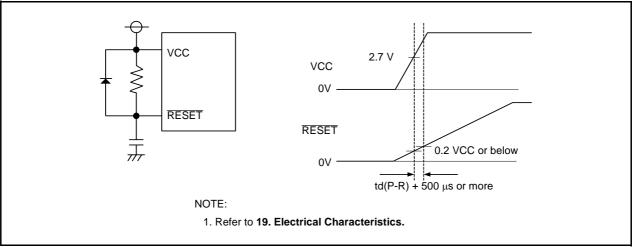


Figure 6.4 Example of Hardware Reset Circuit and Operation

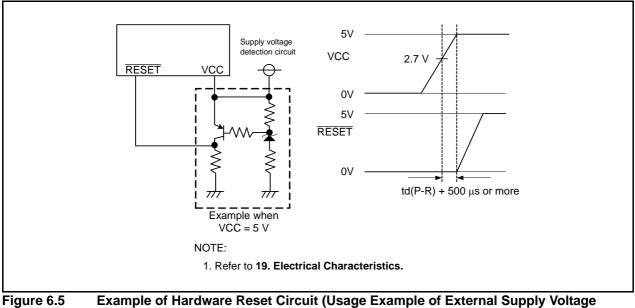


Figure 6.5 Example of Hardware Reset Circuit (Usage Example of External Supply V Detection Circuit) and Operation

6.2 Power-On Reset Function

When the $\overline{\text{RESET}}$ pin is connected to the VCC pin via a pull-up resistor of about 5 k Ω , and the VCC pin voltage level rises, the power-on reset function is enabled and the MCU resets its pins, CPU, and SFR. When a capacitor is connected to the $\overline{\text{RESET}}$ pin, always keep the voltage to the $\overline{\text{RESET}}$ pin 0.8VCC or more.

When the input voltage to the VCC pin reaches the Vdet1 level or above, the low-speed on-chip oscillator clock starts counting. When the low-speed on-chip oscillator clock count reaches 32, the internal reset signal is held "H" and the MCU enters the reset sequence (refer to Figure 6.3). The low-speed on-chip oscillator clock divide by 8 is automatically selected as the CPU after reset.

Refer to 4. Special Function Registers (SFRs) for the status of the SFR after power-on reset.

The voltage monitor 1 reset is enabled after power-on reset.

Figure 6.6 shows an Example of Power-On Reset Circuit and Operation.

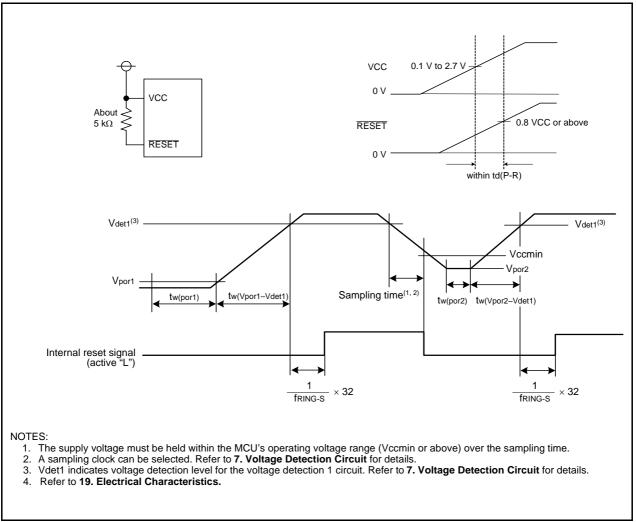


Figure 6.6 Example of Power-On Reset Circuit and Operation

6.3 Voltage Monitor 1 Reset

A reset is applied using the on-chip voltage detection 1 circuit. The voltage detection 1 circuit monitors the input voltage to the VCC pin. The voltage to monitor is Vdet1.

When the input voltage to the VCC pin reaches the Vdet1 level or below, the pins, CPU, and SFR are reset. When the input voltage to the VCC pin reaches the Vdet1 level or above, the low-speed on-chip oscillator clock starts counting. When the low-speed on-chip oscillator clock count reaches 32, the internal reset signal is held "H" and the MCU enters the reset sequence (refer to Figure 6.3). The low-speed on-chip oscillator clock divided by 8 is automatically selected as the CPU after reset.

Refer to 4. Special Function Registers (SFRs) for the status of the SFR after voltage monitor 1 reset.

The internal RAM is not reset. When the input voltage to the VCC pin reaches the Vdet1 level or below while writing to the internal RAM is in progress, the contents of internal RAM are undefined.

Refer to 7. Voltage Detection Circuit for details of voltage monitor 1 reset.

6.4 Voltage Monitor 2 Reset

A reset is applied using the on-chip voltage detection 2 circuit. The voltage detection 2 circuit monitors the input voltage to the VCC pin. The voltage to monitor is Vdet2.

When the input voltage to the VCC pin reaches the Vdet2 level or below, pins, CPU, and SFR are reset and the program beginning with the address indicated by the reset vector is executed. After reset, the low-speed on-chip oscillator clock divided by 8 is automatically selected as the CPU clock.

The voltage monitor 2 does not reset some SFRs. Refer to 4. Special Function Registers (SFRs) for details.

The internal RAM is not reset. When the input voltage to the VCC pin reaches the Vdet2 level or below while writing to the internal RAM is in progress, the contents of internal RAM are undefined.

Refer to 7. Voltage Detection Circuit for details of voltage monitor 2 reset.

6.5 Watchdog Timer Reset

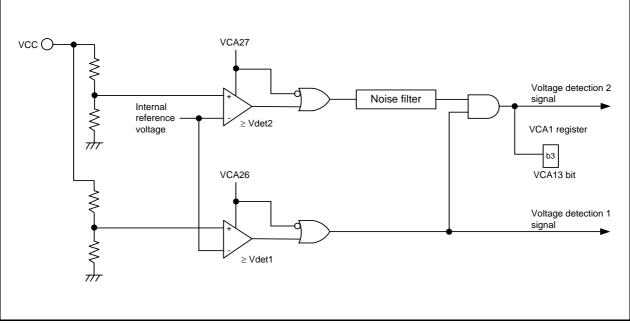
When the PM12 bit in the PM1 register is set to 1 (reset when watchdog timer underflows), the MCU resets its pins, CPU, and SFR if the watchdog timer underflows. Then the program beginning with the address indicated by the reset vector is executed. After reset, the low-speed on-chip oscillator clock divided by 8 is automatically selected as the CPU clock.

The watchdog timer reset does not reset some SFRs. Refer to **4.** Special Function Registers (SFRs) for details. The internal RAM is not reset. When the watchdog timer underflows, the contents of internal RAM are undefined. Refer to **13. Watchdog Timer** for details of the watchdog timer.

6.6 Software Reset

When the PM03 bit in the PM0 register is set to 1 (MCU reset), the MCU resets its pins, CPU, and SFR. The program beginning with the address indicated by the reset vector is executed. After reset, the low-speed on-chip oscillator clock divided by 8 is automatically selected for the CPU clock.

The software reset does not reset some SFRs. Refer to **4.** Special Function Registers (SFRs) for details. The internal RAM is not reset.


7. Voltage Detection Circuit

The voltage detection circuit monitors the input voltage to the VCC pin. This circuit can be used to monitor the VCC input voltage by a program. Alternately, voltage monitor 1 reset, voltage monitor 2 interrupt, and voltage monitor 2 reset can also be used.

Table 7.1 lists the Specifications of Voltage Detection Circuit and Figures 7.1 to 7.3 show the Block Diagrams. Figures 7.4 to 7.6 show the Associated Registers.

lte	em	Voltage Detection 1	Voltage Detection 2
VCC monitor	Voltage to monitor	Vdet1	Vdet2
	Detection target	Passing through Vdet1	Passing through Vdet2
		by rising or falling	by rising or falling
	Monitor	None	VCA13 bit in VCA1
			register
			Whether VCC is higher
			or lower than Vdet2
Process when voltage is	Reset	Voltage monitor 1 reset	Voltage monitor 2 reset
detected		Reset at Vdet1 > VCC;	Reset at Vdet2 > VCC;
		restart CPU operation at	restart CPU operation
		VCC > Vdet1	after a specified time
	Interrupt	None	Voltage monitor 2
			interrupt
			Interrupt request at
			Vdet2 > VCC and VCC >
			Vdet2 when digital filter
			is enabled;
			interrupt request at
			Vdet2 > VCC or VCC >
			Vdet2 when digital filter
			is disabled
Digital filter	Switch	Available	Available
	enabled/disabled		
	Sampling time	(Divide-by-n of fRING-S)	(Divide-by-n of fRING-S)
		x 4	x 4
		n: 1, 2, 4, and 8	n: 1, 2, 4, and 8

 Table 7.1
 Specifications of Voltage Detection Circuit

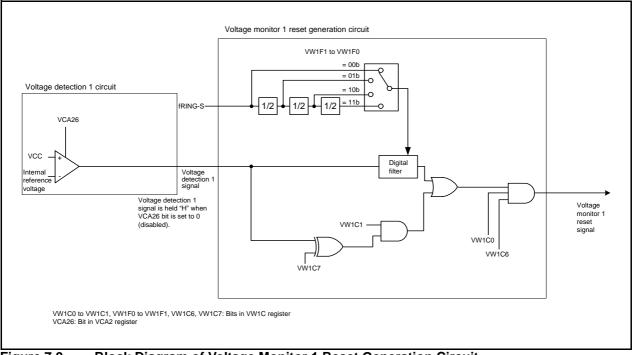


Figure 7.2 Block Diagram of Voltage Monitor 1 Reset Generation Circuit

7. Voltage Detection Circuit

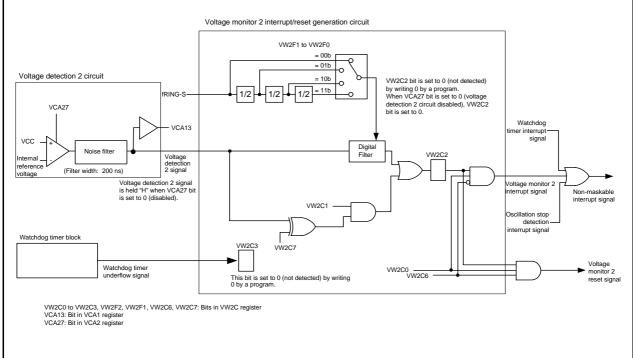
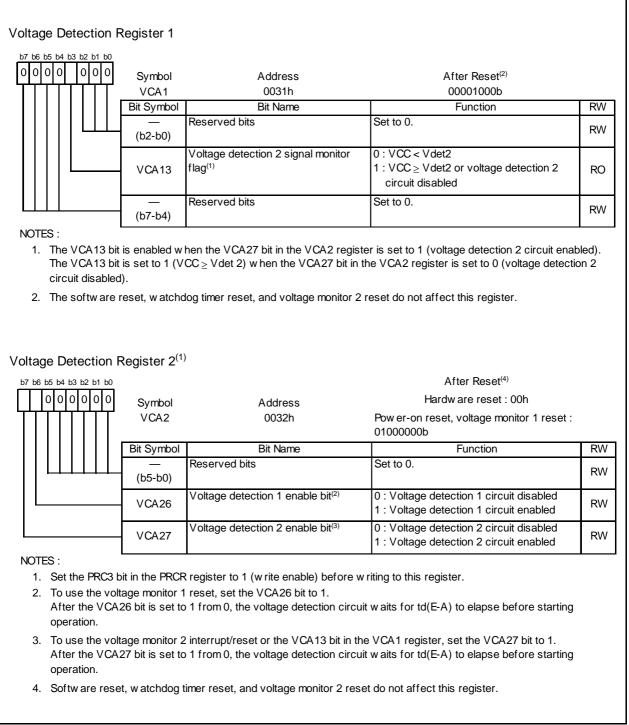
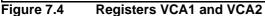




Figure 7.3 Block Diagram of Voltage Monitor 2 Interrupt / Reset Generation Circuit

	b5 b4 b3	Symbol VW1C	Address 0036h	After Reset ⁽²⁾ Hardw are reset : 0000X000b Pow er-on reset, voltage monitor 1 reset :	
				0100X001b	
		Bit Symbol	Bit Name	Function	RW
		VW1C0	Voltage monitor 1 reset enable bit ⁽³⁾	0 : Disable 1 : Enable	RW
		VW1C1	Voltage monitor 1 digital filter disable mode select bit	 0 : Digital filter enabled mode (digital filter circuit enabled) 1 : Digital filter disabled mode (digital filter circuit disabled) 	RW
		VW1C2	Reserved bit	Set to 0.	RW
	L	(b3)	Reserved bit	When read, the content is undefined.	RO
		VW1F0	Sampling clock select bits	^{b5 b4} 0 0 : f RING-S divided by 1 0 1 : f RING-S divided by 2	RW
		- VW1F1		1 0 : fRING-S divided by 4 1 1 : fRING-S divided by 8	RW
L		VW1C6	Voltage monitor 1 circuit mode select bit	When the VW1C0 bit is set to 1 (voltage monitor 1 reset enabled), set to 1.	RW
		VW1C7	Voltage monitor 1 reset generation condition select bit	When the VW1C1 bit is set to 1 (digital filter disabled mode), set to 1.	RW

2. The value remains unchanged after a softw are reset, w atchdog timer reset, or voltage monitor 2 reset.

3. The VW1C0 bit is enabled when the VCA26 bit in the VCA2 register is set to 1 (voltage detection 1 circuit enabled). Set the VW1C0 bit to 0 (disable), when the VCA26 bit is set to 0 (voltage detection 1 circuit disabled).

Figure 7.5 VW1C Register

b3 b2 b1 b0	Symbol	Address	After Reset ⁽⁸⁾	
	VW2C	0037h	00h	
	Bit Symbol	Bit Name	Function	RW
	VW2C0	Voltage monitor 2 interrupt / reset enable bit ^(6, 10)	0 : Disable 1 : Enable	RW
	VW2C1	Voltage monitor 2 digital filter disabled mode select bit ⁽²⁾	0 : Digital filter enabled mode (digital filter circuit enabled) 1 : Digital filter disabled mode (digital filter circuit disabled)	RW
	VW2C2	Voltage change detection flag ^(3,4,8)	0 : Not detected 1 : Vdet2 crossing detected	RW
	VW2C3	WDT detection flag ^(4,8)	0 : Not detected 1 : Detected	RW
	VW2F0	Sampling clock select bits	^{b5 b4} 0 0 : fRING-S divided by 1 0 1 : fRING-S divided by 2	RW
	VW2F1		1 0 : fRING-S divided by 4 1 1 : fRING-S divided by 8	RW
	VW2C6	Voltage monitor 2 circuit mode select bit ⁽⁵⁾	0 : Voltage monitor 2 interrupt mode 1 : Voltage monitor 2 reset mode	RW
	VW2C7	Voltage monitor 2 interrupt / reset generation condition select bit ^(7,9)	0 : When VCC reaches Vdet2 or above. 1 : When VCC reaches Vdet2 or below .	RW

NOTES :

- Set the PRC3 bit in the PRCR register to 1 (rew rite enable) before w riting to this register. When rew riting the VW2C register, the VW2C2 bit may be set to 1. Set the VW2C2 bit to 0 after rew riting the VW2C register.
- 2. When the voltage monitor 2 interrupt is used to exit stop mode and to return again, w rite 0 to the VW2C1 bit before w riting 1.
- 3. This bit is enabled when the VCA27 bit in the VCA2 register is set to 1 (voltage detection 2 circuit enabled).
- 4. Set this bit to 0 by a program. When 0 is written by a program, it is set to 0 (and remains unchanged even if 1 is written to it).
- 5. This bit is enabled when the VW2C0 bit is set to 1 (voltage monitor 2 interrupt/reset enabled).
- 6. The VW2C0 bit is enabled when the VCA27 bit in the VCA2 register is set to 1 (voltage detection 2 circuit enabled). Set the VW2C0 bit to 0 (disable) when the VCA27 bit is set to 0 (voltage detection 2 circuit disabled).
- 7. The VW2C7 bit is enabled when the VW2C1 bit is set to 1 (digital filter disabled mode).
- 8. Bits VW2C2 and VW2C3 remain unchanged after a softw are reset, w atchdog timer reset, or voltage monitor 2 reset.
- 9. When the VW2C6 bit is set to 1 (voltage monitor 2 reset mode), set the VW2C7 bit to 1 (when VCC reaches Vdet2 or below). (Do not set to 0.)
- 10. Set the VW2C0 bit to 0 (disabled) when the VCA13 bit in the VCA1 register is set to 1 (VCC ≥ Vdet2 or voltage detection 2 circuit disabled), the VW2C1 bit is set to 1 (digital filter disabled mode), and the VW2C7 bit is set to 0 (when VCC reaches Vdet2 or above).

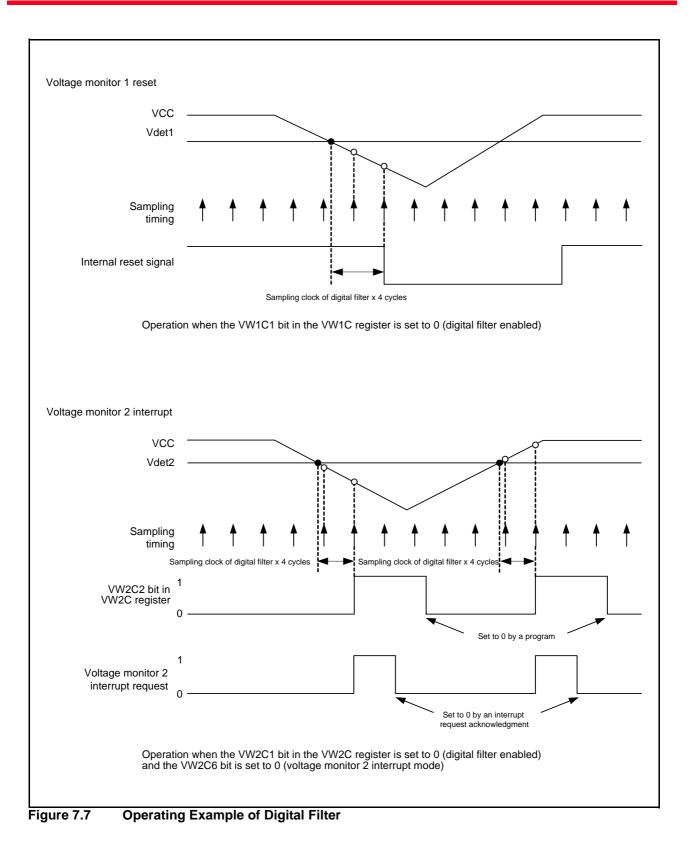
Set the VW2C0 bit to 0 (disabled) when the VCA13 bit is set to 0 (VCC < Vdet2), the VW2C1 bit is set to 1 (digital filter disabled mode), and the VW2C7 bit is set to 1 (when VCC reaches Vdet2 or below).

Figure 7.6 VW2C Register

7.1 VCC Input Voltage

7.1.1 Monitoring Vdet1

Vdet1 cannot be monitored.


7.1.2 Monitoring Vdet2

Set the VCA27 bit in the VCA2 register to 1 (voltage detection 2 circuit enabled). After td(E-A) has elapsed (refer to **19. Electrical Characteristics**), Vdet2 can be monitored by the VCA13 bit in the VCA1 register.

7.1.3 Digital Filter

A digital filter can be used for monitoring the VCC input voltage. When the VW1C1 bit in the VW1C register is set to 0 (digital filter enabled) for the voltage monitor 1 circuit and the VW2C1 bit in the VW2C register is set to 0 (digital filter enabled) for the voltage monitor 2 circuit, the digital filter circuit is enabled. fRING-S divided by 1, 2, 4, or 8 may be selected as a sampling clock.

The level of VCC input voltage is sampled every sampling clock cycle, and when the sampled input level matches two times, the internal reset signal changes to "L" or a voltage monitor 2 interrupt request is generated.

7.2 Voltage Monitor 1 Reset

Table 7.2 lists the Setting Procedure of Voltage Monitor 1 Reset Associated Bits and Figure 7.8 shows an Operating Example of Voltage Monitor 1 Reset. To use voltage monitor 1 reset to exit stop mode, set the VW1C1 bit in the VW1C register to 1 (digital filter disabled).

Step	When Using Digital Filter	When Not Using Digital Filter	
1	Set the VCA26 bit in the VCA2 register to 1 (voltage detection 1 circuit enabled).		
2	Wait for td(E-A)		
3(1)	Select the sampling clock of the digital filter by bits VW1F0 to VW1F1 in the VW1C register.	Set the VW1C7 bit in the VW1C register to 1.	
4(1)	Set the VW1C1 bit in the VW1C register to 0 (digital filter enabled).	Set the VW1C1 bit in the VW1C register to 1 (digital filter disabled).	
5 ⁽¹⁾	Set the VW1C6 bit in the VW1C register to 1 (voltage monitor 1 reset mode).		
6	Set the VW1C2 bit in the VW1C register to 0.		
7	Set the CM14 bit in the CM1 register to 0 (low-speed on-chip oscillator on).	-	
8	Wait for 4 cycles of the sampling clock of the digital filter	– (No wait time)	
9	Set the VW1C0 bit in the VW1C register to	1 (voltage monitor 1 reset enabled).	

Table 7.2 Setting Procedure of Voltage Monitor 1 Reset Associated Bits

NOTE:

1. When the VW1C0 bit is set to 0 (disabled), steps 3, 4, and 5 can be executed simultaneously (with 1 instruction).

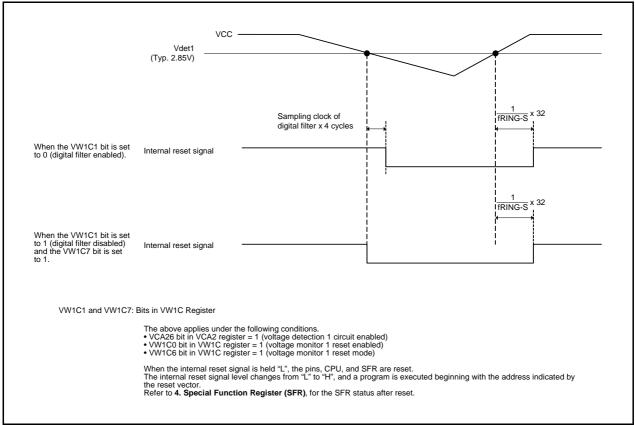


Figure 7.8 Operating Example of Voltage Monitor 1 Reset

7.3 Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset

Table 7.3 lists the Setting Procedure of Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset Associated Bits. Figure 7.9 shows an Operating Example of Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset. To use voltage monitor 2 interrupt or voltage monitor 2 reset to exit stop mode, set the VW2C1 bit in the VW2C register to 1 (digital filter disabled).

When Using	Digital Filter	When Not Usi	ng Digital Filter	
Voltage Monitor 2	Voltage Monitor 2	Voltage Monitor 2	Voltage Monitor 2	
Interrupt	Reset	Interrupt	Reset	
Set the VCA27 bit in th	ne VCA2 register to 1 (v	voltage detection 2 circuit enabled).		
Wait for td(E-A)				
Select the sampling clo	ock of the digital filter	Select the timing of the	e interrupt and reset	
by bits VW2F0 to VW2	2F1 in the VW2C	request by the VW2C7	7 bit in the VW2C	
register.		register ⁽¹⁾ .		
Set the VW2C1 bit in the VW2C register to 0		Set the VW2C1 bit in the VW2C register to 1		
(digital filter enabled).		(digital filter disabled).		
Set the VW2C6 bit in	Set the VW2C6 bit in	Set the VW2C6 bit in	Set the VW2C6 bit in	
the VW2C register to	the VW2C register to	the VW2C register to	the VW2C register to	
0 (voltage monitor 2	1 (voltage monitor 2	0 (voltage monitor 2	1 (voltage monitor 2	
interrupt mode).	reset mode).	interrupt mode).	reset mode).	
Set the VW2C2 bit in the VW2C register to 0		(passing of Vdet2 is no	t detected).	
Set the CM14 bit in the CM1 register to 0		_		
(low-speed on-chip os	cillator on).			
Wait for 4 cycles of the sampling clock of the		– (No wait time)		
digital filter				
Set the VW2C0 bit in t	he VW2C register to 1	voltage monitor 2 inter	rupt/reset enabled).	
	Voltage Monitor 2 Interrupt Set the VCA27 bit in th Wait for td(E-A) Select the sampling cliby by bits VW2F0 to VW2 register. Set the VW2C1 bit in th (digital filter enabled). Set the VW2C6 bit in the VW2C register to 0 (voltage monitor 2 interrupt mode). Set the VW2C2 bit in the Set the VW2C2 bit in the (low-speed on-chip os Wait for 4 cycles of the digital filter	InterruptResetSet the VCA27 bit in the VCA2 register to 1 (vWait for td(E-A)Select the sampling clock of the digital filter by bits VW2F0 to VW2F1 in the VW2C register.Set the VW2C1 bit in the VW2C register to 0 (digital filter enabled).Set the VW2C6 bit in the VW2C register to 0 (voltage monitor 2 interrupt mode).Set the VW2C2 bit in the VW2C2 bit in the VW2C2 register to 0 (voltage monitor 2 interrupt mode).Set the VW2C2 bit in the VW2C2 bit in the VW2C2 register to 0 (low-speed on-chip oscillator on).Wait for 4 cycles of the sampling clock of the digital filter	Voltage Monitor 2 InterruptVoltage Monitor 2 ResetVoltage Monitor 2 InterruptSet the VCA27 bit in the VCA2 register to 1 (voltage detection 2 circ)Wait for td(E-A)Select the sampling clock of the digital filter by bits VW2F0 to VW2F1 in the VW2C register.Select the timing of the request by the VW2C1 register(1).Set the VW2C1 bit in the VW2C register to 0 (digital filter enabled).Set the VW2C1 bit in the VW2C6 bit in the VW2C6 bit in the VW2C6 bit in the VW2C6 bit in the VW2C7 register to 0 (voltage monitor 2 interrupt mode).Set the VW2C6 bit in the VW2C6 bit in the VW2C2 register to 0 (voltage monitor 2 interrupt mode).Set the VW2C2 bit in the VW2C7 register to 0 (low-speed on-chip oscillator on).Set the VW2C6 of the sampling clock of the e sampling clock of the	

Table 7.3Setting Procedure of Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset
Associated Bits

NOTES:

1. Set the VW2C7 bit to 1 (when VCC reaches Vdet2 or below) for the voltage monitor 2 reset.

2. When the VW2C0 bit is set to 0 (disabled), steps 3, 4 and 5 can be executed simultaneously (with 1 instruction).

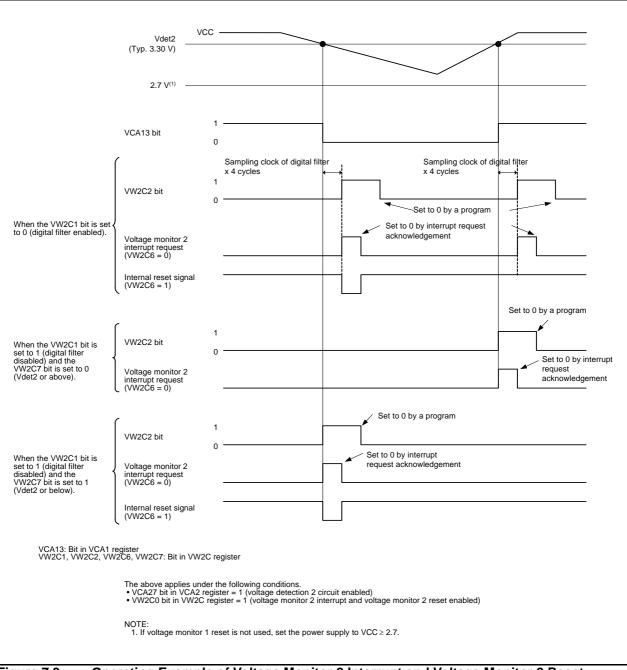
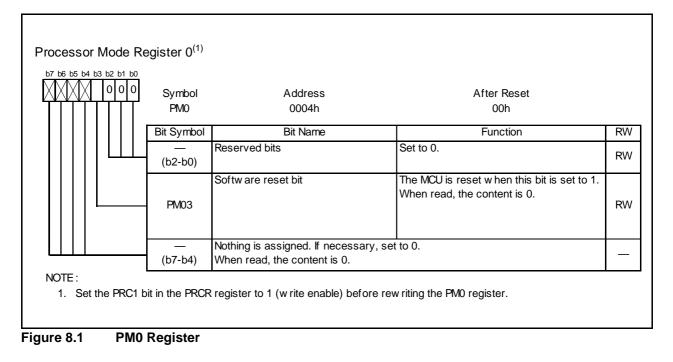
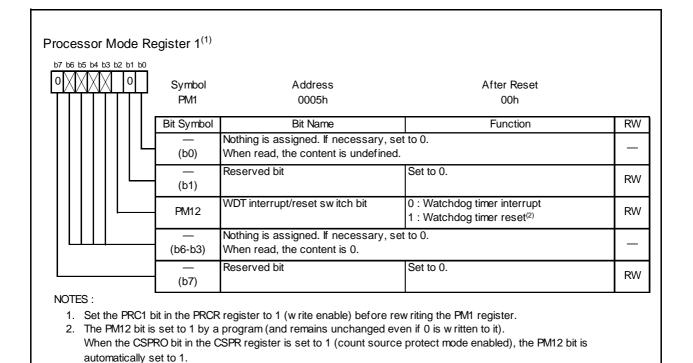


Figure 7.9 Operating Example of Voltage Monitor 2 Interrupt and Voltage Monitor 2 Reset


8. Processor Mode


8.1 Processor Modes

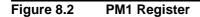

Single-chip mode can be selected as the processor mode. Table 8.1 lists Features of Processor Mode. Figure 8.1 shows the PM0 Register and Figure 8.2 shows the PM1 Register.

Table 8.1 Features of Processor Mode

Processor Mode	Accessible Areas	Pins Assignable as I/O Port Pins
Single-chip mode	SFR, internal RAM, internal ROM	All pins are I/O ports or peripheral
		function I/O pins.

9. Bus

The bus cycles differ when accessing ROM/RAM, and when accessing SFR. Table 9.1 lists Bus Cycles by Access Space of the R8C/1A Group and Table 9.2 lists Bus Cycles by Access Space of the R8C/1B Group. ROM/RAM and SFR are connected to the CPU by an 8-bit bus. When accessing in word (16-bit) units, these areas are accessed twice in 8-bit units. Table 9.3 lists Access Units and Bus Operations.

Table 9.1 Bus Cycles by Access Space of the R8C/1A Group

Access Area	Bus Cycle
SFR	2 cycles of CPU clock
ROM/RAM	1 cycle of CPU clock

Table 9.2 Bus Cycles by Access Space of the R8C/1B Group

Access Area	Bus Cycle
SFR/data flash	2 cycles of CPU clock
Program ROM/RAM	1 cycle of CPU clock

Table 9.3 Access Units and Bus Operations

Area	SFR, data flash	ROM (program ROM), RAM
Even address Byte access	CPU clock	CPU clock
Odd address Byte access	CPU clock Address X Odd X Data X Data X	CPU clock
Even address Word access	CPU clock CPU cl	CPU clock CPU clock Address X Even X Even+1 X Data X Data X Data
Odd address Word access	CPU clock Address X Odd X Odd+1 X Data X Data X Data X	CPU clock CPU clock Address X Odd X Odd+1 X Data X Data X Data X

10. Clock Generation Circuit

The clock generation circuit has:

• Main clock oscillation circuit

• On-chip oscillator (oscillation stop detection function)

Table 10.1 lists Specifications of Clock Generation Circuit. Figure 10.1 shows a Clock Generation Circuit. Figures 9.2 to 10.5 show clock associated registers.

Table 10.1	Specifications of Clock Generation Circuit
------------	--

Item	Main Clock	On-Chip Oscillator	
	Oscillation Circuit	High-Speed On-Chip Oscillator	Low-Speed On-Chip Oscillator
Applications	CPU clock source	 CPU clock source 	CPU clock source
	 Peripheral 	 Peripheral function clock 	 Peripheral function clock
	function clock	source	source
	source	 CPU and peripheral function 	 CPU and peripheral function
		clock sources when main	clock sources when main
		clock stops oscillating	clock stops oscillating
Clock frequency	0 to 20 MHz	Approx. 8 MHz	Approx. 125 kHz
Connectable	Ceramic	_	-
oscillator	resonator		
	 Crystal oscillator 		
Oscillator	XIN, XOUT ⁽¹⁾	(Note 1)	(Note 1)
connect pins			
Oscillation stop,	Usable	Usable	Usable
restart function			
Oscillator status	Stop	Stop	Oscillate
after reset			
Others	Externally	_	-
	generated clock		
	can be input		

NOTE:

1. These pins can be used as P4_6 or P4_7 when using the on-chip oscillator clock as the CPU clock while the main clock oscillation circuit is not used.

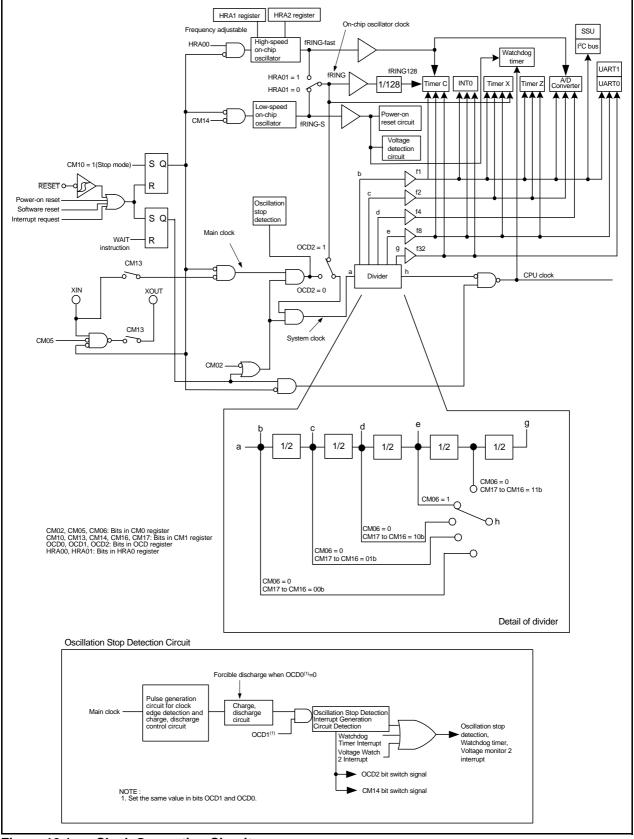


Figure 10.1 Clock Generation Circuit

0	b4 b3 b2 b1 b0 0 1 0 0					
<u>۷</u>	0100	Symbol	Address	After Reset		
		CMO	0006h	68h		
		Bit Symbol	Bit Name	Function	RW	
		 (b1-b0)	Reserved bits	Set to 0.	RW	
		CM02	WAIT peripheral function clock stop bit	 0 : Peripheral function clock does not stop in w ait mode. 1 : Peripheral function clock stops in w ait mode. 	RW	
		(b3)	Reserved bit	Set to 1.	RW	
		(b4)	Reserved bit	Set to 0.	RW	
		CM05	Main clock (XIN-XOUT) stop bit ^(2,4)	0 : Main clock oscillates. 1 : Main clock stops. ⁽³⁾	RW	
		CM06	System clock division select bit $0^{(5)}$	0 : CM16, CM17 enabled 1 : Divide-by-8 mode	RW	
		(b7)	Reserved bit	Set to 0.	RW	
NOTES	S :		I			
1. 8	Set the PRC0 b	it in the PRCF	R register to 1 (w rite enable) before re	w riting the CM0 register.		
[•	clock when the on-chip oscillator mod whether the main clock is stopped. To	de is selected. stop the main clock, set the bits in the follow	ing	
((a) Set bits OC) in the OCD register to 00b (oscillation elects on-chip oscillator clock).	stop detection function disabled).		
	(b) Set the OCD2 bit to 1 (selects on-chip oscillator clock). To input an external clock, set the CM05 bit to 1 (main clock stops) and the CM13 bit in the CM1 register to 1 (XIN- XOUT pin).					

- 4. When the CM05 bit is set to 1 (main clock stops), P4_6 and P4_7 can be used as input ports.
- 5. When entering stop mode from high or medium speed mode, the CM06 bit is set to 1 (divide-by-8 mode).

Figure 10.2 CM0 Register

System Clock Cont	rol Registe	r 1 ⁽¹⁾		
b7 b6 b5 b4 b3 b2 b1 b0	Symbol CM1	Address 0007h	After Reset 20h	
	Bit Symbol	Bit Name	Function	RW
	CM10	All clock stop control bit ^(4,7,8)	0 : Clock operates. 1 : Stops all clocks (stop mode).	RW
	(b1)	Reserved bit	Set to 0.	RW
	(b2)	Reserved bit	Set to 0.	RW
	CM13	Port XIN-XOUT sw itch bit ⁽⁷⁾	0 : Input port P4_6, P4_7 1 : XIN-XOUT Pin	RW
	CM14	Low -speed on-chip oscillation stop bit ^(5,6,8)	0 : Low -speed on-chip oscillator on 1 : Low -speed on-chip oscillator off	RW
	CM15	XIN-XOUT drive capacity select bit ⁽²⁾	0 : Low 1 : High	RW
	CM16	System clock division select bits 1 ⁽³⁾	b7 b6 0 0 : No division mode 0 1 : Divide-by-2 mode	RW
	CM17		1 0 : Divide-by-4 mode 1 1 : Divide-by-16 mode	RW

NOTES :

- 1. Set the PRC0 bit in the PRCR register to 1 (write enable) before rewriting the CM1 register.
- 2. When entering stop mode from high or medium speed mode, this bit is set to 1 (drive capacity high).
- 3. When the CM06 bit is set to 0 (bits CM16, CM17 enabled), bits CM16 to CM17 are enabled.
- 4. If the CM10 bit is set to 1 (stop mode), the on-chip feedback resistor is disabled.
- 5. When the OCD2 bit is set to 0 (main clock selected), the CM14 bit is set to 1 (low -speed on-chip oscillator stopped). When the OCD2 bit is set to 1 (on-chip oscillator clock selected), the CM14 bit is set to 0 (low -speed on-chip oscillator on). And remains unchanged even if 1 is written to it.
- 6. When using the voltage detection interrupt, set the CM14 bit to 0 (low -speed on-chip oscillator on).
- 7. When the CM10 bit is set to 1 (stop mode), or the CM05 bit in the CM0 register to 1 (main clock stops) and the CM13 bit is set to 1 (XIN-XOUT pin), the XOUT (P4_7) pin becomes "H". When the CM13 bit is set to 0 (input ports, P4_6, P4_7), P4_7 (XOUT) enters input mode.
- 8. In count source protect mode (refer to 13.2 Count Source Protect Mode), the value remains unchanged even if bits CM10 and CM14 are set.

Figure 10.3 CM1 Register

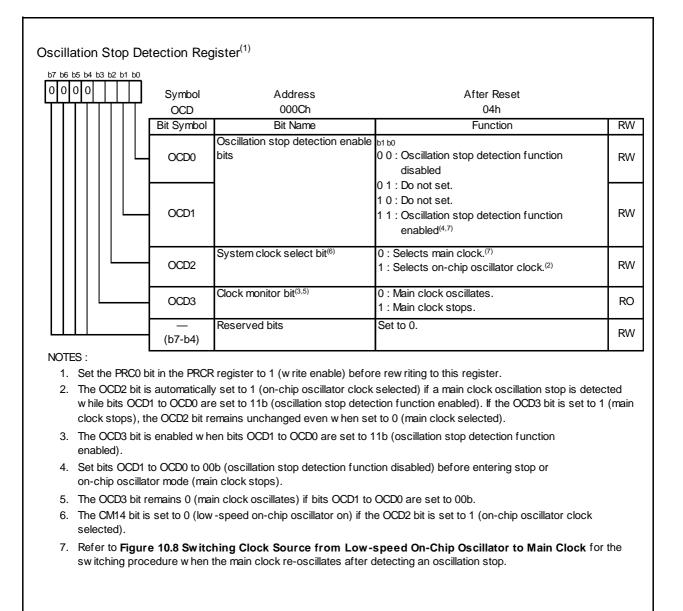
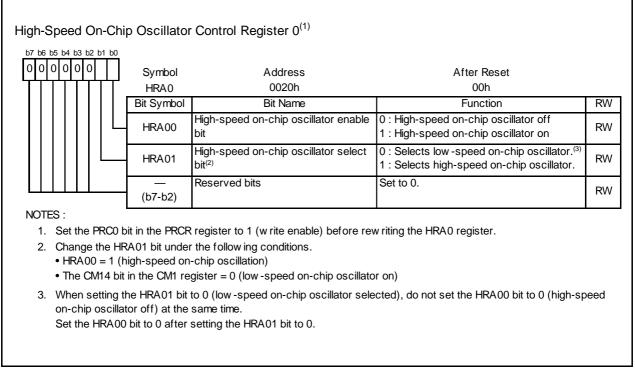
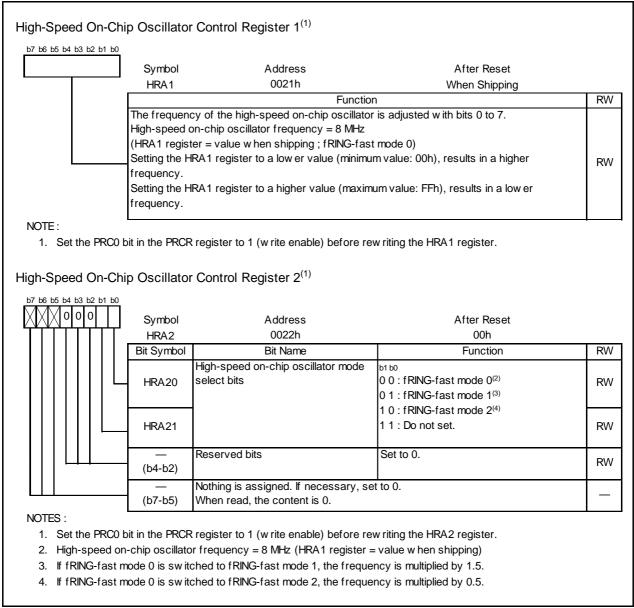




Figure 10.4 OCD Register

The clocks generated by the clock generation circuits are described below.

10.1 Main Clock

This clock is supplied by a main clock oscillation circuit. This clock is used as the clock source for the CPU and peripheral function clocks. The main clock oscillation circuit is configured by connecting a resonator between the XIN and XOUT pins. The main clock oscillation circuit includes an on-chip feedback resistor, which is disconnected from the oscillation circuit in stop mode in order to reduce the amount of power consumed by the chip. The main clock oscillation circuit may also be configured by feeding an externally generated clock to the XIN pin. Figure 10.7 shows Examples of Main Clock Connection Circuit. During reset and after reset, the main clock stops.

The main clock starts oscillating when the CM05 bit in the CM0 register is set to 0 (main clock on) after setting the CM13 bit in the CM1 register to 1 (XIN- XOUT pin).

To use the main clock for the CPU clock source, set the OCD2 bit in the OCD register to 0 (selects main clock) after the main clock is oscillating stably.

The power consumption can be reduced by setting the CM05 bit in the CM0 register to 1 (main clock stops) if the OCD2 bit is set to 1 (select on-chip oscillator clock).

When an external clock is input to the XIN pin, the main clock does not stop if the CM05 bit is set to 1. If necessary, use an external circuit to stop the clock.

In stop mode, all clocks including the main clock stop. Refer to **10.4 Power Control** for details.

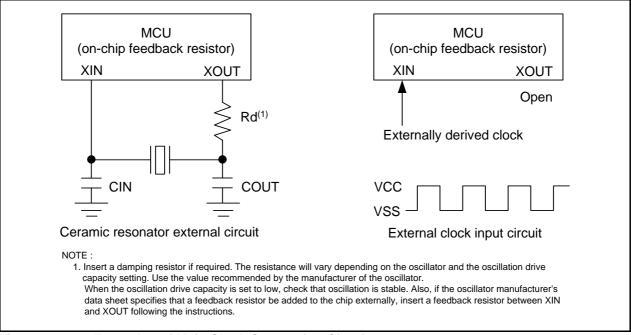


Figure 10.7 Examples of Main Clock Connection Circuit

10.2 On-Chip Oscillator Clocks

These clocks are supplied by the on-chip oscillators (high-speed on-chip oscillator and a low-speed on-chip oscillator). The on-chip oscillator clock is selected by the HRA01 bit in the HRA0 register.

10.2.1 Low-Speed On-Chip Oscillator Clock

The clock generated by the low-speed on-chip oscillator is used as the clock source for the CPU clock, peripheral function clock, fRING, fRING128, and fRING-S.

After reset, the on-chip oscillator clock generated by the low-speed on-chip oscillator divided by 8 is selected as the CPU clock.

If the main clock stops oscillating when bits OCD1 to OCD0 in the OCD register are set to 11b (oscillation stop detection function enabled), the low-speed on-chip oscillator automatically starts operating, supplying the necessary clock for the MCU.

The frequency of the low-speed on-chip oscillator varies depending on the supply voltage and the operating ambient temperature. Application products must be designed with sufficient margin to allow for the frequency changes.

10.2.2 High-Speed On-Chip Oscillator Clock

The clock generated by the high-speed on-chip oscillator is used as the clock source for the CPU clock, peripheral function clock, fRING, fRING128, and fRING1-fast.

After reset, the on-chip oscillator clock generated by the high-speed on-chip oscillator stops. Oscillation is started by setting the HRA00 bit in the HRA0 register to 1 (high-speed on-chip oscillator on). The frequency can be adjusted by registers HRA1 and HRA2.

Since there are differences in delay among the bits in the HRA1 register, make adjustments by changing the settings of individual bits.

The high-speed on-chip oscillator frequency may be changed in flash memory CPU rewrite mode during autoprogram operation or auto-erase operation. Refer to **10.6.4 High-Speed On-Chip Oscillator Clock** for details.

10.3 CPU Clock and Peripheral Function Clock

There are a CPU clock to operate the CPU and a peripheral function clock to operate the peripheral functions. Refer to **Figure 10.1 Clock Generation Circuit**.

10.3.1 System Clock

The system clock is the clock source for the CPU and peripheral function clocks. Either the main clock or the on-chip oscillator clock can be selected.

10.3.2 CPU Clock

The CPU clock is an operating clock for the CPU and watchdog timer.

The system clock can be divided by 1 (no division), 2, 4, 8, or 16 to produce the CPU clock. Use the CM06 bit in the CM0 register and bits CM16 to CM17 in the CM1 register to select the value of the division.

After reset, the low-speed on-chip oscillator clock divided by 8 provides the CPU clock. When entering stop mode from high-speed or medium-speed mode, the CM06 bit is set to 1 (divide-by-8 mode).

10.3.3 Peripheral Function Clock (f1, f2, f4, f8, f32)

The peripheral function clock is the operating clock for the peripheral functions.

The clock fi (i = 1, 2, 4, 8, and 32) is generated by the system clock divided by i. The clock fi is used for timers X, Y, Z, and C, the serial interface and the A/D converter.

When the WAIT instruction is executed after setting the CM02 bit in the CM0 register to 1 (peripheral function clock stops in wait mode), the clock fi stops.

10.3.4 fRING and fRING128

fRING and fRING128 are operating clocks for the peripheral functions.

fRING runs at the same frequency as the on-chip oscillator clock and can be used as the source for timer X. fRING128 is generated from fRING by dividing it by 128, and it can be used as timer C. When the WAIT instruction is executed, the clocks fRING and fRING128 do not stop.

10.3.5 fRING-fast

fRING-fast is used as the count source for timer C. fRING-fast is generated by the high-speed on-chip oscillator and supplied by setting the HRA00 bit to 1.

When the WAIT instruction is executed, the clock fRING-fast does not stop.

10.3.6 fRING-S

fRING-S is an operating clock for the watchdog timer and voltage detection circuit. fRING-S is supplied by setting the CM14 bit to 0 (low-speed on-chip oscillator on) and uses the clock generated by the low-speed on-chip oscillator. When the WAIT instruction is executed or in count source protect mode of the watchdog timer, fRING-S does not stop.

10.4 Power Control

There are three power control modes. All modes other than wait mode and stop mode are referred to as standard operating mode.

10.4.1 Standard Operating Mode

Standard operating mode is further separated into four modes.

In standard operating mode, the CPU clock and the peripheral function clock are supplied to operate the CPU and the peripheral function clocks. Power consumption control is enabled by controlling the CPU clock frequency. The higher the CPU clock frequency, the more processing power increases. The lower the CPU clock frequency, the more power consumption decreases. When unnecessary oscillator circuits stop, power consumption is further reduced.

Before the clock sources for the CPU clock can be switched over, the new clock source needs to be oscillating and stable. If the new clock source is the main clock, allow sufficient wait time in a program until oscillation is stabilized before exiting.

Modes		OCD Register	CM1 R	egister	CM0 Register	
IVIOU	wodes		CM17, CM16	CM13	CM06	CM05
High-speed mo	de	0	00b	1	0	0
Medium-	Divide-by-2	0	01b	1	0	0
speed mode	Divide-by-4	0	10b	1	0	0
	Divide-by-8	0	-	1	1	0
	Divide-by-16	0	11b	1	0	0
High-speed	No division	1	00b	_	0	_
and low-speed	Divide-by-2	1	01b	_	0	_
on-chip	Divide-by-4	1	10b	_	0	_
oscillator	Divide-by-8	1	—	_	1	_
modes ⁽¹⁾	Divide-by-16	1	11b	_	0	_

Table 10.2 Settings and Modes of Clock Associated Bits

NOTE:

 The low-speed on-chip oscillator is used as the on-chip oscillator clock when the CM14 bit in the CM1 register is set to 0 (low-speed on-chip oscillator on) and the HRA01 bit in the HRA0 register is set to 0. The high-speed on-chip oscillator is used as the on-chip oscillator clock when the HRA00 bit in the HRA0 register is set to 1 (high-speed on-chip oscillator A on) and the HRA01 bit in the HRA0 register is set to 1.

10.4.1.1 High-Speed Mode

The main clock divided by 1 (no division) provides the CPU clock. If the CM14 bit is set to 0 (low-speed onchip oscillator on) or the HRA00 bit in the HRA0 register is set to 1 (high-speed on-chip oscillator on), fRING and fRING128 can be used as timers X and C. When the HRA00 bit is set to 1, fRING-fast can be used as timer C. When the CM14 bit is set to 0 (low-speed on-chip oscillator on), fRING-S can be used for the watchdog timer and voltage detection circuit.

10.4.1.2 Medium-Speed Mode

The main clock divided by 2, 4, 8, or 16 provides the CPU clock. If the CM14 bit is set to 0 (low-speed on-chip oscillator on) or the HRA00 bit in the HRA0 register is set to 1 (high-speed on-chip oscillator on), fRING and fRING128 can be used as timers X and C. When the HRA00 bit is set to 1, fRING-fast can be used as timer C. When the CM14 bit is set to 0 (low-speed on-chip oscillator on), fRING-S can be used for the watchdog timer and voltage detection circuit.

10.4.1.3 High-Speed and Low-Speed On-Chip Oscillator Modes

The on-chip oscillator clock divided by 1 (no division), 2, 4, 8, or 16 provides the CPU clock. The on-chip oscillator clock is also the clock source for the peripheral function clocks. When the HRA00 bit is set to 1, fRING-fast can be used as timer C. When the CM14 bit is set to 0 (low-speed on-chip oscillator on), fRING-S can be used for the watchdog timer and voltage detection circuit.

10.4.2 Wait Mode

Since the CPU clock stops in wait mode, the CPU which operates using the CPU clock and the watchdog timer when count source protection mode is disabled stop. The main clock and on-chip oscillator clock do not stop and the peripheral functions using these clocks continue operating.

10.4.2.1 Peripheral Function Clock Stop Function

If the CM02 bit is set to 1 (peripheral function clock stops in wait mode), the f1, f2, f4, f8, and f32 clocks stop in wait mode. This reduces power consumption.

10.4.2.2 Entering Wait Mode

The MCU enters wait mode when the WAIT instruction is executed.

10.4.2.3 Pin Status in Wait Mode

The status before wait mode was entered is maintained.

10.4.2.4 Exiting Wait Mode

The MCU exits wait mode by a hardware reset or a peripheral function interrupt. To use a hardware reset to exit wait mode, set bits ILVL2 to ILVL0 for the peripheral function interrupts to 000b (interrupts disabled) before executing the WAIT instruction.

The peripheral function interrupts are affected by the CM02 bit. When the CM02 bit is set to 0 (peripheral function clock does not stop in wait mode), all peripheral function interrupts can be used to exit wait mode. When the CM02 bit is set to 1 (peripheral function clock stops in wait mode), the peripheral functions using the peripheral function clock stop operating and the peripheral functions operated by external signals can be used to exit wait mode.

Table 10.3 lists Interrupts to Exit Wait Mode and Usage Conditions.

To use a peripheral function interrupt to exit wait mode, set up the following before executing the WAIT instruction.

- (1) Set the interrupt priority level in bits ILVL2 to ILVL0 in the interrupt control registers of the peripheral function interrupts to be used for exiting wait mode. Set bits ILVL2 to ILVL0 of the peripheral function interrupts that are not to be used for exiting wait mode to 000b (interrupt disabled).
- (2) Set the I flag to 1.
- (3) Operate the peripheral function to be used for exiting wait mode.

When exiting by a peripheral function interrupt, the interrupt sequence is executed when an interrupt request is generated and the CPU clock supply is started.

The CPU clock, when exiting wait mode by a peripheral function interrupt, is the same clock as the CPU clock when the WAIT instruction is executed.

Interrupt	CM02 = 0	CM02 = 1
Serial interface interrupt	Usable when operating with internal or external clock	Usable when operating with external clock
Key input interrupt	Usable	Usable
A/D conversion interrupt	Usable in one-shot mode	(Do not use)
Timer X interrupt	Usable in all modes	Usable in event counter mode
Timer Z interrupt	Usable in all modes	(Do not use)
Timer C interrupt	Usable in all modes	(Do not use)
INT interrupt	Usable	Usable (INT0 and INT3 can be used if there is no filter.)
Voltage monitor 2 interrupt	Usable	Usable
Oscillation stop detection interrupt	Usable	(Do not use)
Watchdog timer interrupt	Usable in count source protect mode	Usable in count source protect mode

 Table 10.3
 Interrupts to Exit Wait Mode and Usage Conditions

10.4.3 Stop Mode

Since the oscillator circuits stop in stop mode, the CPU clock and peripheral function clock stop and the CPU and peripheral functions that use these clocks stop operating. The least power required to operate the MCU is in stop mode. If the voltage applied to the VCC pin is VRAM or more, the contents of internal RAM is maintained.

The peripheral functions clocked by external signals continue operating. Table 10.4 lists Interrupts to Exit Stop Mode and Usage Conditions.

Table 10.4	Interrupts to Exit Stop Mode and Usage Conditions
------------	---

Interrupt	Usage Conditions
Key input interrupt	_
INT0 to INT1 interrupts	INT0 can be used if there is no filter.
INT3 interrupt	No filter. Interrupt request is generated at $\overline{INT3}$ input (TCC06 bit in TCC0 register is set to 1).
Timer X interrupt	When external pulse is counted in event counter mode.
Serial interface interrupt	When external clock is selected.
Voltage monitor 2 interrupt	Usable in digital filter disabled mode (VW2C1 bit in VW2C register is set to 1)

10.4.3.1 Entering Stop Mode

The MCU enters stop mode when the CM10 bit in the CM1 register is set to 1 (all clocks stop). At the same time, the CM06 bit in the CM00 register is set to 1 (divide-by-8 mode) and the CM15 bit in the CM10 register is set to 1 (main clock oscillator circuit drive capability high).

When using stop mode, set bits OCD1 to OCD0 to 00b (oscillation stop detection function disabled) before entering stop mode.

10.4.3.2 Pin Status in Stop Mode

The status before wait mode was entered is maintained.

However, when the CM13 bit in the CM1 register is set to 1 (XIN-XOUT pins), the XOUT(P4_7) pin is held "H". When the CM13 bit is set to 0 (input ports P4_6 and P4_7), the P4_7(XOUT) pin is held in input status.

10.4.3.3 Exiting Stop Mode

The MCU exits stop mode by a hardware reset or peripheral function interrupt.

When using a hardware reset to exit stop mode, set bits ILVL2 to ILVL0 for the peripheral function interrupts to 000b (interrupts disabled) before setting the CM10 bit to 1.

When using a peripheral function interrupt to exit stop mode, set up the following before setting the CM10 bit to 1.

- (1) Set the interrupt priority level in bits ILVL2 to ILVL0 of the peripheral function interrupts to be used for exiting stop mode. Set bits ILVL2 to ILVL0 of the peripheral function interrupts that are not to be used for exiting stop mode to 000b (interrupt disabled).
- (2) Set the I flag to 1.
- (3) Operate the peripheral function to be used for exiting stop mode. When exiting by a peripheral function interrupt, the interrupt sequence is executed when an interrupt request is generated and the CPU clock supply is started.

The CPU clock, when exiting stop mode by a peripheral function interrupt, is the divide-by-8 of the clock which was used before stop mode was entered.

Figure 10.8 shows the State Transitions in Power Control.

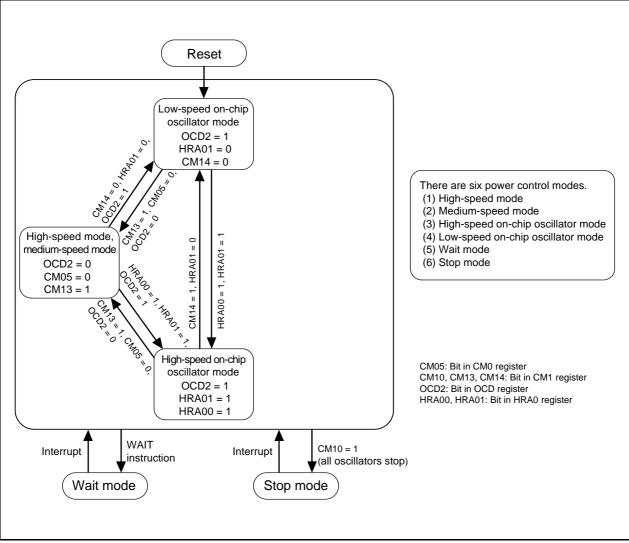


Figure 10.8 State Transitions in Power Control

10.5 Oscillation Stop Detection Function

The oscillation stop detection function detects the stop of the main clock oscillating circuit. The oscillation stop detection function can be enabled and disabled by bits OCD1 to OCD0 in the OCD register. Table 10.5 lists the Specifications of Oscillation Stop Detection Function.

When the main clock is the CPU clock source and bits OCD1 to OCD0 are set to 11b (oscillation stop detection function enabled), the system is placed in the following state if the main clock stops.

- OCD2 bit in OCD register = 1 (on-chip oscillator clock selected)
- OCD3 bit in OCD register = 1 (main clock stops)
- CM14 bit in CM1 register = 0 (low-speed on-chip oscillator oscillates)
- Oscillation stop detection interrupt request is generated.

Table 10.5 Specifications of Oscillation Stop Detection Function

Item	Specification
Oscillation stop detection clock and	$f(XIN) \ge 2 MHz$
frequency bandwidth	
Enabled condition for oscillation stop	Set bits OCD1 to OCD0 to 11b (oscillation stop detection
detection function	function enabled).
Operation at oscillation stop detection	Oscillation stop detection interrupt is generated

10.5.1 How to Use Oscillation Stop Detection Function

- The oscillation stop detection interrupt shares a vector with the voltage monitor 2 interrupt, and the watchdog timer interrupt. When using the oscillation stop detection interrupt and watchdog timer interrupt, the interrupt source needs to be determined. Table 10.6 lists Determining Interrupt Source for Oscillation Stop Detection, Watchdog Timer, and Voltage Monitor 2 Interrupts.
- When the main clock restarts after oscillation stop, switch the main clock to the clock source of the CPU clock and peripheral functions by a program.
- Figure 10.9 shows the Procedure for Switching Clock Source from Low-Speed On-Chip Oscillator to Main Clock.
- To enter wait mode while using the oscillation stop detection function, set the CM02 bit to 0 (peripheral function clock does not stop in wait mode).
- Since the oscillation stop detection function is a function for cases where the main clock is stopped by an external cause, set bits OCD1 to OCD0 to 00b (oscillation stop detection function disabled) when the main clock stops or is started by a program (stop mode is selected or the CM05 bit is changed).
- This function cannot be used when the main clock frequency is 2 MHz or below. In this case, set bits OCD1 to OCD0 to 00b (oscillation stop detection function disabled).
- To use the low-speed on-chip oscillator clock for the CPU clock and clock sources of peripheral functions after detecting the oscillation stop, set the HRA01 bit in the HRA0 register to 0 (low-speed on-chip oscillator selected) and bits OCD1 to OCD0 to 11b (oscillation stop detection function enabled).

To use the high-speed on-chip oscillator clock for the CPU clock and clock sources of peripheral functions after detecting the oscillation stop, set the HRA01 bit to 1 (high-speed on-chip oscillator selected) and bits OCD1 to OCD0 to 11b (oscillation stop detection function enabled).

Table 10.6	Determining Interrupt Source for Oscillation Stop Detection, Watchdog Timer, and
	Voltage Monitor 2 Interrupts

Generated Interrupt Source	Bit Showing Interrupt Cause
Oscillation stop detection	(a) OCD3 bit in OCD register = 1
((a) or (b))	(b) Bits OCD1 to OCD0 in OCD register = 11b and OCD2 bit = 1
Watchdog timer	VW2C3 bit in VW2C register = 1
Voltage monitor 2	VW2C2 bit in VW2C register = 1

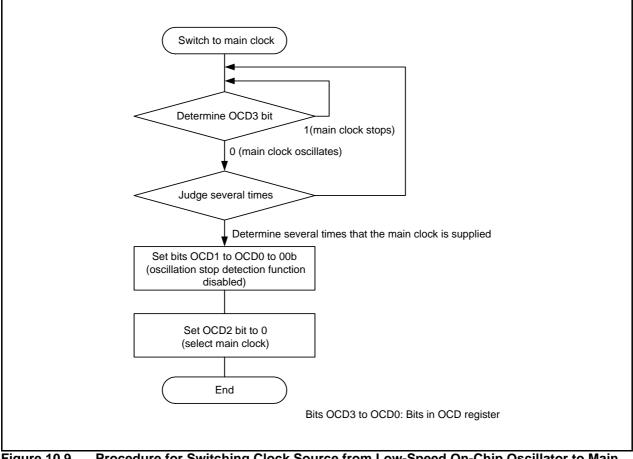


Figure 10.9 Procedure for Switching Clock Source from Low-Speed On-Chip Oscillator to Main Clock

10.6 Notes on Clock Generation Circuit

10.6.1 Stop Mode and Wait Mode

When entering stop mode or wait mode, an instruction queue pre-reads 4 bytes from the WAIT instruction or an instruction that sets the CM10 bit in the CM1 register to 1 (stops all clocks) before the program stops. Therefore, insert at least four NOPs after the WAIT instruction or an instruction that sets the CM10 bit to 1.

10.6.2 Oscillation Stop Detection Function

Since the oscillation stop detection function cannot be used if the main clock frequency is below 2 MHz, set bits OCD1 to OCD0 to 00b (oscillation stop detection function disabled) in this case.

10.6.3 Oscillation Circuit Constants

Ask the manufacturer of the oscillator to specify the best oscillation circuit constants for your system.

10.6.4 High-Speed On-Chip Oscillator Clock

The high-speed on-chip oscillator frequency may be changed up to 10%⁽¹⁾ in flash memory CPU rewrite mode during auto-program operation or auto-erase operation.

The high-speed on-chip oscillator frequency after auto-program operation ends or auto-erase operation ends is held the state before the program command or block erase command is generated. Also, this note is not applicable when the read array command, read status register command, or clear status register command is generated. The application products must be designed with careful considerations for the frequency change.

NOTE:

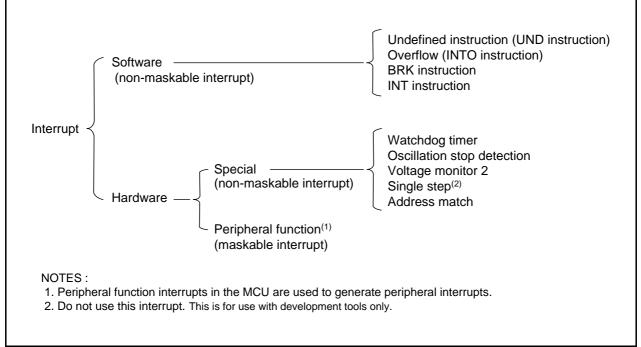
1. Change ratio to 8 MHz frequency adjusted in shipping.

11. Protection

The protection function protects important registers from being easily overwritten when a program runs out of control. Figure 11.1 shows the PRCR Register. The registers protected by the PRCR register are listed below.

- Registers protected by PRC0 bit: Registers CM0, CM1, and OCD, HRA0, HRA1, and HRA2
- Registers protected by PRC1 bit: Registers PM0 and PM1
- Registers protected by PRC3 bit: Registers VCA2, VW1C, and VW2C

	—	4 b3 b	2 b1 b0				
	0 0	0		Symbol	Address	After Reset	
Т				PRCR	000Ah	00h	
				Bit Symbol	Bit Name	Function	RW
				PRC0	Protect bit 0	Writing to registers CM0, CM, OCD, HRA0, HRA1, and HRA2 is enabled. 0 : Disables w riting. 1 : Enables w riting.	RW
				PRC1	Protect bit 1	Writing to registers PM0 and PM1 is enabled. 0 : Disables w riting. 1 : Enables w riting.	RW
				(b2)	Reserved bit	Set to 0.	RW
				PRC3	Protect bit 3	Writing to registers VCA2, VW1C, and VW2C is enabled. 0 : Disables w riting. 1 : Enables w riting.	RW
				 (b5-b4)	Reserved bits	Set to 0.	RW
				 (b7-b6)	Reserved bits	When read, the content is 0.	RO


Figure 11.1 PRCR Register

12. Interrupts

12.1 Interrupt Overview

12.1.1 Types of Interrupts

Figure 12.1 shows the types of Interrupts.

Maskable interrupts: The interrupt enable flag (I flag) enables or disables these interrupts. The interrupt priority order can be changed based on the interrupt priority level.
Non-maskable interrupts: The interrupt enable flag (I flag) does not enable or disable interrupts. The interrupt priority order cannot be changed based on interrupt priority level.

12.1.2 Software Interrupts

A software interrupt is generated when an instruction is executed. Software interrupts are non-maskable.

12.1.2.1 Undefined Instruction Interrupt

The undefined instruction interrupt is generated when the UND instruction is executed.

12.1.2.2 Overflow Interrupt

The overflow interrupt is generated when the O flag is set to 1 (arithmetic operation overflow) and the INTO instruction is executed. Instructions that set the O flag are: ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, and SUB.

12.1.2.3 BRK Interrupt

A BRK interrupt is generated when the BRK instruction is executed.

12.1.2.4 INT Instruction Interrupt

An INT instruction interrupt is generated when the INT instruction is executed. The INT instruction can select software interrupt numbers 0 to 63. Software interrupt numbers 4 to 31 are assigned to the peripheral function interrupt. Therefore, the MCU executes the same interrupt routine when the INT instruction is executed as when a peripheral function interrupt is generated. For software interrupt numbers 0 to 31, the U flag is saved to the stack during instruction execution and the U flag is set to 0 (ISP selected) before the interrupt sequence is executed. The U flag is restored from the stack when returning from the interrupt routine. For software interrupt numbers 32 to 63, the U flag does not change state during instruction execution, and the selected SP is used.

12.1.3 Special Interrupts

Special interrupts are non-maskable.

12.1.3.1 Watchdog Timer Interrupt

The watchdog timer interrupt is generated by the watchdog timer. Reset the watchdog timer after the watchdog timer interrupt is generated. For details, refer to **13. Watchdog Timer**.

12.1.3.2 Oscillation Stop Detection Interrupt

The oscillation stop detection interrupt is generated by the oscillation stop detection function. For details of the oscillation stop detection function, refer to **10.** Clock Generation Circuit.

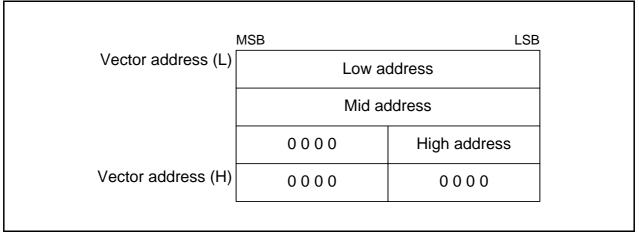
12.1.3.3 Voltage Monitor 2 Interrupt

The voltage monitor 2 interrupt is generated by the voltage detection circuit. For details of the voltage detection circuit, refer to **7. Voltage Detection Circuit**.

12.1.3.4 Single-Step Interrupt, and Address Break Interrupt

Do not use these interrupts. They are for use by development tools only.

12.1.3.5 Address Match Interrupt


The address match interrupt is generated immediately before executing an instruction that is stored at an address indicated by registers RMAD0 to RMAD1 when the AIER0 or AIER1 bit in the AIER register is set to 1 (address match interrupt enable). For details of the address match interrupt, refer to **12.4 Address Match Interrupt**.

12.1.4 Peripheral Function Interrupt

The peripheral function interrupt is generated by the internal peripheral function of the MCU and is a maskable interrupt. Refer to **Table 12.2 Relocatable Vector Tables** for sources of the peripheral function interrupt. For details of peripheral functions, refer to the descriptions of individual peripheral functions.

12.1.5 Interrupts and Interrupt Vectors

There are 4 bytes in each vector. Set the starting address of an interrupt routine in each interrupt vector. When an interrupt request is acknowledged, the CPU branches to the address set in the corresponding interrupt vector. Figure 12.2 shows an Interrupt Vector.

12.1.5.1 Fixed Vector Tables

The fixed vector tables are allocated addresses 0FFDCh to 0FFFFh. Table 12.1 lists the Fixed Vector Tables. The vector addresses (H) of fixed vectors are used by the ID code check function. For details, refer to **18.3 Functions to Prevent Rewriting of Flash Memory**.

Interrupt Source	Vector Addresses Address (L) to (H)	Remarks	Reference
Undefined instruction	0FFDCh to 0FFDFh	Interrupt on UND instruction	R8C/Tiny Series Software Manual
Overflow	0FFE0h to 0FFE3h	Interrupt on INTO instruction	
BRK instruction	0FFE4h to 0FFE7h	If the content of address 0FFE7h is FFh, program execution starts from the address shown by the vector in the relocatable vector table.	
Address match	0FFE8h to 0FFEBh		12.4 Address Match Interrupt
Single step ⁽¹⁾	0FFECh to 0FFEFh		
 Watchdog timer Oscillation stop detection Voltage monitor 2 	0FFF0h to 0FFF3h		 13. Watchdog Timer 10. Clock Generation Circuit 7. Voltage Detection Circuit
Address break ⁽¹⁾	0FFF4h to 0FFF7h		
(Reserved)	0FFF8h to 0FFFBh		
Reset	0FFFCh to 0FFFFh		6. Resets

Table 12.1Fixed Vector Tables

NOTE:

1. Do not use these interrupts. They are for use by development support tools only.

12.1.5.2 Relocatable Vector Tables

The relocatable vector tables occupy 256 bytes beginning from the starting address set in the INTB register. Table 12.2 lists the Relocatable Vector Tables.

Interrupt Source	Vector Address ⁽¹⁾	Software	Reference
Interrupt Source	Address (L) to Address (H)	Interrupt Number	Relefence
BRK instruction ⁽²⁾	+0 to +3 (0000h to 0003h)	0	R8C/Tiny Series
(Reserved)		1 to 12	Software Manual
Key input	+52 to +55 (0034h to 0037h)	13	12.3 Key Input Interrupt
A/D conversion	+56 to +59 (0038h to 003Bh)	14	17. A/D Converter
Clock synchronous serial I/O with chip	+60 to +63 (003Ch to 003Fh)	15	16.2 Clock Synchronous Serial I/O with Chip
select / I ² C bus interface ⁽³⁾			Select (SSU), 16.3 I2C bus Interface
Compare 1	+64 to +67 (0040h to 0043h)	16	14.3 Timer C
UART0 transmit	+68 to +71 (0044h to 0047h)	17	15. Serial Interface
UART0 receive	+72 to +75 (0048h to 004Bh)	18	
UART1 transmit	+76 to +79 (004Ch to 004Fh)	19	
UART1 receive	+80 to +83 (0050h to 0053h)	20	
(Reserved)		21	
Timer X	+88 to +91 (0058h to 005Bh)	22	14.1 Timer X
(Reserved)		23	
Timer Z	+96 to +99 (0060h to 0063h)	24	14.2 Timer Z
INT1	+100 to +103 (0064h to 0067h)	25	12.2 INT interrupt
INT3	+104 to +107 (0068h to 006Bh)	26	
Timer C	+108 to +111 (006Ch to 006Fh)	27	14.3 Timer C
Compare 0	+112 to +115 (0070h to 0073h)	28	
INT0	+116 to +119 (0074h to 0077h)	29	12.2 INT interrupt
(Reserved)		30	
(Reserved)		31	
Software interrupt ⁽²⁾	+128 to +131 (0080h to 0083h) to +252 to +255 (00FCh to 00FFh)	32 to 63	R8C/Tiny Series Software Manual

Table 12.2	Relocatable	Vector	Tables

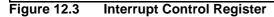
NOTES:

1. These addresses are relative to those in the INTB register.

2. The I flag does not disable these interrupts.

3. The IICSEL bit in the PMR register switches functions.

12.1.6 Interrupt Control


The following describes enabling and disabling the maskable interrupts and setting the priority for acknowledgement. The explanation does not apply to nonmaskable interrupts.

Use the I flag in the FLG register, IPL, and bits ILVL2 to ILVL0 in each interrupt control register to enable or disable maskable interrupts. Whether an interrupt is requested is indicated by the IR bit in each interrupt control register.

Figure 12.3 shows the Interrupt Control Register and Figure 12.4 shows the INTOIC Register

			Syı KUPIC	mbol	Address 004Dh	After Reset XXXXX000b	
			ADIC		004Eh	XXXXX000b	
			SSUAIC/I		004Fh	XXXXX000b	
			CMP1IC		0050h	XXXXX000b	
			SOTIC, S1		0051h, 0053h	XXXXX000b	
			SORIC, S		0052h, 0054h	XXXXX000b	
			TXIC		0056h	XXXXX000b	
			TZIC		0058h	XXXXX000b	
			INT1IC		0059h	XXXXX000b	
			INT3IC		005Ah	XXXXX000b	
o7 b6 b5 b4 l	b3 b2 b	b1 b0	TCIC		005Bh	XXXXX000b	
			CMPOIC		005Ch	XXXXX000b	
			Bit Symbol		Bit Name	Function	RV
			ILVL0	Interrupt priori	ty level select bits	b2 b1 b0 0 0 0 : Level 0 (interrupt disable) 0 0 1 : Level 1	RV
			LVL1			0 1 0 : Level 2 0 1 1 : Level 3 1 0 0 : Level 4 1 0 1 : Level 5	RV
			ILVL2			1 1 0 : Level 6 1 1 1 : Level 7	RV
			IR	Interrupt requi	est bit	0 : Requests no interrupt 1 : Requests interrupt	RW
			 (b7-b4)	-	igned. If necessary, se le content is undefined		_

3. The IICSEL bit in the PMR register switches functions.

b7 b6 b5 b4	b3 b2 b1 b0	Symbol INT0IC	Address 005Dh	After Reset XX00X000b	
		Bit Symbol	Bit Name	Function	RW
		- ILVLO	Interrupt priority level select bits	^{b2 b1 b0} 0 0 0 : Level 0 (interrupt disable) 0 0 1 : Level 1	RW
		LVL1		0 1 0 : Level 2 0 1 1 : Level 3 1 0 0 : Level 4	RW
		- ILVL2		1 0 1 : Level 5 1 1 0 : Level 6 1 1 1 : Level 7	RW
		- IR	Interrupt request bit	0 : Requests no interrupt. 1 : Requests interrupt.	RW ⁽¹⁾
		POL	Polarity switch bit ⁽⁴⁾	0 : Selects falling edge. 1 : Selects rising edge. ⁽³⁾	RW
		(b5)	Reserved bit	Set to 0.	RW
		 (b7-b6)	Nothing is assigned. If necessary, When read, the content is undefine		-

NOTES :

1. Only 0 can be written to the IR bit. (Do not write 1.)

2. Rew rite the interrupt control register when the interrupt request which is applicable for the register is not generated. Refer to **12.5.6 Changing Interrupt Control Registers.**

3. If the INTOPL bit in the INTEN register is set to 1 (both edges), set the POL bit to 0 (selects falling edge).

4. The IR bit may be set to 1 (requests interrupt) when the POL bit is rewritten. Refer to 12.5.5 Changing Interrupt Sources.

12.1.6.1 | Flag

The I flag enables or disables maskable interrupts. Setting the I flag to 1 (enabled) enables maskable interrupts. Setting the I flag to 0 (disabled) disables all maskable interrupts.

12.1.6.2 IR Bit

The IR bit is set to 1 (interrupt requested) when an interrupt request is generated. Then, when the interrupt request is acknowledged and the CPU branches to the corresponding interrupt vector, the IR bit is set to 0 (= interrupt not requested).

The IR bit can be set to 0 by a program. Do not write 1 to this bit.

12.1.6.3 Bits ILVL2 to ILVL0 and IPL

Interrupt priority levels can be set using bits ILVL2 to ILVL0.

Table 12.3 lists the Settings of Interrupt Priority Levels and Table 12.4 lists the Interrupt Priority Levels Enabled by IPL.

The following are conditions under which an interrupt is acknowledged:

- I flag = 1
- IR bit = 1
- Interrupt priority level > IPL

The I flag, IR bit, bits ILVL2 to ILVL0, and IPL are independent of each other. They do not affect one another.

Table 12.3	Settings of Interrupt Priority
	Levels

ILVL2 to ILVL0 Bits	Interrupt Priority Level	Priority Order
000b	Level 0 (interrupt disabled)	-
001b	Level 1	Low
010b	Level 2	
011b	Level 3	
100b	Level 4	
101b	Level 5	
110b	Level 6	V
111b	Level 7	High

Table 12.4 Interrupt Priority Levels Enabled by IPL

IPL	Enabled Interrupt Priority Levels
000b	Interrupt level 1 and above
001b	Interrupt level 2 and above
010b	Interrupt level 3 and above
011b	Interrupt level 4 and above
100b	Interrupt level 5 and above
101b	Interrupt level 6 and above
110b	Interrupt level 7 and above
111b	All maskable interrupts are disabled

12.1.6.4 Interrupt Sequence

An interrupt sequence is performed between an interrupt request acknowledgement and interrupt routine execution.

When an interrupt request is generated while an instruction is being executed, the CPU determines its interrupt priority level after the instruction is completed. The CPU starts the interrupt sequence from the following cycle. However, for the SMOVB, SMOVF, SSTR, or RMPA instruction, if an interrupt request is generated while the instruction is being executed, the MCU suspends the instruction to start the interrupt sequence. The interrupt sequence is performed as indicated below. Figure 12.5 shows the Time Required for Executing Interrupt Sequence.

- (1) The CPU gets interrupt information (interrupt number and interrupt request level) by reading address 00000h. The IR bit for the corresponding interrupt is set to 0 (interrupt not requested).
- (2) The FLG register is saved to a temporary register⁽¹⁾ in the CPU immediately before entering the interrupt sequence.
- (3) The I, D, and U flags in the FLG register are set as follows: The I flag is set to 0 (interrupts disabled). The D flag is set to 0 (single-step interrupt disabled). The U flag is set to 0 (ISP selected). However, the U flag does not change state if an INT instruction for software interrupt number 32 to 63 is executed.
 (4) The CPUV is the other set of the context of the the text of text of
- (4) The CPU's internal temporary register⁽¹⁾ is saved to the stack.
- (5) The PC is saved to the stack.
- (6) The interrupt priority level of the acknowledged interrupt is set in the IPL.
- (7) The starting address of the interrupt routine set in the interrupt vector is stored in the PC.

After the interrupt sequence is completed, instructions are executed from the starting address of the interrupt routine.

NOTE:

1. This register cannot be used by user.

CPU clock	
Address bus	Address Undefined XSP-2 XSP-4 SP-3 X VEC VEC+1 X VEC+2 PC
Data bus	Interrupt Undefined SP-2 SP-1 SP-4 SP-3 VEC VEC+1 VEC+2 Contents Contents Contents Contents Contents Contents
RD	
WR	
The ur ready t	idefined state depends on the instruction queue buffer. A read cycle occurs when the instruction queue buffer is to acknowledge instructions.

Figure 12.5 Time Required for Executing Interrupt Sequence

12.1.6.5 Interrupt Response Time

Figure 12.6 shows the Interrupt Response Time. The interrupt response time is the period between an interrupt request generation and the execution of the first instruction in the interrupt routine. The interrupt response time includes the period between interrupt request generation and the completion of execution of the instruction (refer to (a) in Figure 12.6) and the period required to perform the interrupt sequence (20 cycles, see (b) in Figure 12.6).

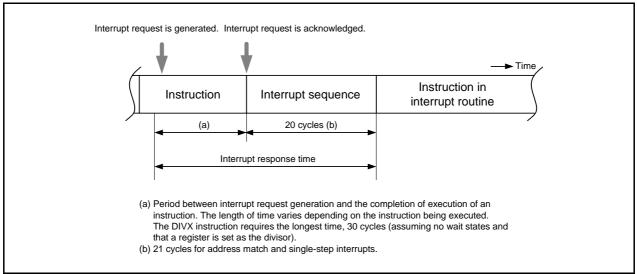


Figure 12.6 Interrupt Response Time

12.1.6.6 IPL Change when Interrupt Request is Acknowledged

When an interrupt request of a maskable interrupt is acknowledged, the interrupt priority level of the acknowledged interrupt is set in the IPL.

When a software interrupt or special interrupt request is acknowledged, the level listed in Table 12.5 is set in the IPL. Table 12.5 lists the IPL Value When a Software or Special Interrupt Is Acknowledged.

Table 12.5 IPL Value When a Software or Special Interrupt Is Acknowledged

Interrupt Source	Value Set in IPL
Watchdog timer, oscillation stop detection, voltage monitor 2	7
Software, address match, single-step, address break	Not changed

12.1.6.7 Saving a Register

In the interrupt sequence, the FLG register and PC are saved to the stack.

After an extended 16 bits, 4 high-order bits in the PC and 4 high-order (IPL) and 8 low-order bits in the FLG register, are saved to the stack, the 16 low-order bits in the PC are saved. Figure 12.7 shows the Stack State Before and After Acknowledgement of Interrupt Request.

The other necessary registers are saved by a program at the beginning of the interrupt routine. The PUSHM instruction can save several registers in the register bank being currently $used^{(1)}$ with a single instruction.

NOTE:

1. Selectable from registers R0, R1, R2, R3, A0, A1, SB, and FB.

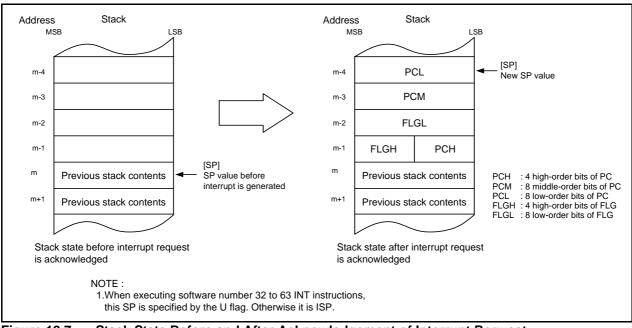
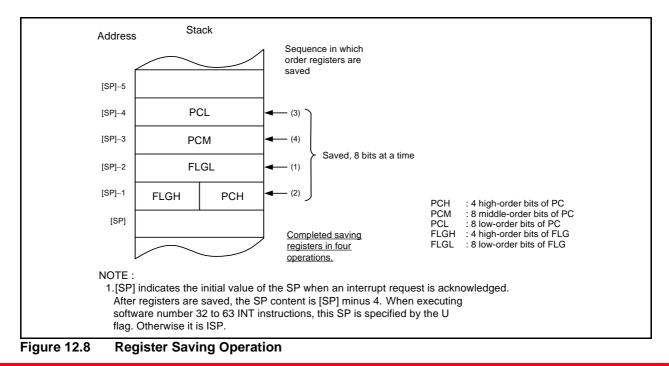



Figure 12.7 Stack State Before and After Acknowledgement of Interrupt Request

The register saving operation, which is performed as part of the interrupt sequence, saved in 8 bits at a time in four steps. Figure 12.8 shows the Register Saving Operation.

12.1.6.8 Returning from an Interrupt Routine

When the REIT instruction is executed at the end of an interrupt routine, the FLG register and PC, which have been saved to the stack, are automatically restored. The program, that was running before the interrupt request was acknowledged, starts running again.

Restore registers saved by a program in an interrupt routine using the POPM instruction or others before executing the REIT instruction.

12.1.6.9 Interrupt Priority

If two or more interrupt requests are generated while a single instruction is being executed, the interrupt with the higher priority is acknowledged.

Set bits ILVL2 to ILVL0 to select the desired priority level for maskable interrupts (peripheral functions). However, if two or more maskable interrupts have the same priority level, their interrupt priority is resolved by hardware, and the higher priority interrupts acknowledged.

The priority levels of special interrupts, such as reset (reset has the highest priority) and watchdog timer, are set by hardware. Figure 12.9 shows the Priority Levels of Hardware Interrupts.

The interrupt priority does not affect software interrupts. The MCU jumps to the interrupt routine when the instruction is executed.

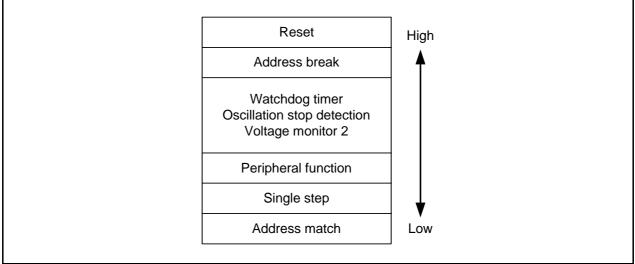
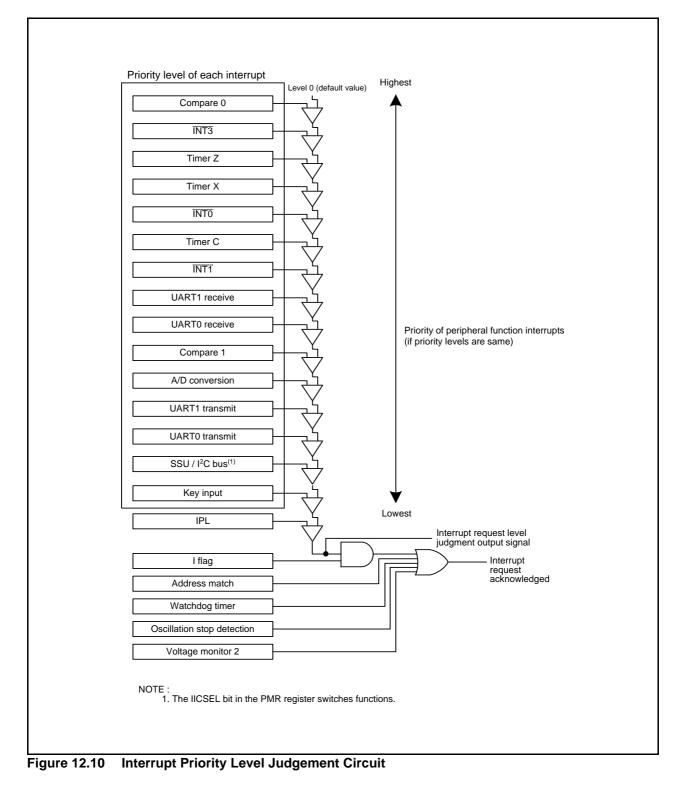
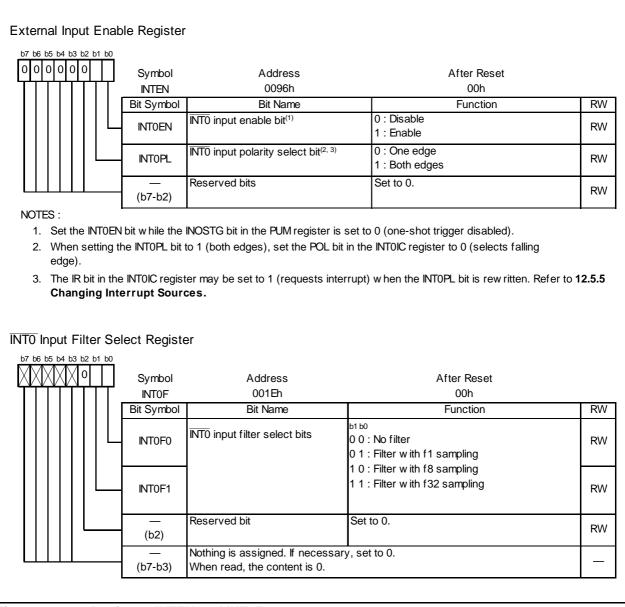



Figure 12.9 Priority Levels of Hardware Interrupts

12.1.6.10 Interrupt Priority Judgement Circuit

The interrupt priority judgement circuit selects the highest priority interrupt, as shown in Figure 12.10.

12.2 INT Interrupt


12.2.1 INT0 Interrupt

The $\overline{\text{INT0}}$ interrupt is generated by an $\overline{\text{INT0}}$ input. When using the $\overline{\text{INT0}}$ interrupt, the INT0EN bit in the INTEN register is set to 1 (enable). The edge polarity is selected using the INT0PL bit in the INTEN register and the POL bit in the INT0IC register.

Inputs can be passed through a digital filter with three different sampling clocks.

The INTO pin is shared with the external trigger input pin of timer Z.

Figure 12.11 shows Registers INTEN and INTOF.

12.2.2 INT0 Input Filter

The $\overline{INT0}$ input contains a digital filter. The sampling clock is selected by bits INT0F1 to INT0F0 in the INT0F register. The $\overline{INT0}$ level is sampled every sampling clock cycle and if the sampled input level matches three times, the IR bit in the INT0IC register is set to 1 (interrupt requested).

Figure 12.12 shows the Configuration of INTO Input Filter. Figure 12.13 shows an Operating Example of INTO Input Filter.

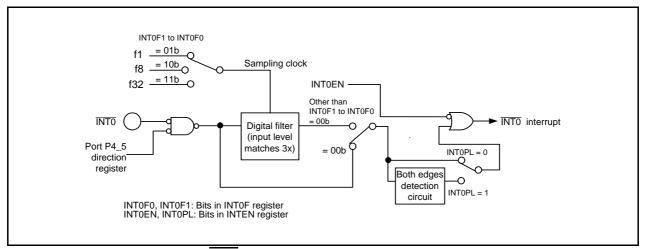


Figure 12.12 Configuration of INT0 Input Filter

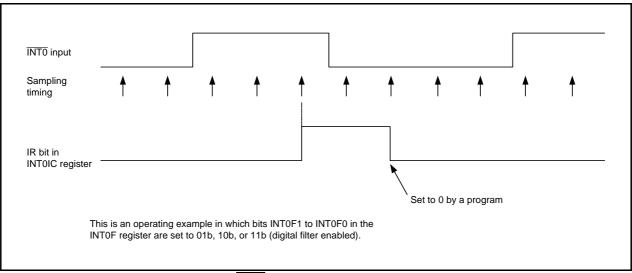


Figure 12.13 Operating Example of INT0 Input Filter

INT1 Interrupt 12.2.3

The INT1 interrupt is generated by an INT1 input. The edge polarity is selected by the R0EDG bit in the TXMR register.

When the CNTRSEL bit in the UCON register is set to 0, the INT10 pin becomes the INT1 input pin. When the CNTRSEL bit is set to 1, the $\overline{INT11}$ pin becomes the $\overline{INT1}$ input pin.

The INT10 pin is shared with the CNTR00 pin and the INT11 pin is shared with the CNTR01 pin. Figure 12.14 shows the TXMR Register when INT1 Interrupt is Used.

Timer X Mode Regis	ster			
b7 b6 b5 b4 b3 b2 b1 b0	Symbol TXMR Bit Symbol	Address 008Bh Bit Name	After Reset 00h Function	RW
	TXMOD0	Operating mode select bits 0, 1 ⁽¹⁾	0 0 : Timer mode or pulse period measurement mode	RW
	TXMOD1		0 1 : Do not set. 1 0 : Event count mode 1 1 : Pulse w idth measurement mode	RW
	R0EDG	INT1/CNTR0 polarity switch bit ⁽²⁾	0 : Rising edge 1 : Falling edge	RW
	TXS	Timer X count start flag ⁽³⁾	0 : Stops counting. 1 : Starts counting.	RW
	TXOCNT	P3_7/CNTR0 select bit	Function varies depending on operating mode.	RW
	TXMOD2	Operating mode select bit 2	0 : Other than pulse period measurement mode 1 : Pulse period measurement mode	RW
	TXEDG	Active edge reception flag	Function varies depending on operating mode.	RW
	TXUND	Timer X underflow flag	Function varies depending on operating mode.	RW

NOTES :

1. When using INT1 interrupt, select modes other than pulse output mode.

2. The IR bit in the INT1IC register may be set to 1 (requests interrupt) when the R0EDG bit is rew ritten. Refer to 12.5.5 Changing Interrupt Sources.

3. Refer to 14.1.6 Notes on Timer X for precautions regarding the TXS bit.

Figure 12.14 TXMR Register when INT1 Interrupt is Used

INT3 Interrupt 12.2.4

The $\overline{INT3}$ interrupt is generated by an $\overline{INT3}$ input. Set the TCC07 bit in the TCC0 register to 0 ($\overline{INT3}$).

When the TCC06 bit in the TCC0 register is set to 0, an INT3 interrupt request is generated in synchronization with the count source of timer C. If the TCC06 bit is set to 1, the INT3 interrupt request is generated when an INT3 input occurs.

The $\overline{INT3}$ input contains a digital filter. The $\overline{INT3}$ level is sampled every sampling clock cycle and if the sampled input level matches three times, the IR bit in the INT3IC register is set to 1 (interrupt requested). The sampling clock is selected by bits TCC11 to TCC10 in the TCC1 register. If filter is selected, the interrupt request is generated in synchronization with the sampling clock, even if the TCC06 bit is set to 1. The P3_3 bit in the P3 register indicates the value before filtering regardless of the contents set in bits TCC11 to TCC10. The $\overline{INT3}$ pin is used with the TCIN pin.

If the TCC07 bit is set to 1 (fRING128), the $\overline{INT3}$ interrupt is generated by the fRING128 clock. The IR bit in the INT3IC register is set to 1 (interrupt requested) every fRING128 clock cycle or every half fRING128 clock cycle.

Figure 12.15 shows the TCC0 Register and Figure 12.16 shows the TCC1 Register.

b7 b6	b5 b4 b3 b2 b1 b0				
Ш	0	Symbol	Address	After Reset	
		TCC0	009Ah	00h	-
		Bit Symbol	Bit Name	Function	RW
		TCC00	Timer C count start bit	0 : Stops counting. 1 : Starts counting.	RW
		TCC01	Timer C count source select bits ⁽¹⁾	^{b2b1} 0 0 : f1 0 1 : f8	RW
		TCC02		1 0 : f32 1 1 : fRING-fast	RW
		TCC03	INT3 interrupt and capture polarity select bits ^(1,2)	^{b4 b3} 0 0 : Rising edge 0 1 : Falling edge	RW
		TCC04		1 0 : Both edges 1 1 : Do not set.	RW
		(b5)	Reserved bit	Set to 0.	RW
		TCC06	INT3 interrupt request generation timing select bit ^(2,3)	 0 : INT3 interrupt is generated in synchronization with timer C count. 1 : INT3 interrupt is generated when INT3 interrupt is input.⁽⁴⁾ 	RW
		TCC07	INT3 interrupt and capture input sw itch bit ^(1,2)	0 : INT3 1 : fRING128	RW

1. Change this bit when the TCC00 bit is set to 0 (count stops).

- 2. The IR bit in the INT3IC register may be set to 1 (requests interrupt) when the TCC03, TCC04, TCC06, or TCC07 bit is rew ritten. Refer to 12.5.5 Changing Interrupt Sources.
- 3. When the TCC13 bit is set to 1 (output compare mode) and an INT3 interrupt is input, regardless of the setting value of the TCC06 bit, an interrupt request is generated.
- 4. When using the INT3 filter, the INT3 interrupt is generated in synchronization with the clock for the digital filter.

Figure 12.15 TCC0 Register

b7 b6			Symbol TCC1	Address 009Bh	After Reset 00h	
		l r	Bit Symbol	Bit Name	Function	RW
			TCC10	INT3 filter select bits ⁽¹⁾	^{b1b0} 0 0 : No filter	RW
			TCC11		0 1 : Filter w ith f1 sampling 1 0 : Filter w ith f8 sampling 1 1 : Filter w ith f32 sampling	RW
			TCC12	Timer C counter reload select bit ^(2,3)	0 : No reload 1 : Set TC register to 0000h w hen compare 1 is matched.	RW
		 	TCC13	Compare 0 / capture select bit	0 : Capture select (input capture mode) ⁽²⁾ 1 : Compare 0 output select (output compare mode)	RW
		 	TCC14	Compare 0 output mode select bits ⁽³⁾	 b5 b4 0 0 : CMP output remains unchanged even w hen compare 0 is matched. 0 1 : CMP output is reversed w hen compare 0 signal is matched. 	RW
			TCC15		 1 0 : CMP output is set to "L" w hen compare 0 signal is matched. 1 1 : CMP output is set to "H" w hen compare 0 signal is matched. 	RW
			TCC16	Compare 1 output mode select bits ⁽³⁾	 ^{b7 b6} 0 0 : CMP output remains unchanged even w hen compare 1 is matched. 0 1 : CMP output is reversed w hen compare 1 signal is matched. 	RW
			TCC17		 1 0 : CMP output is set to "L" w hen compare 1 signal is matched. 1 1 : CMP output is set to "H" w hen compare 1 signal is matched. 	RW

2. When the TCC00 bit in the TCC0 register is set to 0 (count stops), rew rite the TCC13 bit.

3. When the TCC13 bit is set to 0 (input capture mode), set bits TCC12 and TCC14 to TCC17 to 0.

Figure 12.16 TCC1 Register

12.3 Key Input Interrupt

A key input interrupt request is generated by one of the input edges of pins $\overline{K10}$ to $\overline{K13}$. The key input interrupt can be used as a key-on wake-up function to exit wait or stop mode.

The KIiEN (i = 0 to 3) bit in the KIEN register can select whether or not the pins are used as $\overline{\text{KIi}}$ input. The KIiPL bit in the KIEN register can select the input polarity.

When "L" is input to the $\overline{\text{KIi}}$ pin, which sets the KIiPL bit to 0 (falling edge), input to the other pins $\overline{\text{K10}}$ to $\overline{\text{K13}}$ is not detected as interrupts. Also, when "H" is input to the $\overline{\text{KIi}}$ pin, which sets the KIiPL bit to 1 (rising edge), input to the other pins $\overline{\text{K10}}$ to $\overline{\text{K13}}$ is not detected as interrupts.

Figure 12.17 shows a Block Diagram of Key Input Interrupt.

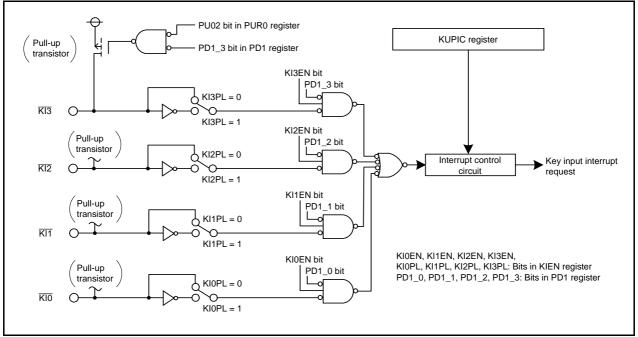
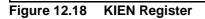



Figure 12.17 Block Diagram of Key Input Interrupt

b7 b6	6 b5 b4 b3 b2 b1 b0				
		Symbol	Address	After Reset	
		KIEN	0098h	00h	
		Bit Symbol	Bit Name	Function	RW
		KIOEN	Kl0 input enable bit	0 : Disable 1 : Enable	RW
		KIOPL	KI0 input polarity select bit	0 : Falling edge 1 : Rising edge	RW
		KI1EN	KI1 input enable bit	0 : Disable 1 : Enable	RW
		KI1PL	KI1 input polarity select bit	0 : Falling edge 1 : Rising edge	RW
		KI2EN	Kl2 input enable bit	0 : Disable 1 : Enable	RW
		- KI2PL	Kl2 input polarity select bit	0 : Falling edge 1 : Rising edge	RW
		KI3EN	Kl3 input enable bit	0 : Disable 1 : Enable	RW
		KI3PL	Kl3 input polarity select bit	0 : Falling edge 1 : Rising edge	RW

Refer to 12.5.5 Changing Interrupt Sources.

12.4 Address Match Interrupt

An address match interrupt request is generated immediately before execution of the instruction at the address indicated by the RMADi register (i = 0, 1). This interrupt is used as a break function by the debugger. When using the on-chip debugger, do not set an address match interrupt (registers of AIER, RMAD0, and RMAD1 and fixed vector tables) in a user system.

Set the starting address of any instruction in the RMADi register. Bits AIER0 and AIER1 in the AIER0 register can be used to select enable or disable of the interrupt. The I flag and IPL do not affect the address match interrupt. The value of the PC (Refer to **12.1.6.7 Saving a Register** for the value of the PC) which is saved to the stack when an address match interrupt is acknowledged varies depending on the instruction at the address indicated by the RMADi register. (The appropriate return address is not saved on the stack.) When returning from the address match interrupt, return by one of the following means:

- Change the content of the stack and use the REIT instruction.
- Use an instruction such as POP to restore the stack as it was before the interrupt request was acknowledged. Then use a jump instruction.

Table 12.6 lists the Values of PC Saved to Stack when Address Match Interrupt is Acknowledged. Figure 12.19 shows Registers AIER, and RMAD0 to RMAD1.

Table 12.6 Values of PC Saved to Stack when Address Match Interrupt is Acknowledged

Address Indicated by RMADi Register (i = 0,1)						PC Value Saved ⁽¹⁾
 16-bit oper 	ration code ins		Address indicated by			
 Instruction 	shown below	among 8-bi	t operation co	de instructio	ons	RMADi register + 2
ADD.B:S	#IMM8,dest	SUB.B:S	#IMM8,dest	AND.B:S	#IMM8,dest	_
OR.B:S	#IMM8,dest	MOV.B:S	#IMM8,dest	STZ.B:S	#IMM8,dest	
STNZ.B:S	#IMM8,dest	STZX.B:S	#IMM81,#IM	M82,dest		
CMP.B:S	#IMM8,dest	PUSHM	src	POPM	dest	
JMPS	#IMM8	JSRS	#IMM8			
MOV.B:S	MOV.B:S #IMM,dest (however, dest = A0 or A1)					
 Instruction 	 Instructions other than the above 					Address indicated by
						RMADi register + 1

NOTE:

1. Refer to the **12.1.6.7 Saving a Register** for the PC value saved.

Table 12.7 Correspondence Between Address Match Interrupt Sources and Associated Registers

Address Match Interrupt Source	Address Match Interrupt Enable Bit	Address Match Interrupt Register
Address match interrupt 0	AIER0	RMAD0
Address match interrupt 1	AIER1	RMAD1

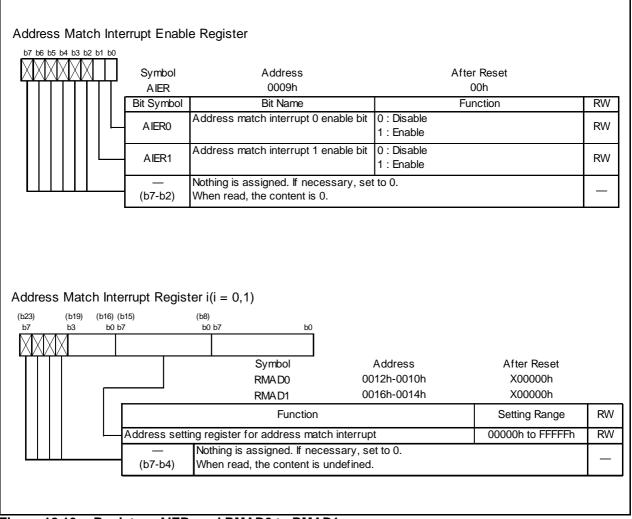


Figure 12.19 Registers AIER, and RMAD0 to RMAD1

12.5 Notes on Interrupts

12.5.1 Reading Address 00000h

Do not read address 00000h by a program. When a maskable interrupt request is acknowledged, the CPU reads interrupt information (interrupt number and interrupt request level) from 00000h in the interrupt sequence. At this time, the acknowledged interrupt IR bit is set to 0.

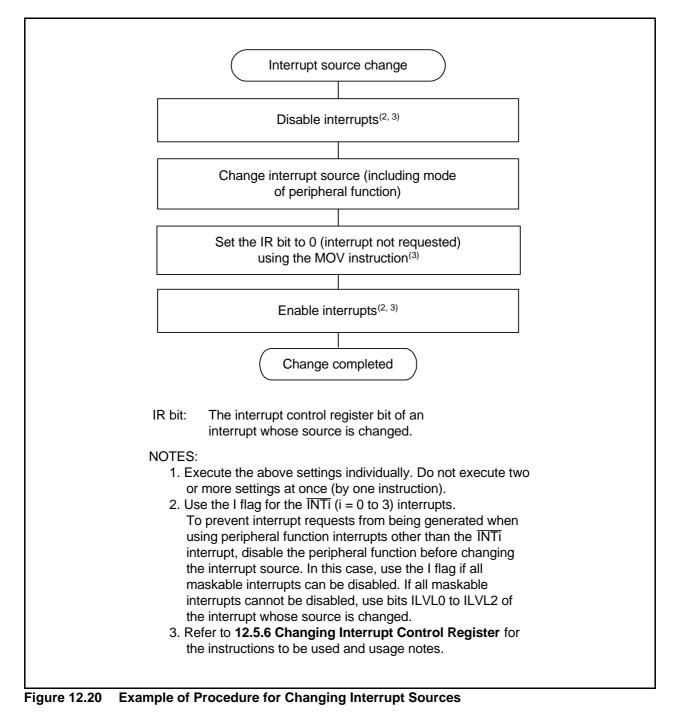
If address 00000h is read by a program, the IR bit for the interrupt which has the highest priority among the enabled interrupts is set to 0. This may cause the interrupt to be canceled, or an unexpected interrupt to be generated.

12.5.2 SP Setting

Set any value in the SP before an interrupt is acknowledged. The SP is set to 0000h after reset. Therefore, if an interrupt is acknowledged before setting a value in the SP, the program may run out of control.

12.5.3 External Interrupt and Key Input Interrupt

Either "L" level or "H" level of at least 250 ns width is necessary for the signal input to pins $\overline{INT0}$ to $\overline{INT3}$ and pins $\overline{K10}$ to $\overline{K13}$, regardless of the CPU clock.


12.5.4 Watchdog Timer Interrupt

Reset the watchdog timer after a watchdog timer interrupt is generated.

12.5.5 Changing Interrupt Sources

The IR bit in the interrupt control register may be set to 1 (interrupt requested) when the interrupt source changes. When using an interrupt, set the IR bit to 0 (no interrupt requested) after changing the interrupt source. In addition, changes of interrupt sources include all factors that change the interrupt sources assigned to individual software interrupt numbers, polarities, and timing. Therefore, if a mode change of a peripheral function involves interrupt sources, edge polarities, and timing, set the IR bit to 0 (no interrupt requested) after the change. Refer to the individual peripheral function for its related interrupts.

Figure 12.20 shows an Example of Procedure for Changing Interrupt Sources.

Changing Interrupt Control Register Contents 12.5.6

- (a) The contents of an interrupt control register can only be changed while no interrupt requests corresponding to that register are generated. If interrupt requests may be generated, disable interrupts before changing the interrupt control register contents.
- (b) When changing the contents of an interrupt control register after disabling interrupts, be careful to choose appropriate instructions.

Changing any bit other than IR bit

If an interrupt request corresponding to a register is generated while executing the instruction, the IR bit may not be set to 1 (interrupt requested), and the interrupt request may be ignored. If this causes a problem, use the following instructions to change the register: AND, OR, BCLR, BSET **Changing IR bit**

If the IR bit is set to 0 (interrupt not requested), it may not be set to 0 depending on the instruction used. Therefore, use the MOV instruction to set the IR bit to 0.

(c) When disabling interrupts using the I flag, set the I flag as shown in the sample programs below. Refer to (b) regarding changing the contents of interrupt control registers by the sample programs.

Sample programs 1 to 3 are for preventing the I flag from being set to 1 (interrupts enabled) before the interrupt control register is changed for reasons of the internal bus or the instruction queue buffer.

Example 1: Use NOP instructions to prevent I flag from being set to 1 before interrupt control register is changed

INT_SWITC	H1:	
FCLR	Ι	; Disable interrupts
AND.B	#00H,0056H	; Set TXIC register to 00h
NOP		;
NOP		
FSET	Ι	; Enable interrupts

Example 2: Use dummy read to delay FSET instruction IN

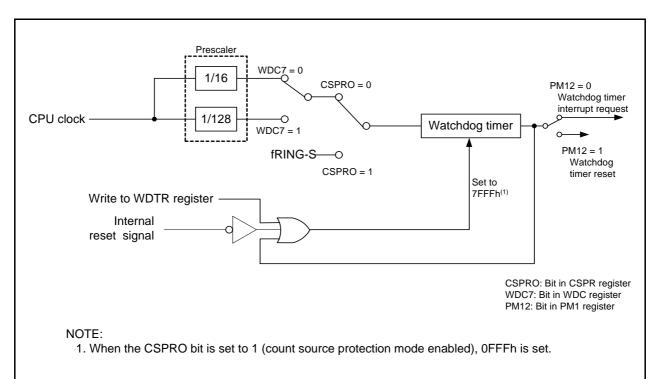
NT_SWITCH2:	
-------------	--

FCLR	Ι	; Disable interrupts
AND.B	#00H,0056H	; Set TXIC register to 00h
MOV.W	MEM,R0	; <u>Dummy read</u>
FSET	Ι	; Enable interrupts

Example 3: Use POPC instruction to change I flag

INT_SWITCH3:				
PUSHC	FLG			
FCLR	Ι	; Disable interrupts		
AND.B	#00H,0056H	; Set TXIC register to 00h		
POPC	FLG	; Enable interrupts		

13. Watchdog Timer


The watchdog timer is a function that detects when a program is out of control. Use of the watchdog timer is recommended to improve the reliability of the system. The watchdog timer contains a 15-bit counter and allows selection of count source protection mode enable or disable. Table 13.1 lists information on the Count Source Protection Mode.

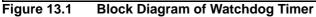

Refer to 6.5 Watchdog Timer Reset for details on the watchdog timer reset.

Figure 13.1 shows the Block Diagram of Watchdog Timer and Figures 13.2 to 13.3 show Registers OFS, WDC, WDTR, WDTS, and CSPR.

Item	Count Source Protection Mode	Count Source Protection Mode		
	Disabled	Enabled		
Count source	CPU clock	Low-speed on-chip oscillator		
		clock		
Count operation	Decrement			
Reset condition of watchdog	• Reset	• Reset		
timer	Write 00h to the WDTR register before writing FFh			
	• underflow			
Count start condition	Either of the following can be selected			
	 After reset, count starts automatically 			
	 Count starts by writing to WDTS register 			
Count stop condition	Stop mode, wait mode	None		
Operation at time of underflow	Watchdog timer interrupt or	Watchdog timer reset		
	watchdog timer reset			

Table 13.1 Count Source Protection Mode

Option Function Se	elect Regist	er ⁽¹⁾		
b7 b6 b5 b4 b3 b2 b1 b0				
	Symbol OFS	Address 0FFFFh	Before Shipment FFh ⁽²⁾	
	Bit Symbol	Bit Name	Function	RW
	WDTON	Watchdog timer start select bit	0 : Starts w atchdog timer automatically after reset.1 : Watchdog timer is inactive after reset.	RW
	(b1)	Reserved bit	Set to 1.	RW
	ROMCR	ROM code protect disabled bit	0 : ROM code protect disabled 1 : ROMCP1 enabled	RW
	ROMCP1	ROM code protect bit	0 : ROM code protect enabled 1 : ROM code protect disabled	RW
	 (b6-b4)	Reserved bits	Set to 1.	RW
	CSPROINI	Count source protection mode after reset select bit	0 : Count source protect mode enabled after reset1 : Count source protect mode disabled after reset	RW
•	luding the OF	S register is erased, FFh is	OFS register with a program. s set to the OFS register.	
b7 b6 b5 b4 b3 b2 b1 b0				
	Symbol WDC	Address 000Fh	After Reset 00011111b	
	Bit Symbol	Bit Name	Function	RW
	 (b4-b0)	High-order bits of watche	dog timer	RO
	(b5)	Reserved bit	Set to 0.	RW
	(b6)	Reserved bit	Set to 0.	RW
	WDC7	Prescaler select bit	0 : Divided by 16 1 : Divided by 128	RW
			•	4

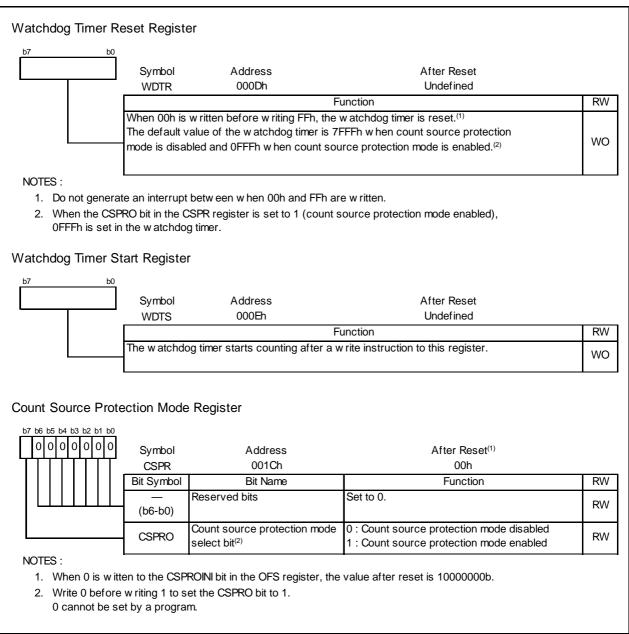


Figure 13.3 Registers WDTR, WDTS, and CSPR

13.1 Count Source Protection Mode Disabled

The count source of the watchdog timer is the CPU clock when count source protection mode is disabled. Table 13.2 lists the Watchdog Timer Specifications (with Count Source Protection Mode Disabled).

Table 13.2	Watchdog Timer Specifications (with Count Source Protection Mode Disabled)
------------	--

Item	Specification
Count source	CPU clock
Count operation	Decrement
Period	Division ratio of prescaler (n) × count value of watchdog timer (32768) ⁽¹⁾ CPU clock n: 16 or 128 (selected by WDC7 bit in WDC register) Example: When the CPU clock frequency is 16 MHz and prescaler
	divides by 16, the period is approximately 32.8 ms.
Count start conditions	 The WDTON bit⁽²⁾ in the OFS register (0FFFFh) selects the operation of the watchdog timer after a reset. When the WDTON bit is set to 1 (watchdog timer is in stop state after reset). The watchdog timer and prescaler stop after a reset and the count starts when the WDTS register is written to. When the WDTON bit is set to 0 (watchdog timer starts automatically after exiting). The watchdog timer and prescaler start counting automatically after reset.
Reset condition of watchdog timer	 Reset Write 00h to the WDTR register before writing FFh. Underflow
Count stop condition	Stop and wait modes (inherit the count from the held value after exiting modes)
Operation at time of underflow	 When the PM12 bit in the PM1 register is set to 0. Watchdog timer interrupt When the PM12 bit in the PM1 register is set to 1. Watchdog timer reset (Refer to 6.5 Watchdog Timer Reset.)

NOTES:

- 1. The watchdog timer is reset when 00h is witten to the WDTR register before FFh. The prescaler is reset after the MCU is reset. Some errors in the period of the watchdog timer may be caused by the prescaler.
- 2. The WDTON bit cannot be changed by a program. To set the WDTON bit, write 0 to bit 0 of address 0FFFFh with a flash programmer.

13.2 Count Source Protection Mode Enabled

The count source of the watchdog timer is the low-speed on-chip oscillator clock when count source protection mode is enabled. If the CPU clock stops when a program is out of control, the clock can still be supplied to the watchdog timer. Table 13.3 lists the Watchdog Timer Specifications (with Count Source Protection Mode Enabled).

Item	Specification
Count source	Low-speed on-chip oscillator clock
Count operation	Decrement
Period	Count value of watchdog timer (4096) Low-speed on-chip oscillator clock Example: Period is approximately 32.8 ms when the low-speed on-chip oscillator clock frequency is 125 kHz
Count start conditions	 The WDTON bit⁽¹⁾ in the OFS register (0FFFFh) selects the operation of the watchdog timer after a reset. When the WDTON bit is set to 1 (watchdog timer is in stop state after reset). The watchdog timer and prescaler stop after a reset and the count starts when the WDTS register is written to. When the WDTON bit is set to 0 (watchdog timer starts automatically after reset). The watchdog timer and prescaler start counting automatically after a reset.
Reset condition of watchdog timer	 Reset Write 00h to the WDTR register before writing FFh. Underflow
Count stop condition	None (The count does not stop in wait mode after the count starts. The MCU does not enter stop mode.)
Operation at time of underflow	Watchdog timer reset (Refer to 6.5 Watchdog Timer Reset.)
Registers, bits	 When setting the CSPPRO bit in the CSPR register to 1 (count source protection mode is enabled)⁽²⁾, the following are set automatically Set 0FFFh to the watchdog timer Set the CM14 bit in the CM1 register to 0 (low-speed on-chip oscillator on) Set the PM12 bit in the PM1 register to 1 (The watchdog timer is reset when watchdog timer underflows) The following conditions apply in count source protection mode Writing to the CM10 bit in the CM1 register is disabled. (It remains unchanged even if it is set to 1. The MCU does not enter stop mode.) Writing to the CM14 bit in the CM1 register is disabled. (It remains unchanged even if it is set to 1. The low-speed on-chip oscillator does not stop.)

 Table 13.3
 Watchdog Timer Specifications (with Count Source Protection Mode Enabled)

NOTES:

- 1. The WDTON bit cannot be changed by a program. To set the WDTON bit, write 0 to bit 0 of address 0FFFFh with a flash programmer.
- 2. Even if 0 is written to the CSPROINI bit in the OFS register, the CSPRO bit is set to 1. The CSPROINI bit cannot be changed by a program. To set the CSPROINI bit, write 0 to bit 7 of address 0FFFFh with a flash programmer.

14. Timers

The MCU has two 8-bit timers with 8-bit prescalers, and a 16-bit timer. The two 8-bit timers with 8-bit prescalers are timer X and timer Z. These timers contain a reload register to store the default value of the counter. The 16-bit timer is timer C, and has input capture and output compare functions. All the timers operate independently. The count source for each timer is the operating clock that regulates the timing of timer operations such as counting and reloading. Table 14.1 lists Functional Comparison of Timers.

	Item	Timer X	Timer Z	Timer C
Configurat	tion	8-bit timer with 8-bit	8-bit timer with 8-bit	16-bit free-run timer
		prescaler (with	prescaler (with	(with input capture
		reload register)	reload register)	and output compare)
Count		Decrement	Decrement	Increment
Count sou	rces	• f1	• f1	• f1
		• f2	• f2	• f8
		• f8	• f8	• f32
		• fRING	Timer X underflow	fRING-fast
Function	Timer mode	Provided	Provided	Not provided
	Pulse output mode	Provided	Not provided	Not provided
	Event counter mode	Provided	Not provided	Not provided
	Pulse width measurement	Provided	Not provided	Not provided
	mode			
	Pulse period measurement	Provided	Not provided	Not provided
	mode			
	Programmable waveform	Not provided	Provided	Not provided
	generation mode			
	Programmable one-shot	Not provided	Provided	Not provided
	generation mode			
	Programmable wait one-	Not provided	Provided	Not provided
	shot generation mode			
	Input capture mode	Not provided	Not provided	Provided
	Output compare mode	Not provided	Not provided	Provided
Input pin		CNTR0	INT0	TCIN
Output pin	l	CNTR0	TZOUT	CMP0_0 to CMP0_2
		CNTR0		CMP1_0 to CMP1_2
Related in	terrupt	Timer X interrupt	Timer Z interrupt	Timer C interrupt
		INT1 interrupt	INT0 interrupt	INT3 interrupt
				Compare 0 interrupt
				Compare 1 interrupt
Timer stop)	Provided	Provided	Provided

 Table 14.1
 Functional Comparison of Timers

14.1 Timer X

Timer X is an 8-bit timer with an 8-bit prescaler.

The prescaler and timer each consist of a reload register and counter. The reload register and counter are allocated at the same address, and can be accessed when accessing registers PREX and TX (refer to **Tables 14.2 to 14.6 the Specifications of Each Mode**).

Figure 14.1 shows a Block Diagram of Timer X. Figures 14.2 and 14.3 show the registers associated with Timer X. Timer X has the following five operating modes:

- Timer mode: The timer counts the internal count source.
- Pulse output mode:
- The timer counts the internal count source and outputs pulses which
- I uise output mode.
- Event counter mode:
- inverts the polarity by underflow of the timer. The timer counts external pulses.
- Pulse width measurement mode: The timer m
- Pulse period measurement mode:
- The timer measures the pulse width of an external pulse.
 - The timer measures the pulse period of an external pulse.

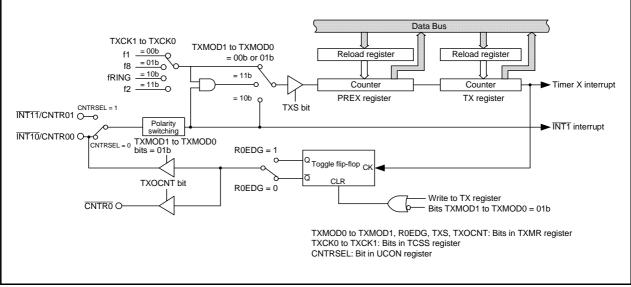
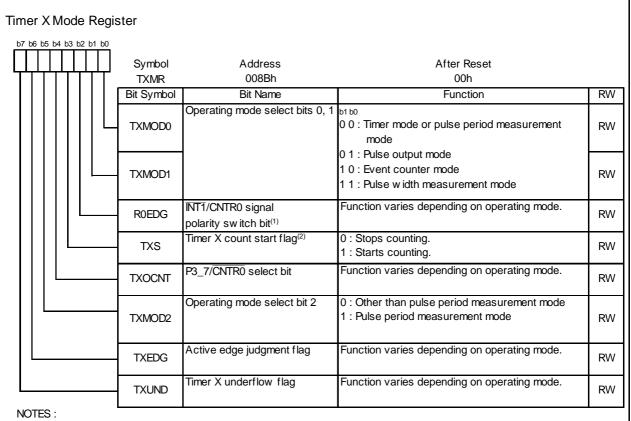



Figure 14.1 Block Diagram of Timer X

1. The IR bit in the INT1IC register may be set to 1 (requests interrupt) when the R0EDG bit is rew ritten. Refer to 12.5.5 Changing Interrupt Sources.

2. Refer to **14.1.6 Notes on Timer X** for precautions regarding the TXS bit.

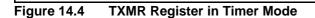
Figure 14.2 TXMR Register

			nbol		Address	After Reset FFh	
		-	EX		008Ch		
		Mo Timer mode		Counts internal co	Function	Setting Range 00h to FFh	RW RW
						00h to FFh	RW
		Pulse output		Counts internal co		00110 FFN	RVV
		Event counte	er mode	ounts input puis	es from external clock.	00h to FFh	RW
		– Pulse width measuremer	e e		v idth of input pulses from ounts internal count	00h to FFh	RW
		Pulse period measuremer	e e		period of input pulses from punts internal count	00h to FFh	RW
b7	b0	Т	nbol X rflow of presc	Function	Address 008Dh	After Reset FFh Setting Range 00h to FFh	RW
	unt Sourc	Symbol	Ad	dress		Reset	
		TCSS		08Eh	00		
		Bit Symbol		Name source select	Fund	ction	RW
		TXCK0	bits ⁽¹⁾	Source Select	^{b1 b0} 0 0 : f1		RW
		TXCK1			0 1 : f8 1 0 : fRING 1 1 : f2		RW
		 (b3-b2)	Reserved bits	;	Set to 0.		RW
		TZCK0	Timer Z count bits ⁽¹⁾	source select	^{b5 b4} 0 0 : f1 0 1 : f8		RW
		TZCK1			1 0 : Selects timer X unde 1 1 : f2	erflow .	RW
		— (b7 b6)	Reserved bits	5	Set to 0.		RW
		(b7-b6)					

14.1.1 **Timer Mode**

In timer mode, the timer counts an internally generated count source (refer to Table 14.2 Timer Mode Specifications). Figure 14.4 shows the TXMR Register in Timer Mode.

Item	Specification
Count sources	f1, f2, f8, fRING
Count operations	 Decrement When the timer underflows, the contents of the reload register are reloaded and the count is continued.
Divide ratio	1/(n+1)(m+1) n: value set in PREX register, m: value set in TX register
Count start condition	1 (count starts) is written to the TXS bit in the TXMR register.
Count stop condition	0 (count stops) is written to the TXS bit in the TXMR register.
Interrupt request generation timing	When timer X underflows [timer X interrupt].
INT10/CNTR00, INT11/CNTR01 pin functions	Programmable I/O port, or INT1 interrupt input
CNTR0 pin function	Programmable I/O port
Read from timer	The count value can be read out by reading registers TX and PREX.
Write to timer	 When registers TX and PREX are written while the count is stopped, values are written to both the reload register and counter. When registers TX and PREX are written during the count, the value is written to each reload register of registers TX and PREX at the following count source input, the data is transferred to the counter at the second count source input, and the count re-starts at the third count source input.


Table 14.2 **Timer Mode Specifications**

<u> </u>	b5 b4	b3 b2 b1 b 0 0 0	D Symbol	Address 008Bh	After Reset 00h	
			TXMR Bit Symbol	Bit Name	Function	RW
			Bit Symbol		Fullction	
			TXMOD0	Operating mode select bits 0, 1	b1 b0 0 0 : Timer mode or pulse period measurement	RW
			TXMOD1		mode	RW
			R0EDG	INT1/CNTR0 signal polarity sw itch bit ^(1, 2)	0 : Rising edge 1 : Falling edge	RW
			TXS	Timer X count start flag ⁽³⁾	0 : Stops counting. 1 : Starts counting.	RW
			TXOCNT	Set to 0 in timer mode.		RW
			TXMOD2	Operating mode select bit 2	0 : Other than pulse period measurement mode	RW
ΙL			TXEDG	Set to 0 in timer mode.		RW
			TXUND	Set to 0 in timer mode.		RW

1. The IR bit in the INT1IC register may be set to 1 (requests interrupt) when the R0EDG bit is rew ritten. Refer to 12.5.5 Changing Interrupt Sources.

2. This bit is used to select the polarity of $\overline{INT1}$ interrupt in timer mode.

3. Refer to 14.1.6 Notes on Timer X for precautions regarding the TXS bit.

14.1.2 Pulse Output Mode

In pulse output mode, the internally generated count source is counted, and a pulse with inverted polarity is output from the CNTR0 pin each time the timer underflows (refer to **Table 14.3 Pulse Output Mode Specifications**). Figure 14.5 shows the TXMR Register in Pulse Output Mode.

Item	Specification
Count sources	f1, f2, f8, fRING
Count operations	 Decrement When the timer underflows, the contents of the reload register are reloaded and the count is continued.
Divide ratio	1/(n+1)(m+1) n: value set in PREX register, m: value set in TX register
Count start condition	1 (count starts) is written to the TXS bit in the TXMR register.
Count stop condition	0 (count stops) is written to the TXS bit in the TXMR register.
Interrupt request generation timing	When timer X underflows [timer X interrupt].
INT10/CNTR00 pin function	Pulse output
CNTR0 pin function	Programmable I/O port, or inverted output of CNTR0
Read from timer	The count value can be read out by reading registers TX and PREX.
Write to timer	 When registers TX and PREX are written while the count is stopped, values are written to both the reload register and counter. When registers TX and PREX are written during the count, the value is written to each reload register of registers TX and PREX at the following count source input, the data is transferred to the counter at the second count source input, and the count re-starts at the third count source input.
Select functions	 INT1/CNTR0 signal polarity switch function The R0EDG bit can select the polarity level when the pulse output starts.⁽¹⁾ Inverted pulse output function The pulse which inverts the polarity of the CNTR0 output can be output from the CNTR0 pin (selected by TXOCNT bit).

Table 14.3 Pulse Output Mode Specifications

NOTE:

1. The level of the output pulse becomes the level when the pulse output starts when the TX register is written to.

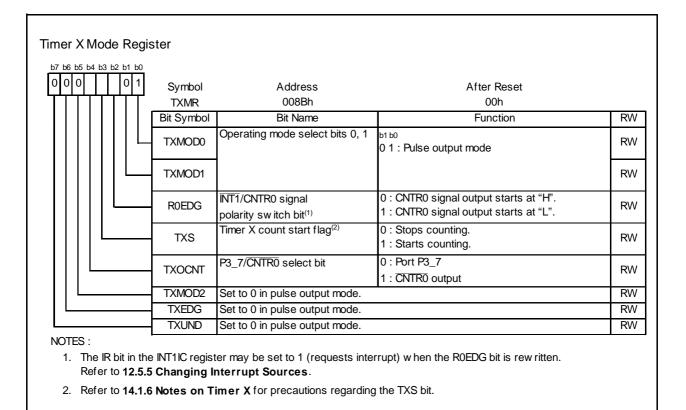


Figure 14.5 TXMR Register in Pulse Output Mode

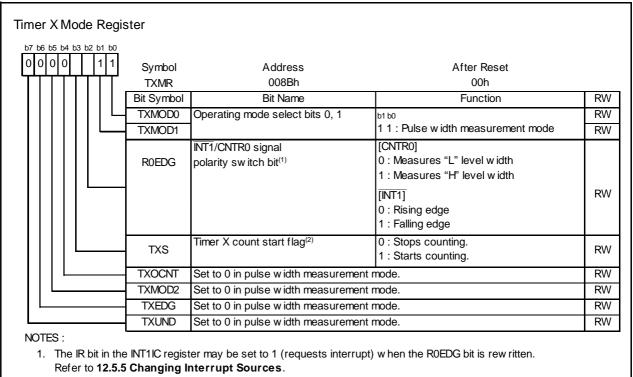
14.1.3 Event Counter Mode

In event counter mode, external signal inputs to the INT1/CNTR0 pin are counted (refer to **Table 14.4 Event Counter Mode Specifications**). Figure 14.6 shows the TXMR Register in Event Counter Mode.

ltem	Specification
Count source	External signal which is input to CNTR0 pin (Active edge selectable by software)
Count operations	 Decrement When the timer underflows, the contents of the reload register are reloaded and the count is continued.
Divide ratio	1/(n+1)(m+1) n: value set in PREX register, m: value set in TX register
Count start condition	1 (count starts) is written to the TXS bit in the TXMR register.
Count stop condition	0 (count stops) is written to the TXS bit in the TXMR register.
Interrupt request generation timing	When timer X underflows [timer X interrupt]
INT10/CNTR00, INT11/CNTR01 pin functions	Count source input (INT1 interrupt input)
CNTR0 pin function	Programmable I/O port
Read from timer	The count value can be read out by reading registers TX and PREX.
Write to timer	 When registers TX and PREX are written while the count is stopped, values are written to both the reload register and counter. When registers TX and PREX are written during the count, the value is written to each reload register of registers TX and PREX at the following count source input, the data is transferred to the counter at the second count source input, and the count re-starts at the third count source input.
Select functions	 INT1/CNTR0 signal polarity switch function The R0EDG bit can select the active edge of the count source. Count source input pin select function The CNTRSEL bit in the UCON register can select the CNTR00 or CNTR01 pin.

 Table 14.4
 Event Counter Mode Specifications

	Symbol TXMR	Address 008Bh	After Reset 00h	
	Bit Symbol	Bit Name	Function	RM
	TXMOD0	Operating mode select bits 0, 1	b1 b0	RW
	TXMOD1	1	1 0 : Event counter mode	RW
	R0EDG	INT1/CNTR0 signal	0 : Rising edge	RW
	TWEEDO	polarity switch bit ⁽¹⁾	1 : Falling edge	1.00
	TXS	Timer X count start flag ⁽²⁾	0 : Stops counting.	RW
	17.0		1 : Starts counting.	1.00
	TXOCNT	Set to 0 in event counter mode.		RW
	TXMOD2	Set to 0 in event counter mode.		RW
	TXEDG	Set to 0 in event counter mode.		RW
	TXUND	Set to 0 in event counter mode.		RW


Figure 14.6 TXMR Register in Event Counter Mode

14.1.4 Pulse Width Measurement Mode

In pulse width measurement mode, the pulse width of an external signal input to the $\overline{INT1}/CNTR0$ pin is measured (refer to **Table 14.5 Pulse Width Measurement Mode Specifications**). Figure 14.7 shows the TXMR Register in Pulse Width Measurement Mode. Figure 14.8 shows an Operating Example in Pulse Width Measurement Mode.

Item	Specification
Count sources	f1, f2, f8, fRING
Count operations	 Decrement Continuously counts the selected signal only when the measured pulse is "H" level, or conversely only "L" level. When the timer underflows, the contents of the reload register are reloaded and the count is continued.
Count start condition	1 (count starts) is written to the TXS bit in the TXMR register.
Count stop condition	0 (count stops) is written to the TXS bit in the TXMR register.
Interrupt request generation timing	 When timer X underflows [timer X interrupt]. Rising or falling of the CNTR0 input (end of measurement period) [INT1 interrupt]
INT10/CNTR00, INT11/CNTR01 pin functions	Measured pulse input (INT1 interrupt input)
CNTR0 pin function	Programmable I/O port
Read from timer	The count value can be read out by reading registers TX and PREX.
Write to timer	 When registers TX and PREX are written while the count is stopped, values are written to both the reload register and counter. When registers TX and PREX are written during the count, the value is written to each reload register of registers TX and PREX at the following count source input, the data is transferred to the counter at the second count source input, and the count re-starts at the third count source input.
Select functions	 INT1/CNTR0 signal polarity switch function The R0EDG bit can select "H" or "L" level period for the input pulse width measurement. Measured pulse input pin select function The CNTRSEL bit in the UCON register can select the CNTR00 or CNTR01 pin.

 Table 14.5
 Pulse Width Measurement Mode Specifications

2. Refer to 14.1.6 Notes on Timer X for precautions regarding the TXS bit.

Figure 14.7 TXMR Register in Pulse Width Measurement Mode

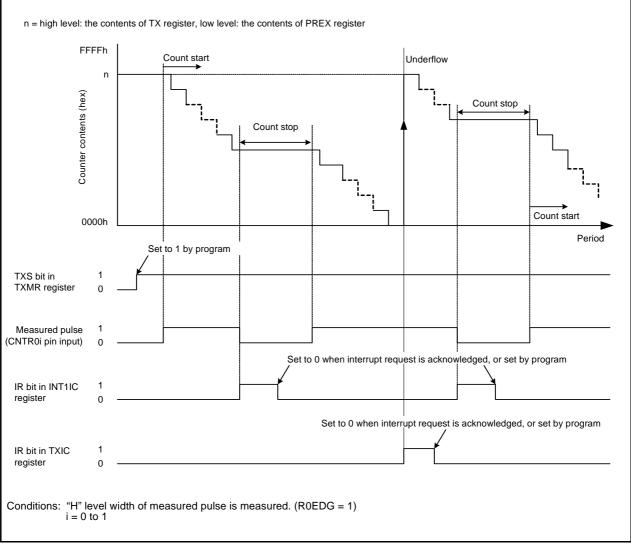
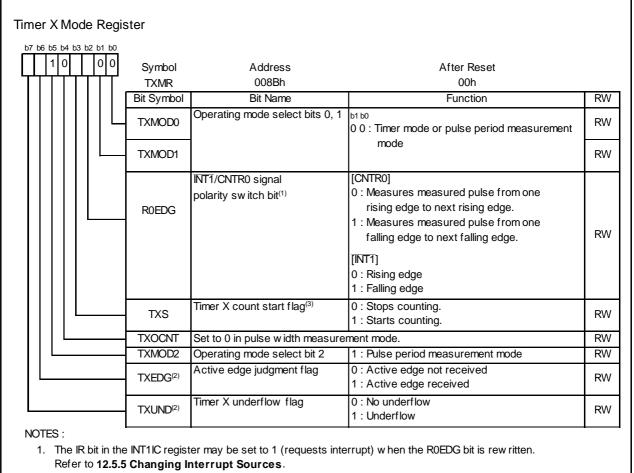


Figure 14.8 Operating Example in Pulse Width Measurement Mode

14.1.5 Pulse Period Measurement Mode


In pulse period measurement mode, the pulse period of an external signal input to the INT1/CNTR0 pin is measured (refer to **Table 14.6 Pulse Period Measurement Mode Specifications**). Figure 14.9 shows the TXMR Register in Pulse Period Measurement Mode. Figure 14.10 shows an Operating Example in Pulse Period Measurement Mode.

Item	Specification
Count sources	f1, f2, f8, fRING
Count operations	 Decrement After an active edge of the measured pulse is input, contents for the read-out buffer are retained at the first underflow of prescaler X. Then timer X reloads contents in the reload register at the second underflow of prescaler X and continues counting.
Count start condition	1 (count starts) is written to the TXS bit in the TXMR register.
Count stop condition	0 (count stops) is written to the TXS bit in the TXMR register.
Interrupt request generation timing	 When timer X underflows or reloads [timer X interrupt]. Rising or falling of CNTR0 input (end of measurement period) [INT1 interrupt]
INT10/CNTR00, INT11/CNTR01 pin functions	Measured pulse input ⁽¹⁾ (INT1 interrupt input)
CNTR0 pin function	Programmable I/O port
Read from timer	Contents of the read-out buffer can be read out by reading the TX register. The value retained in the read-out buffer is released by reading the TX register.
Write to timer	 When registers TX and PREX are written while the count is stopped, values are written to both the reload register and counter. When registers TX and PREX are written during the count, the value is written to each reload register of registers TX and PREX at the following count source input, the data is transferred to the counter at the second count source input, and the count re-starts at the third count source input.
Select functions	 INT1/CNTR0 polarity switch function The R0EDG bit can select the measurement period for the input pulse. Measured pulse input pin select function The CNTRSEL bit in the UCON register can select the CNTR00 or CNTR01 pin.

 Table 14.6
 Pulse Period Measurement Mode Specifications

NOTE:

 Input a pulse with a period longer than twice of the prescaler X period. Input a pulse with a longer "H" and "L" width than the prescaler X period. If a pulse with a shorter period is input to the CNTR0 pin, the input may be ignored.

2. This bit is set to 0 by writing 0 in a program. (It remains unchanged even if writing 1.)

3. Refer to 14.1.6 Notes on Timer X for precautions regarding the TXS bit.

Figure 14.9 TXMR Register in Pulse Period Measurement Mode

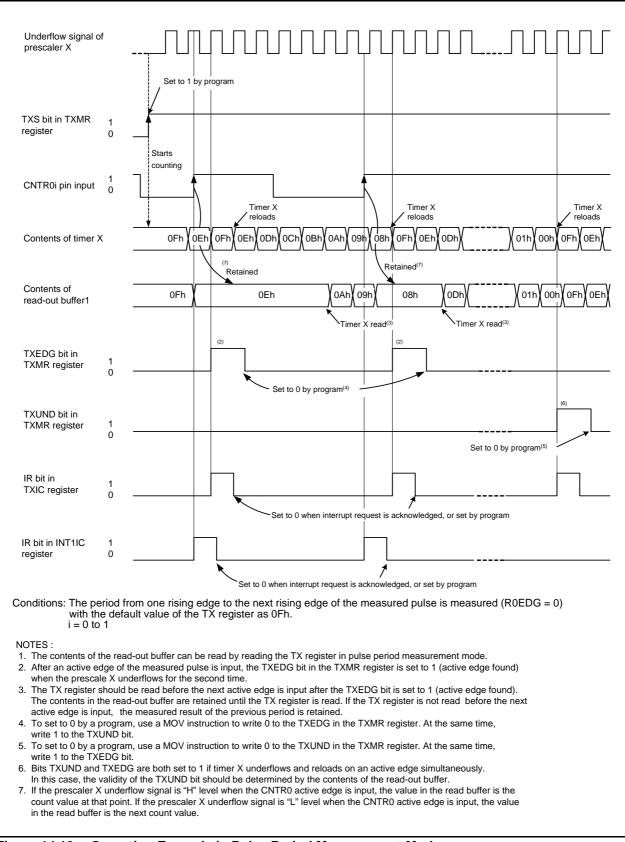


Figure 14.10 Operating Example in Pulse Period Measurement Mode

14.1.6 Notes on Timer X

- Timer X stops counting after a reset. Set the values in the timer and prescaler before the count starts.
- Even if the prescaler and timer are read out in 16-bit units, these registers are read 1 byte at a time by the MCU. Consequently, the timer value may be updated during the period when these two registers are being read.
- Do not rewrite bits TXMOD0 to TXMOD1, and bits TXMOD2 and TXS simultaneously.
- In pulse period measurement mode, bits TXEDG and TXUND in the TXMR register can be set to 0 by writing 0 to these bits by a program. However, these bits remain unchanged if 1 is written. When using the READ-MODIFY-WRITE instruction for the TXMR register, the TXEDG or TXUND bit may be set to 0 although these bits are set to 1 while the instruction is being executed. In this case, write 1 to the TXEDG or TXUND bit which is not supposed to be set to 0 with the MOV instruction.
- When changing to pulse period measurement mode from another mode, the contents of bits TXEDG and TXUND are undefined. Write 0 to bits TXEDG and TXUND before the count starts.
- The TXEDG bit may be set to 1 by the prescaler X underflow generated after the count starts.
- When using the pulse period measurement mode, leave two or more periods of the prescaler X immediately after the count starts, then set the TXEDG bit to 0.
- The TXS bit in the TXMR register has a function to instruct timer X to start or stop counting and a function to indicate that the count has started or stopped.

0 (count stops) can be read until the following count source is applied after 1 (count starts) is written to the TXS bit while the count is being stopped. If the following count source is applied, 1 can be read from the TXS bit. After writing 1 to the TXS bit, do not access registers associated with timer X (registers TXMR, PREX, TX, TCSS, and TXIC) except for the TXS bit, until 1 can be read from the TXS bit. The count starts at the following count source after the TXS bit is set to 1.

Also, after writing 0 (count stops) to the TXS bit during the count, timer X stops counting at the following count source.

1 (count starts) can be read by reading the TXS bit until the count stops after writing 0 to the TXS bit. After writing 0 to the TXS bit, do not access registers associated with timer X except for the TXS bit, until 0 can be read from the TXS bit.

14.2 Timer Z

Timer Z is an 8-bit timer with an 8-bit prescaler. The prescaler and timer each consist of a reload register and counter. The reload register and counter are allocated at the same address. Refer to the **Tables 14.7 to 14.10 for the Specifications of Each Mode**. Timer Z contains timer Z primary and timer Z secondary reload registers. Figure 14.11 shows a Block Diagram of Timer Z. Figures 14.12 to 14.15 show registers TZMR, PREZ, TZSC, TZPR, TZOC, PUM, and TCSS.

Timer Z has the following four operating modes:

- Timer mode:
- Programmable waveform generation mode:
- Programmable one-shot generation mode:
- Programmable wait one-shot generation mode:

The timer counts an internal count source or timer X underflows.

The timer outputs pulses of a given width successively. The timer outputs a one-shot pulse.

The timer outputs a delayed one-shot pulse.

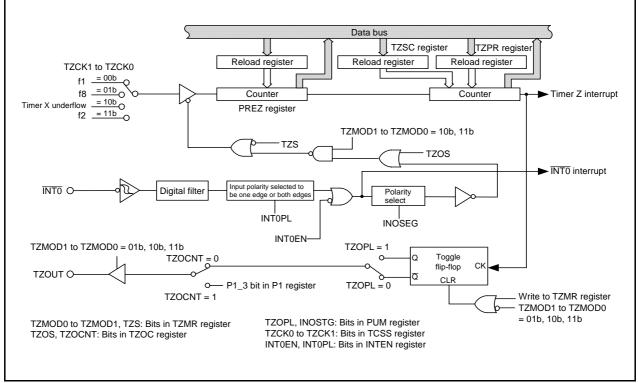
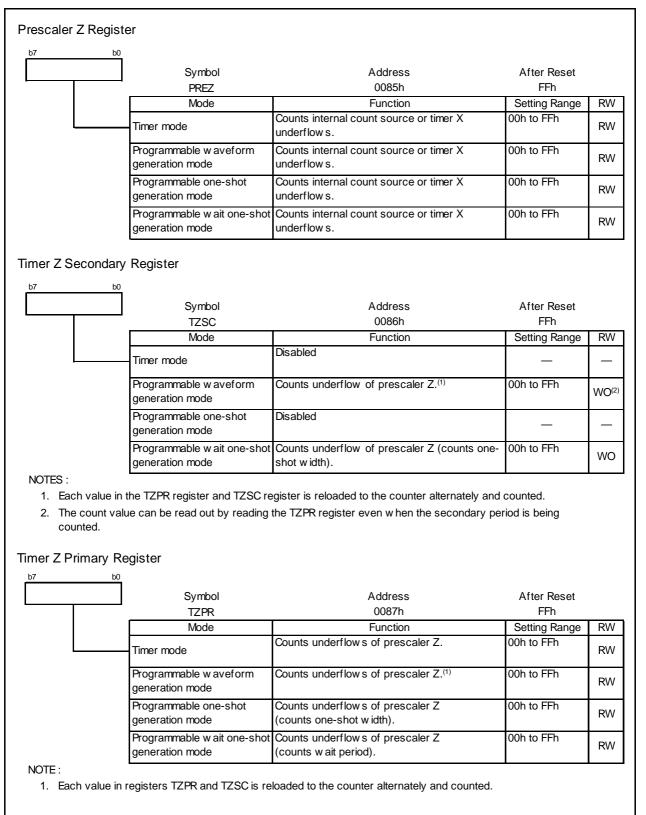



Figure 14.11 Block Diagram of Timer Z

Figure 14.12 TZMR Register

b7 b6 b5 b4 b3 b2 b1 b0				
	Symbol	Address 008Ah	After Reset 00h	
	TZOC Bit Symbol	Bit Name	Function	RW
	Dit Symbol	Timer Z one-shot start bit ⁽¹⁾	0 : One-shot stops.	17.0.0
	TZOS		1 : One-shot starts.	RW
	_	Reserved bit	Set to 0.	RW
	(b1)			FX V V
	TZOCNT	Timer Z programmable w aveform generation output sw itch bit ⁽²⁾	0 : Outputs programmable waveform. 1 : Outputs value in P1_3 port register.	RW
	 (b7-b3)	Nothing is assigned. If necessary, s When read, the content is 0.	et to 0.] –
NOTES :		1		
		•	ompleted. If the TZS bit in the TZMR register v w aveform output, set the TZOS bit to 0.	vas set
			and a second the second of	
 When execut bit is automat 	ing an instructi ically set to 0 (ems, execute a	one-shot stop) if the count is comple	rm generation mode. n the TZOS bit is set to 1 (during count), the ted w hile the instruction is being executed. If ntents of this register w hen the TZOS bit is s	this
 When execut bit is automat causes probl (one-shot sto Timer Z Waveform 	ing an instructi ically set to 0 (ems, execute a p). Output Con	ion w hich changes this register w he one-shot stop) if the count is comple an instruction w hich changes the cor	n the TZOS bit is set to 1 (during count), the ted w hile the instruction is being executed. If	this
 When execut bit is automat causes probl (one-shot stop) 	ing an instructi ically set to 0 (ems, execute a p). Output Con	ion w hich changes this register w he one-shot stop) if the count is comple an instruction w hich changes the cor	n the TZOS bit is set to 1 (during count), the ted w hile the instruction is being executed. If ntents of this register w hen the TZOS bit is s	this
 When execut bit is automat causes probl (one-shot sto) Timer Z Waveform 	ing an instructi ically set to 0 (r ems, execute a p). Output Con Symbol	ion w hich changes this register w he one-shot stop) if the count is comple an instruction w hich changes the cor	n the TZOS bit is set to 1 (during count), the ted w hile the instruction is being executed. If	this
 When execut bit is automat causes probl (one-shot sto) Timer Z Waveform 	ing an instructi ically set to 0 (ems, execute a p). Output Con	ion w hich changes this register w he one-shot stop) if the count is comple an instruction w hich changes the cor htrol Register Address 0084h	n the TZOS bit is set to 1 (during count), the ted w hile the instruction is being executed. If intents of this register w hen the TZOS bit is s After Reset	this
 When execut bit is automat causes probl (one-shot sto) Timer Z Waveform 	ing an instructi ically set to 0 (r ems, execute a p). Output Con Symbol PUM	ion w hich changes this register w he one-shot stop) if the count is comple an instruction w hich changes the cor htrol Register Address 0084h	n the TZOS bit is set to 1 (during count), the ted w hile the instruction is being executed. If ntents of this register w hen the TZOS bit is s After Reset 00h	this et to 0
 When execut bit is automat causes probl (one-shot sto) Timer Z Waveform 	ing an instructi ically set to 0 (r ems, execute a p). Output Con Symbol PUM Bit Symbol	ion w hich changes this register w here one-shot stop) if the count is comple- an instruction w hich changes the cor htrol Register Address 0084h Bit Name	n the TZOS bit is set to 1 (during count), the ted w hile the instruction is being executed. If ntents of this register w hen the TZOS bit is s After Reset 00h Function	this et to 0
 When execut bit is automat causes probl (one-shot sto) Timer Z Waveform 	ing an instructi ically set to 0 (r ems, execute a p). Output Con Symbol PUM Bit Symbol (b4-b0)	ion w hich changes this register w he one-shot stop) if the count is comple- an instruction w hich changes the cor atrol Register Address 0084h Bit Name Reserved bits	After Reset 00h Function Set to 0. Function varies depending on operating mode. 0 : INTO pin one-shot trigger disabled	this et to 0 RW RW
 When execut bit is automat causes probl (one-shot sto) Timer Z Waveform 	ing an instructi ically set to 0 (rems, execute a p). Output Con Symbol PUM Bit Symbol (b4-b0) TZOPL	Address ONE Addre	After Reset 00h Function Set to 0. Function varies depending on operating mode. 0 : INTO pin one-shot trigger disabled 1 : INTO pin one-shot trigger enabled 0 : Falling edge trigger	this et to 0 RW RW RW
 When execut bit is automat causes probl (one-shot sto) Timer Z Waveform 	ing an instructi ically set to 0 (r ems, execute a p). Output Con Symbol PUM Bit Symbol PUM (b4-b0) TZOPL INOSTG	Address 0084h Bit Name Reserved bits Timer Z output level latch INTO pin one-shot trigger control bit (timer Z) ⁽²⁾	After Reset 00h Function Set to 0. Function varies depending on operating mode. 0 : INTO pin one-shot trigger disabled 1 : INTO pin one-shot trigger enabled	this et to 0 RW RW RW

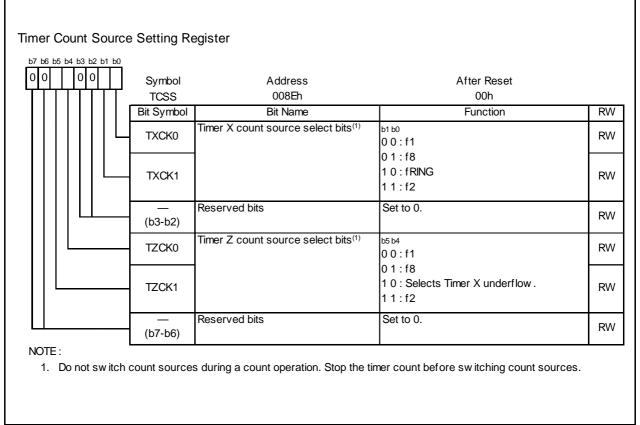


Figure 14.15 TCSS Register

14.2.1 Timer Mode

In timer mode, a count source which is internally generated or timer X underflow is counted (refer to **Table 14.7 Timer Mode Specifications**). The TZSC register is not used in timer mode. Figure 14.16 shows Registers TZMR and PUM in Timer Mode.

Item	Specification
Count sources	f1, f2, f8, Timer X underflow
Count operations	 Decrement When the timer underflows, it reloads the reload register contents before the count continues. (When timer Z underflows, the contents of timer Z primary reload register is reloaded.)
Divide ratio	1/(n+1)(m+1) fi: Count source frequency n: Value set in PREZ register, m: value set in TZPR register
Count start condition	1 (count starts) is written to the TZS bit in the TZMR register.
Count stop condition	0 (count stops) is written to the TZS bit in the TZMR register.
Interrupt request generation timing	When timer Z underflows [timer Z interrupt].
TZOUT pin function	Programmable I/O port
INT0 pin function	Programmable I/O port, or INT0 interrupt input
Read from timer	The count value can be read out by reading registers TZPR and PREZ.
Write to timer ⁽¹⁾	 When registers TZPR and PREZ are written while the count is stopped, values are written to both the reload register and counter. When registers TZPR and PREZ are written during the count while the TZWC bit is set to 0 (writing to the reload register and counter simultaneously), the value is written to each reload register of registers TZPR and PREZ at the following count source input, the data is transferred to the counter at the second count source input, and the count re-starts at the third count source input. When the TZWC bit is set to 1 (writing to only the reload register), the value is written to each reload register of registers TZPR and PREZ (the data is transferred to the counter at the following count source at the following reload).

Table 14.7 Timer Mode Specifications

NOTE:

1. The IR bit in the TZIC register is set to 1 (interrupt requested) when writing to the TZPR or PREZ register while both of the following conditions are met.

TZWC bit in TZMR register is set to 0 (write to reload register and counter simultaneously)
TZS bit in TZMR register is set to 1 (count starts)

Disable interrupts before writing to the TZPR or PREZ register in the above state.

mer Z Mode Regis				
b7 b6 b5 b4 b3 b2 b1 b0	Symbol	Address	After Reset	
	TZMR	0080h	00h	
	Bit Symbol	Bit Name	Function	RW
$[] \sqcup \bot \bot$	 (b3-b0)	Reserved bits	Set to 0.	RW
	TZMOD0	Timer Z operating mode	b5 b4	RW
	TZMOD1	bits	0 0 : Timer mode	RW
	TZWC	Timer Z w rite control bit ⁽¹⁾	0 : Write to reload register and counter 1 : Write to reload register only	RW
	TZS	Timer Z count start flag ⁽²⁾	0 : Stops counting. 1 : Starts counting.	RW
0, timer Z cour register only w to both reload	it value is w r hen the TZW register and o	itten to both reload register a	-	reload
0, timer Z cour register only w to both reload	it value is w r hen the TZW register and d i Notes on T	itten to both reload register a /C bit is set to 1. When the T. counter regardless of the se imer Z for precautions rega	and counter. Timer Z count value is w ritten to the ZS bit is set to 0 (count stops), timer Z count val tting value of the TZWC bit.	reload
0, timer Z cour register only w to both reload 2. Refer to 14.2.5 mer Z Waveform (it value is w r hen the TZW register and d i Notes on T	itten to both reload register a /C bit is set to 1. When the T. counter regardless of the se imer Z for precautions rega	and counter. Timer Z count value is w ritten to the ZS bit is set to 0 (count stops), timer Z count val tting value of the TZWC bit.	reload
0, timer Z cour register only w to both reload 2. Refer to 14.2.5 mer Z Waveform (it value is w r hen the TZW register and d i Notes on T	itten to both reload register a /C bit is set to 1. When the T. counter regardless of the se imer Z for precautions rega	and counter. Timer Z count value is w ritten to the ZS bit is set to 0 (count stops), timer Z count val tting value of the TZWC bit.	reload
0, timer Z cour register only w to both reload 2. Refer to 14.2.5 mer Z Waveform (at value is w r hen the TZW register and c 5 Notes on T Dutput Con	itten to both reload register a /C bit is set to 1. When the T counter regardless of the se imer Z for precautions rega trol Register	and counter. Timer Z count value is w ritten to the ZS bit is set to 0 (count stops), timer Z count val tting value of the TZWC bit. arding the TZS bit.	reload
0, timer Z cour register only w to both reload 2. Refer to 14.2.5 mer Z Waveform (it value is w r hen the TZW register and c i Notes on T Dutput Con Symbol	itten to both reload register a /C bit is set to 1. When the T counter regardless of the se imer Z for precautions rega trol Register Address	and counter. Timer Z count value is w ritten to the ZS bit is set to 0 (count stops), timer Z count val tting value of the TZWC bit. arding the TZS bit. After Reset	reload
0, timer Z cour register only w to both reload 2. Refer to 14.2.5 mer Z Waveform (it value is w r hen the TZW register and c Notes on T Dutput Con Symbol <u>PUM</u>	itten to both reload register a /C bit is set to 1. When the T. counter regardless of the se imer Z for precautions rega trol Register Address 0084h	and counter. Timer Z count value is w ritten to the ZS bit is set to 0 (count stops), timer Z count val tting value of the TZWC bit. arding the TZS bit. After Reset 00h	e reload ue is w ritten
0, timer Z cour register only w to both reload 2. Refer to 14.2.5 mer Z Waveform (it value is w r hen the TZW register and c i Notes on T Dutput Con Symbol PUM Bit Symbol —	itten to both reload register a /C bit is set to 1. When the T. counter regardless of the se imer Z for precautions rega trol Register Address 0084h Bit Name	and counter. Timer Z count value is w ritten to the ZS bit is set to 0 (count stops), timer Z count val tting value of the TZWC bit. arding the TZS bit. After Reset 00h Function	e reload ue is w ritten
0, timer Z cour register only w to both reload 2. Refer to 14.2.5 mer Z Waveform (it value is w r hen the TZW register and c Notes on T Output Con Symbol PUM Bit Symbol (b4-b0)	itten to both reload register a /C bit is set to 1. When the T. counter regardless of the se imer Z for precautions rega trol Register Address 0084h Bit Name Reserved bits	and counter. Timer Z count value is w ritten to the ZS bit is set to 0 (count stops), timer Z count val tting value of the TZWC bit. arding the TZS bit. After Reset 00h Function Set to 0.	e reload ue is w ritten RW RW

14.2.2 Programmable Waveform Generation Mode

In programmable waveform generation mode, the signal output from the TZOUT pin is inverted each time the counter underflows, while the values in registers TZPR and TZSC are counted alternately (refer to **Table 14.8 Programmable Waveform Generation Mode Specifications**). Counting starts by counting the value set in the TZPR register. Figure 14.17 shows Registers TZMR and PUM in Programmable Waveform Generation Mode. Figure 14.18 shows an Operating Example of Timer Z in Programmable Waveform Generation Mode.

Table 14.8	Programmable Waveform Generation Mode Specifications
------------	--

ltem	Specification
Count sources	f1, f2, f8, timer X underflow
Count operations	• Decrement
	 When the timer underflows, it reloads the contents of the primary reload and secondary reload registers alternately before the count is continued.
Width and period of	Primary period: (n+1)(m+1)/fi
output waveform	Secondary period: (n+1)(p+1)/fi
	Period: (n+1){(m+1)+(p+1)}/fi
	fi: Count source frequency
	n: Value set in PREZ register, m: value set in TZPR register, p: value set in TZSC register
Count start condition	1 (count starts) is written to the TZS bit in the TZMR register.
Count stop condition	0 (count stops) is written to the TZS bit in the TZMR register.
Interrupt request	In half a cycle of the count source, after timer Z underflows during the secondary
generation timing	period (at the same time as the TZout output change) [timer Z interrupt].
TZOUT pin function	Pulse output
	(To use this pin as a programmable I/O port, select timer mode.)
INT0 pin function	Programmable I/O port, or INT0 interrupt input
Read from timer	The count value can be read out by reading registers TZPR and PREZ. ⁽¹⁾
Write to timer	The value written to registers TZSC, PREZ, and TZPR is written to the reload
	register only ⁽²⁾
Select functions	Output level latch select function
	The TZOPL bit can select the output level during primary and secondary
	periods.
	Programmable waveform generation output switch function
	When the TZOCNT bit in the TZOC register is set to 0, the output from the
	TZOUT pin is inverted synchronously when timer Z underflows. When set to 1,
	the value in the P1_3 bit is output from the TZOUT pin ⁽³⁾

NOTES:

1. Even when counting the secondary period, the TZPR register may be read.

2. The value set in registers TZPR and TZSC are made effective by writing a value to the TZPR register. The set values are reflected in the waveform output beginning with the following primary period after writing to the TZPR register.

- 3. The TZOCNT bit is enabled by the following.
 - When counting starts.
 - When a timer Z interrupt request is generated. The contents after the TZOCNT bit is changed are reflected from the output of the following primary period.

mer	Z Mode Regi	0101			
	b5 b4 b3 b2 b1 b0 0 1 0 0 0 0				
		Symbol	Address	After Reset	
		TZMR	0080h	00h	
		Bit Symbol	Bit Name	Function	RW
		 (b3-b0)	Reserved bits	Set to 0.	RW
		TZMOD0	Timer Z operating mode bits	b5 b4	RW
		TZMOD1		0 1 : Programmable w aveform generation mode	RW
ļL		TZWC	Timer Z w rite control bit	Set to 1 in programmable w aveform generation mode. ⁽¹⁾	RW
		TZS	Timer Z count start flag ⁽²⁾	0 : Stops counting. 1 : Starts counting.	RW
2. mer	set to 0 (coun	t stops), the c 5 Notes on T	ount value is written to both re imer Z for precautions regard	-	S bit is
2. mer	set to 0 (coun Refer to 14.2. Z Waveform	t stops), the c 5 Notes on T Output Cont Symbol	ount value is written to both re imer Z for precautions regard trol Register Address	eload register and counter. ding the TZS bit. After Reset	S bit is
2. mer	set to 0 (coun Refer to 14.2. Z Waveform	t stops), the c 5 Notes on T Output Cont Symbol PUM	ount value is w ritten to both re imer Z for precautions regard trol Register	eload register and counter.	
2. mer	set to 0 (coun Refer to 14.2. Z Waveform	t stops), the c 5 Notes on T Output Cont Symbol	ount value is w ritten to both re imer Z for precautions regard trol Register Address 0084h	eload register and counter. ding the TZS bit. After Reset 00h	RW
2. mer	set to 0 (coun Refer to 14.2. Z Waveform	t stops), the c 5 Notes on T Output Cont Symbol PUM Bit Symbol —	ount value is w ritten to both re imer Z for precautions regard trol Register Address 0084h Bit Name	eload register and counter. ding the TZS bit. After Reset 00h Function	S bit is
2. mer	set to 0 (coun Refer to 14.2. Z Waveform	t stops), the c 5 Notes on T Output Cont Symbol PUM Bit Symbol (b4-b0)	ount value is w ritten to both re imer Z for precautions regard trol Register Address 0084h Bit Name Reserved bits	After Reset 00h Function Set to 0. 0 : Outputs "H" for primary period. Outputs "L" for secondary period. Outputs "L" when the timer is stopped. 1 : Outputs "L" for primary period. Outputs "L" for primary period. Outputs "H" for secondary period. Outputs "H" for secondary period.	RW

Figure 14.17 Registers TZMR and PUM in Programmable Waveform Generation Mode

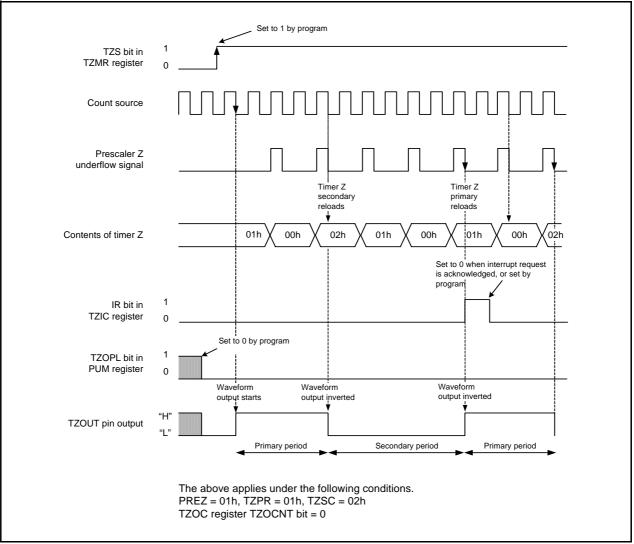


Figure 14.18 Operating Example of Timer Z in Programmable Waveform Generation Mode

14.2.3 Programmable One-shot Generation Mode

In programmable one-shot generation mode, one-shot pulse is output from the TZOUT pin by a program or an external trigger input (input to the INTO pin) (refer to **Table 14.9 Programmable One-Shot Generation Mode Specifications**). When a trigger is generated, the timer starts operating from the point only once for a given period equal to the set value in the TZPR register. The TZSC register is not used in this mode. Figure 14.19 shows Registers TZMR and PUM in Programmable One-Shot Generation Mode. Figure 14.20 shows an Operating Example in Programmable One-Shot Generation Mode.

Table 14.9 Programmable One-Shot Generation Mode Specific

Item	Specification
Count sources	f1, f2, f8, Timer X underflow
Count operations	 Decrement the value set in the TZPR register When the timer underflows, it reloads the contents of the reload register before the count completes and the TZOS bit is set to 0 (one-shot stops). When the count stops, the timer reloads the contents of the reload register before it stops.
One-shot pulse	(n+1)(m+1)/fi
output time	fi: Count source frequency, n: value set in PREZ register, m: value set in TZPR register
Count start conditions	 Set the TZOS bit in the TZOC register to 1 (one-shot starts).⁽¹⁾ Input active trigger to the INTO pin⁽²⁾
Count stop conditions	 When reloading completes after the count value is set to 00h. When the TZS bit in the TZMR register is set to 0 (count stops). When the TZOS bit in the TZOC register is set to 0 (one-shot stops).
Interrupt request generation timing	In half a cycle of the count source, after the timer underflows (at the same time as the TZOUT output ends) [timer Z interrupt].
TZOUT pin function	Pulse output (To use this pin as a programmable I/O port, select timer mode.)
INT0 pin function	 When the INOSTG bit in the PUM register is set to 0 (INTO one-shot trigger disabled): programmable I/O port or INTO interrupt input When the INOSTG bit in the PUM register is set to 1 (INTO one-shot trigger enabled): external trigger (INTO interrupt input)
Read from timer	The count value can be read out by reading registers TZPR and PREZ.
Write to timer	The value written to registers TZPR and PREZ is written to the reload register only ⁽³⁾ .
Select functions	 Output level latch select function <u>The</u> TZOPL bit can select the output level of the one-shot pulse waveform. INT0 pin one-shot trigger control and polarity select functions The INOSTG bit can select the trigger as active or inactive from the INT0 pin. Also, the INOSEG bit can select the active trigger polarity.

NOTES:

- 1. Set the TZS bit in the TZMR register to 1 (count starts).
- 2. Set the TZS bit to 1 (count starts), the INT0EN bit in the INTEN register to 1 (enables INT0 input), and the INOSTG bit in the PUM register to 1 (INT0 one-shot trigger enabled). A trigger which is input during the count cannot be acknowledged, however an INT0 interrupt request is generated.
- 3. The set value is reflected at the following one-shot pulse after writing to the TZPR register.

	TZMR	0080h	After Reset 00h	
	Bit Symbol	Bit Name	Function	RW
		Reserved bits	Set to 0.	
	(b3-b0)			RW
	TZMOD0	Timer Z operating mode bit	b5 b4	RW
	TZMOD1		1 0 : Programmable one-shot generation mode	RW
	TZWC	Timer Z w rite control bit	Set to 1 in programmable one-shot generation mode. ⁽¹⁾	RW
	TZS	Timer Z count start flag ⁽²⁾	0 : Stops counting. 1 : Starts counting.	RW
ner Z Waveform C	Dutput Con	trol Register	arding the TZS bit.	
	Dutput Con Symbol PUM	trol Register Address 0084h	After Reset 00h	
7 b6 b5 b4 b3 b2 b1 b0	Dutput Con Symbol	trol Register Address 0084h Bit Name	After Reset 00h Function	RW
7 b6 b5 b4 b3 b2 b1 b0	Dutput Con Symbol PUM	trol Register Address 0084h Bit Name Reserved bits	After Reset 00h Function Set to 0.	RW
7 b6 b5 b4 b3 b2 b1 b0	Dutput Con Symbol PUM Bit Symbol —	trol Register Address 0084h Bit Name	After Reset 00h Function	
7 b6 b5 b4 b3 b2 b1 b0	Dutput Con Symbol PUM Bit Symbol (b4-b0)	trol Register Address 0084h Bit Name Reserved bits	After Reset 00h Function Set to 0. 0 : Outputs one-shot pulse "H". Outputs "L" w hen the timer is stopped. 1 : Outputs one-shot pulse "L".	RW

2. The INOSEG bit is enabled only when the INTOPL bit in the INTEN register is set to 0 (one edge).

Figure 14.19 Registers TZMR and PUM in Programmable One-Shot Generation Mode

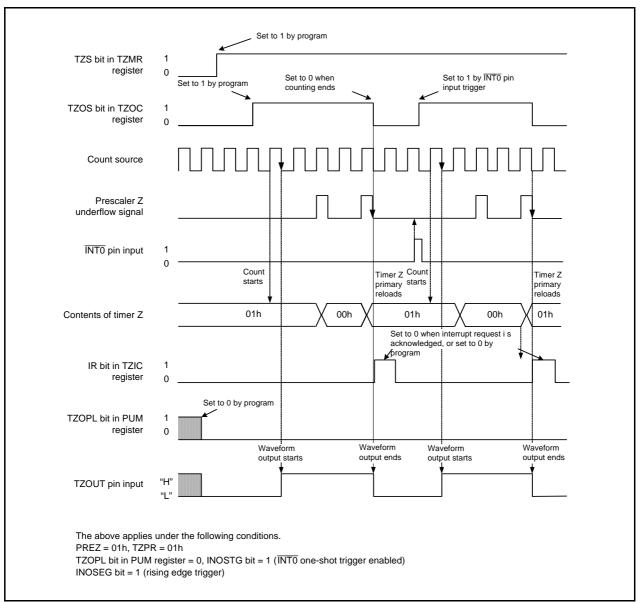


Figure 14.20 Operating Example in Programmable One-Shot Generation Mode

14.2.4 Programmable Wait One-Shot Generation Mode

In programmable wait one-shot generation mode, a one-shot pulse is output from the TZOUT pin by a program or an external trigger input (input to the \overline{INTO} pin) (refer to **Table 14.10 Programmable Wait One-Shot Generation Mode Specifications**). When a trigger is generated, from that point the timer outputs a pulse only once for a given length of time equal to the setting value in the TZSC register after waiting for a given length of time equal to the value set in the TZPR register. Figure 14.21 shows Registers TZMR and PUM in Programmable Wait One-Shot Generation Mode. Figure 14.22 shows an Operating Example in Programmable Wait One-Shot Generation Mode.

ltem	Specification
Count sources	f1, f2, f8, Timer X underflow
Count operations	 Decrement the value set in Timer Z primary When the count of TZPR register underflows, the timer reloads the contents of the TZSC register before the count is continued. When the count of the TZSC register underflows, the timer reloads the contents of the TZPR register before the count completes and the TZOS bit is set to 0. When the count stops, the timer reloads the contents of the reload register before it stops.
Wait time	(n+1)(m+1)/fi fi: Count source frequency n: Value set in PREZ register, m: value set in TZPR register
One-shot pulse output time	(n+1)(p+1)/fi fi: Count source frequency n: Value set in PREZ register, p: value set in TZSC register
Count start conditions	 Set the TZOS bit in the TZOC register to 1 (one-shot starts).⁽¹⁾ Input active trigger to the INTO pin⁽²⁾
Count stop conditions	 When reloading completes after timer Z underflows during secondary period. When the TZS bit in the TZMR register is set to 0 (count stops). When the TZOS bit in the TZOC register is set to 0 (one-shot stops).
Interrupt request generation timing	In half a cycle of the count source after timer Z underflows during secondary period (complete at the same time as waveform output from the TZOUT pin) [timer Z interrupt].
TZOUT pin function	Pulse output (To use this pin as a programmable I/O port, select timer mode.)
INTO pin function	 When the INOSTG bit in the PUM register is set to 0 (INTO one-shot trigger disabled): programmable I/O port or INTO interrupt input When the INOSTG bit in the PUM register is set to 1 (INTO one-shot trigger enabled): external trigger (INTO interrupt input)
Read from timer	The count value can be read out by reading registers TZPR and PREZ.
Write to timer	The value written to registers TZPR and PREZ is written to the reload register only ⁽³⁾ .
Select functions	 Output level latch select function The output level of the one-shot pulse waveform is selected by the TZOPL bit. INT0 pin one-shot trigger control function and polarity select function Trigger input from the INT0 pin can be set to active or inactive by the INOSTG bit. Also, the active trigger's polarity can be selected by the INOSEG bit.

Table 14.10 Programmable Wait One-Shot Generation Mode Specifications

NOTES:

- 1. The TZS bit in the TZMR register must be set to 1 (start counting).
- The TZS bit must be set to 1 (start counting), the INT0EN bit in the INTEN register to 1 (enabling INT0 input), and the INOSTG bit in the PUM register to 1 (enabling INT0 one-shot trigger). A trigger which is input during the count cannot be acknowledged, however an INT0 interrupt request is generated.
- 3. The set values are reflected at the following one-shot pulse after writing to the TZPR register.

Timer Z Mode Regi	ster			
b7 b6 b5 b4 b3 b2 b1 b0				
1110000	Symbol	Address	After Reset	
	TZMR	0080h	00h	
	Bit Symbol	Bit Name	Function	RW
	 (b3-b0)	Reserved bits	Set to 0.	RW
	TZMOD0	Timer Z operating mode bits	^{b5 b4} 1 1 : Programmable w ait one-shot generation mode	RW
	TZMOD1			RW
	TZWC	Timer Z w rite control bit	Set to 1 in programmable w ait one-shot generation mode. ⁽¹⁾	RW
	TZS	Timer Z count start flag ⁽²⁾	0 : Stops counting. 1 : Starts counting.	RW
2. Refer to 14.2. Timer Z Waveform		imer Z for precautions regatrol Register	arding the TZS bit.	
	Symbol PUM	Address 0084h	After Reset 00h	
	Bit Symbol	Bit Name	Function	RW
	(b4-b0)	Reserved bits	Set to 0.	RW
	TZOPL	Timer Z output level latch	 0 : Outputs one-shot pulse "H". Outputs "L" w hen the timer is stopped. 1 : Outputs one-shot pulse "L". Outputs "H" w hen the timer is stopped. 	RW
	INOSTG	INTO pin one-shot trigger control bit ⁽¹⁾	0 : INTO pin one-shot trigger disabled 1 : INTO pin one-shot trigger enabled	RW
	INOSEG	INTO pin one-shot trigger polarity select bit ⁽²⁾	0 : Falling edge trigger 1 : Rising edge trigger	RW
register are se INT0F1 bits in TZS bit in the	et. When settir the INT0F regis TZMR register	ng the INOSTG bit to 1 (INT0 ster. Set the INOSTG bit to 0 is set to 0 (count stops).	register and the INOSEG bit in the PUM pin one-shot trigger enabled), set the INTOF0 to (INTO pin one-shot trigger disabled) after the e INTEN register is set to 0 (one edge).	

Figure 14.21 Registers TZMR and PUM in Programmable Wait One-Shot Generation Mode

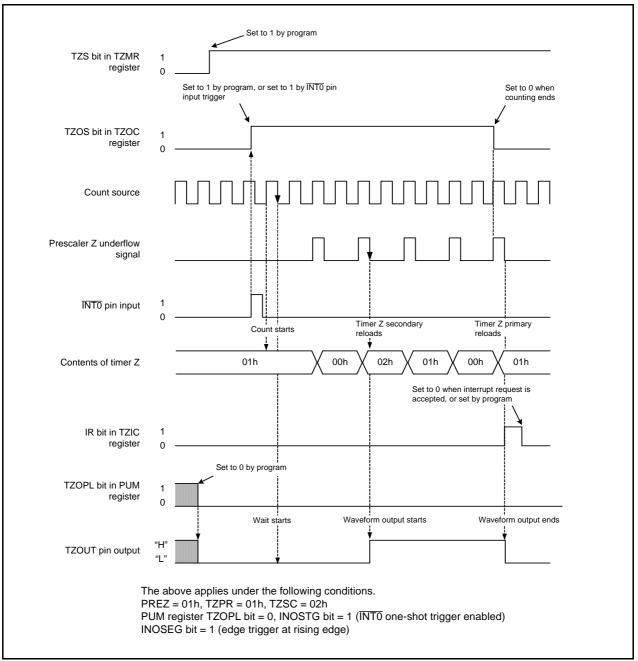


Figure 14.22 Operating Example in Programmable Wait One-Shot Generation Mode

14.2.5 Notes on Timer Z

- Timer Z stops counting after a reset. Set the values in the timer and prescaler before the count starts.
- Even if the prescaler and timer are read out in 16-bit units, these registers are read 1 byte at a time by the MCU. Consequently, the timer value may be updated during the period when these two registers are being read.
- Do not rewrite bits TZMOD0 to TZMOD1, and the TZS bit simultaneously.
- In programmable one-shot generation mode, and programmable wait one-shot generation mode, when setting the TZS bit in the TZMR register to 0 (stops counting) or setting the TZOS bit in the TZOC register to 0 (stops one-shot), the timer reloads the value of the reload register and stops. Therefore, in programmable one-shot generation mode and programmable wait one-shot generation mode read the timer count value before the timer stops.
- The TZS bit in the TZMR register has a function to instruct timer Z to start or stop counting and a function to indicate that the count has started or stopped.

0 (count stops) can be read until the following count source is applied after 1 (count starts) is written to the TZS bit while the count is being stopped. If the following count source is applied, 1 can be read from the TZS bit. After writing 1 to the TZS bit, do not access registers associated with timer Z (registers TZMR, PREZ, TZSC, TZPR, TZOC, PUM, TCSC, and TZIC) except for the TZS bit, until 1 can be read from the TZS bit. The count starts at the following count source after the TZS bit is set to 1.

Also, after writing 0 (count stops) to the TZS bit during the count, timer Z stops counting at the following count source.

1 (count starts) can be read by reading the TZS bit until the count stops after writing 0 to the TZS bit. After writing 0 to the TZS bit, do not access registers associated with timer Z except for the TZS bit, until 0 can be read from the TZS bit.

14.3 Timer C

Timer C is a 16-bit timer. Figure 14.23 shows a Block Diagram of Timer C. Figure 14.24 shows a Block Diagram of CMP Waveform Generation Unit. Figure 14.25 shows a Block Diagram of CMP Waveform Output Unit. Timer C has two modes: input capture mode and output compare mode. Figures 14.26 to 14.29 show the Timer C-associated registers.

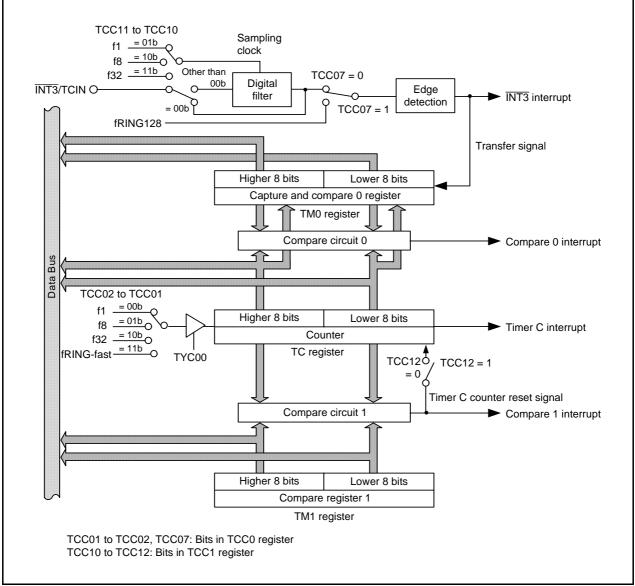


Figure 14.23 Block Diagram of Timer C

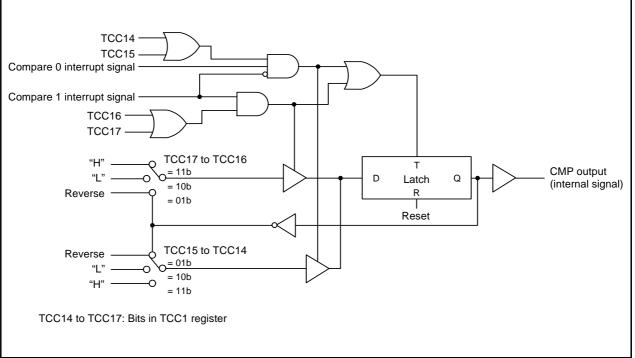


Figure 14.24 **Block Diagram of CMP Waveform Generation Unit**

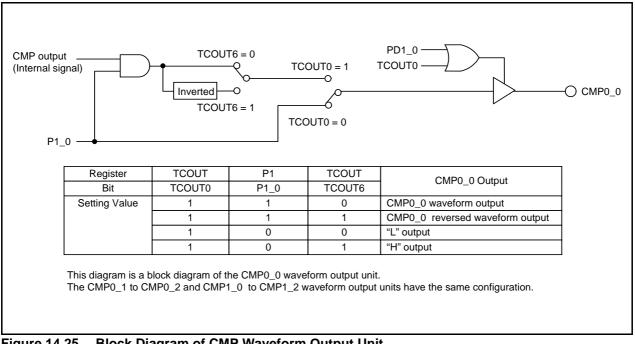
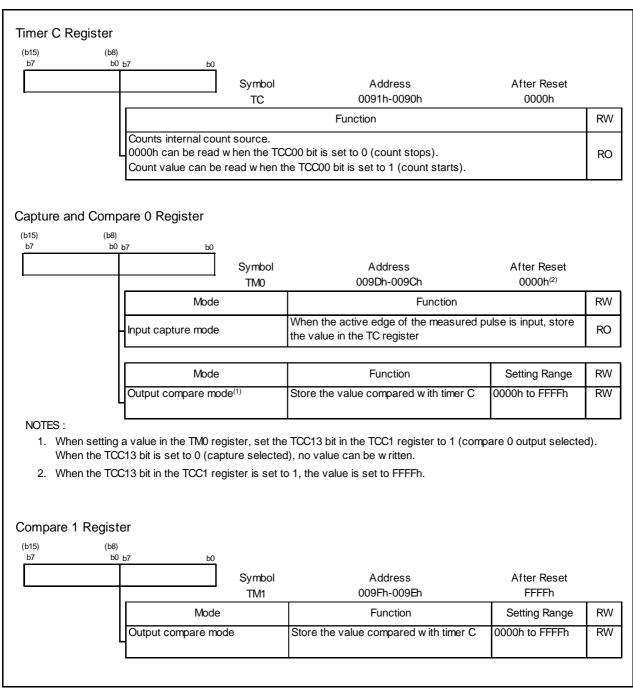
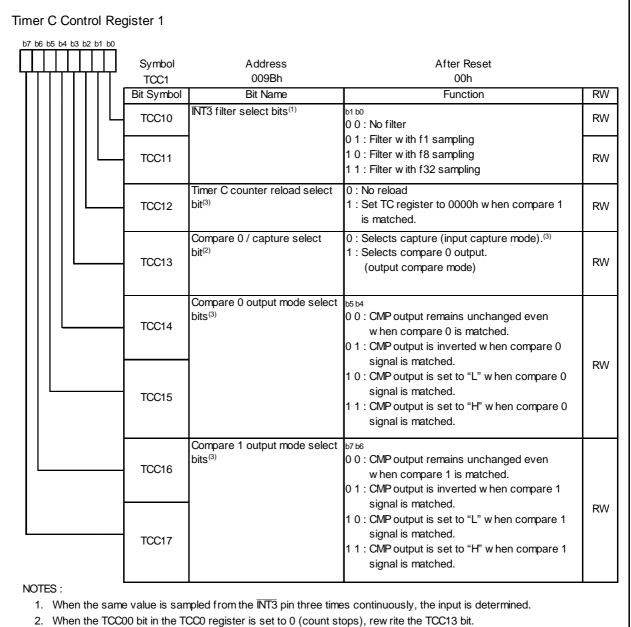



Figure 14.25 Block Diagram of CMP Waveform Output Unit

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Symbol	Address 009Ah	After Reset 00h	
	Bit Symbol	Bit Name	Function	RW
	TCC00	Timer C count start bit	0 : Stops counting. 1 : Starts counting.	RW
	TCC01	Timer C count source select bits ⁽¹⁾	^{b2 b1} 0 0 : f1	RW
	TCC02		0 1 : f8 1 0 : f32 1 1 : fRING-fast	RW
	TCC03	INT3 interrupt / capture polarity select bits ^(1, 2)	b4 b3 0 0 : Rising edge	RW
	TCC04		0 1 : Falling edge 1 0 : Both edges 1 1 : Do not set.	RW
	(b5)	Reserved bit	Set to 0.	RW
	TCC06	INT3 interrupt generation timing select bit ^(2, 3)	 0: INT3 Interrupt is generated in synchronization with timer C count source. 1: INT3 Interrupt is generated when INT3 interrupt is input.⁽⁴⁾ 	RV
	TCC07	INT3 interrupt / capture input sw itch bit ^(1, 2)	0 : INT3 1 : fRING128	RW


1. Change this bit when the TCC00 bit is set to 0 (count stops).

2. The IR bit in the INT3IC register may be set to 1 (requests interrupt) when the TCC03, TCC04, TCC06, or TCC07 bit is rew ritten. Refer to **12.5.5 Changing Interrupt Sources.**

3. When the TCC13 bit is set to 1 (output compare mode) and INT3 interrupt is input, regardless of the setting value of the TCC06 bit, an interrupt request is generated.

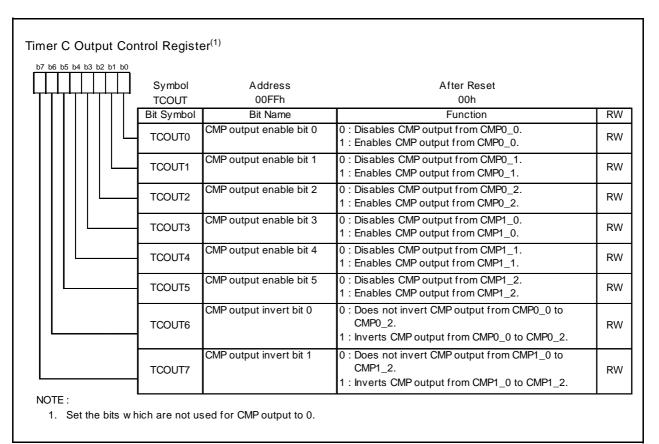

4. When using the INT3 filter, the INT3 interrupt is generated in synchronization with the clock for the digital filter.

Figure 14.27 TCC0 Register

3. When the TCC13 bit is set to 0 (input capture mode), set bits TCC12, and TCC14 to TCC17 to 0.

Figure 14.28 TCC1 Register

14.3.1 Input Capture Mode

In input capture mode, the edge of the TCIN pin input signal or the fRING128 clock is used as a trigger to latch the timer value and generate an interrupt request. The TCIN input contains a digital filter, and this prevents errors caused by noise or the like from occurring. Table 14.11 shows the Input Capture Mode Specifications. Figure 14.30 shows an Operating Example in Input Capture Mode.

Table 14.11	Input Capture Mode Specifications
	input capture incue opeenicatione

Item	Specification
Count sources	f1, f8, f32, fRING-fast
Count operations	 Increment Transfer the value in the TC register to the TM0 register at the active edge of the measured pulse. The value in the TC register is set to 0000h when the count stops.
Count start condition	The TCC00 bit in the TCC0 register is set to 1 (count starts).
Count stop condition	The TCC00 bit in the TCC0 register is set to 0 (count stops).
Interrupt request generation timing	 When the active edge of the measured pulse is input [INT3 interrupt].⁽¹⁾ When timer C overflows [timer C interrupt].
INT3/TCIN pin function	Programmable I/O port or the measured pulse input (INT3 interrupt input)
P1_0 to P1_2, P3_3 to P3_5 pin functions	Programmable I/O port
Counter value reset timing	When the TCC00 bit in the TCC0 register is set to 0 (capture disabled).
Read from timer ⁽²⁾	 The count value can be read out by reading the TC register. The count value at the measured pulse active edge input can be read out by reading the TM0 register.
Write to timer	Write to the TC and TM0 registers is disabled.
Select functions	 INT3/TCIN polarity select function Bits TCC03 to TCC04 can select the active edge of the measured pulse. Digital filter function Bits TCC11 to TCC10 can select the digital filter sampling frequency. Trigger select function The TCC07 bit can select the TCIN input or the fRING128.

NOTES:

1. The INT3 interrupt includes a digital filter delay and one count source (max.) delay.

2. Read registers TC and TM0 in 16-bit unit.

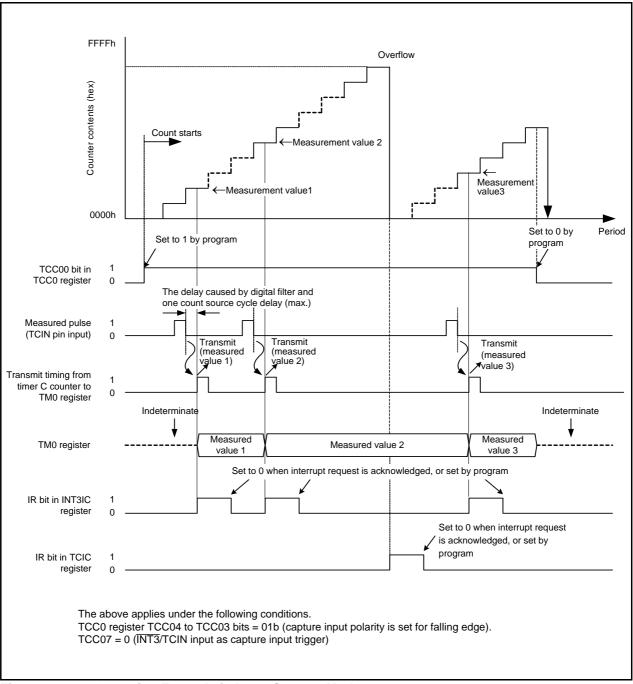


Figure 14.30 Operating Example in Input Capture Mode

14.3.2 Output Compare Mode

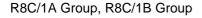

In output compare mode, an interrupt request is generated when the value of the TC register matches the value of the TM0 or TM1 register. Table 14.12 shows the Output Compare Mode Specifications. Figure 14.31 shows an Operating Example in Output Compare Mode.

Table 14.12	Output Compare Mode Specifications
-------------	------------------------------------

Item	Specification
Count sources	f1, f8, f32, fRING-fast
Count operations	Increment
	 The value in the TC register is set to 0000h when the count stops.
Count start condition	The TCC00 bit in the TCC0 register is set to 1 (count starts).
Count stop condition	The TCC00 bit in the TCC0 register is set to 0 (count stops).
Waveform output start	Bits TCOUT0 to TCOUT5 in the TCOUT register are set to 1 (enables CMP
condition	output). ⁽²⁾
Waveform output stop	Bits TCOUT0 to TCOUT5 in the TCOUT register are set to 0 (disables CMP
condition	output).
Interrupt request generation timing	 When a match occurs in compare circuit 0 [compare 0 interrupt]. When a match occurs in compare circuit 1 [compare 1 interrupt]. When time C overflows [timer C interrupt].
INT3/TCIN pin function	Programmable I/O port or INT3 interrupt input
P1_0 to P1_2 pins and P3_3 to P3_5 pins functions	Programmable I/O port or CMP output ⁽¹⁾
Counter value reset timing	When the TCC00 bit in the TCC0 register is set to 0 (count stops).
Read from timer ⁽²⁾	 The value in the compare register can be read out by reading registers TM0 and TM1. The count value can be read out by reading the TC register.
Write to timer ⁽²⁾	 Write to the TC register is disabled. The values written to registers TM0 and TM1 are stored in the compare register in the following timings: When registers TM0 and TM1 are written to, if the TCC00 bit is set to 0 (count stops). When the counter overflows, if the TCC00 bit is set to 1 (during counting) and the TCC12 bit in the TCC1 register is set to 0 (free-run). When the compare 1 matches a counter, if the TCC00 bit is set to 1 and the TCC12 bit is set to 1 (the TC register is set to 0000h at compare 1 match).
Select functions	 Timer C counter reload select function The TCC12 bit in the TCC1 register can select whether the counter value in the TC register is set to 0000h when the compare circuit 1 matches. Bits TCC14 to TCC15 in the TCC1 register can be used to select the output level when compare circuit 0 matches. Bits TCC16 to TCC17 in the TCC1 register can be used to select the output level when compare circuit 1 matches. Bits TCOUT6 to TCOUT7 in the TCOUT register can select whether the output is inverted or not.

NOTES:

- 1. When the corresponding port data is 1, the waveform is output depending on the setting of the registers TCC1 and TCOUT. When the corresponding port data is 0, the fixed level is output (refer to **Figure 14.25 Block Diagram of CMP Waveform Output Unit**).
- 2. Access registers TC, TM0, and TM1 in 16-bit units.

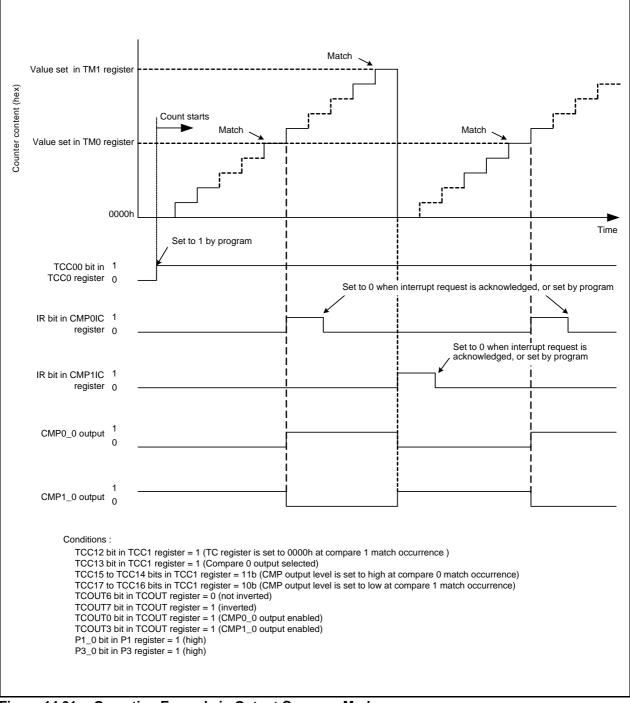


Figure 14.31 Operating Example in Output Compare Mode

14.3.3 Notes on Timer C

Access registers TC, TM0, and TM1 in 16-bit units.

The TC register can be read in 16-bit units. This prevents the timer value from being updated between when the low-order bytes and high-order bytes are being read.

Example of reading timer C: MOV.W 0090H,R0

; Read out timer C

15. Serial Interface

The serial interface consists of two channels (UART0 and UART1). Each UARTi (i = 0 or 1) has an exclusive timer to generate the transfer clock and operates independently.

Figure 15.1 shows a UARTi (i = 0 or 1) Block Diagram. Figure 15.2 shows a UARTi Transmit/Receive Unit.

UART0 has two modes: clock synchronous serial I/O mode and clock asynchronous serial I/O mode (UART mode). UART1 has only clock asynchronous serial I/O mode (UART mode).

Figures 15.3 to 15.6 show the Registers Associated with UARTi.

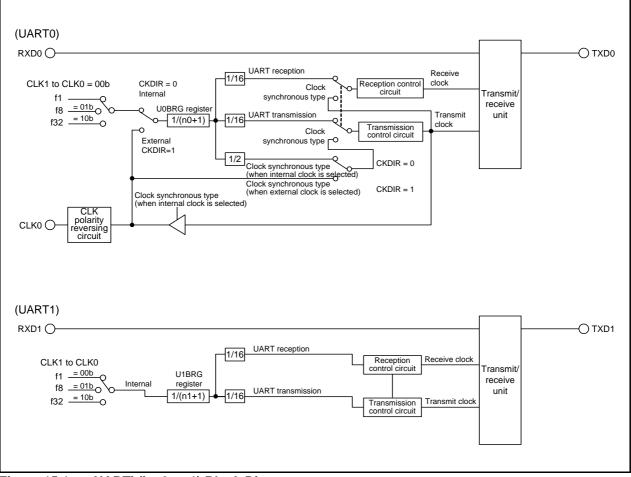


Figure 15.1 UARTi (i = 0 or 1) Block Diagram

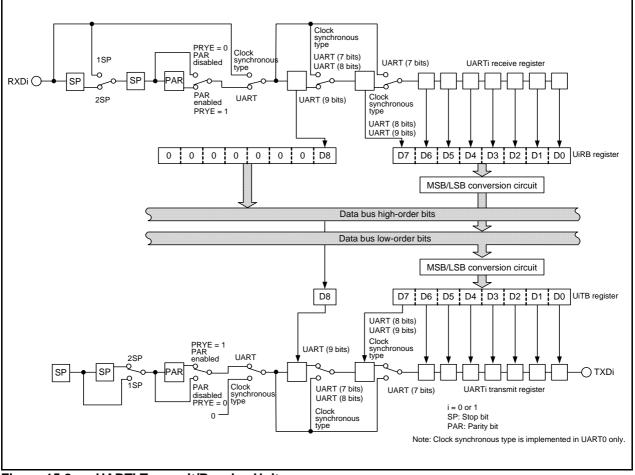
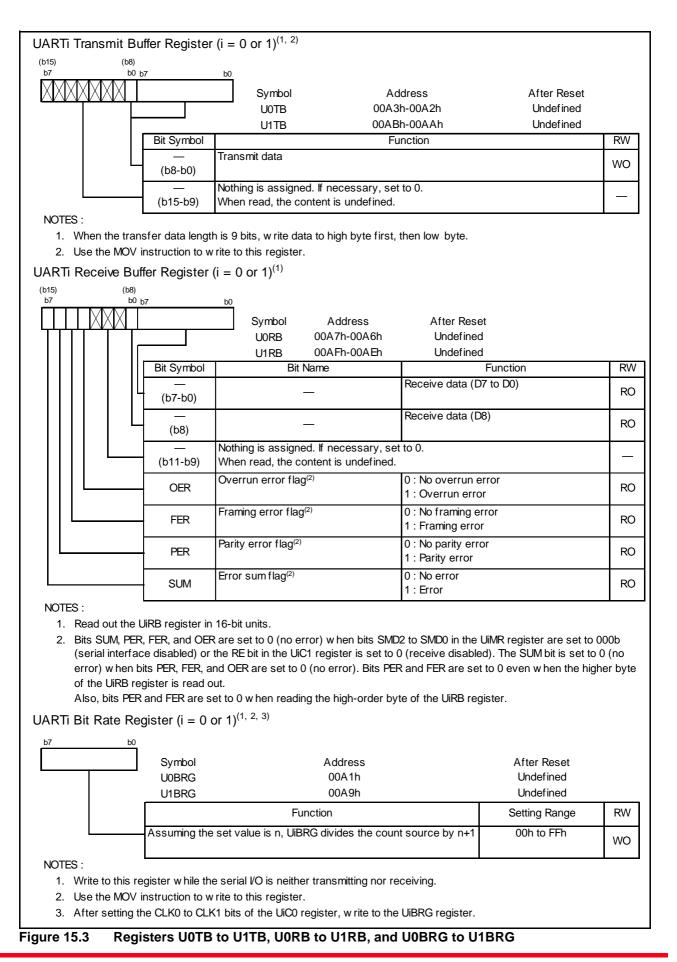



Figure 15.2 UARTi Transmit/Receive Unit

JARTi Transmit / I	Receive Moo	de Register (i = 0 or 1)		
b7 b6 b5 b4 b3 b2 b1 b0	Symbol U0MR U1MR	Address 00A0h 00A8h	After Reset 00h 00h	
	Bit Symbol	Bit Name	Function	RW
	- SMD0	Serial interface mode select bits ⁽²⁾	^{b2 b1 b0} 0 0 0 : Serial interface disabled 0 0 1 : Clock synchronous serial I/O mode	RW
	SMD1		1 0 0 : UART mode transfer data 7 bits long 1 0 1 : UART mode transfer data 8 bits long 1 1 0 : UART mode transfer data 9 bits long	RW
	SMD2		Other than above : Do not set.	RW
	CKDIR	Internal / external clock select $bit^{(3)}$	0 : Internal clock 1 : External clock ⁽¹⁾	RW
	STPS	Stop bit length select bit	0 : 1 stop bit 1 : 2 stop bits	RW
	- PRY	Odd / even parity select bit	Enabled w hen PRYE = 1. 0 : Odd parity 1 : Even parity	RW
	PRYE	Parity enable bit	0 : Parity disabled 1 : Parity enabled	RW
	(b7)	Reserved bit	Set to 0.	RW

NOTES :

- 1. Set the PD1_6 bit in the PD1 register to 0 (input).
- 2. Do not set bits SMD2 to SMD0 in the U1MR register to any values other than 000b, 100b, 101b, and 110b.

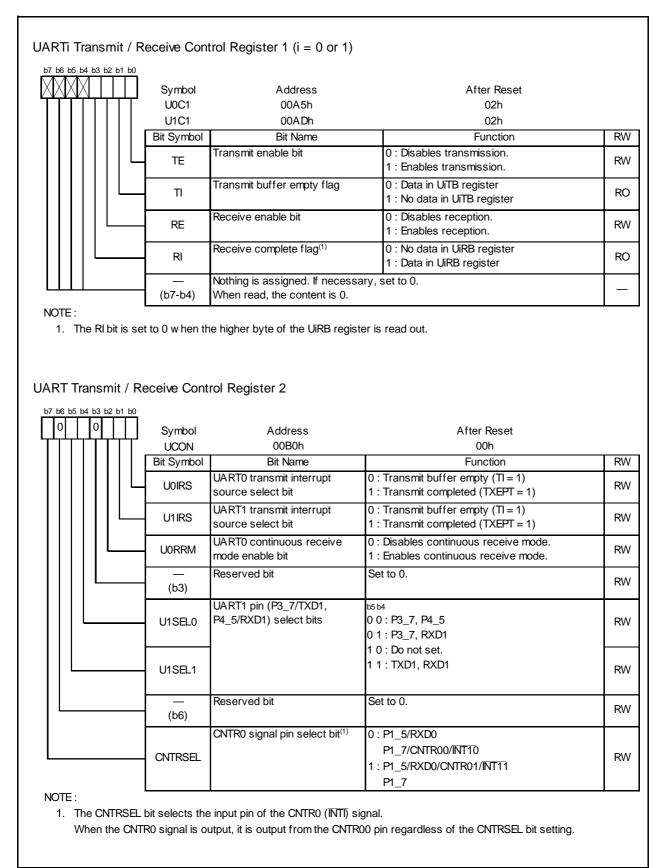

3. Set the CKDIR bit in UART1 to 0 (internal clock).

Figure 15.4 Registers U0MR to U1MR

1

X 0	Symbol	Address	After Reset	
	U0C0	00A4h	08h	
	U1C0	00ACh	08h	
	Bit Symbol	Bit Name	Function	RW
	CLK0	BRG count source select bits ⁽¹⁾	b1 b0 0 0 : Selects f1. 0 1 : Selects f8.	RW
	CLK1		1 0 : Selects f32. 1 1 : Do not set.	RW
	(b2)	Reserved bit	Set to 0.	RW
	TXEPT	Transmit register empty flag	0 : Data in transmit register (during transmit) 1 : No data in transmit register (transmit completed)	RO
	(b4)	Nothing is assigned. If nec When read, the content is	•	-
	NCH	Data output select bit	0 : TXDi pin is for CMOS output. 1 : TXDi pin is for N-channel open drain output.	RW
	CKPOL	CLK polarity select bit	 0 : Transmit data is output at falling edge of transfer clock and receive data is input at rising edge. 1 : Transmit data is output at rising edge of transfer clock and receive data is input at falling edge. 	RW
	UFORM	Transfer format select bit	0 : LSB first 1 : MSB first	RW

Figure 15.5 Registers U0C0 to U1C0

15.1 Clock Synchronous Serial I/O Mode

In clock synchronous serial I/O mode, data is transmitted and received using a transfer clock. Table 15.1 lists the Clock Synchronous Serial I/O Mode Specifications. Table 15.2 lists the Registers Used and Settings in Clock Synchronous Serial I/O Mode(1).

Item	Specification				
Transfer data format	Transfer data length: 8 bits				
Transfer clocks	 CKDIR bit in U0MR register is set to 0 (internal clock): fi/(2(n+1)). fi = f1, f8, f32 n = value set in U0BRG register: 00h to FFh The CKDIR bit is set to 1 (external clock): input from CLK0 pin. 				
Transmit start conditions	 Before transmission starts, the following requirements must be met.⁽¹⁾ The TE bit in the U0C1 register is set to 1 (transmission enabled). The TI bit in the U0C1 register is set to 0 (data in the U0TB register). 				
Receive start conditions	 Before reception starts, the following requirements must be met.⁽¹⁾ The RE bit in the U0C1 register is set to 1 (reception enabled). The TE bit in the U0C1 register is set to 1 (transmission enabled). The TI bit in the U0C1 register is set to 0 (data in the U0TB register). 				
Interrupt request generation timing	 When transmitting, one of the following conditions can be selected. The U0IRS bit is set to 0 (transmit buffer empty): When transferring data from the U0TB register to UART0 transmit register (when transmission starts). The U0IRS bit is set to 1 (transmission completes): When completing data transmission from UARTi transmit register. When receiving When data transfer from the UART0 receive register to the U0RB register (when reception completes). 				
Error detection	• Overrun error ⁽²⁾ This error occurs if the serial interface starts receiving the next data item before reading the U0RB register and receives the 7th bit of the next data.				
Select functions	 CLK polarity selection Transfer data input/output can be selected to occur synchronously with the rising or the falling edge of the transfer clock. LSB first, MSB first selection Whether transmitting or receiving data begins with bit 0 or begins with bit 7 can be selected. Continuous receive mode selection Receive is enabled immediately by reading the U0RB register. 				

 Table 15.1
 Clock Synchronous Serial I/O Mode Specifications

NOTES:

1. If an external clock is selected, ensure that the external clock is "H" when the CKPOL bit in the U0C0 register is set to 0 (transmit data output at falling edge and receive data input at rising edge of transfer clock), and that the external clock is "L" when the CKPOL bit is set to 1 (transmit data output at rising edge and receive data input at falling edge of transfer clock).

2. If an overrun error occurs, the value of the U0RB register will be undefined. The IR bit in the S0RIC register remains unchanged.

Register	Bit	Function					
U0TB	0 to 7	Set data transmission.					
U0RB	0 to 7	Data reception can be read.					
	OER	Overrun error flag					
U0BRG	0 to 7	Set bit rate.					
U0MR	SMD2 to SMD0	Set to 001b.					
	CKDIR	Select the internal clock or external clock.					
U0C0	CLK1 to CLK0	Select the count source in the U0BRG register.					
	TXEPT	Transmit register empty flag					
	NCH Select TXD0 pin output mode.						
	CKPOL	CKPOL Select the transfer clock polarity.					
	UFORM	Select the LSB first or MSB first.					
U0C1	TE	Set this bit to 1 to enable transmission/reception.					
	TI	Transmit buffer empty flag					
	RE	Set this bit to 1 to enable reception.					
	RI	Reception complete flag					
UCON	U0IRS	Select the UART0 transmit interrupt source.					
	UORRM	Set this bit to 1 to use continuous receive mode.					
	CNTRSEL	Set this bit to 1 to select P1_5/RXD0/CNTR01/INT11.					

Table 15.2	Registers Used and Settings in Clock Synchronous Serial I/O Mode ⁽¹⁾
	Registere eeea and eetange in ereek eynemenede eena ive medet

NOTE:

1. Set bits which are not in this table to 0 when writing to the above registers in clock synchronous serial I/O mode.

Table 15.3 lists the I/O Pin Functions in Clock Synchronous Serial I/O Mode. The TXD0 pin outputs "H" level between the operating mode selection of UART0 and transfer start. (If the NCH bit is set to 1 (N-channel opendrain output), this pin is in a high-impedance state.)

Pin Name	Function	Selection Method		
TXD0 (P1_4)	Output serial data	(Outputs dummy data when performing reception only.)		
RXD0 (P1_5)	Input serial data	PD1_5 bit in PD1 register = 0		
		(P1_5 can be used as an input port when performing		
		transmission only.)		
CLK0 (P1_6)	Output transfer clock	CKDIR bit in U0MR register = 0		
	Input transfer clock	CKDIR bit in U0MR register = 1		
		PD1_6 bit in PD1 register = 0		

 Table 15.3
 I/O Pin Functions in Clock Synchronous Serial I/O Mode

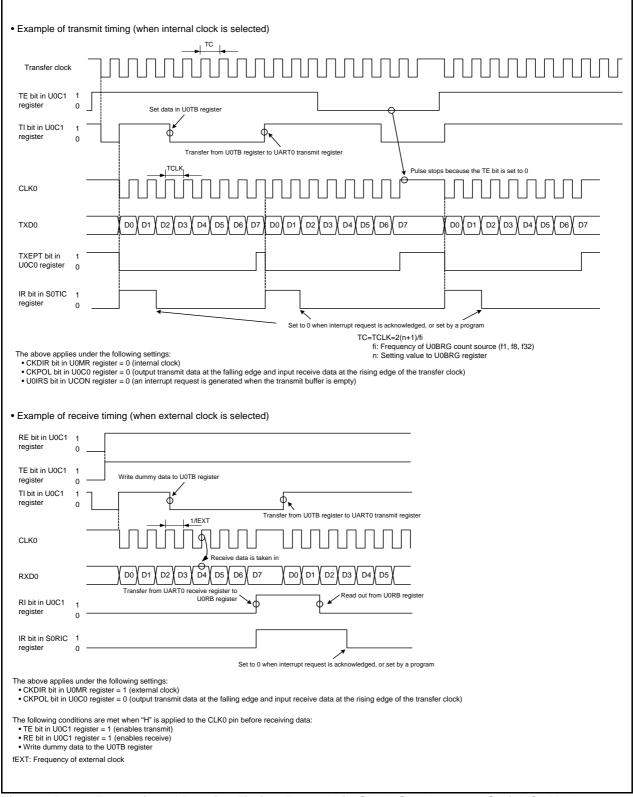
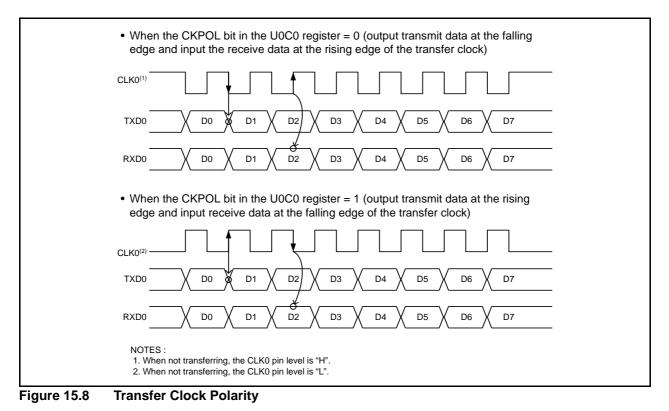



Figure 15.7 Transmit and Receive Timing Example in Clock Synchronous Serial I/O Mode

15.1.1 Polarity Select Function

Figure 15.8 shows the Transfer Clock Polarity. Use the CKPOL bit in the U0C0 register to select the transfer clock polarity.

15.1.2 LSB First/MSB First Select Function

Figure 15.9 shows the Transfer Format. Use the UFORM bit in the U0C0 register to select the transfer format.

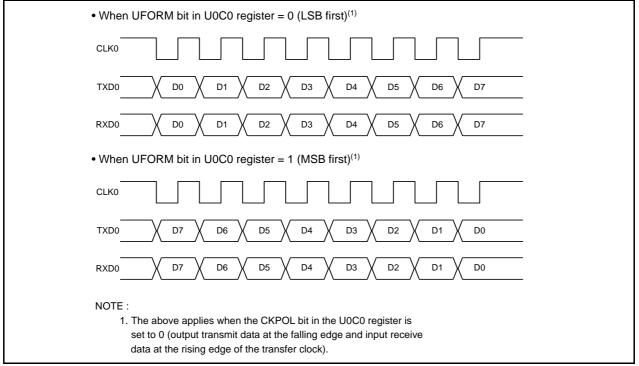


Figure 15.9 Transfer Format

15.1.3 Continuous Receive Mode

Continuous receive mode is selected by setting the U0RRM bit in the UCON register to 1 (enables continuous receive mode). In this mode, reading the U0RB register sets the TI bit in the U0C1 register to 0 (data in the U0TB register). When the U0RRM bit is set to 1, do not write dummy data to the U0TB register by a program.

15.2 Clock Asynchronous Serial I/O (UART) Mode

The UART mode allows data transmission and reception after setting the desired bit rate and transfer data format. Table 15.4 lists the UART Mode Specifications. Table 15.5 lists the Registers Used and Settings for UART Mode.

Item	Specification
Transfer data format	Character bit (transfer data): Selectable among 7, 8 or 9 bits
	Start bit: 1 bit
	Parity bit: Selectable among odd, even, or none
	Stop bit: Selectable among 1 or 2 bits
Transfer clocks	• CKDIR bit in UiMR register is set to 0 (internal clock): fj/(16(n+1))
	fj = f1, f8, f32 n = value set in UiBRG register: 00h to FFh
	• CKDIR bit is set to 1 (external clock): fEXT/(16(n+1))
	fEXT: input from CLKi pin n=setting value in UiBRG register: 00h to FFh
Transmit start conditions	• Before transmission starts, the following are required.
	- TE bit in UiC1 register is set to 1 (transmission enabled).
	- TI bit in UiC1 register is set to 0 (data in UiTB register).
Receive start conditions	Before reception starts, the following are required.
	- RE bit in UiC1 register is set to 1 (reception enabled).
	- Start bit detected
Interrupt request	• When transmitting, one of the following conditions can be selected.
generation timing	- UiIRS bit is set to 0 (transmit buffer empty):
	When transferring data from the UiTB register to UARTi transmit register
	(when transmit starts).
	- UiIRS bit is set to 1 (transfer ends):
	When serial interface completes transmitting data from the UARTi
	transmit register.
	When receiving
	When transferring data from the UARTi receive register to UiRB register
	(when receive ends).
Error detection	• Overrun error ⁽¹⁾
	This error occurs if the serial interface starts receiving the next data item
	before reading the UiRB register and receives the bit preceding the final
	stop bit of the next data item.
	• Framing error
	This error occurs when the set number of stop bits is not detected.
	Parity error
	This error occurs when parity is enabled, and the number of 1's in parity
	and character bits do not match the number of 1's set.
	• Error sum flag
	This flag is set is set to 1 when an overrun, framing, or parity error is
	generated.

 Table 15.4
 UART Mode Specifications

i = 0 to 1

NOTE:

1. If an overrun error occurs, the contents of the UiRB register will be undefined. The IR bit in the SiRIC register remains unchanged.

Register	Bit	Function					
UiTB	0 to 8	Set transmit data. ⁽¹⁾					
UiRB	0 to 8	Receive data can be read. ⁽¹⁾					
	OER,FER,PER,SUM	Error flag					
UiBRG	0 to 7	Set a bit rate.					
UiMR	SMD2 to SMD0	Set to 100b when transfer data is 7 bits long.					
		Set to 101b when transfer data is 8 bits long.					
		Set to 110b when transfer data is 9 bits long.					
	CKDIR	Select the internal clock or external clock. ⁽²⁾					
	STPS	Select the stop bit.					
	PRY, PRYE	Select whether parity is included and whether odd or even.					
UiC0	CLK0, CLK1	Select the count source for the UiBRG register.					
	TXEPT	Transmit register empty flag					
	NCH	Select TXDi pin output mode.					
	CKPOL	Set to 0.					
	UFORM	LSB first or MSB first can be selected when transfer data is 8 bits					
		long. Set to 0 when transfer data is 7 or 9 bits long.					
UiC1	TE	Set to 1 to enable transmit.					
	TI	Transmit buffer empty flag					
	RE	Set to 1 to enable receive.					
	RI	Receive complete flag					
UCON	U0IRS, U1IRS	Select the source of UART0 transmit interrupt.					
	U0RRM	Set to 0.					
	CNTRSEL	Set to 1 to select P1_5/RXD0/CNTR01/INT11.					

NOTES:

1. The bits used for transmit/receive data are as follows: Bits 0 to 6 when transfer data is 7 bits long; bits 0 to 7 when transfer data is 8 bits long; bits 0 to 8 when transfer data is 9 bits long.

2. An external clock can be selected in UART0 only.

Table 15.6 lists the I/O Pin Functions in Clock Asynchronous Serial I/O Mode. The TXDi pin outputs "H" level between the operating mode selection of UARTi (i = 0 or 1) and transfer start. (If the NCH bit is set to 1 (N-channel open-drain output), this pin is in a high-impedance state.)

Table 15.6	I/O Pin Functions in Clock Asynchronous Serial I/O Mode
------------	---

Pin name	Function	Selection Method				
TXD0(P1_4)	Output serial data	(Cannot be used as a port when performing reception only.)				
RXD0(P1_5)	Input serial data	PD1_5 bit in PD1 register = 0				
		(P1_5 can be used as an input port when performing				
		transmission only.)				
CLK0(P1_6)	Programmable I/O Port	CKDIR bit in U0MR register = 0				
	Input transfer clock	CKDIR bit in U0MR register = 1				
		PD1_6 bit in PD1 register = 0				
TXD1(P3_7)	Output serial data	Bits U1SEL1 to U1SEL0 in UCON register = 11b (P3_7 can be				
		used as a port when bits U1SEL1 to U1SEL0 = 01b and				
		performing reception only.)				
RXD1(P4_5)	Input serial data	PD4_5 bit in PD4 register = 0				
		Bits U1SEL1 to U1SEL0 in UCON register = 01b or 11b				
		(Cannot be used as a port when performing transmission only.)				

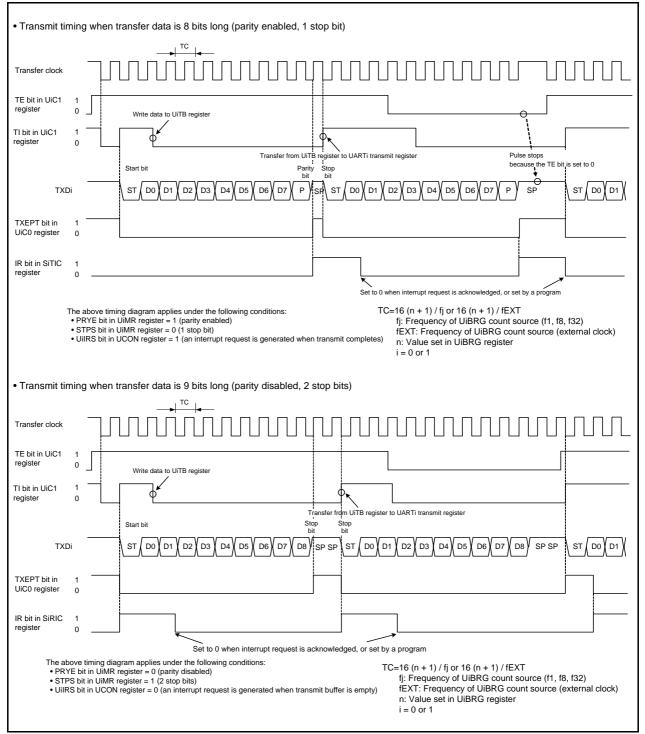


Figure 15.10 Transmit Timing in UART Mode

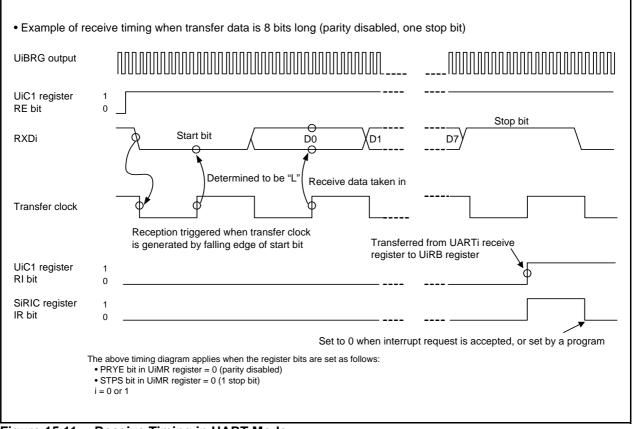


Figure 15.11 Receive Timing in UART Mode


15.2.1 CNTR0 Pin Select Function

The CNTRSEL bit in the UCON register selects whether P1_7 is used as the CNTR00/INT10 input pin or P1_5 is used as the CNTR01/INT11 input pin.

When the CNTRSEL bit is set to 0, $P1_7$ is used as the CNTR00/INT10 pin and when the CNTRSEL bit is set to 1, $P1_5$ is used as the CNTR01/INT11 pin.

15.2.2 Bit Rate

In UART mode, the bit rate is the frequency divided by the UiBRG (i = 0 or 1) register.

Table 15.7	Bit Rate Setting Example in UART Mode (Internal Clock Selected)
------------	---

Bit Rate BRG		System Clock = 20 MHz			System Clock = 8 MHz		
(bps)	Count	UiBRG	Actual Time	Error (%)	UiBRG	Actual	Error (%)
(bps)	Source	Setting Value	(bps)		Setting Value	Time (bps)	
1200	f8	129(81h)	1201.92	0.16	51(33h)	1201.92	0.16
2400	f8	64(40h)	2403.85	0.16	25(19h)	2403.85	0.16
4800	f8	32(20h)	4734.85	-1.36	12(0Ch)	4807.69	0.16
9600	f1	129(81h)	9615.38	0.16	51(33h)	9615.38	0.16
14400	f1	86(56h)	14367.82	-0.22	34(22h)	14285.71	-0.79
19200	f1	64(40h)	19230.77	0.16	25(19h)	19230.77	0.16
28800	f1	42(2Ah)	29069.77	0.94	16(10h)	29411.76	2.12
31250	f1	39(27h)	31250.00	0.00	15(0Fh)	31250.00	0.00
38400	f1	32(20h)	37878.79	-1.36	12(0Ch)	38461.54	0.16
51200	f1	23(17h)	52083.33	1.73	9(09h)	50000.00	-2.34

i = 0 or 1

15.3 Notes on Serial Interface

• When reading data from the U0RB register either in the clock asynchronous serial I/O mode or in the clock synchronous serial I/O mode. Ensure the data is read in 16-bit units. When the high-order byte of the U0RB register is read, bits PER and FER in the U0RB register and the RI bit in the U0C1 register are set to 0.

Example (when reading receive buffer register): MOV.W 00A6H,R0 ; Read the U0RB register

• When writing data to the U0TB register in the clock asynchronous serial I/O mode with 9-bit transfer data length, write data to the high-order byte first then the low-order byte, in 8-bit units.

Example (when reading transmit buffer register):

MOV.B	#XXH,00A3H	; Write the high-order byte of U0TB register
MOV.B	#XXH,00A2H	; Write the low-order byte of U0TB register

16. Clock Synchronous Serial Interface

The clock synchronous serial interface is configured as follows.

Clock synchronous serial interface	
Clock synchronous serial I/O with chip select (SSU)	Clock synchronous communication mode
	4-wire bus communication mode
I ² C bus Interface	I ² C bus interface mode
	Clock synchronous serial mode

The clock synchronous serial interface uses the registers at addresses 00B8h to 00BFh. Registers, bits, symbols, and functions vary even for the same addresses depending on the mode. Refer to the register diagrams of each function for details.

Also, the differences between clock synchronous communication mode and clock synchronous serial mode are the options of the transfer clock, clock output format, and data output format.

16.1 Mode Selection

The clock synchronous serial interface has four modes.

Table 16.11ists the Mode Selections. Refer to **16.2 Clock Synchronous Serial I/O with Chip Select (SSU)** and the sections that follow for details of each mode.

Table 16.1Mode Selection

IICSEL Bit in PMR Register	Bit 7 in 00B8h (ICE Bit in ICCR1 Register)	Bit 0 in 00BDh (SSUMS Bit in SSMR2 Register, FS Bit in SAR Register)	Function	Mode
0	0	0	Clock synchronous serial I/O with chip	Clock synchronous communication mode
0	0	1	select	4-wire bus communication mode
1	1	0	I ² C bus interface	I ² C bus interface mode
1	1	1		Clock synchronous serial mode

16.2 Clock Synchronous Serial I/O with Chip Select (SSU)

Clock synchronous serial I/O with chip select supports clock synchronous serial data communication. Table 16.2 shows a Clock Synchronous Serial I/O with Chip Select Specifications and Figure 16.1 shows a Block Diagram of Clock Synchronous Serial I/O with Chip Select. Figures 16.2 to 16.9 show Clock Synchronous Serial I/O with Chip Select Associated Registers.

Item	Specification
Transfer data format	 Transfer data length: 8 bits Continuous transmission and reception of serial data are supported since both transmitter and receiver have buffer structures.
Operating mode	 Clock synchronous communication mode 4-wire bus communication mode (including bidirectional communication)
Master / slave device	Selectable
I/O pins	SSCK (I/O): Clock I/O pin SSI (I/O): Data I/O pin SSO (I/O): Data I/O pin SCS (I/O): Chip-select I/O pin
Transfer clock	 When the MSS bit in the SSCRH register is set to 0 (operates as slave device), external clock is selected (input from SSCK pin). When the MSS bit in the SSCRH register is set to 1 (operates as master device), internal clock (selectable among f1/256, f1/128, f1/64, f1/32, f1/16, f1/8 and f1/4, output from SSCK pin) is selected. Clock polarity and phase of SSCK can be selected.
Receive error detection	 Overrun error Overrun error occurs during reception and completes in error. While the RDRF bit in the SSSR register is set to 1 (data in the SSRDR register) and when the next serial data receive is completed, the ORER bit is set to 1.
Multimaster error detection	 Conflict error When the SSUMS bit in the SSMR2 register is set to 1 (4-wire bus communication mode) and the MSS bit in the SSCRH register is set to 1 (operates as master device) and when starting a serial communication, the CE bit in the SSSR register is set to 1 if "L" applies to the SCS pin input. When the SSUMS bit in the SSMR2 register is set to 1 (4-wire bus communication mode), the MSS bit in the SSCRH register is set to 0 (operates as slave device) and the SCS pin input changes state from "L" to "H", the CE bit in the SSSR register is set to 1.
Interrupt requests	5 interrupt requests (transmit-end, transmit-data-empty, receive-data-full, overrun error, and conflict error). ⁽¹⁾
Select functions	 Data transfer direction Selects MSB-first or LSB-first. SSCK clock polarity Selects "L" or "H" level when clock stops. SSCK clock phase Selects edge of data change and data download.

Table 16.2 Clock Synchronous Serial I/O with Chip Select Specifications

NOTE:

1. Clock synchronous serial I/O with chip select has only one interrupt vector table.

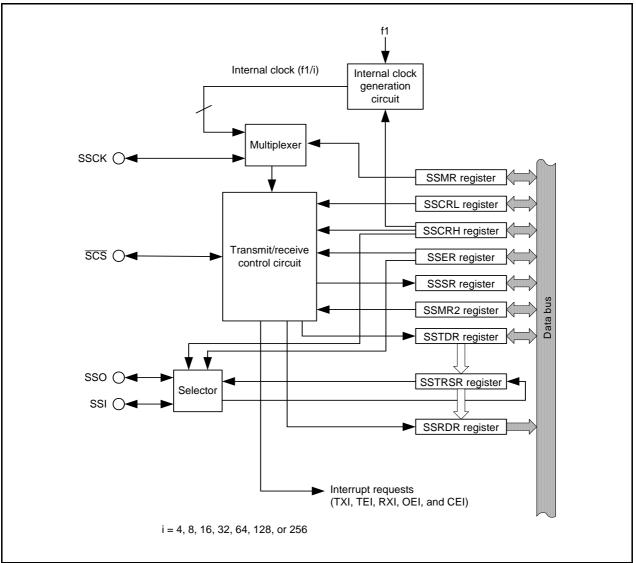
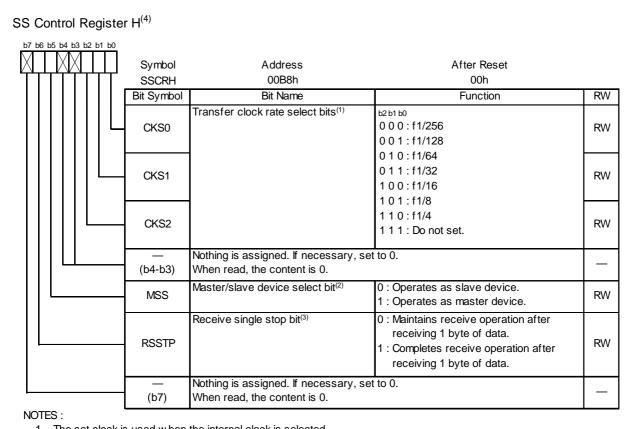
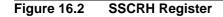
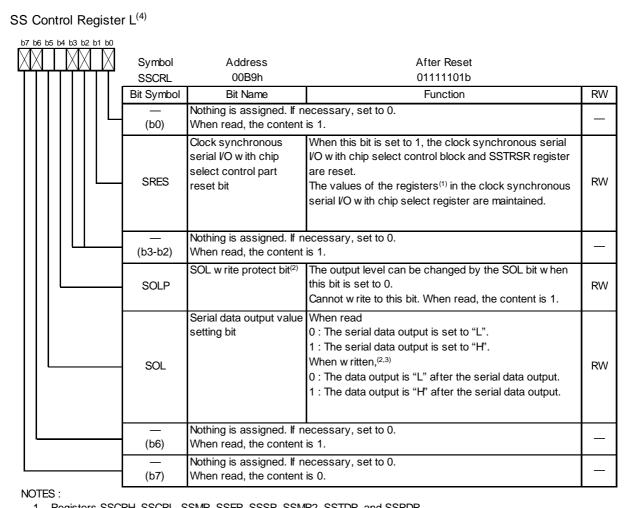



Figure 16.1 Block Diagram of Clock Synchronous Serial I/O with Chip Select

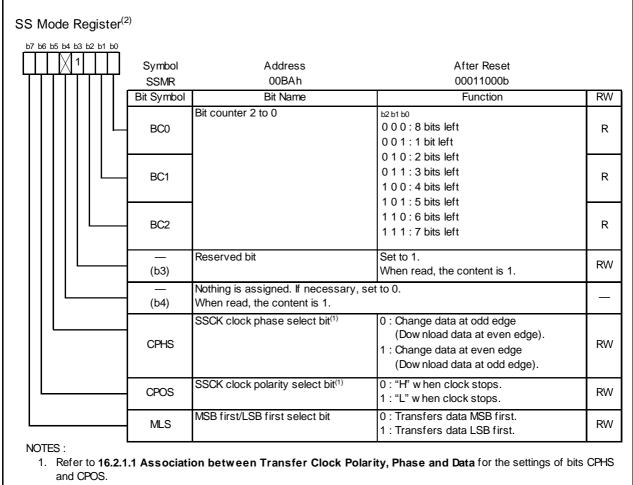



1. The set clock is used when the internal clock is selected.

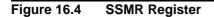
2. The SSCK pin functions as the transfer clock output pin when the MSS bit is set to 1 (operates as master device). The MSS bit is set to 0 (operates as slave device) when the CE bit in the SSSR register is set to 1 (conflict error occurs).

3. The RSSTP bit is disabled when the MSS bit is set to 0 (operates as slave device).

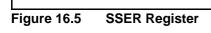
Refer to 16.2.8.1 Accessing Registers Associated with Clock Synchronous Serial I/O with Chip Select for 4. more information.


1. Registers SSCRH, SSCRL, SSMR, SSER, SSSR, SSMR2, SSTDR, and SSRDR.

2. The data output after serial data is output can be changed by writing to the SOL bit before or after transfer. When w riting to the SOL bit, set the SOLP bit to 0 and then w rite to bits SOLP and SOL by the MOV instruction.


3. Do not write to the SOL bit during data transfer.

4. Refer to 16.2.8.1 Accessing Registers Associated with Clock Synchronous Serial I/O with Chip Select for more information.


Figure 16.3 SSCRL Register

2. Refer to 16.2.8.1 Accessing Registers Associated with Clock Synchronous Serial I/O with Chip Select for more information.

Щ		Symbol SSER	Address 00BBh	After Reset 00h	
		Bit Symbol	Bit Name	Function	RV
	L	CEIE	Conflict error interrupt enable bit	0 : Disables conflict error interrupt request. 1 : Enables conflict error interrupt request.	RV
		(b2-b1)	Nothing is assigned. If necessary When read, the content is 0.	/, set to 0.	-
		RE	Receive enable bit	0 : Disables receive. 1 : Enables receive.	RV
		TE	Transmit enable bit	0 : Disables transmit. 1 : Enables transmit.	RV
		- RIE	Receive interrupt enable bit	 0 : Disables receive data full and overrun error interrupt request. 1 : Enables receive data full and overrun error interrupt request. 	RV
		TEIE	Transmit end interrupt enable bit	0 : Disables transmit end interrupt request. 1 : Enables transmit end interrupt request.	RV
		TIE	Transmit interrupt enable bit	 0 : Disables transmit data empty interrupt request. 1 : Enables transmit data empty interrupt request. 	RV

	b6 b5 b4 b3 b2 b1 b0	Symbol SSSR	Address 00BCh	After Reset 00h	
		Bit Symbol	Bit Name	Function	RW
		CE	Conflict error flag ⁽¹⁾	0 : No conflict errors generated 1 : Conflict errors generated ⁽²⁾	RW
		(b1)	Nothing is assigned. If nece When read, the content is 0	•	_
		ORER	Overrun error flag ⁽¹⁾	0 : No overrun errors generated 1 : Overrun errors generated ⁽³⁾	RW
		 (b4-b3)	Nothing is assigned. If necessary, set to 0. When read, the content is 0.		_
			Receive data register full	0 : No data in SSRDR register 1 : Data in SSRDR register	RW
			Transmit end ^(1, 5)	 0 : The TDRE bit is set to 0 w hen transmitting the last bit of transmit data. 1 : The TDRE bit is set to 1 w hen transmitting the last bit of transmit data. 	RW
		TDRE	Transmit data empty ^(1, 5, 6)	 0 : Data is not transferred from registers SSTDR to SSTRSR. 1 : Data is transferred from registers SSTDR to SSTRSR. 	RW
1	 When the serial communication to 1 if "L" is ap communication 	al communicat mode) and th plied to the S0 mode), the M	ion is started w hile the SSU ne MSS bit in the SSCRH regi CS pin input. When the SSUN	I. To set any of these bits to 0, first read 1 then write 0 MS bit in the SSMR2 register is set to 1 (four-wire bus ster is set to 1 (operates as master device), the CE bit IS bit in the SSMR2 register is set to 1 (four-wire bus is set to 0 (operates as slave device) and the SCS pin	is set

- 3. Indicates when overrun errors occur and receive completes by error reception. If the next serial data receive operation is completed while the RDRF bit is set to 1 (data in the SSRDR register), the ORER bit is set to 1. After the ORER bit is set to 1 (overrun error), transmit and receive operations are disabled while the bit remains 1.
- 4. The RDRF bit is set to 0 w hen reading out the data from the SSRDR register.
- 5. Bits TEND and TDRE are set to 0 when writing data to the SSTDR register.
- 6. The TDRE bit is set to 1 when the TE bit in the SSER register is set to 1 (transmit enabled).
- 7. Refer to 16.2.8.1 Accessing Registers Associated with Clock Synchronous Serial I/O with Chip Select for more information.

Figure 16.6 SSSR Register

b7 b6 b	5 b4 b3 b2 b	o1 b0				
			Symbol	Address	After Reset	
			SSMR2	00BDh	00h	
			Bit Symbol	Bit Name	Function	R
			SSUMS	Clock synchronous serial I/O w ith chip select mode select bit ⁽¹⁾	0 : Clock synchronous communication mode 1 : Four-w ire bus communication mode	R
			CSOS	SCS pin open drain output select bit	0 : CMOS output 1 : NMOS open drain output	R
			SOOS	Serial data open drain output select bit ⁽¹⁾	0 : CMOS output 1 : NMOS open drain output	R
		[SCKOS	SSCK pin open drain output select bit	0 : CMOS output 1 : NMOS open drain output	R
			CSS0	SCS pin select bits ⁽²⁾	^{b5 b4} 0 0 : Functions as port. 0 1 : Functions as SCS input pin.	R
			CSS1		1 0 : Functions as SCS output pin. ⁽³⁾ 1 1 : Functions as SCS output pin. ⁽³⁾	R
			SCKS	SSCK pin select bit	0 : Functions as port. 1 : Functions as serial clock pin.	R
			BIDE	Bidirectional mode enable bit ^(1, 4)	 0 : Standard mode (communication using 2 pins of data input and data output) 1 : Bidirectional mode (communication using 1 pin of data input and data output) 	R

2. The SCS pin functions as a port, regardless of the values of bits CSS0 and CSS1 when the SSUMS bit is set to 0 (clock synchronous communication mode).

3. This bit functions as the SCS input pin before starting transfer.

4. The BIDE bit is disabled when the SSUMS bit is set to 0 (clock synchronous communication mode).

5. Refer to 16.2.8.1 Accessing Registers Associated with Clock Synchronous Serial I/O with Chip Select for more information.



Figure 16.8 Registers SSTDR and SSRDR

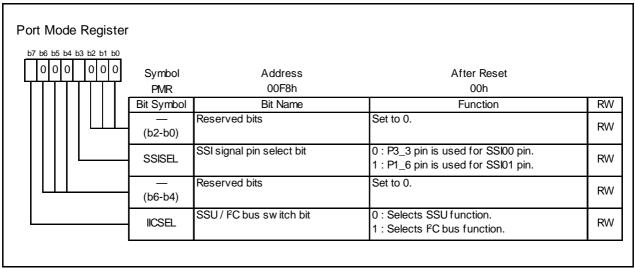


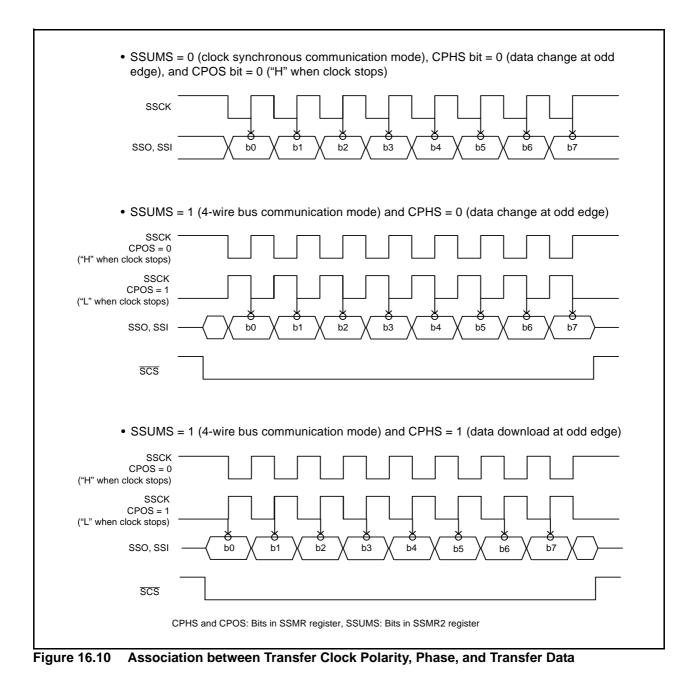
Figure 16.9 PMR Register

16.2.1 Transfer Clock

The transfer clock can be selected among seven internal clocks (f1/256, f1/128, f1/64, f1/32, f1/16, f1/8, and f1/4) and an external clock.

When using clock synchronous serial I/O with chip select, set the SCKS bit in the SSMR2 register to 1 and select the SSCK pin as the serial clock pin.

When the MSS bit in the SSCRH register is set to 1 (operates as master device), an internal clock can be selected and the SSCK pin functions as output. When transfer is started, the SSCK pin outputs clocks of the transfer rate selected by bits CKS0 to CKS2 in the SSCRH register.


When the MSS bit in the SSCRH register is set to 0 (operates as slave device), an external clock can be selected and the SSCK pin functions as input.

16.2.1.1 Association between Transfer Clock Polarity, Phase, and Data

The association between the transfer clock polarity, phase and data changes according to the combination of the SSUMS bit in the SSMR2 register and bits CPHS and CPOS in the SSMR register.

Figure 16.10 shows the Association between Transfer Clock Polarity, Phase, and Transfer Data.

Also, the MSB-first transfer or LSB-first transfer can be selected by setting the MLS bit in the SSMR register. When the MLS bit is set to 1, transfer is started from the LSB and proceeds to the MSB. When the MLS bit is set to 0, transfer is started from the MSB and proceeds to the LSB.

16.2.2 SS Shift Register (SSTRSR)

The SSTRSR register is a shift register for transmitting and receiving serial data.

When transmit data is transferred from the SSTDR register to the SSTRSR register and the MLS bit in the SSMR register is set to 0 (MSB-first), the bit 0 in the SSTDR register is transferred to bit 0 in the SSTRSR register. When the MLS bit is set to 1 (LSB-first), bit 7 in the SSTDR register is transferred to bit 0 in the SSTRSR register.

16.2.2.1 Association between Data I/O Pins and SS Shift Register

The connection between the data I/O pins and SSTRSR register (SS shift register) changes according to a combination of the MSS bit in the SSCRH register and the SSUMS bit in the SSMR2 register. The connection also changes according to the BIDE bit in the SSMR2 register.

Figure 16.11 shows the Association between Data I/O Pins and SSTRSR Register.

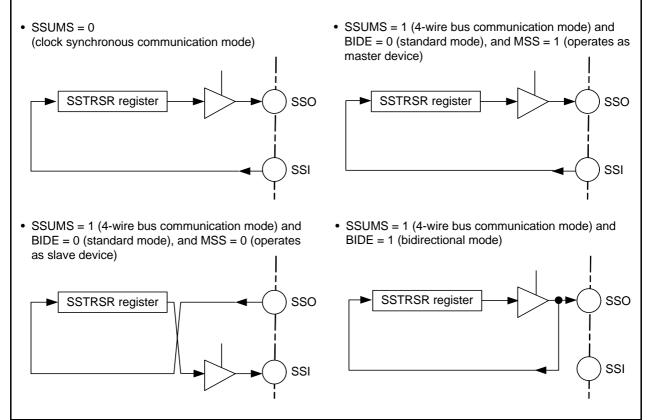


Figure 16.11 Association between Data I/O Pins and SSTRSR Register

16.2.3 Interrupt Requests

Clock synchronous serial I/O with chip select has five interrupt requests: transmit data empty, transmit end, receive data full, overrun error, and conflict error. Since these interrupt requests are assigned to the clock synchronous serial I/O with chip select interrupt vector table, determining interrupt sources by flags is required. Table 16.3 shows the Clock Synchronous Serial I/O with Chip Select Interrupt Requests.

Table 16.3	Clock Synchronous Serial I/O with Chip Select Interrupt Requests
------------	--

Interrupt Request	Abbreviation	Generation Condition
Transmit data empty	TXI	TIE = 1, TDRE = 1
Transmit end	TEI	TEIE = 1, TEND = 1
Receive data full	RXI	RIE = 1, RDRF = 1
Overrun error	OEI	RIE = 1, ORER = 1
Conflict error	CEI	CEIE = 1, CE = 1

CEIE, RIE, TEIE, and TIE: Bits in SSER register

ORER, RDRF, TEND, and TDRE: Bits in SSSR register

If the generation conditions in Table 16.3 are met, a clock synchronous serial I/O with chip select interrupt request is generated. Set each interrupt source to 0 by a clock synchronous serial I/O with chip select interrupt routine.

However, the TDRE and TEND bits are automatically set to 0 by writing transmit data to the SSTDR register and the RDRF bit is automatically set to 0 by reading the SSRDR register. In particular, the TDRE bit is set to 1 (data transmitted from registers SSTDR to SSTRSR) at the same time transmit data is written to the SSTDR register. Setting the TDRE bit to 0 (data not transmitted from registers SSTDR to SSTRSR) can cause an additional byte of data to be transmitted.

16.2.4 Communication Modes and Pin Functions

Clock synchronous serial I/O with chip select switches the functions of the I/O pins in each communication mode according to the setting of the MSS bit in the SSCRH register and bits RE and TE in the SSER register. Table 16.4 shows the Association between Communication Modes and I/O Pins.

Table 16.4	Association between Communication Modes and I/O Pins
	Association between communication modes and to 1 ms

Communication Mode			Bit Setting				Pin State		
Communication mode	SSUMS	BIDE	MSS	TE	RE	SSI	SSO	SSCK	
Clock synchronous	0	Disabled	0	0	1	Input	_(1)	Input	
communication mode				1	0	_(1)	Output	Input	
					1	Input	Output	Input	
			1	0	1	Input	_(1)	Output	
				1	0	_(1)	Output	Output	
					1	Input	Output	Output	
4-wire bus	1	0	0	0	1	_(1)	Input	Input	
communication mode				1	0	Output	_(1)	Input	
					1	Output	Input	Input	
			1	0	1	Input	_(1)	Output	
				1	0	_(1)	Output	Output	
					1	Input	Output	Output	
4-wire bus	1	1	0	0	1	_(1)	Input	Input	
(bidirectional)				1	0	_(1)	Output	Input	
communication mode ⁽²⁾			1	0	1	_(1)	Input	Output	
				1	0	_(1)	Output	Output	

NOTES:

1. This pin can be used as a programmable I/O port.

2. Do not set both bits TE and RE to 1 in 4-wire bus (bidirectional) communication mode.

SSUMS and BIDE: Bits in SSMR2 register

MSS: Bit in SSCRH register

TE and RE: Bits in SSER register

16.2.5 Clock Synchronous Communication Mode

16.2.5.1 Initialization in Clock Synchronous Communication Mode

Figure 16.12 shows Initialization in Clock Synchronous Communication Mode. To initialize, set the TE bit in the SSER register to 0 (transmit disabled) and the RE bit to 0 (receive disabled) before data transmission or reception.

Set the TE bit to 0 and the RE bit to 0 before changing the communication mode or format.

Setting the RE bit to 0 does not change the contents of flags RDRF and ORER and the contents of the SSRDR register.

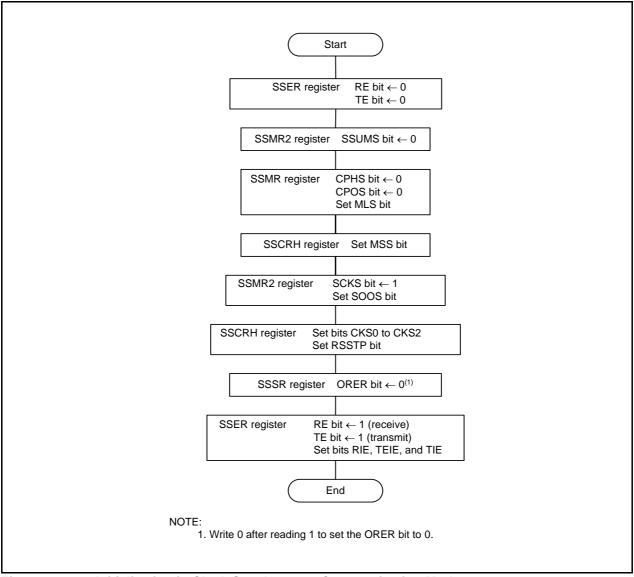


Figure 16.12 Initialization in Clock Synchronous Communication Mode

16.2.5.2 Data Transmission

Figure 16.13 shows an Example of Clock Synchronous Serial I/O with Chip Select Operation for Data Transmission (Clock Synchronous Communication Mode). During data transmission, clock synchronous serial I/O with chip select operates as described below.

When clock synchronous serial I/O with chip select is set as a master device, it outputs a synchronous clock and data. When clock synchronous serial I/O with chip select is set as a slave device, it outputs data synchronized with the input clock.

When the TE bit is set to 1 (transmit enabled) before writing the transmit data to the SSTDR register, the TDRE bit is automatically set to 0 (data not transferred from registers SSTDR to SSTRSR) and the data is transferred from registers SSTDR to SSTRSR.

After the TDRE bit is set to 1 (data transferred from registers SSTDR to SSTRSR), transmission starts. When the TIE bit in the SSER register is set to 1, the TXI interrupt request is generated. When one frame of data is transferred while the TDRE bit is set to 0, data is transferred from registers SSTDR to SSTRSR and transmission of the next frame is started. If the 8th bit is transmitted while the TDRE bit is set to 1, the TEND bit in the SSSR register is set to 1 (the TDRE bit is set to 1 when the last bit of the transmit data is transmitted) and the state is retained. The TEI interrupt request is generated when the TEIE bit in the SSER register is set to 1 (transmit-end interrupt request enabled). The SSCK pin is fixed "H" after transmit-end.

Transmission cannot be performed while the ORER bit in the SSSR register is set to 1 (overrun error). Confirm that the ORER bit is set to 0 before transmission.

Figure 16.14 shows a Sample Flowchart of Data Transmission (Clock Synchronous Communication Mode).

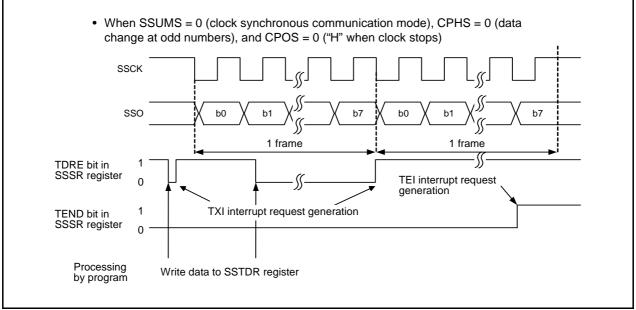
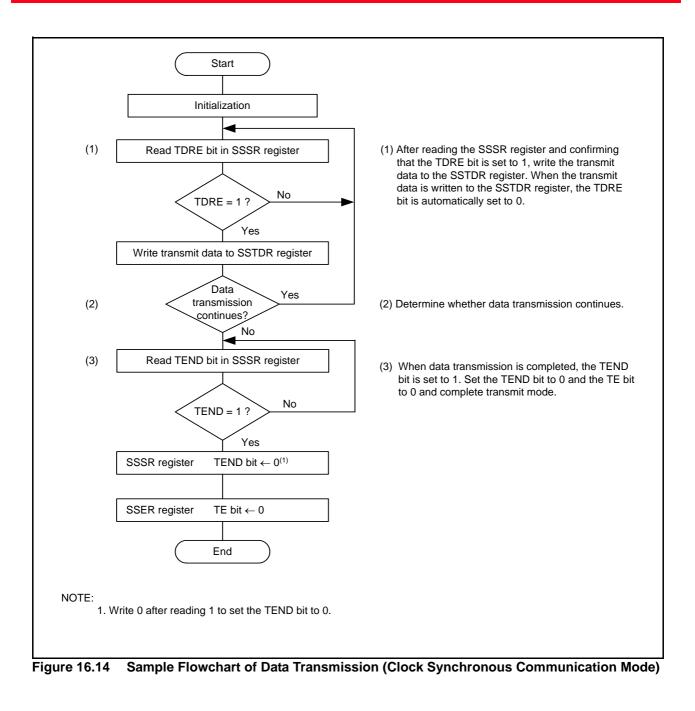



Figure 16.13 Example of Clock Synchronous Serial I/O with Chip Select Operation for Data Transmission (Clock Synchronous Communication Mode)

16.2.5.3 Data Reception

Figure 16.15 shows an Example of Clock Synchronous Serial I/O with Chip Select Operation for Data Reception (Clock Synchronous Communication Mode).

During data reception clock synchronous serial I/O with chip select operates as described below. When clock synchronous serial I/O with chip select is set as the master device, it outputs a synchronous clock and inputs data. When clock synchronous serial I/O with chip select is set as a slave device, it inputs data synchronized with the input clock.

When clock synchronous serial I/O with chip select is set as a master device, it outputs a receive clock and starts receiving by performing dummy read of the SSRDR register.

After 8 bits of data are received, the RDRF bit in the SSSR register is set to 1 (data in the SSRDR register) and receive data is stored in the SSRDR register. When the RIE bit in the SSER register is set to 1 (RXI and OEI interrupt requests enabled), the RXI interrupt request is generated. If the SSDR register is read, the RDRF bit is automatically set to 0 (no data in the SSRDR register).

Read the receive data after setting the RSSTP bit in the SSCRH register to 1 (after receiving 1 byte of data, the receive operation is completed). Clock synchronous serial I/O with chip select outputs a clock for receiving 8 bits of data and stops. After that, set the RE bit in the SSER register to 0 (receive disabled) and the RSSTP bit to 0 (receive operation is continued after receiving the 1 byte of data) and read the receive data. If the SSRDR register is read while the RE bit is set to 1 (receive enabled), a receive clock is output again.

When the 8th clock rises while the RDRF bit is set to 1, the ORER bit in the SSSR register is set to 1 (overrun error: OEI) and the operation is stopped. When the ORER bit is set to 1, receive cannot be performed. Confirm that the ORER bit is set to 0 before restarting receive.

Figure 16.16 shows a Sample Flowchart of Data Reception (MSS = 1) (Clock Synchronous Communication Mode).

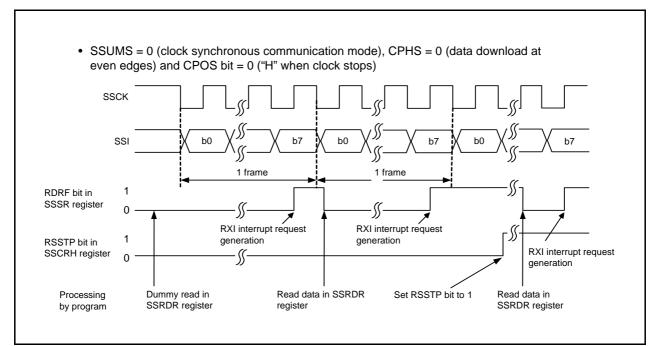


Figure 16.15 Example of Clock Synchronous Serial I/O with Chip Select Operation for Data Reception (Clock Synchronous Communication Mode)

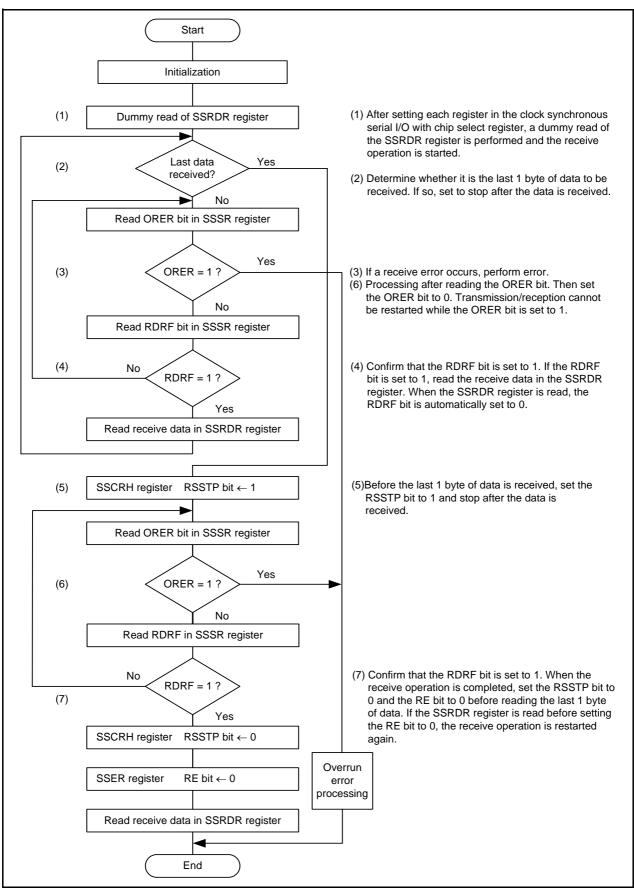


Figure 16.16 Sample Flowchart of Data Reception (MSS = 1) (Clock Synchronous Communication Mode)

16.2.5.4 Data Transmission/Reception

Data transmission/reception is an operation combining data transmission and reception, which were described earlier. Transmission/reception is started by writing data to the SSTDR register.

When the 8th clock rises or the ORER bit is set to 1 (overrun error) while the TDRE bit is set to 1 (data is transferred from registers SSTDR to SSTRSR), the transmit/receive operation is stopped.

When switching from transmit mode (TE = 1) or receive mode (RE = 1) to transmit/receive mode (Te = RE = 1), set the TE bit to 0 and RE bit to 0 before switching. After confirming that the TEND bit is set to 0 (the TDRE bit is set to 0 when the last bit of the transmit data is transmitted), the RDRF bit is set to 0 (no data in the SSRDR register) and the ORER bit is set to 0 (no overrun error), set bits TE and RE to 1.

Figure 16.17 shows a Sample Flowchart of Data Transmission/Reception (Clock Synchronous Communication Mode).

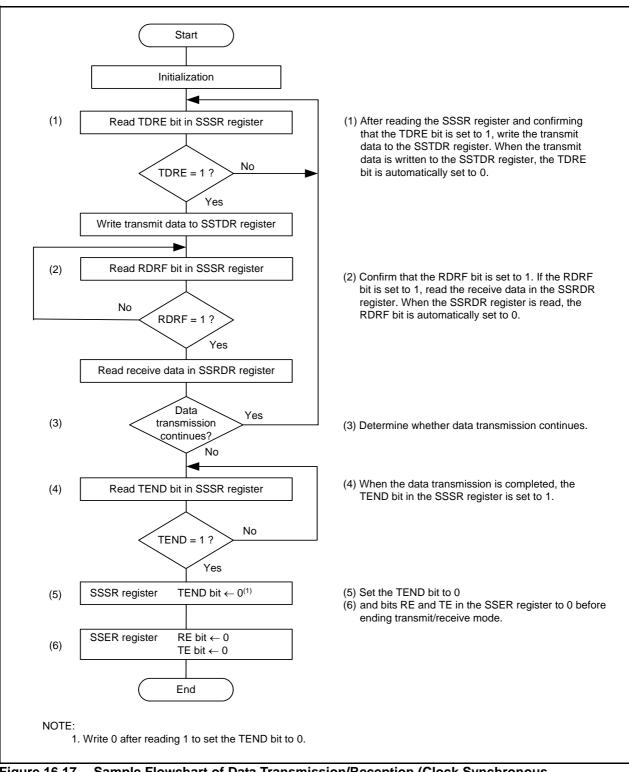


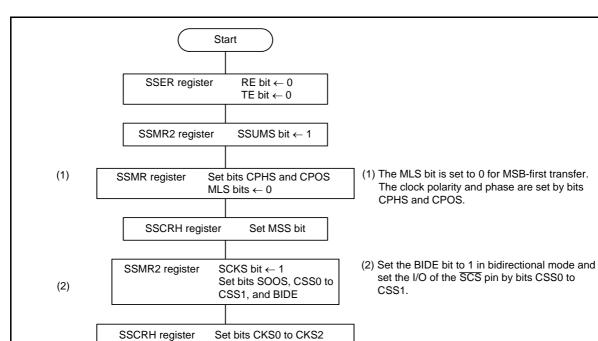
Figure 16.17 Sample Flowchart of Data Transmission/Reception (Clock Synchronous Communication Mode)

16.2.6 Operation in 4-Wire Bus Communication Mode

In 4-wire bus communication mode, a 4-wire bus consisting of a clock line, a data input line, a data output line, and a chip select line is used for communication. This mode includes bidirectional mode in which the data input line and data output line function as a single pin.

The data input line and output line change according to the settings of the MSS bit in the SSCRH register and the BIDE bit in the SSMR2 register. For details, refer to **16.2.2.1** Association between Data I/O Pins and SS Shift Register. In this mode, clock polarity, phase, and data settings are performed by bits CPOS and CPHS in the SSMR register. For details, refer to **16.2.1.1** Association between Transfer Clock Polarity, Phase, and Data.

When this MCU is set as the master device, the chip select line controls output. When clock synchronous serial I/O with chip select is set as a slave device, the chip select line controls input. When it is set as the master device, the chip select line controls output of the \overline{SCS} pin or controls output of a general port according to the setting of the CSS1 bit in the SSMR2 register. When the MCU is set as a slave device, the chip select line sets the \overline{SCS} pin as an input pin by setting bits CSS1 and CSS0 in the SSMR2 register to 01b.


In 4-wire bus communication mode, the MLS bit in the SSMR register is set to 0 and communication is performed MSB-first.

16.2.6.1 Initialization in 4-Wire Bus Communication Mode

Figure 16.18 shows Initialization in 4-Wire Bus Communication Mode. Before the data transit/receive operation, set the TE bit in the SSER register to 0 (transmit disabled), the RE bit in the SSER register to 0 (receive disabled), and initialize the clock synchronous serial I/O with chip select.

To change the communication mode or format, set the TE bit to 0 and the RE bit to 0 before making the change. Setting the RE bit to 0 does not change the settings of flags RDRF and ORER or the contents of the SSRDR register.

R8C/1A Group, R8C/1B Group

 $\text{ORER bit} \gets 0^{(1)}$

Set RSSTP bit

RE bit \leftarrow 1 (receive) TE bit $\leftarrow 1$ (transmit) Set bits RIE, TEIE, and TIE

Figure 16.18 Initialization in 4-Wire Bus Communication Mode

1. Write 0 after reading 1 to set the ORER bit to 0.

End

SSSR register

SSCRH register

SSER register

NOTE:

16.2.6.2 Data Transmission

Figure 16.19 shows an Example of Clock Synchronous Serial I/O with Chip Select Operation during Data Transmission (4-Wire Bus Communication Mode). During the data transmit operation, clock synchronous serial I/O with chip select operates as described below.

When the MCU is set as the master device, it outputs a synchronous clock and data. When the MCU is set as a slave device, it outputs data in synchronization with the input clock while the \overline{SCS} pin is "L".

When the transmit data is written to the SSTDR register after setting the TE bit to 1 (transmit enabled), the TDRE bit is automatically set to 0 (data has not been transferred from registers SSTDR to SSTRSR) and the data is transferred from registers SSTDR to SSTRSR. After the TDRE bit is set to 1 (data is transferred from registers SSTDR to SSTRSR), transmission starts. When the TIE bit in the SSER register is set to 1, a TXI interrupt request is generated.

After 1 frame of data is transferred while the TDRE bit is set to 0, the data is transferred from registers SSTDR to SSTRSR and transmission of the next frame is started. If the 8th bit is transmitted while TDRE is set to 1, TEND in the SSSR register is set to 1 (when the last bit of the transmit data is transmitted, the TDRE bit is set to 1) and the state is retained. If the TEIE bit in the SSER register is set to 1 (transmit-end interrupt requests enabled), a TEI interrupt request is generated. The SSCK pin remains "H" after transmit-end and the SCS pin is held "H". When transmitting continuously while the SCS pin is held "L", write the next transmit data to the SSTDR register before transmitting the 8th bit.

Transmission cannot be performed while the ORER bit in the SSSR register is set to 1 (overrun error). Confirm that the ORER bit is set to 0 before transmission.

In contrast to the clock synchronous communication mode, the SSO pin is placed in high-impedance state while the $\overline{\text{SCS}}$ pin is placed in high-impedance state when operating as a master device and the SSI pin is placed in high-impedance state when operating as a slave device.

The sample flowchart is the same as that for the clock synchronous communication mode. (Refer to **Figure 16.14 Sample Flowchart of Data Transmission (Clock Synchronous Communication Mode)**.)

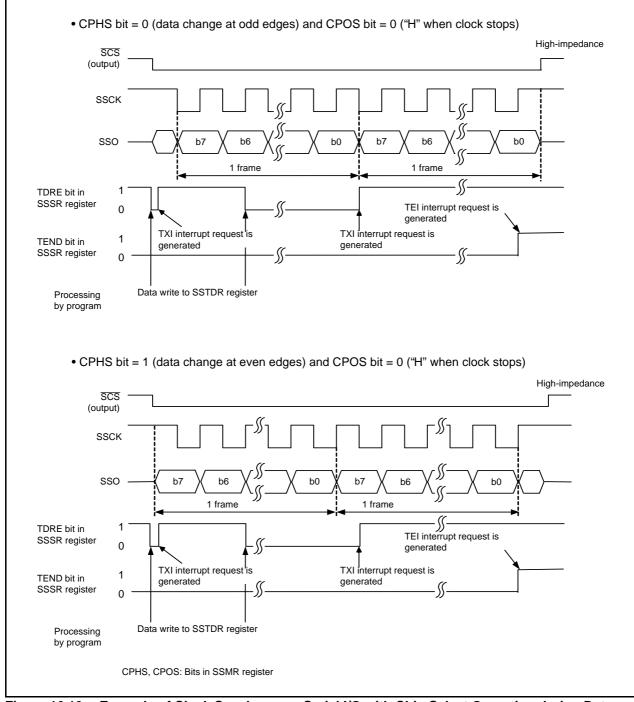


Figure 16.19 Example of Clock Synchronous Serial I/O with Chip Select Operation during Data Transmission (4-Wire Bus Communication Mode)

16.2.6.3 Data Reception

Figure 16.20 shows an example of clock synchronous serial I/O with chip select operation (4-wire bus communication mode) for data reception. During data reception, clock synchronous serial I/O with chip select operates as described below.

When the MCU is set as the master device, it outputs a synchronous clock and inputs data. When the MCU is set as a slave device, it outputs data synchronized with the input clock while the \overline{SCS} pin receives "L" input. When the MCU is set as the master device, it outputs a receive clock and starts receiving by performing a dummy read of the SSRDR register.

After 8 bits of data are received, the RDRF bit in the SSSR register is set to 1 (data in the SSRDR register) and the receive data is stored in the SSRDR register. When the RIE bit in the SSER register is set to 1 (RXI and OEI interrupt request enabled), an RXI interrupt request is generated. When the SSRDR register is read, the RDRF bit is automatically set to 0 (no data in the SSRDR register).

Read the receive data after setting the RSSTP bit in the SSCRH register to 1 (after receiving 1-byte data, the receive operation is completed). Clock synchronous serial I/O with chip select outputs a clock for receiving 8 bits of data and stops. After that, set the RE bit in the SSER register to 0 (receive disabled) and the RSSTP bit to 0 (receive operation is continued after receiving 1-byte data) and read the receive data. When the SSRDR register is read while the RE bit is set to 1 (receive enabled), a receive clock is output again.

When the 8th clock rises while the RDRF bit is set to 1, the ORER bit in the SSSR register is set to 1 (overrun error: OEI) and the operation is stopped. When the ORER bit is set to 1, reception cannot be performed. Confirm that the ORER bit is set to 0 before restarting reception.

The timing with which bits RDRF and ORER are set to 1, varies depending on the setting of the CPHS bit in the SSMR register. Figure 16.20 shows when bits RDRF and ORER are set to 1.

When the CPHS bit is set to 1 (data download at the odd edges), bits RDRF and ORER are set to 1 at some point during the frame.

The sample flowchart is the same as that for the clock synchronous communication mode. (Refer to Figure 16.16 Sample Flowchart of Data Reception (MSS = 1) (Clock Synchronous Communication Mode).)

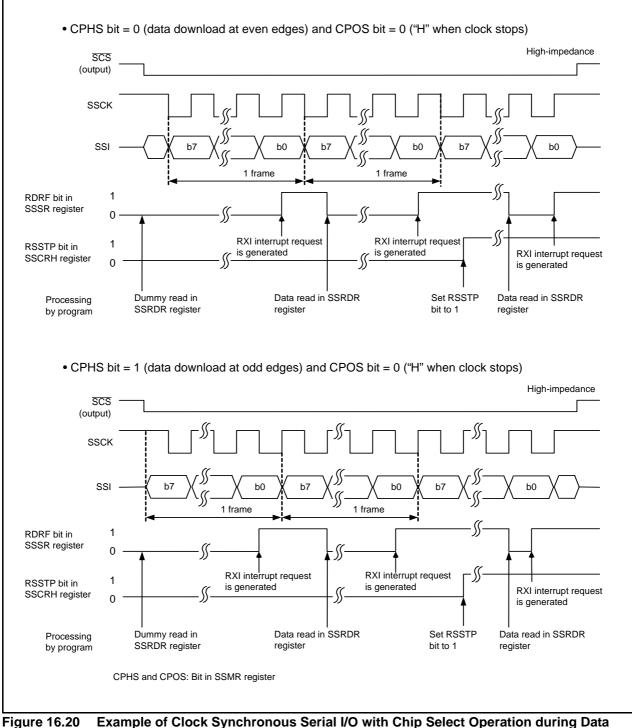


Figure 16.20 Example of Clock Synchronous Serial I/O with Chip Select Operation during Data Reception (4-Wire Bus Communication Mode)

16.2.7 SCS Pin Control and Arbitration

When setting the SSUMS bit in the SSMR2 register to 1 (4-wire bus communication mode).and the CSS1 bit in the SSMR2 register to 1 (functions as \overline{SCS} output pin), set the MSS bit in the SSCRH register to 1 (operates as the master device) and check the arbitration of the \overline{SCS} pin before starting serial transfer. If clock synchronous serial I/O with chip select detects that the synchronized internal \overline{SCS} signal is held "L" in this period, the CE bit in the SSSR register is set to 1 (conflict error) and the MSS bit is automatically set to 0 (operates as a slave device).

Figure 16.21 shows the Arbitration Check Timing.

Future transmit operations are not performed while the CE bit is set to 1. Set the CE bit to 0 (no conflict error) before starting transmission .

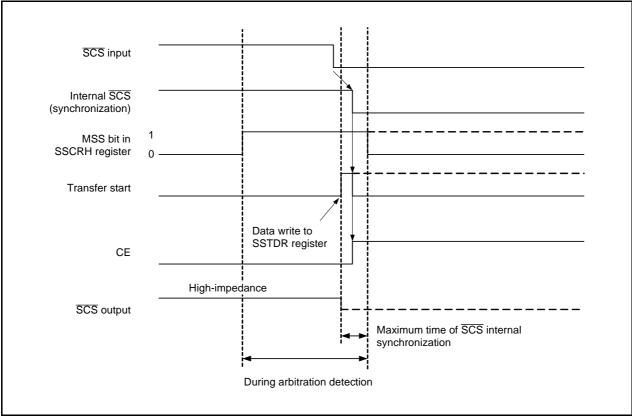


Figure 16.21 Arbitration Check Timing

16.2.8 Notes on Clock Synchronous Serial I/O with Chip Select

Set the IICSEL bit in the PMR register to 0 (select clock synchronous serial I/O with chip select function) to use the clock synchronous serial I/O with chip select function.

16.2.8.1 Accessing Registers Associated with Clock Synchronous Serial I/O with Chip Select

After waiting three instructions or more after writing to the registers associated with clock synchronous serial I/ O with chip select (00B8h to 00BFh) or four cycles or more after writing to them, read the registers.

• An example of waiting t	three instructions or mo	re	
Program example	MOV.B	#00h,00BBh	; Set the SSER register to 00h.
	NOP		
	NOP		
	NOP		
	MOV.B	00BBh,R0L	
• An example of waiting f	four cycles or more		
Program example	BCLR	4,00BBh	: Disable transmission
	JMP.B	NEXT	
	NEXT:		
	BSET	3,00BBh	: Enable reception

16.2.8.2 Selecting SSI Signal Pin

Set the SOOS bit in the SSMR2 register to 0 (CMOS output) in the following settings:

- SSUMS bit in SSMR2 register = 1 (4-wire bus communication mode)
- BIDE bit in SSMR2 register = 0 (standard mode)
- MSS bit in SSCRH register = 0 (operate as slave device)
- SSISEL bit in PMR register = 1 (use P1_6 pin for SSI01 pin)

Do not use the SSI01 pin with NMOS open drain output for the above settings.

16.3 I²C bus Interface

The I²C bus interface is the circuit that performs serial communication based on the data transfer format of the Philips I²C bus.

Table 16.5 lists the I²C bus interface Specifications, Figure 16.22 shows a Block Diagram of I²C bus interface, and Figure 16.23 shows the External Circuit Connection Example of Pins SCL and SDA. Figures 16.24 to 16.31 show the registers associated with the I²C bus interface.

* I²C bus is a trademark of Koninklijke Philips Electronics N. V.

Item	Specification
Communication formats	 I²C bus format Selectable as master/slave device Continuous transmit/receive operation (Because the shift register, transmit data register, and receive data register are independent.) Start/stop conditions are automatically generated in master mode. Automatic loading of acknowledge bit during transmission Bit synchronization/wait function (In master mode, the state of the SCL signal is monitored per bit and the timing is synchronized automatically. If the transfer is not possible yet, the SCL signal goes "L" and the interface stands by.) Support for direct drive of pins SCL and SDA (NMOS open drain output) Clock synchronous serial format Continuous transmit/receive operation (Because the shift register, transmit data register, and receive data register are independent.)
I/O pins	SCL (I/O): Serial clock I/O pin SDA (I/O): Serial data I/O pin
Transfer clock	 When the MST bit in the ICCR1 register is set to 0. The external clock (input from the SCL pin) When the MST bit in the ICCR1 register is set to 1. The internal clock selected by bits CKS0 to CKS3 in the ICCR1 register (output from the SCL pin)
Receive error detection	 Overrun error detection (clock synchronous serial format) Indicates an overrun error during reception. When the last bit of the next data item is received while the RDRF bit in the ICSR register is set to 1 (data in the ICDRR register), the AL bit is set to 1.
Interrupt sources	 I²C bus format
Select functions	 I²C bus format Selectable output level for acknowledge signal during reception Clock synchronous serial format MSB-first or LSB-first selectable as data transfer direction

 Table 16.5
 I²C bus interface Specifications

NOTE:

1. All sources use one interrupt vector for I²C bus interface.

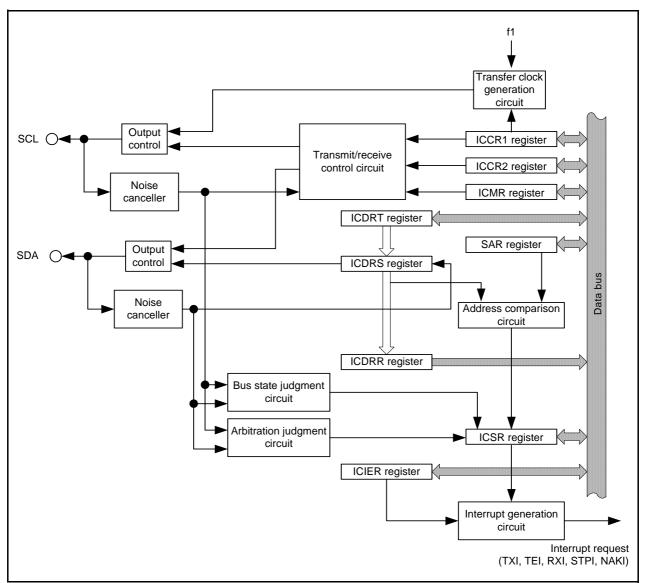
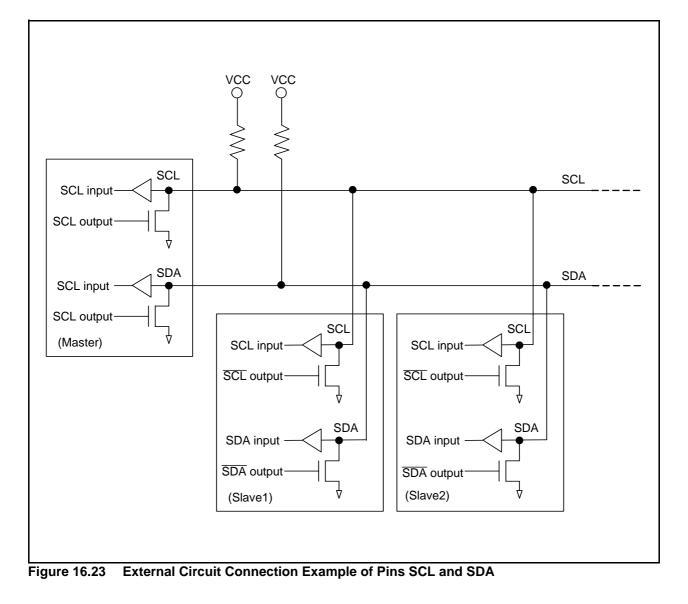



Figure 16.22 Block Diagram of I²C bus interface

		b3 b2 b1 b	Symbol	Address	After Reset	
ТТ	╵	┯┷┯┷┑	ICCR1	00B8h	00h	
			Bit Symbol	Bit Name	Function	RW
				Transmit clock select bits 3 to	b3 b2 b1 b0	
			CKS0	0 ⁽¹⁾	0 0 0 0 : f1/28 0 0 0 1 : f1/40	RW
					0 0 1 0 : f1/48	
					0 0 1 1 : f1/64	
					0 1 0 0 : f1/80	
			CKS1		0 1 0 1 : f1/100	RW
					0 1 1 0 : f1/112	
					0 1 1 1 : f1/128	
					1 0 0 0 : f1/56	
			CKS2		1 0 0 1 : f1/80 1 0 1 0 : f1/96	RW
					1 0 1 1 : f1/128	
					1 1 0 0 : f1/160	
					1 1 0 1 : f1/200	
			CKS3		1 1 1 0 : f1/224	RW
					1 1 1 1 : f1/256	
				Transfer/receive select bit ^(2, 3)		
			TRS		^{b5 b4} 0 0 : Slave receive mode ⁽⁴⁾	RW
	1-				0 1 : Slave transmit mode	
				Master/slave select bit ⁽⁵⁾	10: Master receive mode	
			MST		1 1 : Master transmit mode	RW
				Receive disable bit	After reading the ICDRR register while the TRS bit	
					is set to 0.	
L			RCVD		0 : Maintains the next receive operation.	RW
					1 : Disables the next receive operation.	
				IIC bus interface enable bit	0 : This module is halted.	
					(Pins SCL and SDA are set to port function.)	
			ICE		1 : This module is enabled for transfer	RW
					operations.	
					(Pins SCL and SDA are bus drive state.)	
-	Rat	e Exam	ples for the tran	sfer rate. This bit is used for m	le. Refer to Table 16.6 Transfer aintaining of the setup time in transmit mode. The tin	ne
~					the CKS3 bit is set to 1. $(1Tcyc = 1/f1(s))$	
				n transfer frames.	e mode match with the slave address set in the SA	P
3.				t to 1, the TRS bit is set to 1.	e mode match with the slave address set if the SA	11
4.	. In m	naster mo		bus format, when arbitration is	lost, bits MST and TRS are set to 0	
5.	. Wh	en an ov	errun error occu		ne clock synchronous serial format, the MST bit	
	.0.0					

Figure 16.24 ICCR1 Register

b7 b6	b5 b4 b3 b2 b1 b0	Symbol	Address	After Reset	
		ICCR2	00B9h	0111101b	514
		Bit Symbol	Bit Name	Function	RW
		 (b0)	Nothing is assigned. If new When read, the content is	s 1.	
		IICRST	IIC control part reset bit	When hang-up occurs due to communication failure during PC bus interface operation, write 1, to reset the control block of the PC bus interface without setting ports or initializing registers.	RW
		(b2)	Nothing is assigned. If necessary, set to 0. When read, the content is 1.		
		SCLO	SCL monitor flag	0 : SCL pin is set to "L". 1 : SCL pin is set to "H".	RO
		SDAOP	SDAO w rite protect bit	When rew rite to SDAO bit, w rite 0 simultaneously ⁽¹⁾ . When read, the content is 1.	RW
	SDAO 1 0	 When read 0 : SDA pin output is held "L". 1 : SDA pin output is held "H". When w ritten^(1,2) 0 : SDA pin output is changed to "L". 1 : SDA pin output is changed to high-impedance ("H" output via external pull-up resistor). 	RW		
		SCP	Start/stop condition generation disable bit	When w riting to the BBSY bit, w rite 0 simultaneously ⁽³⁾ . When read, the content is 1. Writing 1 is invalid.	RW
		BBSY	Bus busy bit ⁽⁴⁾	 When read 0 : Bus is in released state (SDA signal changes from "L" to "H" w hile SCL signal is in "H" state). 1 : Bus is in occupied state (SDA signal changes from "H" to "L" w hile SCL signal is in "H" state). When w ritten⁽³⁾ 0 : Generates stop condition. 1 : Generates start condition. 	RW

1. When writing to the SDAO bit, write 0 to the SDAOP bit using the MOV instruction simultaneously.

2. Do not write during a transfer operation.

3. This bit is enabled in master mode. When writing to the BBSY bit, write 0 to the SCP bit using the MOV instruction simultaneously. Execute the same way when the start condition is regenerating.

4. This bit is disabled when the clock synchronous serial format is used.

5. Refer to 16.3.8.1 Accessing of Registers Associated with I²C bus Interface for more information.

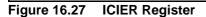
IC bus Mode Regist	ter ⁽⁷⁾			
b7 b6 b5 b4 b3 b2 b1 b0	Symbol ICMR	Address 00BAh	After Reset 00011000b	
	Bit Symbol	Bit Name	Function	RW
	BCO	Bit counter 2 to 0	I ² C bus format (remaining transfer bit count w hen read out and data bit count of next transfer w hen w ritten.) ^(1,2) b2 b1 b0 0 0 0 : 9 bits ⁽³⁾ 0 0 1 : 2 bits 0 1 0 : 3 bits 0 1 1 : 4 bits 1 0 0 : 5 bits	RW
	BC1		1 0 1 : 6 bits 1 0 1 : 6 bits 1 1 0 : 7 bits 1 1 1 : 8 bits Clock synchronous serial format (w hen read, the remaining transfer bit count and w hen w ritten, 000b.) ^{b2 b1 b0} 0 0 0 : 8 bits 0 0 1 : 1 bit	RW
	BC2		0 1 0 : 2 bits 0 1 1 : 3 bits 1 0 0 : 4 bits 1 0 1 : 5 bits 1 1 0 : 6 bits 1 1 1 : 7 bits	RW
	BCWP	BC w rite protect bit	When rew riting bits BC0 to BC2, w rite 0 simultaneously ^(2,4) . When read, the content is 1.	RW
	 (b4)	Nothing is assigned. If neces When read, the content is 1.		-
	 (b5)	Reserved bit	Set to 0.	RW
	WAΠ	Wait insertion bit ⁽⁵⁾	 0 : No w ait (Transfer data and acknow ledge bit consecutively) 1 : Wait (After the clock falls for the final data bit, "L" period is extended for tw o transfer clocks cycles.) 	RW
	MLS	MSB-first / LSB-first select bit	0 : Data transfer MSB-first ⁽⁶⁾ 1 : Data transfer LSB-first	RW

1. Rew rite betw een transfer frames. When w riting values other than 000b, w rite w hen the SCL signal is "L".

- 2. When w riting to bits BC0 to BC2, w rite 0 to the BCWP bit using the MOV instruction.
- 3. After data including the acknow ledge bit is transferred, this bit is automatically set to 000b.
- 4. Do not rew rite when the clock synchronous serial format is used.

5. The setting value is enabled in master mode of the PC bus format. It is disabled in slave mode of the PC bus format or when the clock synchronous serial format is used.

- 6. Set to 0 w hen the I²C bus format is used.
- 7. Refer to 16.3.8.1 Accessing of Registers Associated with I²C bus Interface for more information.


Figure 16.26 ICMR Register

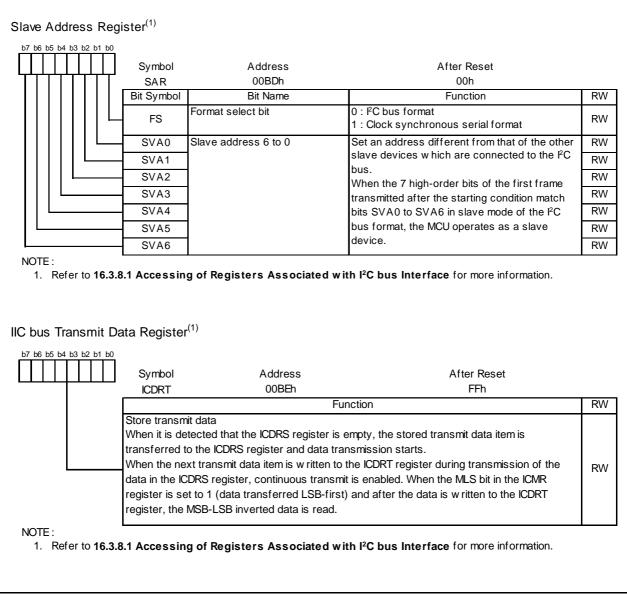
b7 b6 b	5 b4 bi	3 b2 b1 b0	Symbol ICIER	Address 00BBh	After Reset 00h	
			Bit Symbol	Bit Name	Function	RV
			– АСКВТ	Transmit acknow ledge select bit	0 : 0 is transmitted as acknow ledge bit in receive mode.1 : 1 is transmitted as acknow ledge bit in receive mode.	RV
			ACKBR	Receive acknow ledge bit	 0 : Acknow ledge bit received from receive device in transmit mode is set to 0. 1 : Acknow ledge bit received from receive device in transmit mode is set to 1. 	RC
			ACKE	Acknow ledge bit judgment select bit	 0 : Value of receive acknow ledge bit is ignored and continuous transfer is performed. 1 : When receive acknow ledge bit is set to 1, continuous transfer is halted. 	RV
			STIE	Stop condition detection interrupt enable bit	 0 : Disables stop condition detection interrupt request. 1 : Enables stop condition detection interrupt request.⁽²⁾ 	RV
			- NAKIE	NACK receive interrupt enable bit	 0: Disables NACK receive interrupt request and arbitration lost / overrun error interrupt request. 1: Enables NACK receive interrupt request and arbitration lost / overrun error interrupt request.⁽¹⁾ 	RW
			- RIE	Receive interrupt enable bit	 0 : Disables receive data full and overrun error interrupt request. 1 : Enables receive data full and overrun error interrupt request.⁽¹⁾ 	RV
			- TEIE	Transmit end interrupt enable bit	0 : Disables transmit end interrupt request.1 : Enables transmit end interrupt request.	RV
			TIE	Transmit interrupt enable bit	0 : Disables transmit data empty interrupt request. 1 : Enables transmit data empty interrupt request.	RV

1. An overrun error interrupt request is generated when the clock synchronous format is used.

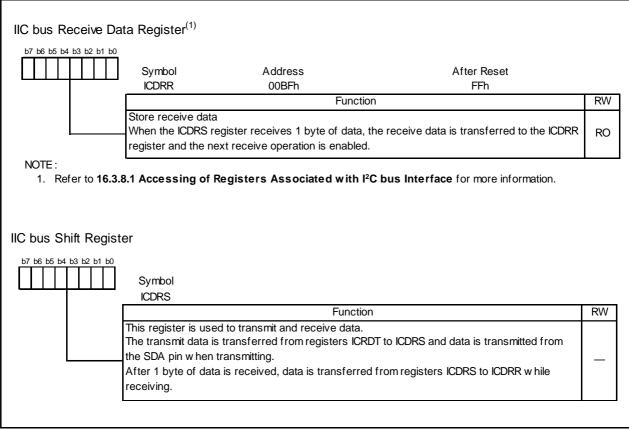
2. Set the STIE bit to 1 (enable stop condition detection interrupt request) when the STOP bit in the ICSR register is set to 0.

3. Refer to 16.3.8.1 Accessing of Registers Associated with I²C bus Interface for more information.

		o4 b3	02		Symbol	Address	After Reset	
└┼┼	Н	++	H	+	ICSR	00BCh	0000X000b	
					Bit Symbol	Bit Name	Function	RV
				L	ADZ	General call address recognition flag ^(1,2)	When the general call address is detected , this flag is set to 1.	RV
					AAS	Slave address recognition flag ⁽¹⁾	This flag is set to 1 w hen the first frame follow ing start condition matches bits SVA0 to SVA6 in the SAR register in slave receive mode. (Detect the slave address and generate call address.)	RV
					AL	Arbitration lost flag / overrun error flag ⁽¹⁾	 When the I2C bus format is used, this flag indicates that arbitration has been lost in master mode. In the follow ing cases, this flag is set to 1⁽³⁾. When the internal SDA signal and SDA pin level do not match at the rise of the SCL signal in master transmit mode. When the start condition is detected and the SDA pin is held "H" in master transmit/receive mode. This flag indicates an overrun error w hen the clock synchronous format is used. In the follow ing case, this flag is set to 1. When the last bit of the next data item is received w hile the RDRF bit is set to 1. 	RV
		L			STOP	Stop condition detection flag ⁽¹⁾	When the stop condition is detected after the frame is transferred, this flag is set to 1.	RV
					NACKF	No acknow ledge detection $flag^{(1,4)}$	When no ACKnow ledge is detected from receive device after transmission, this flag is set to 1.	RV
					RDRF	Receive data register full ^(1,5)	When receive data is transferred from registers ICDRS to ICDRR, this flag is set to 1.	RV
					TEND	Transmit end ^(1,6)	When the 9th clock cycle of the SCL signal in the PC bus format occurs w hile the TDRE bit is set to 1, this flag is set to 1. This flag is set to 1 w hen the final bit of the transmit frame is transmitted in the clock synchronous format.	RV
					TDRE	Transmit data empty ^(1,6)	 In the follow ing cases, this flag is set to 1. Data is transferred from registers ICDRT to ICDRS and the ICDRT register is empty. When setting the TRS bit in the ICCR1 register to 1 (transmit mode). When generating the start condition (including retransmit). When changing from slave receive mode to slave transmit mode. 	RV


2. This flag is enabled in slave receive mode of the I²C bus format.

3. When two or more master devices attempt to occupy the bus at nearly the same time, if the I2C bus Interface monitors the SDA pin and the data which the I2C bus Interface transmits is different, the AL flag is set to 1 and the bus is occupied by another master.


4. The NACKF bit is enabled when the ACKE bit in the ICIER register is set to 1 (when the receive acknowledge bit is set to 1, transfer is halted).

- 5. The RDRF bit is set to 0 when reading data from the ICDRR register.
- 6. Bits TEND and TDRE are set to 0 when writing data to the ICDRT register.
- 7. Refer to 16.3.8.1 Accessing of Registers Associated with I²C bus Interface for more information.

Figure 16.28 ICSR Register

	ioue	Registe				
<u> </u>		b3 b2 b1 b0				
0	00	000	Symbol	Address	After Reset	
	Π		PMR	00F8h	00h	
			Bit Symbol	Bit Name	Function	RW
			 (b2-b0)	Reserved bits	Set to 0.	RW
			SSISEL	SSI signal pin select bit	0 : P3_3 pin is used for SSI00 pin. 1 : P1_6 pin is used for SSI01 pin.	RW
			 (b6-b4)	Reserved bits	Set to 0.	RW
			ICSEL	SSU / I ² C bus sw itch bit	0 : Selects SSU function. 1 : Selects PC bus function.	RW

Figure 16.31 PMR Register

16.3.1 Transfer Clock

When the MST bit in the ICCR1 register is set to 0, the transfer clock is the external clock input from the SCL pin. When the MST bit in the ICCR1 register is set to 1, the transfer clock is the internal clock selected by bits CKS0 to CKS3 in the ICCR1 register and the transfer clock is output from the SCL pin. Table 16.6 lists the Transfer Rate Examples.

	ICCR1	Register	r	Transfer			Transfer Rat	e	
CKS3	CKS2	CKS1	CKS0	Clock	f1 = 5 MHz	f1 = 8 MHz	f1 = 10 MHz	f1 = 16 MHz	f1 = 20 MHz
0	0	0	0	f1/28	179 kHz	286 kHz	357 kHz	571 kHz	714 kHz
			1	f1/40	125 kHz	200 kHz	250 kHz	400 kHz	500 kHz
		1	0	f1/48	104 kHz	167 kHz	208 kHz	333 kHz	417 kHz
			1	f1/64	78.1 kHz	125 kHz	156 kHz	250 kHz	313 kHz
	1	0	0	f1/80	62.5 kHz	100 kHz	125 kHz	200 kHz	250 kHz
			1	f1/100	50.0 kHz	80.0 kHz	100 kHz	160 kHz	200 kHz
		1	0	f1/112	44.6 kHz	71.4 kHz	89.3 kHz	143 kHz	179 kHz
			1	f1/128	39.1 kHz	62.5 kHz	78.1 kHz	125 kHz	156 kHz
1	0	0	0	f1/56	89.3 kHz	143 kHz	179 kHz	286 kHz	357 kHz
			1	f1/80	62.5 kHz	100 kHz	125 kHz	200 kHz	250 kHz
		1	0	f1/96	52.1 kHz	83.3 kHz	104 kHz	167 kHz	208 kHz
			1	f1/128	39.1 kHz	62.5 kHz	78.1 kHz	125 kHz	156 kHz
	1	0	0	f1/160	31.3 kHz	50.0 kHz	62.5 kHz	100 kHz	125 kHz
			1	f1/200	25.0 kHz	40.0 kHz	50.0 kHz	80.0 kHz	100 kHz
		1	0	f1/224	22.3 kHz	35.7 kHz	44.6 kHz	71.4 kHz	89.3 kHz
			1	f1/256	19.5 kHz	31.3 kHz	39.1 kHz	62.5 kHz	78.1 kHz

Table 16.6 Transfer Rate Examples

16.3.2 Interrupt Requests

The I²C bus interface has six interrupt requests when the I²C bus format is used and four when the clock synchronous serial format is used.

Table 16.7 lists the Interrupt Requests of I2C bus Interface.

Since these interrupt requests are allocated at the I²C bus interface interrupt vector table, determining the factor by each bit is necessary.

Table 16.7	Interrupt Requests of I ² C bus Interface
------------	--

Interrupt Request		Generation Condition	Format	
			I ² C bus	Clock
				Synchronous Serial
	I			
Transmit data empty	TXI	TIE = 1 and $TDRE = 1$	Enabled	Enabled
Transmit ends	TEI	TEIE = 1 and TEND = 1	Enabled	Enabled
Receive data full	RXI	RIE = 1 and RDRF = 1	Enabled	Enabled
Stop condition detection	STPI	STIE = 1 and STOP = 1	Enabled	Disabled
NACK detection	NAKI	NAKIE = 1 and AL = 1 (or	Enabled	Disabled
Arbitration lost/overrun error		NAKIE = 1 and NACKF = 1)	Enabled	Enabled

STIE, NAKIE, RIE, TEIE, TIE: Bits in ICIER register AL, STOP, NACKF, RDRF, TEND, TDRE: Bits in ICSR register

When the generation conditions listed in Table 16.7 are met, an I^2C bus interface interrupt request is generated. Set the interrupt generation conditions to 0 by the I^2C bus interface interrupt routine. However, bits TDRE and TEND are automatically set to 0 by writing transmit data to the ICDRT register and the RDRF bit is automatically set to 0 by reading the ICDRR register. When writing transmit data to the ICDRT register, the TDRE bit is set to 0. When data is transferred from registers ICDRT to ICDRS, the TDRE bit is set to 1 and by further setting the TDRE bit to 0, 1 additional byte may be transmitted.

Set the STIE bit to 1 (enable stop condition detection interrupt request) when the STOP bit is set to 0.

16.3.3 I²C bus Interface Mode

16.3.3.1 I²C bus Format

Setting the FS bit in the SAR register to 0 communicates in I²C bus format. Figure 16.32 shows the I2C bus Format and Bus Timing. The 1st frame following the start condition consists of 8 bits.

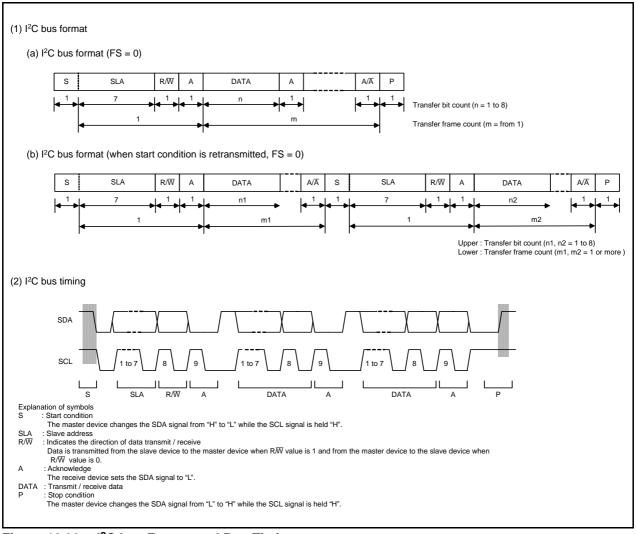


Figure 16.32 I²C bus Format and Bus Timing

16.3.3.2 Master Transmit Operation

In master transmit mode, the master device outputs the transmit clock and data, and the slave device returns an acknowledge signal.

Figures 16.33 and 16.34 show the Operating Timing in Master Transmit Mode (I²C bus Interface Mode).

The transmit procedure and operation in master transmit mode are as follows.

- (1) Set the STOP bit in the ICSR register to 0 to reset it. Then set the ICE bit in the ICCR1 register to 1 (transfer operation enabled). Then set bits WAIT and MLS in the ICMR register and set bits CKS0 to CKS3 in the ICCR1 register (initial setting).
- (2) Read the BBSY bit in the ICCR2 register to confirm that the bus is free. Set bits TRS and MST in the ICCR1 register to master transmit mode. The start condition is generated by writing 1 to the BBSY bit and 0 to the SCP bit by the MOV instruction.
- (3) After confirming that the TDRE bit in the ICSR register is set to 1 (data is transferred from registers ICDRT to ICDRS), write transmit data to the ICDRT register (data in which a slave address and R/\overline{W} are indicated in the 1st byte). At this time, the TDRE bit is automatically set to 0, data is transferred from registers ICDRT to ICDRS, and the TDRE bit is set to 1 again.
- (4) When transmission of 1 byte of data is completed while the TDRE bit is set to 1, the TEND bit in the ICSR register is set to 1 at the rise of the 9th transmit clock pulse. Read the ACKBR bit in the ICIER register, and confirm that the slave is selected. Write the 2nd byte of data to the ICDRT register. Since the slave device is not acknowledged when the ACKBR bit is set to 1, generate the stop condition. The stop condition is generated by the writing 0 to the BBSY bit and 0 to the SCP bit by the MOV instruction. The SCL signal is held "L" until data is available and the stop condition is generated.
- (5) Write the transmit data after the 2nd byte to the ICDRT register every time the TDRE bit is set to 1.
- (6) When writing the number of bytes to be transmitted to the ICDRT register, wait until the TEND bit is set to 1 while the TDRE bit is set to 1. Or wait for NACK (the NACKF bit in the ICSR register is set to 1) from the receive device while the ACKE bit in the ICIER register is set to 1 (when the receive acknowledge bit is set to 1, transfer is halted). Then generate the stop condition before setting bits TEND and NACKF to 0.
- (7) When the STOP bit in the ICSR register is set to 1, return to slave receive mode.

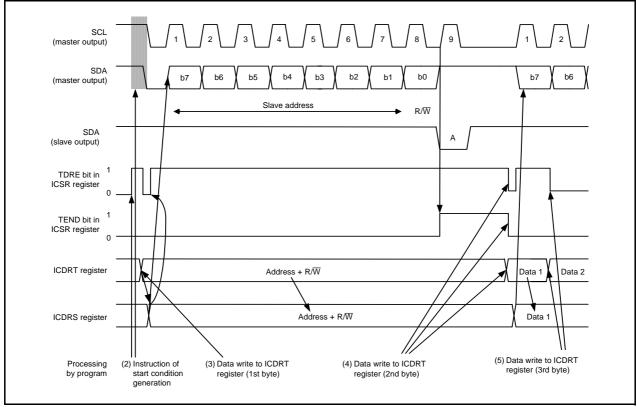


Figure 16.33 Operating Timing in Master Transmit Mode (I²C bus Interface Mode) (1)

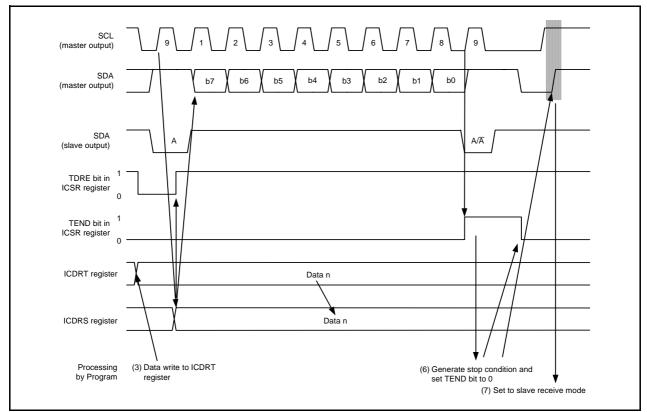


Figure 16.34 Operating Timing in Master Transmit Mode (I²C bus Interface Mode) (2)

16.3.3.3 Master Receive Operation

In master receive mode, the master device outputs the receive clock, receives data from the slave device, and returns an acknowledge signal.

Figures 16.35 and 16.36 show the Operating Timing in Master Receive Mode (I²C bus Interface Mode).

The receive procedure and operation in master receive mode are shown below.

- (1) After setting the TEND bit in the ICSR register to 0, switch from master transmit mode to master receive mode by setting the TRS bit in the ICCR1 register to 0. Also, set the TDRE bit in the ICSR register to 0.
- (2) When performing the dummy read of the ICDRR register and starting the receive operation, the receive clock is output in synchronization with the internal clock and data is received. The master device outputs the level set by the ACKBT bit in the ICIER register to the SDA pin at the 9th clock cycle of the receive clock.
- (3) The 1-frame data receive is completed and the RDRF bit in the ICSR register is set to 1 at the rise of the 9th clock cycle. At this time, when reading the ICDRR register, the received data can be read and the RDRF bit is set to 0 simultaneously.
- (4) Continuous receive operation is enabled by reading the ICDRR register every time the RDRF bit is set to 1. If the 8th clock cycle falls after the ICDRR register is read by another process while the RDRF bit is set to 1, the SCL signal is fixed "L" until the ICDRR register is read.
- (5) If the next frame is the last receive frame and the RCVD bit in the ICCR1 register is set to 1 (disables the next receive operation) before reading the ICDRR register, stop condition generation is enabled after the next receive operation.
- (6) When the RDRF bit is set to 1 at the rise of the 9th clock cycle of the receive clock, generate the stop condition.
- (7) When the STOP bit in the ICSR register is set to 1, read the ICDRR register and set the RCVD bit to 0 (maintain the following receive operation).
- (8) Return to slave receive mode.

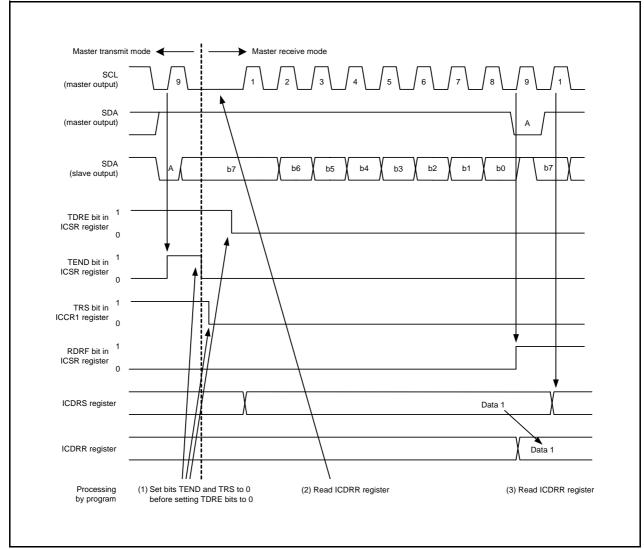


Figure 16.35 Operating Timing in Master Receive Mode (I²C bus Interface Mode) (1)

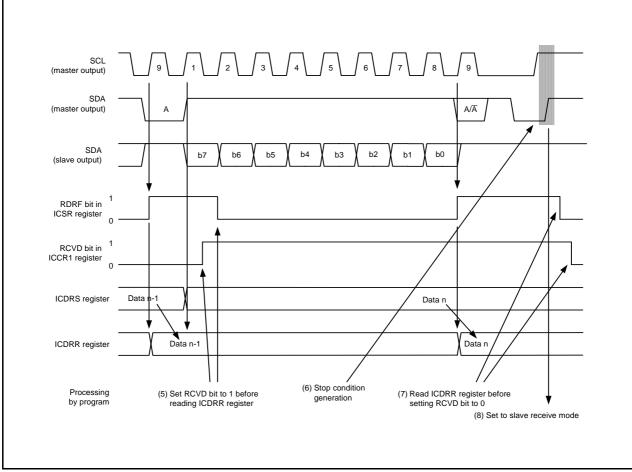


Figure 16.36 Operating Timing in Master Receive Mode (I²C bus Interface Mode) (2)

16.3.3.4 Slave Transmit Operation

In slave transmit mode, the slave device outputs the transmit data while the master device outputs the receive clock and returns an acknowledge signal.

Figures 16.37 and 16.38 show the Operating Timing in Slave Transmit Mode (I²C bus Interface Mode).

The transmit procedure and operation in slave transmit mode are as follows.

- (1) Set the ICE bit in the ICCR1 register to 1 (transfer operation enabled). Set bits WAIT and MLS in the ICMR register and bits CKS0 to CKS3 in the ICCR1 register (initial setting). Set bits TRS and MST in the ICCR1 register to 0 and wait until the slave address matches in slave receive mode.
- (2) When the slave address matches at the 1st frame after detecting the start condition, the slave device outputs the level set by the ACKBT bit in the ICIER register to the SDA pin at the rise of the 9th clock cycle. At this time, if the 8th bit of data (R/\overline{W}) is 1, bits TRS and TDRE in the ICSR register are set to 1, and the mode is switched to slave transmit mode automatically. Continuous transmission is enabled by writing transmit data to the ICDRT register every time the TDRE bit is set to 1.
- (3) When the TDRE bit in the ICDRT register is set to 1 after writing the last transmit data to the ICDRT register, wait until the TEND bit in the ICSR register is set to 1 while the TDRE bit is set to 1. When the TEND bit is set to 1, set the TEND bit to 0.
- (4) The SCL signal is released by setting the TRS bit to 0 and performing a dummy read of the ICDRR register to end the process.
- (5) Set the TDRE bit to 0.

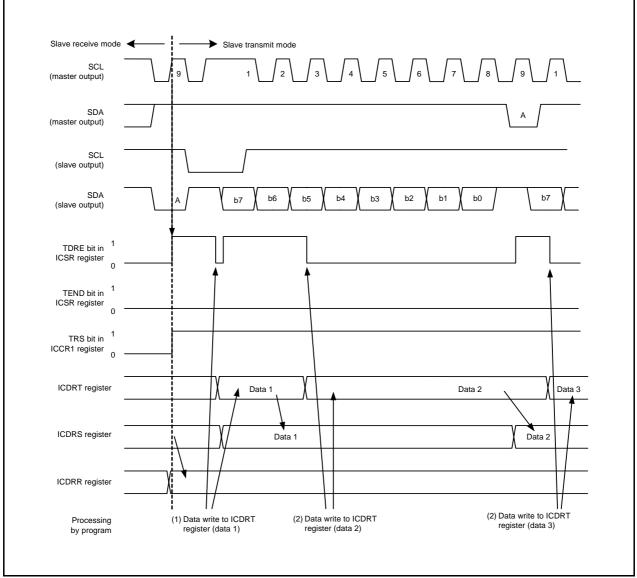


Figure 16.37 Operating Timing in Slave Transmit Mode (I²C bus Interface Mode) (1)

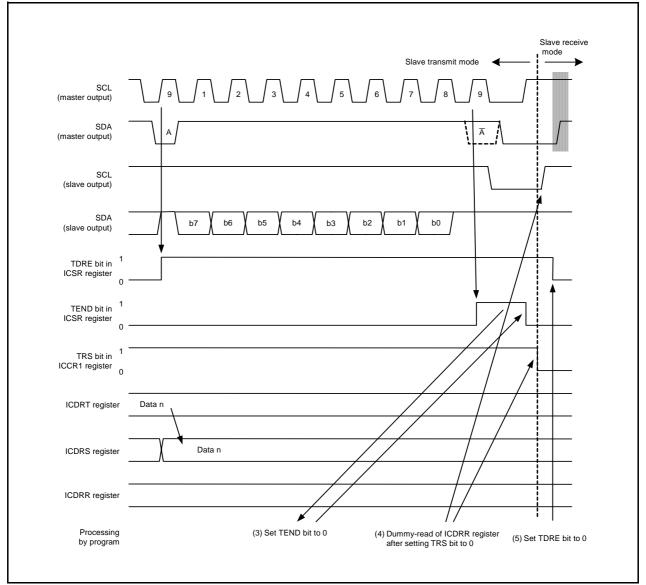


Figure 16.38 Operating Timing in Slave Transmit Mode (I²C bus Interface Mode) (2)

16.3.3.5 Slave Receive Operation

In slave receive mode, the master device outputs the transmit clock and data, and the slave device returns an acknowledge signal.

Figures 16.39 and 16.40 show the Operating Timing in Slave Receive Mode (I²C bus Interface Mode).

The receive procedure and operation in slave receive mode are as follows.

- (1) Set the ICE bit in the ICCR1 register to 1 (transfer operation enabled). Set bits WAIT and MLS in the ICMR register and bits CKS0 to CKS3 in the ICCR1 register (initial setting). Set bits TRS and MST in the ICCR1 register to 0 and wait until the slave address matches in slave receive mode.
- (2) When the slave address matches at the 1st frame after detecting the start condition, the slave device outputs the level set in the ACKBT bit in the ICIER register to the SDA pin at the rise of the 9th clock cycle. Since the RDRF bit in the ICSR register is set to 1 simultaneously, perform the dummy-read (the read data is unnecessary because if indicates the slave address and R/\overline{W}).
- (3) Read the ICDRR register every time the RDRF bit is set to 1. If the 8th clock cycle falls while the RDRF bit is set to 1, the SCL signal is fixed "L" until the ICDRR register is read. The setting change of the acknowledge signal returned to the master device before reading the ICDRR register takes affect from the following transfer frame.
- (4) Reading the last byte is performed by reading the ICDRR register in like manner.

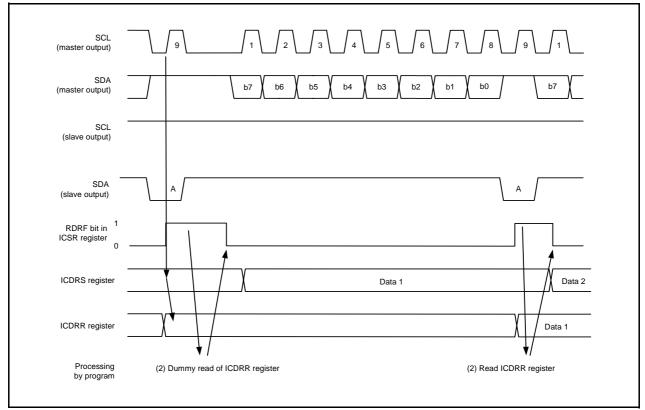


Figure 16.39 Operating Timing in Slave Receive Mode (I²C bus Interface Mode) (1)

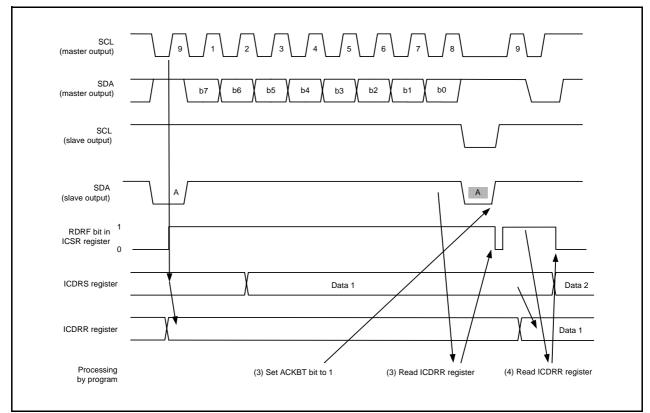


Figure 16.40 Operating Timing in Slave Receive Mode (I²C bus Interface Mode) (2)

16.3.4 Clock Synchronous Serial Mode

16.3.4.1 Clock Synchronous Serial Format

Set the FS bit in the SAR register to 1 to use the clock synchronous serial format for communication. Figure 16.41 shows the Transfer Format of Clock Synchronous Serial Format.

When the MST bit in the ICCR1 register is set to 1, the transfer clock is output from the SCL pin, and when the MST bit is set to 0, the external clock is input.

The transfer data is output between successive falling edges of the SCL clock, and data is determined at the rising edge of the SCL clock. MSB-first or LSB-first can be selected as the order of the data transfer by setting the MLS bit in the ICMR register. The SDA output level can be changed by the SDAO bit in the ICCR2 register during transfer standby.

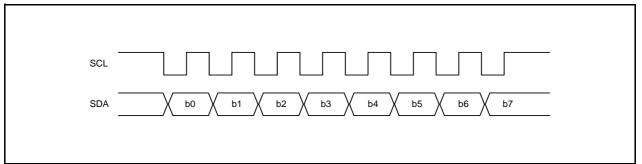


Figure 16.41 Transfer Format of Clock Synchronous Serial Format

16.3.4.2 Transmit Operation

In transmit mode, transmit data is output from the SDA pin in synchronization with the falling edge of the transfer clock. The transfer clock is output when the MST bit in the ICCR1 register is set to 1 and input when the MST bit is set to 0.

Figure 16.42 shows the Operating Timing in Transmit Mode (Clock Synchronous Serial Mode).

The transmit procedure and operation in transmit mode are as follows.

- (1) Set the ICE bit in the ICCR1 register to 1 (transfer operation enabled). Set bits CKS0 to CKS3 in the ICCR1 register and set the MST bit (initial setting).
- (2) The TDRE bit in the ICSR register is set to 1 by selecting transmit mode after setting the TRS bit in the ICCR1 register to 1.
- (3) Data is transferred from registers ICDRT to ICDRS and the TDRE bit is automatically set to 1 by writing transmit data to the ICDRT register after confirming that the TDRE bit is set to 1. Continuous transmission is enabled by writing data to the ICDRT register every time the TDRE bit is set to 1. When switching from transmit to receive mode, set the TRS bit to 0 while the TDRE bit is set to 1.

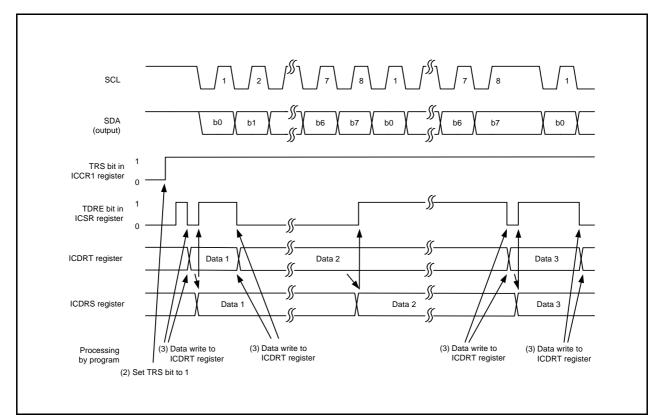


Figure 16.42 Operating Timing in Transmit Mode (Clock Synchronous Serial Mode)

16.3.4.3 Receive Operation

In receive mode, data is latched at the rising edge of the transfer clock. The transfer clock is output when the MST bit in the ICCR1 register is set to 1 and input when the MST bit is set to 0.

Figure 16.43 shows the Operating Timing in Receive Mode (Clock Synchronous Serial Mode).

The receive procedure and operation in receive mode are as follows.

- (1) Set the ICE bit in the ICCR1 register to 1 (transfer operation enabled). Set bits CKS0 to CKS3 in the ICCR1 register and set the MST bit (initial setting).
- (2) The output of the receive clock starts when the MST bit is set to 1 while the transfer clock is being output.
- (3) Data is transferred from registers ICDRS to ICDRR and the RDRF bit in the ICSR register is set to 1, when the receive operation is completed. Since the next byte of data is enabled when the MST bit is set to 1, the clock is output continuously. Continuous reception is enabled by reading the ICDRR register every time the RDRF bit is set to 1. An overrun is detected at the rise of the 8th clock cycle while the RDRF bit is set to 1, and the AL bit in the ICSR register is set to 1. At this time, the last receive data is retained in the ICDRR register.
- (4) When the MST bit is set to 1, set the RCVD bit in the ICCR1 register to 1 (disables the next receive operation) and read the ICDRR register. The SCL signal is fixed "H" after reception of the following byte of data is completed.

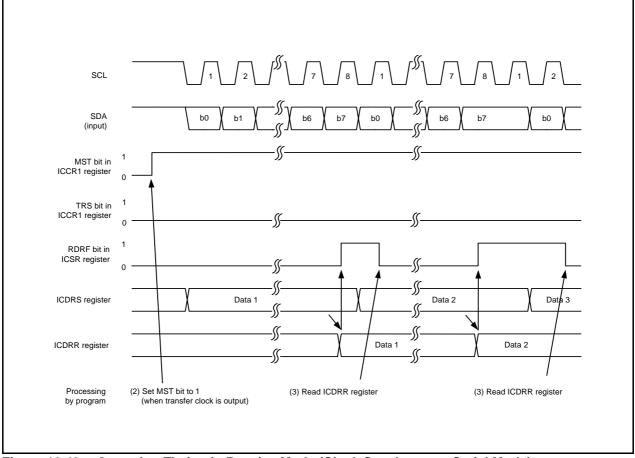


Figure 16.43 Operating Timing in Receive Mode (Clock Synchronous Serial Mode)

16.3.5 Noise Canceller

The states of pins SCL and SDA are routed through the noise canceller before being latched internally. Figure 16.44 shows a Block Diagram of Noise Canceller.

The noise canceller consists of two cascaded latch and match detector circuits. When the SCL pin input signal (or SDA pin input signal) is sampled on f1 and two latch outputs match, the level is passed forward to the next circuit. When they do not match, the former value is retained.

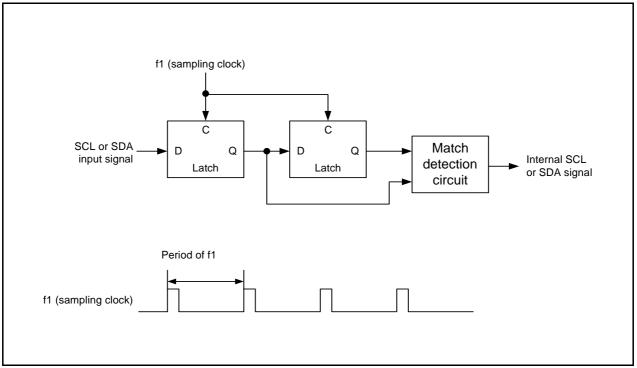


Figure 16.44 Block Diagram of Noise Canceller

16.3.6 Bit Synchronization Circuit

When setting the I²C bus interface to master mode, the high-level period may become shorter in the following two cases:

• If the SCL signal is driven L level by a slave device

• If the rise speed of the SCL signal is reduced by a load (load capacity or pull-up resistor) on the SCL line. Therefore, the SCL signal is monitored and communication is synchronized bit by bit.

Figure 16.45 shows the Timing of Bit Synchronization Circuit and Table 16.8 lists the Time between Changing SCL Signal from "L" Output to High-Impedance and Monitoring of SCL Signal.

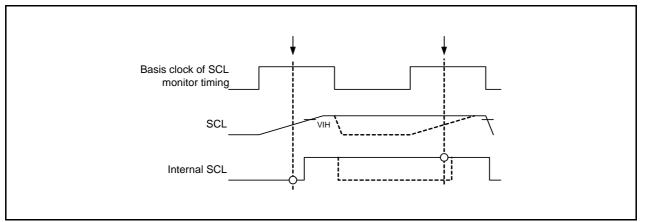


Figure 16.45 Timing of Bit Synchronization Circuit

Table 16.8	Time between Changing SCL Signal from "L" Output to High-Impedance and
	Monitoring of SCL Signal

ICCR1	Time for Monitoring SCL	
CKS3	CKS2	
0	0	7.5Tcyc
	1	19.5Tcyc
1	0	17.5Tcyc
	1	41.5Tcyc

1Tcyc = 1/f1(s)

16.3.7 Examples of Register Setting

Figures 16.46 to 16.49 show Examples of Register Setting When Using I²C bus interface.

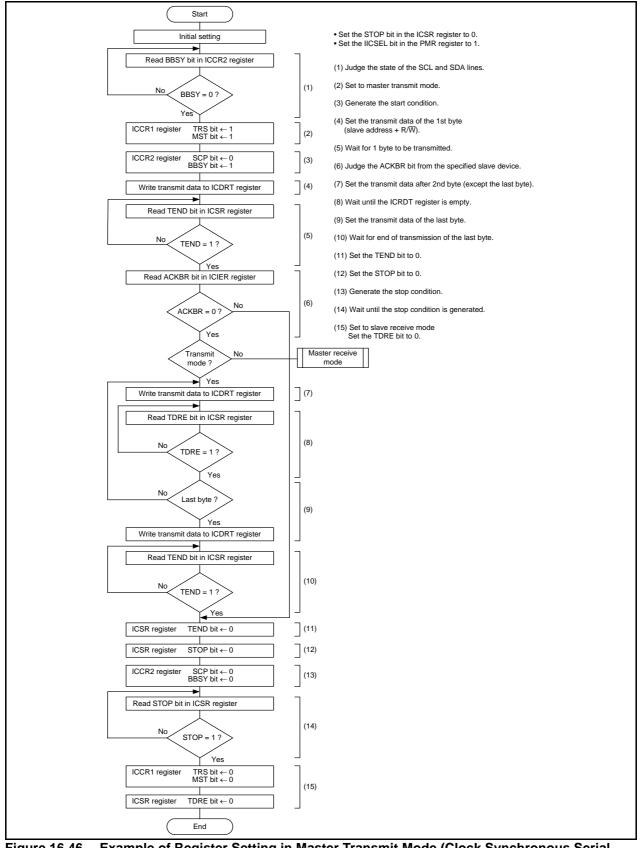
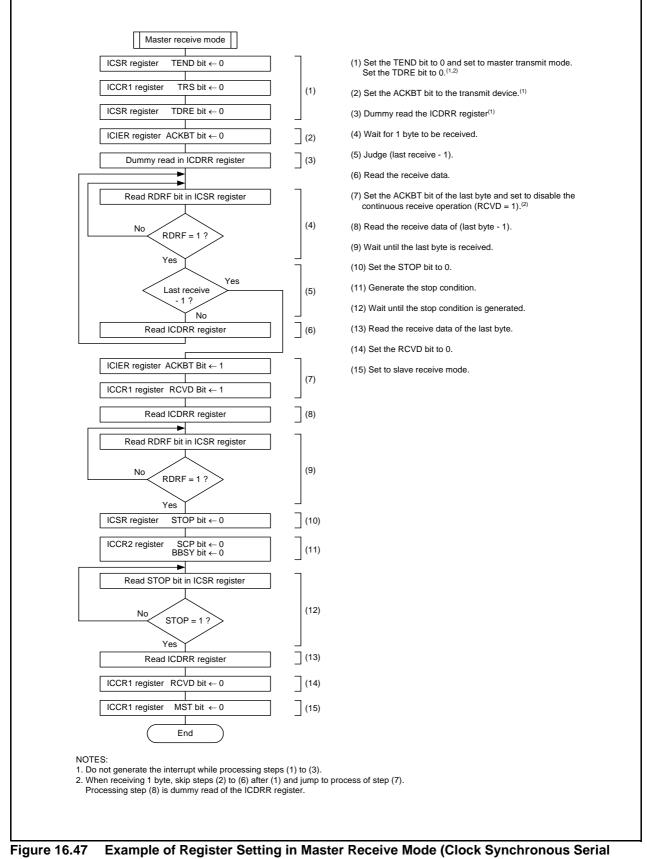
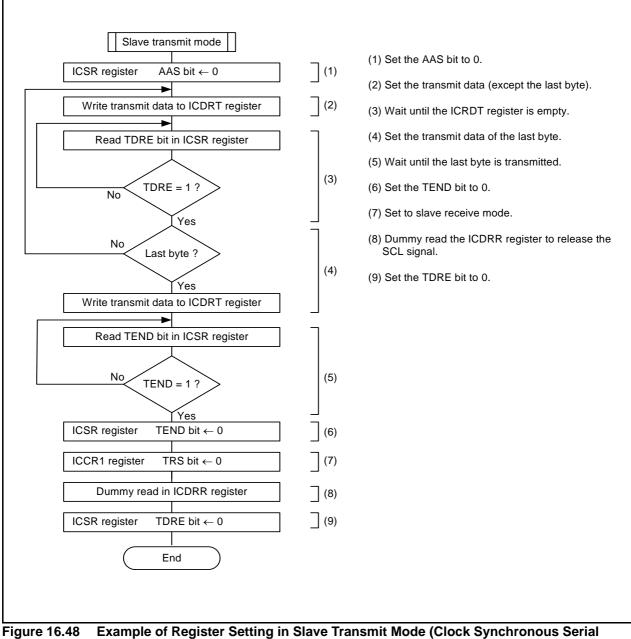




Figure 16.46 Example of Register Setting in Master Transmit Mode (Clock Synchronous Serial Mode)

Mode)

Rev.1.10 Mar 17, 2006 Page 225 of 312 **RENESAS** REJ09B0252-0110

Mode)

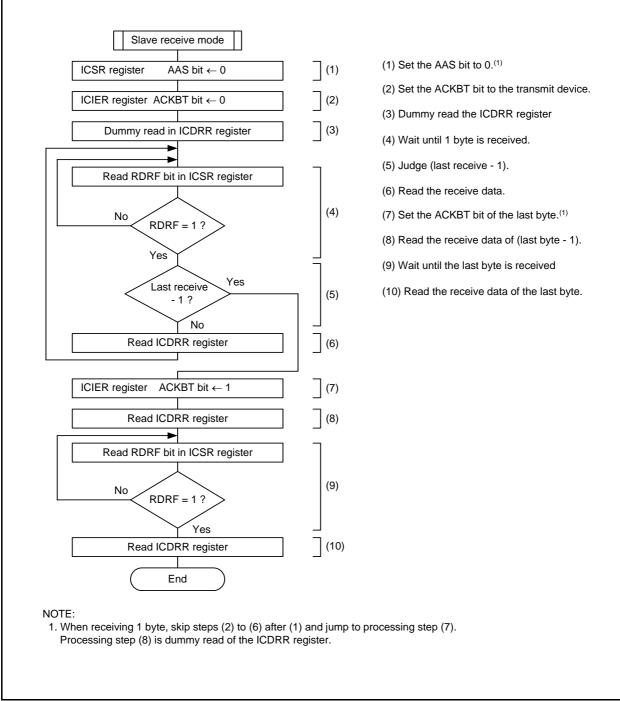


Figure 16.49 Example of Register Setting in Slave Receive Mode

16.3.8 Notes on I²C bus Interface

Set the IICSEL bit in the PMR register to 1 (select I²C bus interface function) to use the I²C bus interface.

16.3.8.1 Accessing of Registers Associated with I²C bus Interface

Wait for three instructions or more or four cycles or more after writing to the same register among the registers associated with the I^2C bus Interface (00B8h to 00BFh) before reading it.

• An example of waiting	g three ins	tructions	or more	
Program example		MOV.B NOP NOP NOP	#00h,00BBh	; Set ICIER register to 00h
		MOV.B	00BBh,R0L	
• An example of waiting	g four cyc	les or mor	re	
Program example		BCLR	6,00BBh	; Disable transmit end interrupt request
		JMP.B	NEXT	
	NEXT:			
		BSET	7,00BBh	; Enable transmit data empty interrupt request

17. A/D Converter

The A/D converter consists of one 10-bit successive approximation A/D converter circuit with a capacitive coupling amplifier. The analog input shares pins P1_0 to P1_3. Therefore, when using these pins, ensure that the corresponding port direction bits are set to 0 (input mode).

When not using the A/D converter, set the VCUT bit in the ADCON1 register to 0 (Vref unconnected) so that no current will flow from the VREF pin into the resistor ladder. This helps to reduce the power consumption of the chip. The result of A/D conversion is stored in the AD register.

Table 17.1 lists the Performance of A/D Converter. Figure 17.1 shows a Block Diagram of A/D Converter. Figures 17.2 and 17.3 show the A/D Converter-Associated Registers.

Item	Performance
A/D conversion method	Successive approximation (with capacitive coupling amplifier)
Analog input voltage ⁽¹⁾	0 V to AVCC
Operating clock $\phi AD^{(2)}$	$4.2 \text{ V} \le \text{AVCC} \le 5.5 \text{ V}$ f1, f2, f4
	2.7 V ≤ AVCC < 4.2 V f2, f4
Resolution	8 bits or 10 bits selectable
Absolute accuracy	AVCC = Vref = 5 V
	 8-bit resolution ± 2 LSB
	 10-bit resolution ± 3 LSB
	AVCC = Vref = 3.3 V
	 8-bit resolution ± 2 LSB
	 10-bit resolution ± 5 LSB
Operating mode	One-shot and repeat ⁽³⁾
Analog input pin	4 pins (AN8 to AN11)
A/D conversion start conditions	Software trigger
	Set the ADST bit in the ADCON0 register to 1 (A/D conversion starts).
	Capture
	Timer Z interrupt request is generated while the ADST bit is set to 1.
Conversion rate per pin	 Without sample and hold function
	8-bit resolution: 49\u00f6AD cycles, 10-bit resolution: 59\u00f6AD cycles
	 With sample and hold function
	8-bit resolution: 28¢AD cycles, 10-bit resolution: 33¢AD cycles

 Table 17.1
 Performance of A/D Converter

NOTES:

 The analog input voltage does not depend on use of a sample and hold function. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

- The frequency of φAD must be 10 MHz or below.
 Without a sample and hold function, the φAD frequency should be 250 kHz or above.
 With a sample and hold function, the φAD frequency should be 1 MHz or above.
- 3. In repeat mode, only 8-bit mode can be used.

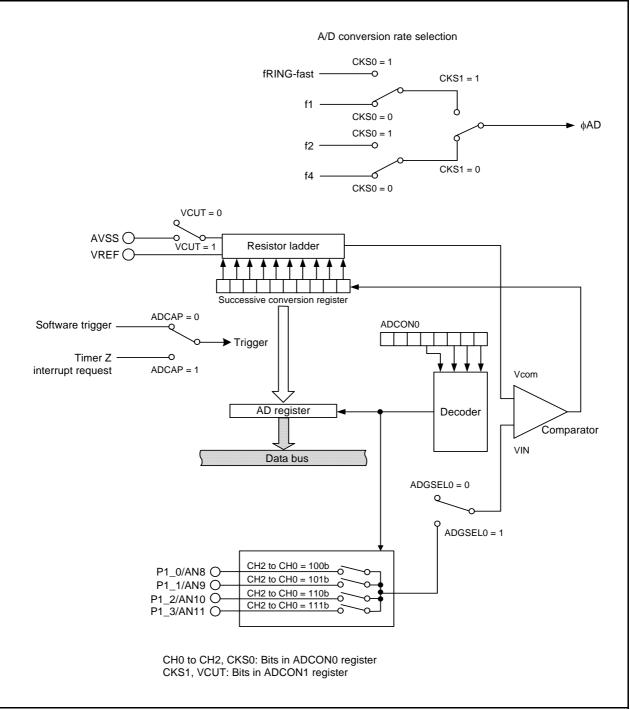


Figure 17.1 Block Diagram of A/D Converter

A/	D Control Registe	er 0 ⁽¹⁾			
	7 b6 b5 b4 b3 b2 b1 b0	Symbol A DCON0	Address 00D6h	After Reset 00000XXXb	
		Bit Symbol	Bit Name	Function	RW
		CH0	Analog input pin select bits ⁽²⁾	^{b2 b1 b0} 1 0 0 : AN8	RW
		CH1		1 0 1 : AN9 1 1 0 : AN10	RW
		CH2		1 1 1 : AN11 Other than above: Do not set.	RW
		MD	A/D operating mode select bit ⁽³⁾	0 : One-shot mode 1 : Repeat mode	RW
		ADGSEL0	A/D input group select bit	0 : Disabled 1 : Enabled (AN8 to AN11)	RW
		ADCAP	A/D conversion automatic start bit	0 : Starts at softw are trigger (ADST bit). 1 : Starts at capture (timer Z interrupt request).	RW
		ADST	A/D conversion start flag	0 : Disabes A/D conversion. 1 : Starts A/D conversion.	RW
		CKS0	Frequency select bit 0	[When CKS1 in ADCON1 register = 0] 0 : Selects f4. 1 : Selects f2. [When CKS1 in ADCON1 register = 1] 0 : Selects f1. ⁽⁴⁾ 1 : fRING-fast	RW

NOTE :

1. If the ADCON0 register is rew ritten during A/D conversion, the conversion result is undefined.

2. Bits CH0 to CH2 are enabled when the ADGSEL0 bit is set to 1. After setting the ADGSEL0 bit to 1, write to bits CH0 to CH2.

3. After changing the A/D operating mode, select the analog input pin again.

4. Set øAD frequency to 10 MHz or below .

A/D Control Register 1⁽¹⁾

b7 b6 b5 b	05 b4 b3 b2 b 0	b1 b0 0 0	Symbol ADCON1	Address 00D7h	After Reset 00h	
			Bit Symbol	Bit Name	Function	RW
			 (b2-b0)	Reserved bits	Set to 0.	RW
			BITS	8/10-bit mode select bit ⁽²⁾	0 : 8-bit mode 1 : 10-bit mode	RW
			CKS1	Frequency select bit 1	Refer to the description of the CKS0 bit in the ADCON0 register function.	RW
			VCUT	Vref connect bit ⁽³⁾	0 : Vref not connected 1 : Vref connected	RW
Ц			 (b6-b7)	Reserved bits	Set to 0.	RW

NOTES :

1. If the ADCON1 register is rew ritten during A/D conversion, the conversion result is undefined.

2. Set the BITS bit to 0 (8-bit mode) in repeat mode.

3. When the VCUT bit is set to 1 (connected) from 0 (not connected), wait for 1 μs or more before starting A/D conversion.

Figure 17.2 Registers ADCON0 and ADCON1

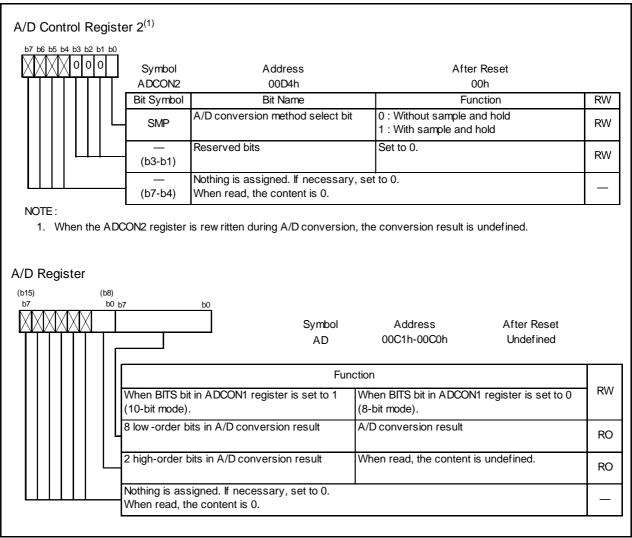


Figure 17.3 Registers ADCON2 and AD

17.1 One-Shot Mode

In one-shot mode, the input voltage of one selected pin is A/D converted once. Table 17.2 lists the One-Shot Mode Specifications. Figure 17.4 shows Registers ADCON0 and ADCON1 in One-shot Mode.

Item	Specification
Function	The input voltage of one pin selected by bits CH2 to CH0 is A/D converted
	once.
Start conditions	When the ADCAP bit is set to 0 (software trigger),
	set the ADST bit to 1 (A/D conversion starts).
	 When the ADCAP bit is set to 1 (capture),
	timer Z interrupt request is generated while the ADST bit is set to 1.
Stop conditions	 A/D conversion completes (ADST bit is set to 0).
	Set the ADST bit to 0.
Interrupt request generation	A/D conversion completes.
timing	
Input pin	Select one of AN8 to AN11.
Reading of A/D conversion	Read AD register.
result	

Table 17.2 One-Shot Mode Specifications

A/D Control Registe	er 0 ⁽¹⁾			
b7 b6 b5 b4 b3 b2 b1 b0	Symbol	Address	After Reset	
└┰┹┰┸┰┸┰┸┰┸┰┛	A DCON0	00D6h	00000XXXb	
	Bit Symbol	Bit Name	Function	RW
	CH0	Analog input pin select bits ⁽²⁾	^{b2 b1 b0} 1 0 0 : AN8	RW
	CH1		1 0 1 : AN9 1 1 0 : AN10	RW
	CH2		1 1 1 : AN11 Other than above: Do not set.	RW
	MD	A/D operating mode select bit ⁽³⁾	0 : One-shot mode	RW
	ADGSEL0	A/D input group select bit	0 : Disabled 1 : Enabled (AN8 to AN11)	RW
	ADCAP	A/D conversion automatic start bit	0 : Starts at softw are trigger (ADST bit). 1 : Starts at capture (timer Z interrupt).	RW
	ADST	A/D conversion start flag	0 : Disables A/D conversion. 1 : Starts A/D conversion.	RW
	- CKS0	Frequency select bit 0	[When CKS1 in ADCON1 register = 0] 0 : Selects f4. 1 : Selects f2. [When CKS1 in ADCON1 register = 1] 0 : Selects f1. ⁽⁴⁾ 1 : fRING-fast	RW

NOTES :

- 1. If the ADCON0 register is rew ritten during A/D conversion, the conversion result is undefined.
- 2. Bits CH0 to CH2 are enabled when the ADGSEL0 bit is set to 1. After setting the ADGSEL0 bit to 1, write to bits CH0 to CH2.
- 3. After changing the A/D operating mode, select the analog input pin again.
- 4. Set øAD frequency to 10 MHz or below .

A/D Control Register 1⁽¹⁾

	1 1	<u> </u>	b1 b0 0 0	Symbol ADCON1	Address 00D7h	After Reset 00h	
	1			Bit Symbol	Bit Name	Function	RW
		L		 (b2-b0)	Reserved bits	Set to 0.	RW
				BITS	8/10-bit mode select bit	0 : 8-bit mode 1 : 10-bit mode	RW
				CKS1	Frequency select bit 1	Refer to the description of the CKS0 bit in the ADCON0 register function.	RW
				VCUT	Vref connect bit ⁽²⁾	1 : Vref connected	RW
				 (b6-b7)	Reserved bits	Set to 0.	RW

NOTES :

1. If the ADCON1 register is rew ritten during A/D conversion, the conversion result is undefined.

2. When the VCUT bit is set to 1 (connected) from 0 (not connected), wait for 1 µs or more before starting A/D conversion.

Figure 17.4 Registers ADCON0 and ADCON1 in One-shot Mode

17.2 Repeat Mode

In repeat mode, the input voltage of one selected pin is A/D converted repeatedly. Table 17.3 lists the Repeat Mode Specifications. Figure 17.5 shows Registers ADCON0 and ADCON1 in Repeat Mode.

Item	Specification
Function	The Input voltage of one pin selected by bits CH2 to CH0 is A/D converted repeatedly
Start conditions	 When the ADCAP bit is set to 0 (software trigger), set the ADST bit to 1 (A/D conversion starts). When the ADCAP bit is set to 1 (capture), timer Z interrupt request is generated while the ADST bit is set to 1.
Stop condition	Set the ADST bit to 0.
Interrupt request generation timing	Not generated
Input pin	Select one of AN8 to AN11.
Reading of A/D conversion result	Read AD register.

Table 17.3 Repeat Mode Specifications

A/D Control Register 0 ⁽¹⁾								
b7	7 b6 b5	b4 b3		Symbol ADCON0 Bit Symbol CH0 CH1 CH2	Address 00D6h Bit Name Analog input pin select bits ⁽²⁾	After Reset 00000XXXb Function b2b1b0 1 0 0 : AN8 1 0 1 : AN9 1 1 0 : AN10 1 1 1 : AN11 Other than above: Do not set.	RW RW RW	
				MD	A/D operating mode select bit ⁽³⁾	1 : Repeat mode	RW	
				ADGSEL0	A/D input group select bit	0 : Disabled 1 : Enabled (AN8 to AN11)	RW	
				ADCAP	A/D conversion automatic start bit	0 : Starts at softw are trigger (ADST bit). 1 : Starts at capture (requests timer Z interrupt).	RW	
				ADST	A/D conversion start flag	0 : Disables A/D conversion. 1 : Starts A/D conversion.	RW	
				CKS0	Frequency select bit 0	[When CKS1 in ADCON1 register = 0] 0 : Selects f4. 1 : Selects f2. [When CKS1 in ADCON1 register = 1] 0 : Selects f1. ⁽⁴⁾ 1 : fRING-fast	RW	

NOTES :

1. If the ADCON0 register is rew ritten during A/D conversion, the conversion result is undefined.

2. Bits CH0 to CH2 are enabled when the ADGSEL0 bit is set to 1. After setting the ADGSEL0 bit to 1, write to bits CH0 to CH2.

3. After changing the A/D operating mode, select the analog input pin again.

4. Set \emptyset AD frequency to 10 MHz or below .

A/D Control Register 1⁽¹⁾

b7 b6 b5 l	5 b4 b3 b2 b1 b0 1 0 0 0 0	Symbol ADCON1	Address 00D7h	After Reset 00h	
		Bit Symbol	Bit Name	Function	RW
		 (b2-b0)	Reserved bits	Set to 0.	RW
		BITS	8/10-bit mode select bit ⁽²⁾	0 : 8-bit mode	RW
		CKS1	Frequency select bit 1	Refer to the description of the CKS0 bit in the ADCON0 register function.	RW
		VCUT	Vref connect bit ⁽³⁾	1 : Vref connected	RW
		 (b6-b7)	Reserved bits	Set to 0.	RW

NOTES :

- 1. If the ADCON1 register is rew ritten during A/D conversion, the conversion result is undefined.
- 2. Set the BITS bit to 0 (8-bit mode) in repeat mode.
- 3. When the VCUT bit is set to 1 (connected) from 0 (not connected), w ait for 1 μs or more before starting A/D conversion.

Figure 17.5 Registers ADCON0 and ADCON1 in Repeat Mode

17.3 Sample and Hold

When the SMP bit in the ADCON2 register is set to 1 (sample and hold function enabled), the A/D conversion rate per pin increases to 28ϕ AD cycles for 8-bit resolution or 33ϕ AD cycles for 10-bit resolution. The sample and hold function is available in all operating modes. Start A/D conversion after selecting whether the sample and hold circuit is to be used or not.

When performing A/D conversion, charge the comparator capacitor in the MCU during the sampling time. Figure 17.6 shows a Timing Diagram of A/D Conversion.

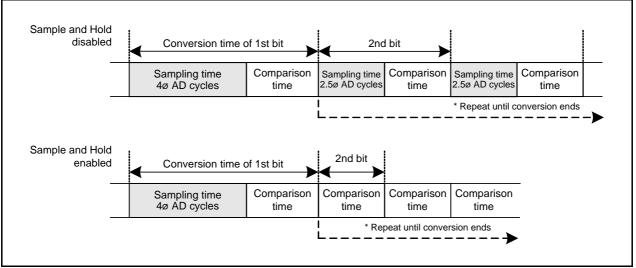
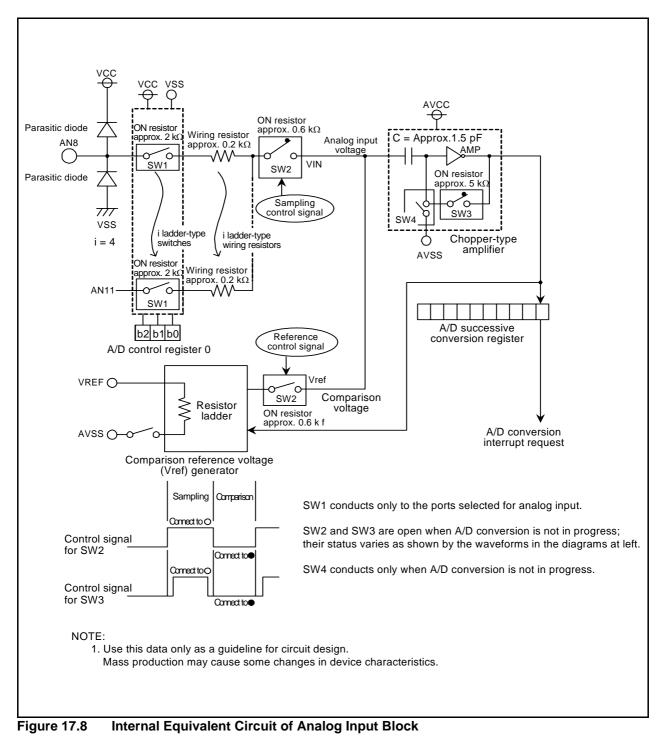


Figure 17.6 Timing Diagram of A/D Conversion

17.4 A/D Conversion Cycles


Figure 17.7 shows the A/D Conversion Cycles.

			Conversion t	ime of 1st bit		time 2nd and ng bits	End of
A/D Conversion M	ode	Conversion Time	Sampling Time	Comparison Time	Sampling Time	Comparison Time	End Processing
Without sample and hold	8 bits	49¢AD	4¢AD	2.0¢AD	2.5¢AD	2.5¢AD	8.0¢AD
Without sample and hold	10 bits	59¢AD	4¢AD	2.0¢AD	2.5¢AD	2.5¢AD	8.0øAD
With sample and hold	8 bits	28¢AD	4¢AD	2.5¢AD	0.0¢AD	2.5¢AD	4.0øAD
With sample and hold	10 bits	33¢AD	4¢AD	2.5¢AD	0.0¢AD	2.5¢AD	4.0¢AD

17.5 Internal Equivalent Circuit of Analog Input Block

Figure 17.8 shows the Internal Equivalent Circuit of Analog Input Block.

17.6 Inflow Current Bypass Circuit

Figure 17.9 shows the Configuration of Inflow Current Bypass Circuit and Figure 17.10 shows an Example of Inflow Current Bypass Circuit where VCC or More is Applied.

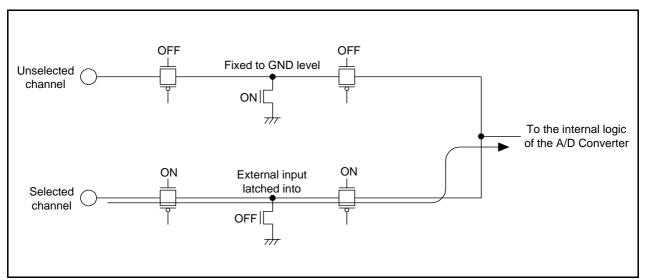


Figure 17.9 Configuration of Inflow Current Bypass Circuit

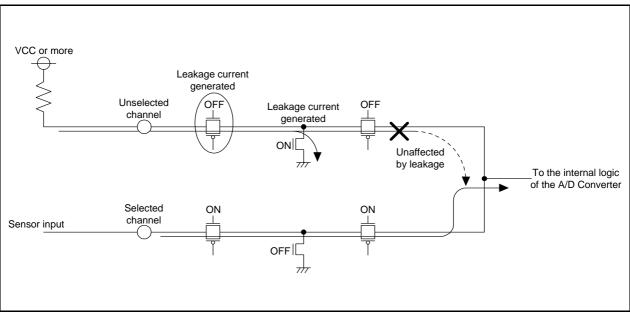


Figure 17.10 Example of Inflow Current Bypass Circuit where VCC or More is Applied

17.7 Output Impedance of Sensor under A/D Conversion

To carry out A/D conversion properly, charging the internal capacitor C shown in Figure 17.11 has to be completed within a specified period of time. T (sampling time) as the specified time. Let output impedance of sensor equivalent circuit be R0, internal resistance of microcomputer be R, precision (error) of the A/D converter be X, and the resolution of A/D converter be Y (Y is 1024 in the 10-bit mode, and 256 in the 8-bit mode).

VC is generally VC= VIN
$$\left\{1 - e^{-\frac{1}{C(R0+R)}t}\right\}$$

And when t = T, VC = VIN $-\frac{X}{Y}$ VIN = VIN $\left(1 - \frac{X}{Y}\right)$
 $e^{-\frac{1}{C(R0+R)}T} = \frac{X}{Y}$
 $-\frac{1}{C(R0+R)}T = \ln\frac{X}{Y}$
Hence, R0= $-\frac{T}{C \bullet \ln\frac{X}{Y}} - R$

Figure 17.11 shows Analog Input Pin and External Sensor Equivalent Circuit. When the difference between VIN and VC becomes 0.1LSB, we find impedance R0 when voltage between pins VC changes from 0 to VIN-(0.1/1024) VIN in time T. (0.1/1024) means that A/D precision drop due to insufficient capacitor charge is held to 0.1LSB at time of A/D conversion in the 10-bit mode. Actual error however is the value of absolute precision added to 0.1LSB.

When f(XIN) = 10 MHz, $T = 0.25 \mu s$ in the A/D conversion mode with sample & hold. Output impedance R0 for sufficiently charging capacitor C within time T is determined as follows.

T = 0.25 µs, R = 2.8 kΩ, C = 1.5 pF, X = 0.1, and Y = 1024. Hence,
R0=
$$-\frac{0.25 \times 10^{-6}}{6.0 \times 10^{-12} \bullet \ln \frac{0.1}{1024}} - 2.8 \times 10^3 \approx 7.3 \times 10^3$$

Thus, the allowable output impedance of the sensor equivalent circuit, making the precision (error) 0.1LSB or less, is approximately 7.3 k Ω maximum.^a

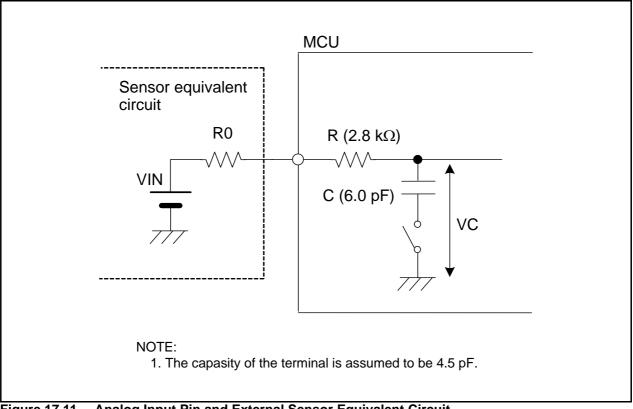


Figure 17.11 Analog Input Pin and External Sensor Equivalent Circuit

17.8 Notes on A/D Converter

- Write to each bit (other than bit 6) in the ADCON0 register, each bit in the ADCON1 register, or the SMP bit in the ADCON2 register when A/D conversion is stopped (before a trigger occurs).
- When the VCUT bit in the ADCON1 register is changed from 0 (VREF not connected) to 1 (VREF connected), wait for at least 1 µs before starting A/D conversion.
- After changing the A/D operating mode, select an analog input pin again.
- When using the one-shot mode, ensure that A/D conversion is completed before reading the AD register. The IR bit in the ADIC register or the ADST bit in the ADCON0 register can be used to determine whether A/D conversion is completed.
- When using the repeat mode, use the undivided main clock as the CPU clock.
- If the ADST bit in the ADCON0 register is set to 0 (A/D conversion stops) by a program and A/D conversion is forcibly terminated during an A/D conversion operation, the conversion result of the A/D converter will be undefined. If the ADST bit is set to 0 by a program, do not use the value of the AD register.

18. Flash Memory

18.1 Overview

In the flash memory, rewrite operations to the flash memory can be performed in three modes; CPU rewrite, standard serial I/O, and parallel I/O.

Table 18.1 lists the Flash Memory Performance (refer to **Table 1.1 Functions and Specifications for R8C/1A Group** and **Table 1.2 Functions and Specifications for R8C/1B Group** for items not listed in Table 18.1).

lt	em	Specification		
Flash memory operating mode		3 modes (CPU rewrite, standard serial I/O, and parallel I/O mode)		
Division of eras	e block	Refer to Figure 18.1 and Figure 18.2		
Programming n	nethod	Byte unit		
Erase method		Block erase		
Programming and erasure control method		Program and erase control by software command		
Rewrite control	method	Rewrite control for blocks 0 and 1 by FMR02 bit in FMR0 register.		
		Rewrite control for block 0 by FMR15 bit and block 1 by FMR16 bit in FMR1 register.		
Number of com	mands	5 commands		
Programming and erasure	Blocks 0 and 1 (program ROM)	R8C/1A Group: 100 times; R8C/1B Group: 1,000 times		
endurance ⁽¹⁾	Blocks A and B	10,000 times		
	(data flash) ⁽²⁾			
ID code check	unction	Standard serial I/O mode supported		
ROM code prot	ect	Parallel I/O mode supported		

Table 18.1 Flash Memory Performance

NOTES:

1. Definition of programming and erasure endurance

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1-Kbyte block, and then the block is erased, the erase count stands at one. When performing 100 or more rewrites, the actual erase count can be reduced by executing programming operations in such a way that all blank areas are used before performing an erase operation. Avoid rewriting only particular blocks and try to average out the programming and erasure endurance of the blocks. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.

2. Blocks A and B are implemented only in the R8C/1B Group.

Flash Memory Rewrite Mode	CPU Rewrite Mode	Standard Serial I/O Mode	Parallel I/O Mode
Function	User ROM area is rewritten by executing software commands from the CPU. EW0 mode: Rewritable in any area other than flash memory EW1 mode: Rewritable in flash memory	User ROM area is rewritten by a dedicated serial programmer.	User ROM area is rewritten by a dedicated parallel programmer.
Areas which can be rewritten	User ROM area	User ROM area	User ROM area
Operating mode	Single chip mode	Boot mode	Parallel I/O mode
ROM programmer	None	Serial programmer	Parallel programmer

 Table 18.2
 Flash Memory Rewrite Modes

18.2 Memory Map

The flash memory contains a user ROM area and a boot ROM area (reserved area). Figure 18.1 shows a Flash Memory Block Diagram for R8C/1A Group. Figure 18.2 shows a Flash Memory Block Diagram for R8C/1B Group.

The user ROM area of the R8C/1B Group contains an area (program ROM) which stores MCU operating programs and the blocks A and B (data flash) each 1 Kbyte in size.

The user ROM area is divided into several blocks. The user ROM area can be rewritten in CPU rewrite mode and standard serial I/O and parallel I/O modes.

When rewriting blocks 0 and 1 in CPU rewrite mode, set the FMR02 bit in the FMR0 register to 1 (rewrite enabled). When the FMR15 bit in the FMR1 register to is set to 0 (rewrite enabled), block 0 is rewritable. When the FMR16 bit to is set 0 (rewrite enabled), block 1 is rewritable.

The rewrite control program for standard serial I/O mode is stored in the boot ROM area before shipment. The boot ROM area and the user ROM area share the same address, but have separate memory areas.

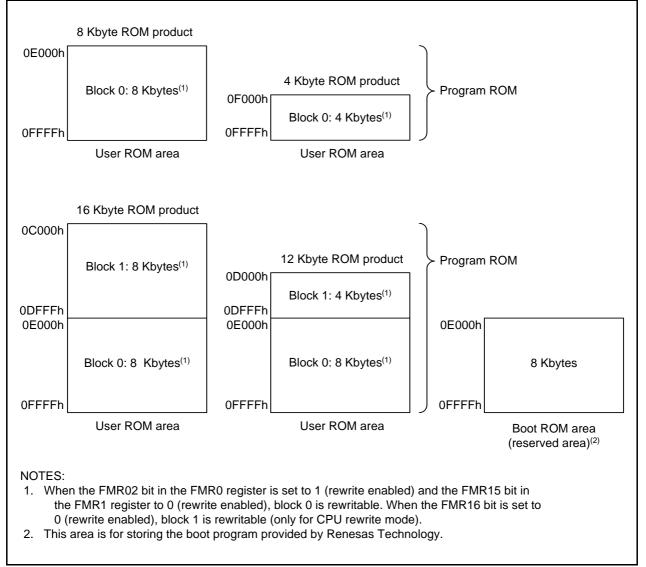
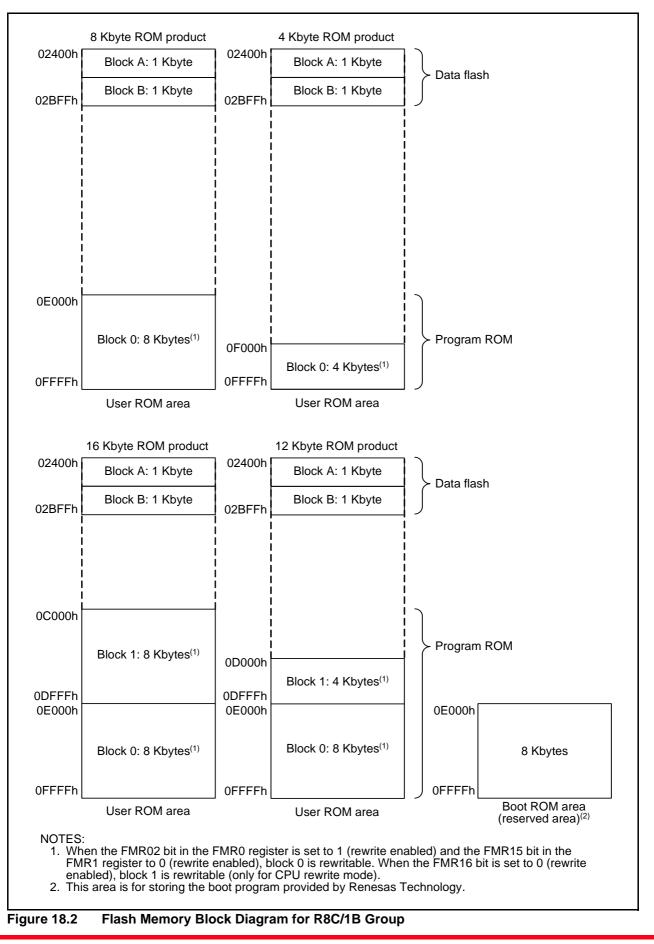
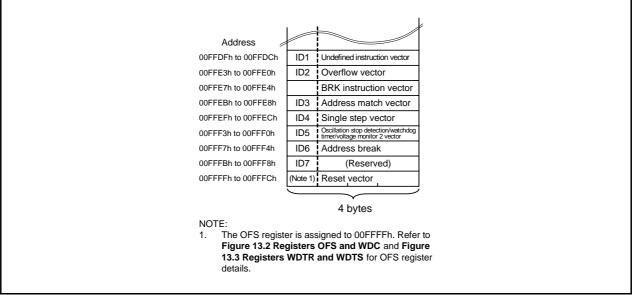



Figure 18.1 Flash Memory Block Diagram for R8C/1A Group



18.3 Functions to Prevent Rewriting of Flash Memory

Standard serial I/O mode has an ID code check function, and parallel I/O mode has a ROM code protect function to prevent the flash memory from being read or rewritten easily.

18.3.1 ID Code Check Function

This function is used in standard serial I/O mode. Unless the flash memory is blank, the ID codes sent from the programmer and the ID codes written in the flash memory are checked to see if they match. If the ID codes do not match, the commands sent from the programmer are not acknowledged. The ID codes consist of 8 bits of data each, the areas of which, beginning with the first byte, are 00FFDFh, 00FFE3h, 00FFEBh, 00FFEFh, 00FFF3h, 00FFF7h, and 00FFFBh. Write programs in which the ID codes are set at these addresses and write them to the flash memory.

18.3.2 ROM Code Protect Function

The ROM code protect function disables reading or changing the contents of the on-chip flash memory by the OFS register in parallel I/O mode. Figure 18.4 shows the OFS Register.

The ROM code protect function is enabled by writing 0 to the ROMCP1 bit and 1 to the ROMCR bit. It disables reading or changing the contents of the on-chip flash memory.

Once ROM code protect is enabled, the content in the internal flash memory cannot be rewritten in parallel I/O mode. To disable ROM code protect, erase the block including the OFS register with CPU rewrite mode or standard serial I/O mode.

		Symbol OFS	Address 0FFFFh	Before Shipment FFh ⁽²⁾	
		Bit Symbol	Bit Name	Function	RW
	WDTON	Watchdog timer start select bit	0 : Starts w atchdog timer automatically after reset.1 : Watchdog timer is inactive after reset.	RW	
	(b1)	Reserved bit	Set to 1.	RW	
		ROMCR	ROM code protect disabled bit	0 : ROM code protect disabled 1 : ROMCP1enabled	RW
		ROMCP1	ROM code protect bit	0 : ROM code protect enabled 1 : ROM code protect disabled	RW
		 (b6-b4)	Reserved bits	Set to 1.	RW
		CSPROINI	Count source protect mode after reset select bit	0 : Count source protect mode enabled after reset.1 : Count source protect mode disabled after reset.	RW

Figure 18.4 OFS Register

18.4 CPU Rewrite Mode

In CPU rewrite mode, the user ROM area can be rewritten by executing software commands from the CPU. Therefore, the user ROM area can be rewritten directly while the MCU is mounted on a board without using a ROM programmer. Execute the program and block erase commands only to blocks in the user ROM area.

The flash module has an erase-suspend function when an interrupt request is generated during an erase operation in CPU rewrite mode. It performs an interrupt process after the erase operation is halted temporarily.

During erase-suspend, the user ROM area can be read by a program.

In case an interrupt request is generated during an auto-program operation in CPU rewrite mode, the flash module has a program-suspend function which performs the interrupt process after the auto-program operation. During program-suspend, the user ROM area can be read by a program.

CPU rewrite mode has an erase write 0 mode (EW0 mode) and an erase write 1 mode (EW1 mode). Table 18.3 lists the Differences between EW0 Mode and EW1 Mode.

Item	EW0 Mode	EW1 Mode
Operating mode	Single-chip mode	Single-chip mode
Areas in which a rewrite control program can be located	User ROM area	User ROM area
Areas in which a rewrite control program can be executed	Necessary to transfer to any area other than the flash memory (e.g., RAM) before executing.	Executing directly in user ROM area is possible.
Areas which can be rewritten	User ROM area	User ROM area However, blocks which contain a rewrite control program are excluded. ⁽¹⁾
Software command restrictions	None	 Program and block erase commands Cannot be run on any block which contains a rewrite control program Read status register command cannot be executed
Modes after program or erase	Read status register mode	Read array mode
CPU status during auto- write and auto-erase	Operating	Hold state (I/O ports hold state before the command is executed.)
Flash memory status detection	 Read bits FMR00, FMR06, and FMR07 in the FMR0 register by a program. Execute the read status register command and read bits SR7, SR5, and SR4 in the status register. 	Read bits FMR00, FMR06, and FMR07 in the FMR0 register by a program.
Conditions for transition to erase-suspend	Set bits FMR40 and FMR41 in the FMR4 register to 1 by a program.	The FMR40 bit in the FMR4 register is set to 1 and the interrupt request of the enabled maskable interrupt is generated.
Conditions for transitions to program-suspend	Set bits FMR40 and FMR42 in the FMR4 register to 1 by a program.	The FMR40 bit in the FMR4 register is set to 1 and the interrupt request of the enabled maskable interrupt is generated.
CPU clock	5 MHz or below	No restriction (on clock frequency to be used)

Table 18.3 Differences between EW0 Mode and EW1 Mode

NOTE:

1. When the FMR02 bit in the FMR0 register is set to 1 (rewrite enabled), rewriting block 0 is enabled by setting the FMR15 bit in the FMR1 register to 0 (rewrite enabled), and rewriting block 1 is enabled by setting the FMR16 bit to 0 (rewrite enabled).

18.4.1 EW0 Mode

The MCU enters CPU rewrite mode and software commands can be acknowledged by setting the FMR01 bit in the FMR0 register to 1 (CPU rewrite mode enabled). In this case, since the FMR11 bit in the FMR1 register is set to 0, EW0 mode is selected.

Use software commands to control program and erase operations. The FMR0 register or the status register can be used to determine when program and erase operations complete.

During auto-erasure, set the FMR40 bit to 1 (erase-suspend enabled) and the FMR41 bit to 1 (request erase-suspend). Wait for td(SR-ES) and ensure that the FMR46 bit is set to 1 (read enabled) before accessing the user ROM area. The auto-erase operation can be restarted by setting the FMR41 bit to 0 (erase restarts).

To enter program-suspend during the auto-program operation, set the FMR40 bit to 1 (suspend enabled) and the FMR42 bit to 1 (request program-suspend). Wait for td(SR-ES) and ensure that the FMR46 bit is set to 1 (read enabled) before accessing the user ROM area. The auto-program operation can be restarted by setting the FMR42 bit to 0 (program restarts).

18.4.2 EW1 Mode

The MCU is switched to EW1 mode by setting the FMR11 bit to 1 (EW1 mode) after setting the FMR01 bit to 1 (CPU rewrite mode enabled).

The FMR0 register can be used to determine when program and erase operations complete. Do not execute software commands that use the read status register in EW1 mode.

To enable the erase-suspend function during auto-erasure, execute the block erase command after setting the FMR40 bit to 1 (erase-suspend enabled). The interrupt to enter erase-suspend should be in interrupt enabled status. After waiting for td(SR-ES) after the block erase command is executed, the interrupt request is acknowledged.

When an interrupt request is generated, the FMR41 bit is automatically set to 1 (requests erase-suspend) and the auto-erase operation suspends. If an auto-erase operation does not complete (FMR00 bit is 0) after an interrupt process completes, the auto-erase operation restarts by setting the FMR41 bit to 0 (erase restarts)

To enable the program-suspend function during auto-programming, execute the program command after setting the FMR40 bit to 1 (suspend enabled). The interrupt to enter a program-suspend should be in interrupt enabled status. After waiting for td(SR-ES) after the program command is executed, an interrupt request is acknowledged.

When an interrupt request is generated, the FMR42 bit is automatically set to 1 (request program-suspend) and the auto-program operation suspends. When the auto-program operation does not complete (FMR00 bit is 0) after the interrupt process completes, the auto-program operation can be restarted by setting the FMR42 bit to 0 (programming restarts).

Figure 18.5 shows the FMR0 Register. Figure 18.7 shows the FMR4 Register.

18.4.2.1 FMR00 Bit

This bit indicates the operating status of the flash memory. The bits value is 0 during programming, or erasure (suspend term included); otherwise, it is 1.

18.4.2.2 FMR01 Bit

The MCU is made ready to accept commands by setting the FMR01 bit to 1 (CPU rewrite mode).

18.4.2.3 FMR02 Bit

Rewriting of blocks 1 and 0 does not accept the program or block erase commands if the FMR02 bit is set to 0 (rewrite disabled).

Rewriting of blocks 0 and 1 is controlled by bits FMR15 and FMR16 if the FMR02 bit is set to 1 (rewrite enabled).

18.4.2.4 FMSTP Bit

This bit is used to initialize the flash memory control circuits, and also to reduce the amount of current consumed by the flash memory. Access to the flash memory is disabled by setting the FMSTP bit to 1. Therefore, the FMSTP bit must be written to by a program located outside of the flash memory. In the following cases, set the FMSTP bit to 1:

In the following cases, set the FMSTP bit to 1:

- When flash memory access resulted in an error while erasing or programming in EW0 mode (FMR00 bit not reset to 1 (ready)).
- When entering on-chip oscillator mode (main clock stops).

Figure 18.11 shows a flowchart of the steps to be followed before and after entering on-chip oscillator mode (main clock stop). Note that when going to stop or wait mode while the CPU rewrite mode is disabled, the FMR0 register does not need to be set because the power for the flash memory is automatically turned off and is turned back on again after returning from stop or wait mode.

18.4.2.5 FMR06 Bit

This is a read-only bit indicating the status of an auto-program operation. The bit is set to 1 when a program error occurs; otherwise, it is set to 0. For details, refer to the description in **18.4.5 Full Status Check**.

18.4.2.6 FMR07 Bit

This is a read-only bit indicating the status of an auto-erase operation. The bit is set to 1 when an erase error occurs; otherwise, it is set to 0. Refer to **18.4.5 Full Status Check** for details.

18.4.2.7 FMR11 Bit

Setting this bit to 1 (EW1 mode) places the MCU in EW1 mode.

18.4.2.8 FMR15 Bit

When the FMR02 bit is set to 1 (rewrite enabled) and the FMR15 bit is set to 0 (rewrite enabled), block 0 accepts program and block erase commands.

18.4.2.9 FMR16 Bit

When the FMR02 bit is set to 1 (rewrite enabled) and the FMR16 bit is set to 0 (rewrite enabled), block 1 accepts program and block erase commands.

18.4.2.10 FMR40 Bit

The suspend function is enabled by setting the FMR40 bit to 1 (enable).

18.4.2.11 FMR41 Bit

In EW0 mode, the MCU enters erase-suspend mode when the FMR41 bit is set to 1 by a program. The FMR41 bit is automatically set to 1 (request erase-suspend) when an interrupt request of an enabled interrupt is generated in EW1 mode, and then the MCU enters erase-suspend mode.

Set the FMR41 bit to 0 (erase restarts) when the auto-erase operation restarts.

18.4.2.12 FMR42 Bit

In EW0 mode, the MCU enters program-suspend mode when the FMR42 bit is set to 1 by a program. The FMR42 bit is automatically set to 1 (request program-suspend) when an interrupt request of an enabled interrupt is generated in EW1 mode, and then the MCU enters program-suspend mode. Set the FMR42 bit to 0 (program restart) when the auto-program operation restarts.

18.4.2.13 FMR43 Bit

When the auto-erase operation starts, the FMR43 bit is set to 1 (erase execution in progress). The FMR43 bit remains set to 1 (erase execution in progress) during erase-suspend operation. When the auto-erase operation ends, the FMR43 bit is set to 0 (erase not executed).

18.4.2.14 FMR44 Bit

When the auto-program operation starts, the FMR44 bit is set to 1 (program execution in progress). The FMR44 bit remains set to 1 (program execution in progress) during program-suspend operation. When the auto-program operation ends, the FMR44 bit is set to 0 (program not executed).

18.4.2.15 FMR46 Bit

The FMR46 bit is set to 0 (reading disabled) during auto-erase execution and set to 1 (reading enabled) in erasesuspend mode. Do not access the flash memory while this bit is set to 0.

18.4.2.16 FMR47 Bit

Power consumption when reading flash memory can be reduced by setting the FMR47 bit to 1 (enabled).

Flash Memory Cor	Flash Memory Control Register 0					
b7 b6 b5 b4 b3 b2 b1 b0	Symbol FMR0	Address 01B7h	After Reset 0000001b			
	Bit Symbol	Bit Name	Function	RW		
	FMR00	RY/BY status flag	0 : Busy (w riting or erasing in progress) 1 : Ready	RO		
	- FMR01	CPU rew rite mode select bit ⁽¹⁾	0 : CPU rew rite mode disabled 1 : CPU rew rite mode enabled	RW		
	FMR02	Block 0, 1 rew rite enable bit ^(2, 6)	0 : Disables rew rite. 1 : Enables rew rite.	RW		
	- FMSTP	Flash memory stop bit ^(3, 5)	 0 : Enables flash memory operation. 1 : Stops flash memory (enters low -pow er consumption state and flash memory is reset). 	RW		
	 (b5-b4)	Reserved bits	Set to 0.	RW		
	- FMR06	Program status flag ⁽⁴⁾	0 : Completed successfully 1 : Terminated by error	RO		
	FMR07	Erase status flag ⁽⁴⁾	0 : Completed successfully 1 : Terminated by error	RO		

NOTES :

1. To set this bit to 1, set it to 1 immediately after setting it first to 0. Do not generate an interrupt betw een setting the bit to 0 and setting it to 1. Enter read array mode and set this bit to 0.

- 2. Set this bit to 1 immediately after setting it first to 0 w hile the FMR01 bit is set to 1. Do not generate an interrupt betw een setting the bit to 0 and setting it to 1.
- 3. Set this bit by a program located in a space other than the flash memory.
- 4. This bit is set to 0 by executing the clear status command.
- 5. This bit is enabled when the FMR01 bit is set to 1 (CPU rew rite mode). When the FMR01 bit is set to 0, writing 1 to the FMSTP bit causes the FMSTP bit to be set to 1. The flash memory does not enter low -pow er consumption state nor is it reset.
- 6. When setting the FMR01 bit to 0 (CPU rew rite mode disabled), the FMR02 bit is set to 0 (disables rew rite).

b7 b6 l	00000000000000000000000000000000000000	Symbol FMR1	Address 01B5h	After Reset 1000000Xb	
		Bit Symbol	Bit Name	Function	RW
	L	(b0)	Reserved bit	When read, the content is undefined.	RO
		FMR11	EW1 mode select bit ^(1, 2)	0 : EW0 mode 1 : EW1 mode	RW
		(b4-b2)	Reserved bits	Set to 0.	RW
		- FMR15	Block 0 rew rite disable bit ^(2,3)	0 : Enables rew rite. 1 : Disables rew rite.	RW
		FMR16	Block 1 rew rite disable bit ^(2,3)	0 : Enables rew rite. 1 : Disables rew rite.	RW
		(b7)	Reserved bit	Set to 1.	RW

- 1. To set this bit to 1, set it to 1 immediately after setting it first to 0 w hile the FMR01 bit is set to 1 (CPU rew rite mode enable) . Do not generate an interrupt betw een setting the bit to 0 and setting it to 1.
- 2. This bit is set to 0 by setting the FMR01 bit to 0 (CPU rew rite mode disabled).
- When the FMR01 bit is set to 1 (CPU rew rite mode enabled), bits FMR15 and FMR16 can be w ritten to. To set this bit to 0, set it to 0 immediately after setting it first to 1. To set this bit to 1, set it to 1.

Figure 18.6 FMR1 Register

trol Registe	r 4		
Symbol FMR4	Address 01B3h	After Reset 0100000b	
Bit Symbol	Bit Name	Function	RW
FMR40	Erase-suspend function enable bit ⁽¹⁾	0 : Disable 1 : Enable	RW
FMR41	Erase-suspend request bit ⁽²⁾	0 : Erase restart 1 : Erase-suspend request	RW
FMR42	Program-suspend request bit ⁽³⁾	0 : Program restart 1 : Program-suspend request	RW
FMR43	Erase command flag	0 : Erase not executed 1 : Erase execution in progress	RO
FMR44	Program command flag	0 : Program not executed 1 : Program execution in progress	RO
(b5)	Reserved bits	Set to 0.	RO
FMR46	Read status flag	0 : Disables reading. 1 : Enables reading.	RO
FMR47	Low -pow er consumption read mode enable bit ^(1, 4)	0 : Disable 1 : Enable	RW
· · ·	Symbol FMR4 Bit Symbol FMR40 FMR41 FMR42 FMR43 FMR44 (b5) FMR46	FMR4 01B3h Bit Symbol Bit Name FMR40 Erase-suspend function enable bit ⁽¹⁾ FMR41 Erase-suspend request bit ⁽²⁾ FMR42 Program-suspend request bit ⁽³⁾ FMR43 Erase command flag FMR44 Program command flag FMR44 Program command flag FMR46 Read status flag FMR46 Low -pow er consumption read	Symbol Address After Reset FMR4 01B3h 0100000b Bit Symbol Bit Name Function FMR40 Erase-suspend function 0 : Disable FMR40 enable bit ⁽¹⁾ 1 : Enable FMR41 Erase-suspend request bit ⁽²⁾ 0 : Erase restart FMR41 Erase-suspend request bit ⁽²⁾ 0 : Program restart FMR42 Program-suspend request bit ⁽³⁾ 0 : Program restart FMR43 Erase command flag 0 : Erase not executed FMR44 Program command flag 0 : Program not executed FMR44 Program command flag 0 : Disables reading. - Reserved bits Set to 0. (b5) FMR46 Read status flag 0 : Disables reading. FMR46 Low -pow er consumption read 0 : Disable

to 0 and setting it to 1.

 This bit is enabled when the FMR40 bit is set to 1 (enable) and it can be written to during the period between issuing an erase command and completing the erase. (This bit is set to 0 during the periods other than the above.) In EW0 mode, it can be set to 0 and 1 by a program.

In EW1 mode, it is automatically set to 1 if a maskable interrupt is generated during an erase

operation while the FMR40 bit is set to 1. Do not set this bit to 1 by a program (0 can be written).

3. The FMR42 bit is enabled only when the FMR40 bit is set to 1 (enable) and programming to the FMR42 bit is enabled until auto-programming ends after a program command is generated. (This bit is set to 0 during periods other than the above.)

In EW0 mode, 0 or 1 can be programmed to the FMR42 bit by a program.

In EW1 mode, the FMR42 bit is automatically set to 1 by generating a maskable interrupt during auto-programming when the FMR40 bit is set to 1.1 cannot be written to the FMR42 bit by a program.

4. Use this mode only in low-speed on-chip oscillator mode.

Figure 18.7 FMR4 Register

Figure 18.8 shows the Timing of Suspend Operation.

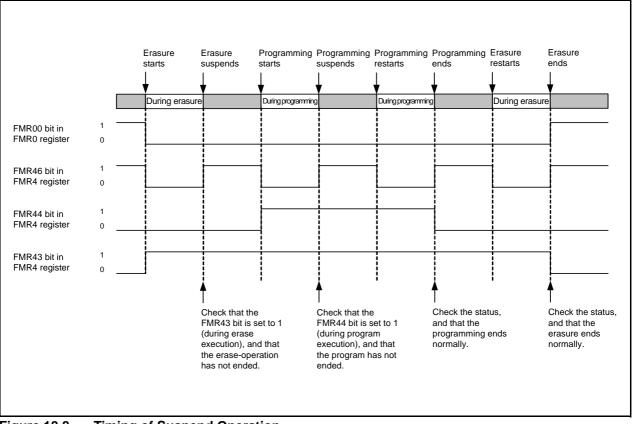


Figure 18.8 Timing of Suspend Operation

Figure 18.9 shows How to Set and Exit EW0 Mode. Figure 18.10 shows How to Set and Exit EW1 Mode.

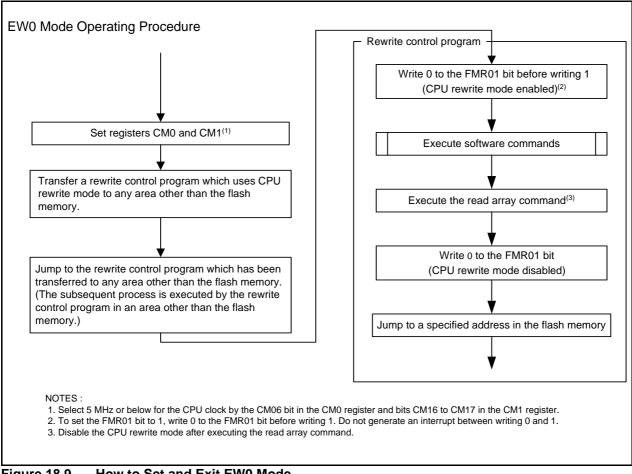


Figure 18.9 How to Set and Exit EW0 Mode

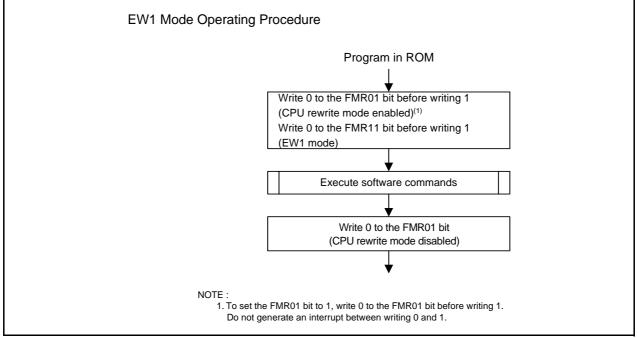


Figure 18.10 How to Set and Exit EW1 Mode

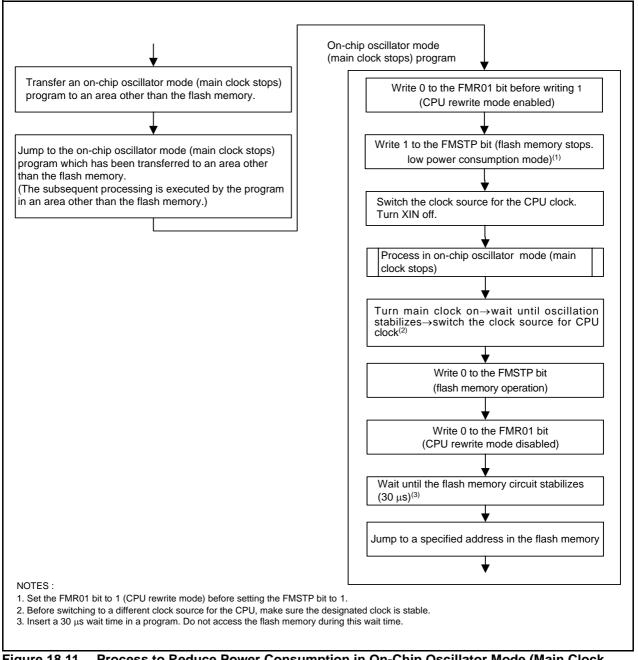


Figure 18.11 Process to Reduce Power Consumption in On-Chip Oscillator Mode (Main Clock Stops)

18.4.3 Software Commands

The software commands are described below. Read or write commands and data in 8-bit units.

		First Bus Cyc	le	Second Bus Cycle		
Command	Mode	Address	Data (D7 to D0)	Mode	Address	Data (D7 to D0)
Read array	Write	×	FFh			
Read status register	Write	×	70h	Read	×	SRD
Clear status register	Write	×	50h			
Program	Write	WA	40h	Write	WA	WD
Block erase	Write	×	20h	Write	BA	D0h

Table 18.4 Software Commands

SRD: Status register data (D7 to D0)

WA: Write address (ensure the address specified in the first bus cycle is the same address as the write address specified in the second bus cycle.)

WD: Write data (8 bits)

BA: Given block address

x: Any specified address in the user ROM area

18.4.3.1 Read Array Command

The read array command reads the flash memory.

The MCU enters read array mode when FFh is written in the first bus cycle. When the read address is entered in the following bus cycles, the content of the specified address can be read in 8-bit units.

Since the MCU remains in read array mode until another command is written, the contents of multiple addresses can be read continuously.

18.4.3.2 Read Status Register Command

The read status register command is used to read the status register.

When 70h is written in the first bus cycle, the status register can be read in the second bus cycle. (Refer to **18.4.4 Status Register**.) When reading the status register, specify an address in the user ROM area. Do not execute this command in EW1 mode.

18.4.3.3 Clear Status Register Command

The clear status register command sets the status register to 0. When 50h is written in the first bus cycle, bits FMR06 to FMR07 in the FMR0 register and SR4 to SR5 in the status register are set to 0.

18.4.3.4 Program Command

The program command writes data to the flash memory in 1-byte units.

By writing 40h in the first bus cycle and data to the write address in the second bus cycle, an auto-program operation (data program and verify) will start. Make sure the address value specified in the first bus cycle is the same address as the write address specified in the second bus cycle.

The FMR00 bit in the FMR0 register can be used to determine whether auto-programming has completed. The FMR00 bit is set to 0 during auto-programming and set to 1 when auto-programming completes.

The FMR06 bit in the FMR0 register can be used to determine the result of auto-programming after it has been finished. (Refer to **18.4.5 Full Status Check**.)

Do not write additions to the already programmed addresses.

When the FMR02 bit in the FMR0 register is set to 0 (rewriting disabled), or the FMR02 bit is set to 1 (rewrite enabled) and the FMR15 bit in the FMR1 register is set to 1 (rewriting disabled), program commands targeting block 0 are not acknowledged. When the FMR16 bit is set to 1 (rewriting disabled), program commands targeting block 1 are not acknowledged.

In EW1 mode, do not execute this command for any address which a rewrite control program is allocated.

In EW0 mode, the MCU enters read status register mode at the same time auto-programming starts and the status register can be read. The status register bit 7 (SR7) is set to 0 at the same time auto-programming starts and set back to 1 when auto-programming completes. In this case, the MCU remains in read status register mode until the next read array command is written. The status register can be read to determine the result of auto-programming after auto-programming has completed.

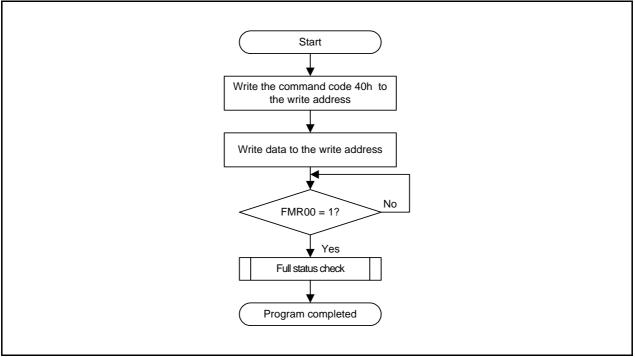


Figure 18.12 Program Command

18.4.3.5 Block Erase

When 20h is written in the first bus cycle and D0h is written to a given address of a block in the second bus cycle, an auto-erase operation (erase and verify) of the specified block starts.

The FMR00 bit in the FMR0 register can be used to determine whether auto-erasure has completed.

The FMR00 bit is set to 0 during auto-erasure and set to 1 when auto-erasure completes.

The FMR07 bit in the FMR0 register can be used to determine the result of auto-erasure after auto-erasure has completed. (Refer to **18.4.5 Full Status Check**.)

When the FMR02 bit in the FMR0 register is set to 0 (rewriting disabled) or the FMR02 bit is set to 1 (rewriting enabled) and the FMR15 bit in the FMR1 register is set to 1 (rewriting disabled), the block erase commands targeting block 0 are not acknowledged. When the FMR16 bit is set to 1 (rewriting disabled), the block erase commands targeting block 1 are not acknowledged.

Do not use the block erase command during program-suspend.

Figure 18.13 shows the Block Erase Command (When Not Using Erase-Suspend Function). Figure 18.14 shows the Block Erase Command (When Using Erase-Suspend Function).

In EW1 mode, do not execute this command for any address to which a rewrite control program is allocated.

In EW0 mode, the MCU enters read status register mode at the same time auto-erasure starts and the status register can be read. The status register bit 7 (SR7) is set to 0 at the same time auto-erasure starts and set back to 1 when auto-erasure completes. In this case, the MCU remains in read status register mode until the next read array command is written.

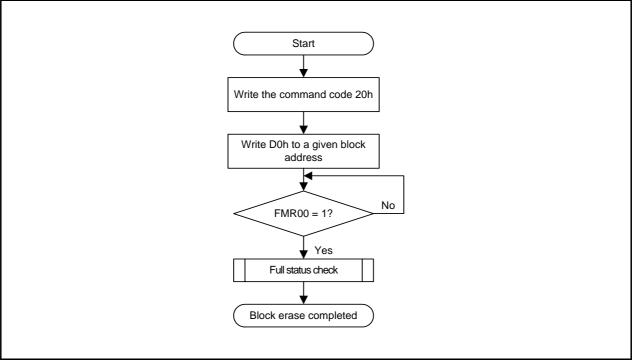
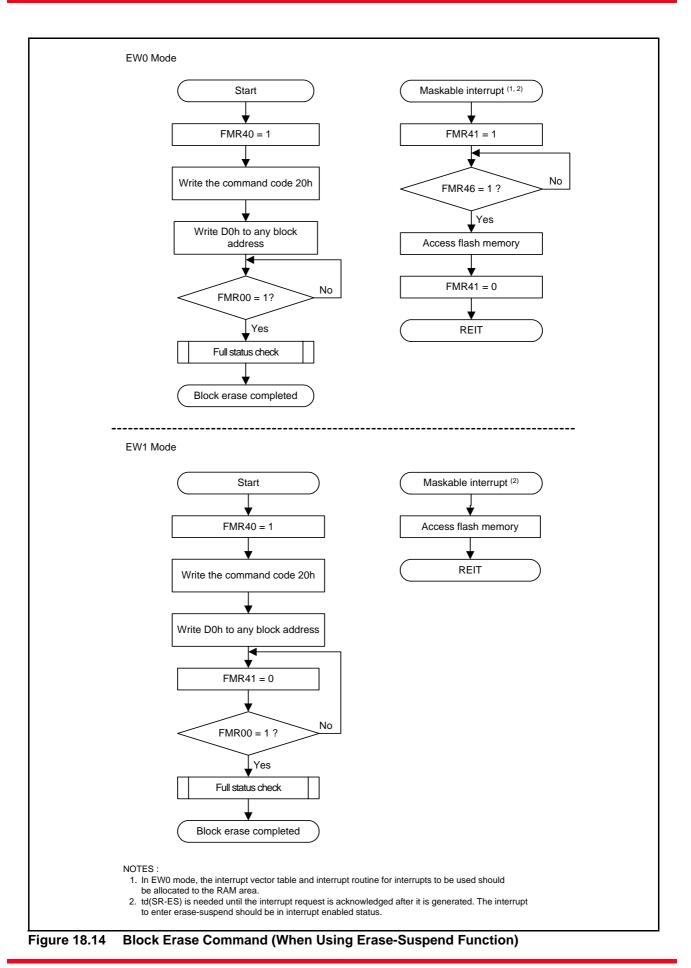



Figure 18.13 Block Erase Command (When Not Using Erase-Suspend Function)

18.4.4 Status Register

The status register indicates the operating status of the flash memory and whether an erase or program operation has completed normally or in error. Status of the status register can be read by bits FMR00, FMR06, and FMR07 in the FMR0 register.

Table 18.5 lists the Status Register Bits.

In EW0 mode, the status register can be read in the following cases:

- When a given address in the user ROM area is read after writing the read status register command
- When a given address in the user ROM area is read after executing program or block erase command but before executing the read array command.

18.4.4.1 Sequencer Status (Bits SR7 and FMR00)

The sequencer status bits indicate the operating status of the flash memory. SR7 is set to 0 (busy) during auto-programming and auto-erasure, and is set to 1 (ready) at the same time the operation completes.

18.4.4.2 Erase Status (Bits SR5 and FMR07)

Refer to 18.4.5 Full Status Check.

18.4.4.3 Program Status (Bits SR4 and FMR06)

Refer to 18.4.5 Full Status Check.

Status	FMR0	Status Name	Desc	ription	Value
Register	Register	Status Maine	0	1	after
Bit	Bit		0	1	Reset
SR0 (D0)	-	Reserved	-	-	-
SR1 (D1)	-	Reserved	-	-	-
SR2 (D2)	-	Reserved	-	-	-
SR3 (D3)	-	Reserved	-	-	-
SR4 (D4)	FMR06	Program status	Completed normally	Error	0
SR5 (D5)	FMR07	Erase status	Completed normally	Error	0
SR6 (D6)	-	Reserved	-	-	-
SR7 (D7)	FMR00	Sequencer status	Busy	Ready	1

Table 18.5 Status Register Bits

D0 to D7: Indicate the data bus which is read when the read status register command is executed. Bits FMR07 (SR5) to FMR06 (SR4) are set to 0 by executing the clear status register command. When the FMR07 bit (SR5) or FMR06 bit (SR4) is set to 1, the program and block erase commands cannot be accepted.

18.4.5 Full Status Check

When an error occurs, bits FMR06 to FMR07 in the FMR0 register are set to 1, indicating the occurrence of an error. Therefore, checking these status bits (full status check) can be used to determine the execution result. Table 18.6 lists the Errors and FMR0 Register Status. Figure 18.15 shows the Full Status Check and Handling Procedure for Individual Errors.

FRM00 Reg	ister (Status		
Registe	Register) Status		Error Occurrence Condition
FMR07(SR5)	FMR06(SR4)		
1	1	Command	• When a command is not written correctly.
		sequence error	 When invalid data other than that which can be written in the second bus cycle of the block erase command is written (i.e., other than D0h or FFh).⁽¹⁾ When the program command or block erase command is executed while rewriting is disabled by the FMR02 bit in the FMR0 register, or the FMR15 or FMR16 bit in the FMR1 register. When an address not allocated in flash memory is input during erase command input. When attempting to erase the block for which rewriting is disabled during erase command input. When an address not allocated in flash memory is input during write command input. When attempting to write the block for which rewriting is disabled during write command input.
1	0	Erase error	When the block erase command is executed but auto-erasure does not complete correctly.
0	1	Program error	When the program command is executed but not auto-programming does not complete correctly.

Table 18.6 Errors and FMR0 Register Status

NOTE:

1. The MCU enters read array mode when FFh is written in the second bus cycle of these commands. At the same time, the command code written in the first bus cycle is disabled.

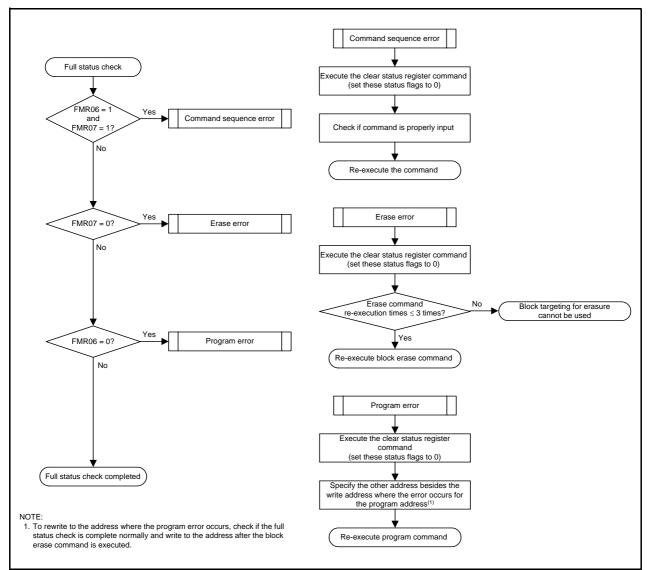


Figure 18.15 Full Status Check and Handling Procedure for Individual Errors

18.5 Standard Serial I/O Mode

In standard serial I/O mode, the user ROM area can be rewritten while the MCU is mounted on-board by using a serial programmer which is suitable for the MCU.

Standard serial I/O mode is used to connect with a serial programmer using a special clock asynchronous serial I/O. There are three standard serial I/O modes:

- Standard serial I/O mode 1 Clock synchronous serial I/O used to connect with a serial programmer
- Standard serial I/O mode 2 Clock asynchronous serial I/O used to connect with a serial programmer
- Standard serial I/O mode 3..... Special clock asynchronous serial I/O used to connect with a serial programmer

This MCU uses standard serial I/O mode 2 and standard serial I/O mode 3.

Refer to **Appendix 2. Connection Examples between Serial Writer and On-Chip Debugging Emulator.** Contact the manufacturer of your serial programmer for additional information. Refer to the user's manual of your serial programmer for details on how to use it.

Table 18.7 lists the Pin Functions (Flash Memory Standard Serial I/O Mode 2), Table 18.8 lists the Pin Functions (Flash Memory Standard Serial I/O Mode 3). Figure 18.16 shows Pin Connections for Standard Serial I/O Mode 3. After processing the pins shown in Table 18.8 and rewriting the flash memory using a programmer, apply "H" to the MODE pin and reset the hardware to run a program in the flash memory in single-chip mode.

18.5.1 ID Code Check Function

The ID code check function determines whether the ID codes sent from the serial programmer and those written in the flash memory match (refer to **18.3 Functions to Prevent Rewriting of Flash Memory**).

Pin	Name	I/O	Description
VCC,VSS	Power input		Apply the voltage guaranteed for programming and
			erasure to the VCC pin and 0 V to the VSS pin.
RESET	Reset input	I	Reset input pin.
P4_6/XIN	P4_6 input/clock input	I	Connect a ceramic resonator or crystal oscillator
			between pins XIN and XOUT.
P4_7/XOUT	P4_7 input/clock output	I/O	
AVCC, AVSS	Analog power supply input	I	Connect AVSS to VSS and AVCC to VCC, respectively.
P1_0 to P1_7	Input port P1	Ι	Input "H" or "L" level signal or leave the pin open.
P3_3 to P3_5	Input port P3	I	Input "H" or "L" level signal or leave the pin open.
P4_2/VREF	Input port P4	Ι	Input "H" or "L" level signal or leave the pin open.
MODE	MODE	I/O	Input "L".
P3_7	TXD output	0	Serial data output pin.
P4_5	RXD input	I	Serial data input pin.

Table 18.7 Pin Functions (Flash Memory Standard Serial I/O Mode 2)

Pin	Name	I/O	Description
VCC,VSS	Power input		Apply the voltage guaranteed for programming and
			erasure to the VCC pin and 0 V to the VSS pin.
RESET	Reset input	I	Reset input pin.
P4_6/XIN	P4_6 input/clock input	Ι	Connect a ceramic resonator or crystal oscillator
			between pins XIN and XOUT when connecting external
P4_7/XOUT	P4_7 input/clock output	I/O	oscillator. Apply "H" and "L" or leave the pin open when
			using as input port
AVCC, AVSS	Analog power supply input	I	Connect AVSS to VSS and AVCC to VCC, respectively.
P1_0 to P1_7	Input port P1	Ι	Input "H" or "L" level signal or leave the pin open.
P3_3 to P3_5,	Input port P3	Ι	Input "H" or "L" level signal or leave the pin open.
P3_7			
P4_2/VREF,	Input port P4	I	Input "H" or "L" level signal or leave the pin open.
P4_5			
MODE	MODE	I/O	Serial data I/O pin. Connect to flash programmer.

 Table 18.8
 Pin Functions (Flash Memory Standard Serial I/O Mode 3)

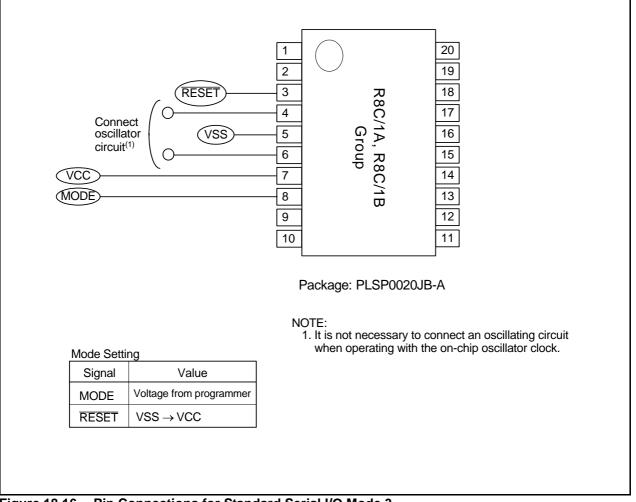


Figure 18.16 Pin Connections for Standard Serial I/O Mode 3

18.5.1.1 Example of Circuit Application in Standard Serial I/O Mode

Figure 18.17 shows an example of Pin Processing in Standard Serial I/O Mode 2, and Figure 18.18 shows Pin Processing in Standard Serial I/O Mode 3. Since the controlled pins vary depending on the programmer, refer to the manual of your serial programmer for details.

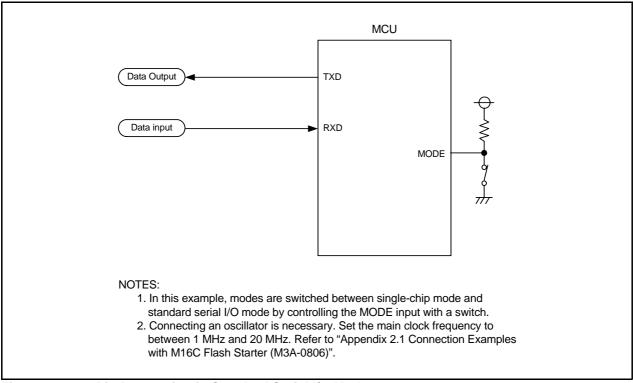


Figure 18.17 Pin Processing in Standard Serial I/O Mode 2

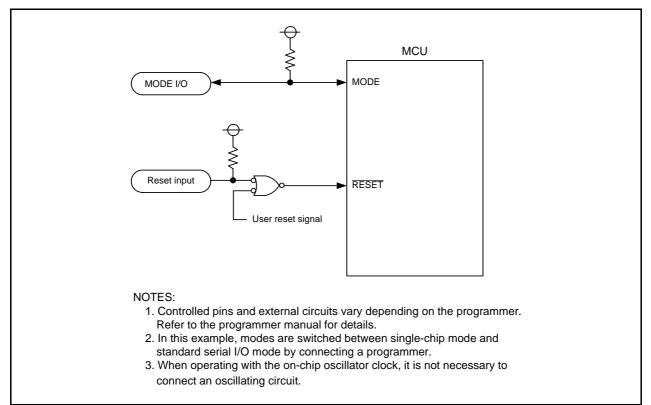


Figure 18.18 Pin Processing in Standard Serial I/O Mode 3

18.6 Parallel I/O Mode

Parallel I/O mode is used to input and output software commands, addresses, and data necessary to control (read, program, and erase) the on-chip flash memory. Use a parallel programmer which supports this MCU. Contact the manufacturer of the parallel programmer for more information, and refer to the user's manual of the parallel programmer for details on how to use it.

ROM areas shown in Figures 18.1 and 18.2 can be rewritten in parallel I/O mode.

18.6.1 ROM Code Protect Function

The ROM code protect function disables the reading and rewriting of the flash memory. (Refer to the **18.3 Functions to Prevent Rewriting of Flash Memory**.)

18.7 Notes on Flash Memory

18.7.1 CPU Rewrite Mode

18.7.1.1 Operating Speed

Before entering CPU rewrite mode (EW0 mode), select 5 MHz or below for the CPU clock using the CM06 bit in the CM0 register and bits CM16 to CM17 in the CM1 register. This does not apply to EW1 mode.

18.7.1.2 Prohibited Instructions

The following instructions cannot be used in EW0 mode because they reference data in the flash memory: UND, INTO, and BRK.

18.7.1.3 Interrupts

Table 18.9 lists the EW0 Mode Interrupts and Table 18.10 lists the EW1 Mode Interrupts.

Mode	Status	When Maskable Interrupt Request is Acknowledged	When Watchdog Timer, Oscillation Stop Detection and Voltage Monitor 2 Interrupt Request is Acknowledged
EWO	During auto-erasure Auto-programming	Any interrupt can be used by allocating a vector in RAM	Once an interrupt request is acknowledged, auto-programming or auto-erasure is forcibly stopped immediately and the flash memory is reset. Interrupt handling starts after the fixed period and the flash memory restarts. Since the block during auto- erasure or the address during auto- programming is forcibly stopped, the normal value may not be read. Execute auto-erasure again and ensure it completes normally. Since the watchdog timer does not stop during the command operation, interrupt requests may be generated. Reset the watchdog timer regularly.

Table 18.9 EW0 Mode Interrupts

NOTES:

- 1. Do not use the address match interrupt while a command is being executed because the vector of the address match interrupt is allocated in ROM.
- 2. Do not use a non-maskable interrupt while block 0 is being automatically erased because the fixed vector is allocated in block 0.

Mode	Status	When Maskable Interrupt Request is Acknowledged	When Watchdog Timer, Oscillation Stop Detection and Voltage Monitor 2 Interrupt Request is Acknowledged	
EW1	During auto-erasure (erase- suspend function enabled) During auto-erasure	Auto-erasure is suspended after td(SR-SUS) and interrupt handling is executed. Auto-erasure can be restarted by setting the FMR41 bit in the FMR4 register to 0 (erase restart) after interrupt handling completes. Auto-erasure has priority and the	Once an interrupt request is acknowledged, auto-programming or auto-erasure is forcibly stopped immediately and the flash memory is reset. Interrupt handling starts after the fixed period and the flash memory restarts. Since the block during auto- erasure or the address during auto- programming is forcibly stopped, the normal value may not be read. Execute auto-erasure again and ensure it completes normally. Since the watchdog timer does not	
	(erase- suspend function disabled)	interrupt request acknowledgement is put on standby. Interrupt handling is executed after auto-erasure completes.		
	During auto- programming (program suspend function enabled)	Auto-programming is suspended after td(SR-SUS) and interrupt handling is executed. Auto- programming can be restarted by setting the FMR42 bit in the FMR4 register to 0 (program restart) after interrupt handling completes.	stop during the command operation, interrupt requests may be generated. Reset the watchdog timer regularly using the erase-suspend function.	
	During auto- programming (program suspend function disabled)	Auto-programming has priority and the interrupt request acknowledgement is put on standby. Interrupt handling is executed after auto-programming completes.		

Table 18.10 EW1 Mode Interrupts

NOTES:

- 1. Do not use the address match interrupt while a command is executing because the vector of the address match interrupt is allocated in ROM.
- 2. Do not use a non-maskable interrupt while block 0 is being automatically erased because the fixed vector is allocated in block 0.

18.7.1.4 How to Access

Write 0 before writing 1 when setting the FMR01, FMR02, or FMR11 bit to 1. Do not generate an interrupt between writing 0 and 1.

18.7.1.5 Rewriting User ROM Area

In EW0 Mode, if the supply voltage drops while rewriting any block in which a rewrite control program is stored, it may not be possible to rewrite the flash memory because the rewrite control program cannot be rewritten correctly. In this case, use standard serial I/O mode.

18.7.1.6 Program

Do not write additions to the already programmed address.

18.7.1.7 Entering Stop Mode or Wait Mode

Do not enter stop mode or wait mode during erase-suspend.

19. Electrical Characteristics

Table 19.1	Absolute Maximum Ratings
------------	--------------------------

Symbol	Parameter	Condition	Rated Value	Unit
Vcc	Supply voltage	Vcc = AVcc	-0.3 to 6.5	V
AVcc	Analog supply voltage	Vcc = AVcc	-0.3 to 6.5	V
Vi	Input voltage		-0.3 to Vcc+0.3	V
Vo	Output voltage		-0.3 to Vcc+0.3	V
Pd	Power dissipation	Topr = 25°C	300	mW
Topr	Operating ambient temperature		-20 to 85 / -40 to 85 (D version)	°C
Tstg	Storage temperature		-65 to 150	°C

Table 19.2 **Recommended Operating Conditions**

Cumbal	Parameter		Conditions		Unit			
Symbol	Pa	Parameter		Min.	Тур.	Max.		
Vcc	Supply voltage			2.7	_	5.5	V	
AVcc	Analog supply volt	age		-	Vcc	-	V	
Vss	Supply voltage			-	0	-	V	
AVss	Analog supply volt	age		-	0	-	V	
Viн	Input "H" voltage			0.8Vcc	-	Vcc	V	
VIL	Input "L" voltage			0	-	0.2Vcc	V	
IOH(sum)	Peak sum output "H" current	Sum of all pins Юн (peak)		-	-	-60	mA	
OH(peak)	Peak output "H" cu	Peak output "H" current		-	-	-10	mA	
IOH(avg)	Average output "H	" current		-	-	-5	mA	
IOL(sum)	Peak sum output "L" currents	Sum of all pins IOL (peak)		-	_	60	mA	
IOL(peak)	Peak output "L"	Except P1_0 to P1_3		-	-	10	mA	
	currents	P1_0 to P1_3	Drive capacity HIGH	-	-	30	mA	
			Drive capacity LOW	-	-	10	mA	
IOL(avg)	Average output	Except P1_0 to P1_3		-	-	5	mA	
	"L" current	P1_0 to P1_3	Drive capacity HIGH	-	-	15	mA	
			Drive capacity LOW	-	-	5	mA	
f(XIN)	Main clock input o	scillation frequency	$3.0~V \leq Vcc \leq 5.5~V$	0	-	20	MHz	
			$2.7~V \leq Vcc < 3.0~V$	0	-	10	MHz	

NOTES:

1. Vcc = 2.7 to 5.5 V at T_{opr} = -20 to 85 °C / -40 to 85 °C, unless otherwise specified. 2. Typical values when average output current is 100 ms.

Symbol	Parameter	Conditions		Unit			
Symbol	Faidilietei		Conditions	Min.	Тур.	Max.	Unit
-	Resolution		Vref = VCC	-	-	10	Bits
-	Absolute	10-bit mode	ϕ AD = 10 MHz, Vref = VCC = 5.0 V	-	-	±3	LSB
aco	accuracy	8-bit mode	ϕ AD = 10 MHz, Vref = VCC = 5.0 V	-	-	±2	LSB
		10-bit mode	ϕ AD = 10 MHz, Vref = VCC = 3.3 V ⁽³⁾	-	-	±5	LSB
		8-bit mode	ϕ AD = 10 MHz, Vref = VCC = 3.3 V ⁽³⁾	-	-	±2	LSB
Rladder	Resistor ladder		Vref = VCC	10	-	40	kΩ
tconv	Conversion time	10-bit mode	ϕ AD = 10 MHz, Vref = VCC = 5.0 V	3.3	-	-	μS
		8-bit mode	ϕ AD = 10 MHz, Vref = VCC = 5.0 V	2.8	-	-	μS
Vref	Reference voltage	9		2.7	-	Vcc	V
Via	Analog input volta	ge ⁽⁴⁾		0	-	AVcc	V
-	A/D operating clock	Without sample and hold		0.25	-	10	MHz
	frequency ⁽²⁾	With sample and hold		1	-	10	MHz

Table 19.3	A/D Converter Characteristics

1. Vcc = AVcc = 2.7 to 5.5 V at Topr = -20 to 85 °C / -40 to 85 °C, unless otherwise specified.

2. If f1 exceeds 10 MHz, divide f1 and ensure the A/D operating clock frequency (\$\phiAD\$) is 10 MHz or below.

3. If AVcc is less than 4.2 V, divide f1 and ensure the A/D operating clock frequency (\$\phiAD\$) is f1/2 or below.

4. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

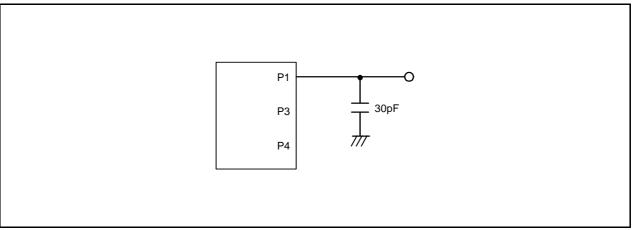


Figure 19.1 Port P1, P3, and P4 Measurement Circuit

Symbol	Parameter	Conditions		Unit		
	Parameter	Conditions	Min.	Тур.	Max.	Unit
-	Program/erase endurance ⁽²⁾	R8C/1A Group	100 ⁽³⁾	-	-	times
		R8C/1B Group	1,000(3)	-	-	times
-	Byte program time		-	50	400	μS
-	Block erase time		-	0.4	9	s
td(SR-SUS)	Time delay from suspend request until suspend		-	-	97+CPU clock × 6 cycles	μS
-	Interval from erase start/restart until following suspend request		650	-	_	μS
-	Interval from program start/restart until following suspend request		0	-	-	ns
-	Time from suspend until program/erase restart		-	-	3+CPU clock × 4 cycles	μS
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		2.7	_	5.5	V
-	Program, erase temperature		0	-	60	°C
-	Data hold time ⁽⁸⁾	Ambient temperature = 55 °C	20	-	-	year

1. Vcc = 2.7 to 5.5 V at Topr = 0 to 60 $^{\circ}$ C, unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis.

If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

- 4. If emergency processing is required, a suspend request can be generated independent of this characteristic. In that case the normal time delay to suspend can be applied to the request. However, we recommend that a suspend request with an interval of less than 650 μs is only used once because, if the suspend state continues, erasure cannot operate and the incidence of erasure error rises.
- 5. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the number of erase operations between block A and block B can further reduce the effective number of rewrites. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.

6. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

7. Customers desiring programming/erasure failure rate information should contact their Renesas technical support representative.

8. The data hold time includes time that the power supply is off or the clock is not supplied.

Symbol	Parameter	Conditions		Unit		
Symbol	Faranieter	Conditions	Min.	Тур.	Max.	Unit
-	Program/erase endurance ⁽²⁾		10,000 ⁽³⁾	-	-	times
-	Byte program time (Program/erase endurance ≤ 1,000 times)		-	50	400	μS
-	Byte program time (Program/erase endurance > 1,000 times)		_	65	_	μS
-	Block erase time (Program/erase endurance ≤ 1,000 times)		-	0.2	9	S
-	Block erase time (Program/erase endurance > 1,000 times)		-	0.3	_	S
td(SR-SUS)	Time Delay from suspend request until suspend		-	_	97+CPU clock × 6 cycles	μS
-	Interval from erase start/restart until following suspend request		650	_	_	μS
-	Interval from program start/restart until following suspend request		0	_	_	ns
-	Time from suspend until program/erase restart		-	-	3+CPU clock × 4 cycles	μS
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		2.7	-	5.5	V
-	Program, erase temperature		-20 ⁽⁸⁾	_	85	°C
-	Data hold time ⁽⁹⁾	Ambient temperature = 55 °C	20	-	_	year

Table 19.5 Flash Memory (Data flash Block A, Block B) Electrical Characteristics

NOTES:

1. Vcc = 2.7 to 5.5 V at Topr = -20 to 85 °C / -40 to 85 °C, unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis.

If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

- 4. If emergency processing is required, a suspend request can be generated independent of this characteristic. In that case the normal time delay to suspend can be applied to the request. However, we recommend that a suspend request with an interval of less than 650 μs is only used once because, if the suspend state continues, erasure cannot operate and the incidence of erasure error rises.
- 5. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.

6. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

- 7. Customers desiring programming/erasure failure rate information should contact their Renesas technical support representative.
- 8. -40 °C for D version.
- 9. The data hold time includes time that the power supply is off or the clock is not supplied.

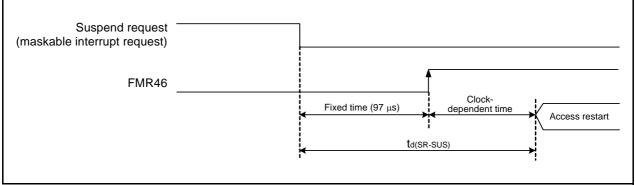


Figure 19.2 **Transition Time to Suspend**

Voltage Detection 1 Circuit Electrical Characteristics Table 19.6

Symbol	Parameter	Condition		Unit		
	Falameter	Condition	Min.	Тур.	Max.	Unit
Vdet1	Voltage detection level ⁽³⁾		2.70	2.85	3.00	V
_	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	-	600	-	nA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽²⁾		-	-	100	μS
Vccmin	MCU operating voltage minimum value		2.7	-	-	V

NOTES:

1. The measurement condition is Vcc = 2.7 V to 5.5 V and Topr = -40°C to 85 °C.

2. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

3. Ensure that Vdet2 > Vdet1.

Table 19.7 Voltage Detection 2 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
	Parameter	Condition	Min.	Тур.	Max.	Unit
Vdet2	Voltage detection level ⁽⁴⁾		3.00	3.30	3.60	V
-	Voltage monitor 2 interrupt request generation time ⁽²⁾		-	40	-	μS
-	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	-	600	-	nA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

NOTES:

The measurement condition is Vcc = 2.7 V to 5.5 V and Topr = -40°C to 85 °C.
 Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

4. Ensure that Vdet2 > Vdet1.

Symbol	Parameter	Condition	Standard		Unit	
			Min.	Тур.	Max.	
Vpor2	Power-on reset valid voltage	$\text{-}20^\circ C \leq Topr \leq 85^\circ C$	-	-	Vdet1	V
	Supply voltage rising time when power-on reset is deasserted ⁽¹⁾	$\label{eq:constraint} \begin{array}{l} -20^\circ C \leq Topr \leq 85^\circ C, \\ t_{w(por2)} \geq 0s^{(3)} \end{array}$	-	-	100	ms

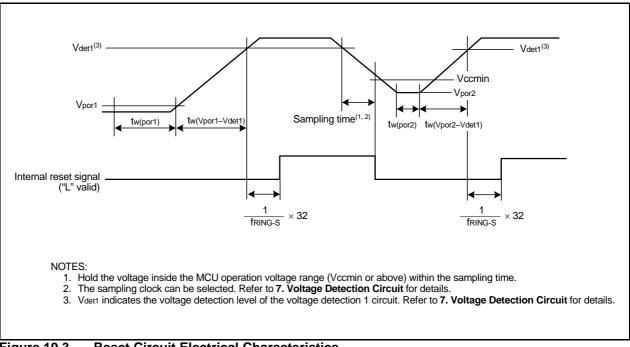
Table 19.8 Reset Circuit Electrical Characteristics (When Using Voltage Monitor 1 Reset)

NOTES:

1. This condition is not applicable when using with Vcc \geq 1.0 V.

2. When turning power on after the time to hold the external power below effective voltage (Vpor1) exceeds10 s, refer to **Table 19.9 Reset Circuit Electrical Characteristics (When Not Using Voltage Monitor 1 Reset)**.

3. tw(por2) is the time to hold the external power below effective voltage (Vpor2).


Table 19.9 Reset Circuit Electrical Characteristics (When Not Using Voltage Monitor 1 Reset)

Symbol	Parameter	Condition	Standard			Unit
			Min.	Тур.	Max.	
Vpor1	Power-on reset valid voltage	$-20^\circ C \le Topr \le 85^\circ C$	-	-	0.1	V
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$\label{eq:constraint} \begin{split} 0^\circ C &\leq Topr \leq 85^\circ C, \\ tw(\text{por1}) &\geq 10 \ s^{(2)} \end{split}$	-	-	100	ms
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$\label{eq:constraint} \begin{array}{l} -20^\circ C \leq \text{Topr} < 0^\circ C, \\ tw(\text{por1}) \geq 30 \ s^{(2)} \end{array}$	-	-	100	ms
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$\label{eq:constraint} \begin{array}{l} -20^\circ C \leq Topr < 0^\circ C, \\ tw(\text{por1}) \geq 10 \ s^{(2)} \end{array}$	-	-	1	ms
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$\label{eq:constraint} \begin{split} 0^\circ C &\leq Topr \leq 85^\circ C, \\ t_{w(por1)} &\geq 1 \ s^{(2)} \end{split}$	-	-	0.5	ms

NOTES:

1. When not using voltage monitor 1, use with Vcc \ge 2.7 V.

2. tw(por1) is the time to hold the external power below effective voltage (Vpor1).

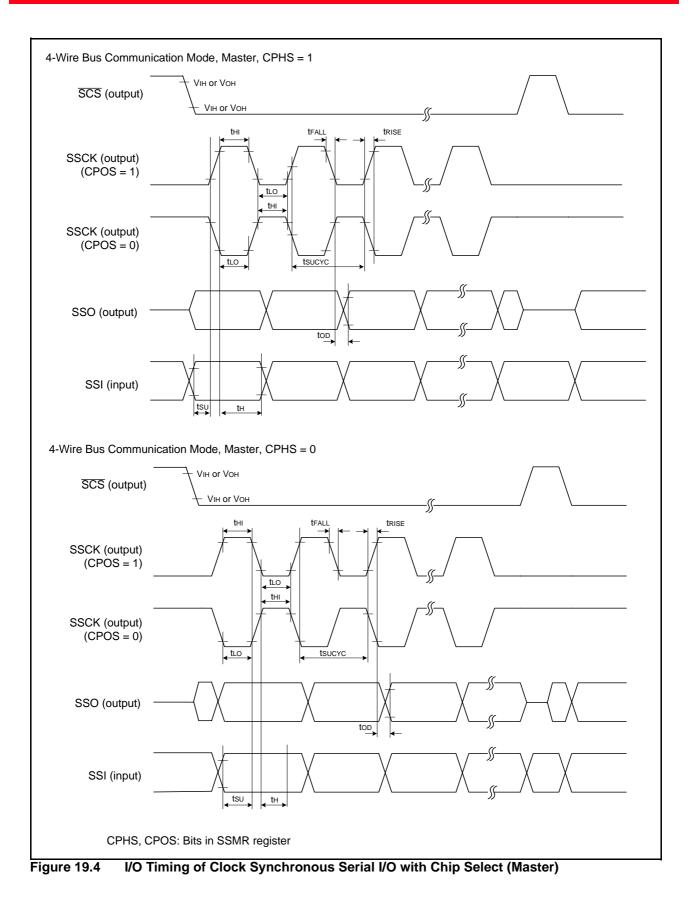
Symbol	Parameter	Condition		Unit		
Symbol		Condition	Min.	Тур.	Max.	Unit
-	High-speed on-chip oscillator frequency when the reset is deasserted	Vcc = 5.0 V, Topr = 25 °C	-	8	-	MHz
-	High-speed on-chip oscillator frequency	0 to +60 °C/5 V ± 5 % ⁽³⁾	7.76	-	8.24	MHz
	temperature • supply voltage dependence ⁽²⁾	-20 to +85 °C/2.7 to 5.5 V ⁽³⁾	7.68	-	8.32	MHz
		-40 to +85 °C/2.7 to 5.5 $V^{(3)}$	7.44	-	8.32	MHz

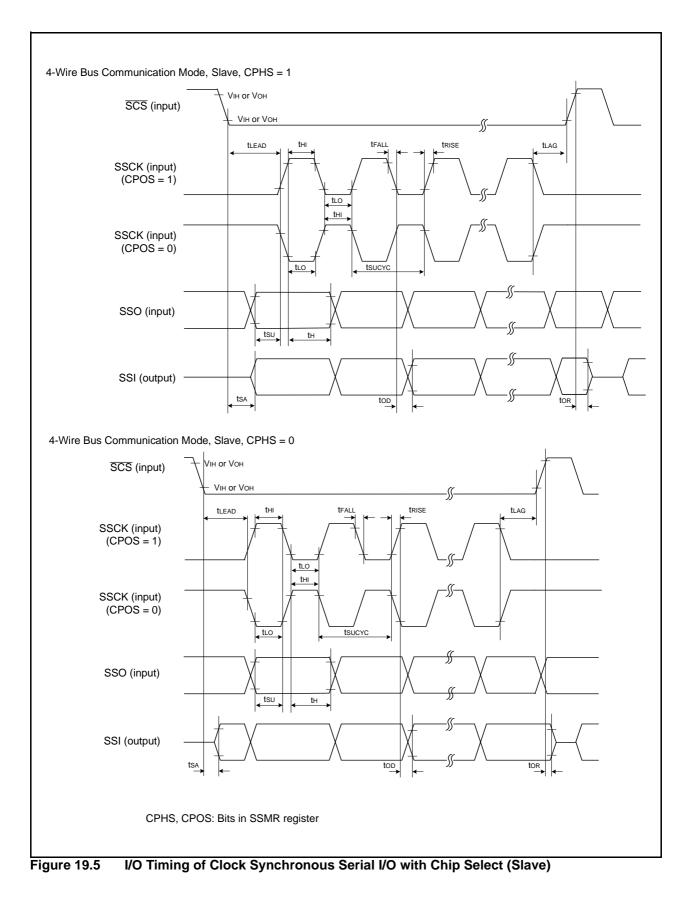
Table 19.10	High-Speed On-Chip Oscillator Circuit Electrical Characteristics

- 1. The measurement condition is Vcc = 5.0 V and Topr = 25 °C.
- 2. Refer to 10.6.4 High-Speed On-Chip Oscillator Clock for notes on high-speed on-chip oscillator clock.
- 3. The standard value shows when the HRA1 register is assumed as the value in shipping and the HRA2 register value is set to 00h.

Table 19.11 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Condition	Standard			Unit
Symbol	Falanetei	Condition	Min.	Тур.	Max.	Onit
td(P-R)	Time for internal power supply stabilization during power-on ⁽²⁾		1	-	2000	μS
td(R-S)	STOP exit time ⁽³⁾		-	-	150	μs


NOTES:


- 1. The measurement condition is Vcc = 2.7 to 5.5 V and Topr = 25 °C.
- 2. Waiting time until the internal power supply generation circuit stabilizes during power-on.
- 3. Time until CPU clock supply starts after the interrupt is acknowledged to exit stop mode.

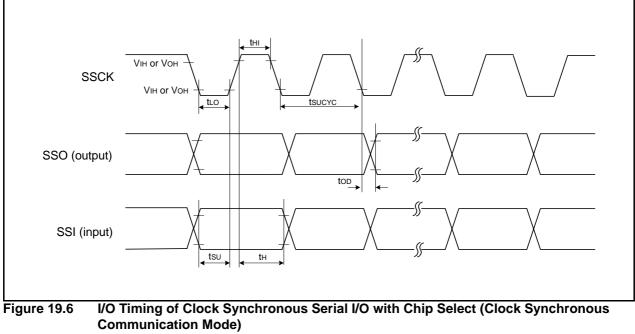
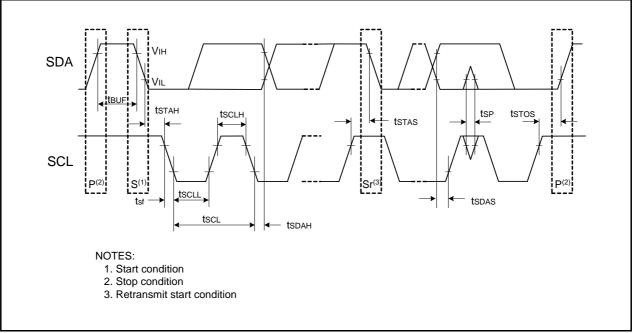
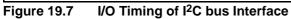

Symbol	Parameter		Conditions		L lasta		
			Conditions	Min.	Тур.	Max.	Unit
tsucyc	SSCK clock cycle time			4	-	-	tCYC ⁽²⁾
tнı	SSCK clock "H" width			0.4	-	0.6	tsucyc
tLO	SSCK clock "L" width			0.4	-	0.6	tsucyc
trise	SSCK clock rising time	Master		-	-	1	tCYC ⁽²⁾
		Slave		-	-	1	μS
tfall	SSCK clock falling time	Master		-	-	1	tCYC ⁽²⁾
		Slave		-	-	1	μS
ts∪	SSO, SSI data input setup ti	me		100	-	-	ns
tн	SSO, SSI data input hold tim	ie		1	-	-	tCYC ⁽²⁾
t LEAD	SCS setup time	Slave		1tcyc+50	-	-	ns
tlag	SCS hold time	Slave		1tcyc+50	-	-	ns
top	SSO, SSI data output delay	time		-	-	1	tCYC ⁽²⁾
tsa	SSI slave access time			-	-	1.5tcyc+100	ns
tor	SSI slave out open time			-	-	1.5tcyc+100	ns

Table 19.12 Timing Requirements of Clock Synchronous Serial I/O with Chip Select⁽¹⁾

1. Vcc = 2.7 to 5.5V, Vss = 0V at Ta = -20 to 85 °C / -40 to 85 °C, unless otherwise specified. 2. 1tcyc = 1/f1(s)




Table 19.13 Ti	ming Requirements of I ² C bus Interface ⁽¹⁾
----------------	--

Symbol	Parameter	Condition	S	Unit		
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
tSCL	SCL input cycle time		12tcyc+600 ⁽²⁾	-	-	ns
tSCLH	SCL input "H" width		3tcyc+300 ⁽²⁾	-	-	ns
tSCLL	SCL input "L" width		5tcyc+300 ⁽²⁾	-	-	ns
tsf	SCL, SDA input fall time		-	-	300	ns
tSP	SCL, SDA input spike pulse rejection time		-	-	1tcyc ⁽²⁾	ns
tBUF	SDA input bus-free time		5tCYC ⁽²⁾	-	-	ns
t STAH	Start condition input hold time		3tcyc ⁽²⁾	-	-	ns
t STAS	Retransmit start condition input setup time		3tCYC ⁽²⁾	-	-	ns
tstos	Stop condition input setup time		3tcyc ⁽²⁾	-	-	ns
tSDAS	Data input setup time		1tcyc+20 ⁽²⁾	-	-	ns
t SDAH	Data input hold time		0	-	-	ns

1. Vcc = 2.7 to 5.5 V, Vss = 0 V and Ta = -20 to 85 °C / -40 to 85 °C, unless otherwise specified.

2. 1tcyc = 1/f1(s)

Symbol	Parameter		Con	lition	SI	tandard		Unit
Symbol			Condition		Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Except Xout	юн = -5 mA		Vcc - 2.0	-	Vcc	V
			Іон = -200 μА		Vcc - 0.3	-	Vcc	V
		Хоит	Drive capacity HIGH	Іон = -1 mA	Vcc - 2.0	_	Vcc	V
			Drive capacity LOW	Іон = -500 μА	Vcc - 2.0	-	Vcc	V
VoL Output "L" voltage	Except P1_0 to	IOL = 5 mA	•	-	-	2.0	V	
		Р1_3, Хоит	Ιοι = 200 μΑ		-	-	0.45	V
		P1_0 to P1_3	Drive capacity HIGH	lo∟ = 15 mA	-	-	2.0	V
			Drive capacity LOW	IOL = 5 mA	-	_	2.0	V
			Drive capacity LOW	IoL = 200 μA	-	_	0.45	V
		Хоит	Drive capacity HIGH	Iol = 1 mA	-	-	2.0	V
			Drive capacity LOW	IoL = 500 μA	-	_	2.0	V
VT+-VT-	Hysteresis	INT0, INT1, INT3, KI0, KI1, KI2, KI3, CNTR0, CNTR1, TCIN, RXD0			0.2		1.0	V
		RESET			0.2	-	2.2	V
Ін	Input "H" current	1	VI = 5 V		-	_	5.0	μA
lı∟	Input "L" current		VI = 0 V		-	-	-5.0	μΑ
Rpullup	Pull-up resistance		VI = 0 V		30	50	167	kΩ
RfXIN	Feedback resistance	XIN			-	1.0	-	MΩ
fring-s	Low-speed on-chip os	scillator frequency			40	125	250	kHz
Vram	RAM hold voltage		During stop mode		2.0	-	-	V

Table 19.14 Electrical Characteristics (1) [Vcc = 5 V]

NOTE:

1. Vcc = 4.2 to 5.5 V at Topr = -20 to 85 °C / -40 to 85 °C, f(XIN) = 20 MHz, unless otherwise specified.

Symbol	Parameter	Condition		Standard			Unit
				Min.	Тур.	Max.	Unit
(Vc Sing	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode, output pins are open,	High-speed mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division		9	15	mA
	other pins are Vss, A/D converter is stopped		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	8	14	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	5	_	mA
		Medium- speed mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	4	_	mA
LC or os m V W			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3	_	mA
		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2	_	mA	
		High-speed on-chip oscillator mode	Main clock off High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz No division		4	8	mA
			Main clock off High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8		1.5	_	mA
	Low-speed on-chip oscillator mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8 FMR47 = 1	-	110	300	μA	
	Wait mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = 0	_	40	80	μA	
		Wait mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = 0		38	76	μΑ
		Stop mode	Main clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = 0	_	0.8	3.0	μA

Table 19.15 Electrical Characteristics (2) [Vcc = 5 V] (Topr = -40 to 85 °C, unless otherwise specified.)

Timing Requirements (Unless otherwise specified: Vcc = 5 V, Vss = 0 V at Ta = 25 °C) [Vcc = 5 V]

Table 19.16 XIN Input

Symbol	Parameter		Standard		
			Max.	Unit	
tc(XIN)	XIN input cycle time	50	-	ns	
twh(xin)	XIN input "H" width	25	-	ns	
twl(XIN)	XIN input "L" width	25	-	ns	

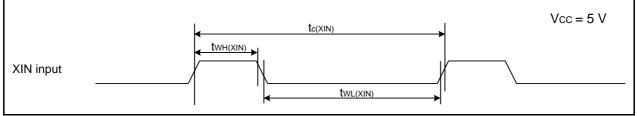
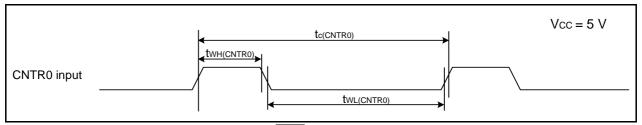



Figure 19.8 XIN Input Timing Diagram when Vcc = 5 V

Table 19.17 CNTR0 Input, CNTR1 Input, INT1 Input

Symbol	Parameter	Stan	Unit	
	Farameter		Max.	Offic
tc(CNTR0)	CNTR0 input cycle time	100	-	ns
tWH(CNTR0)	CNTR0 input "H" width	40	-	ns
tWL(CNTR0)	CNTR0 input "L" width	40	-	ns

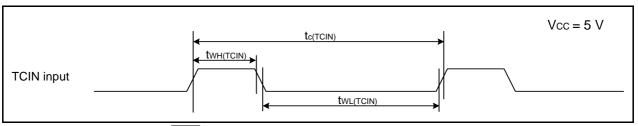

Figure 19.9 CNTR0 Input, CNTR1 Input, INT1 Input Timing Diagram when Vcc = 5 V

Table 19.18 TCIN Input, INT3 Input

Symbol	Parameter		Standard		
			Max.	Unit	
tc(TCIN)	TCIN input cycle time	400(1)	-	ns	
twh(tcin)	TCIN input "H" width	200(2)	-	ns	
twl(tcin)	TCIN input "L" width	200(2)	-	ns	

NOTES:

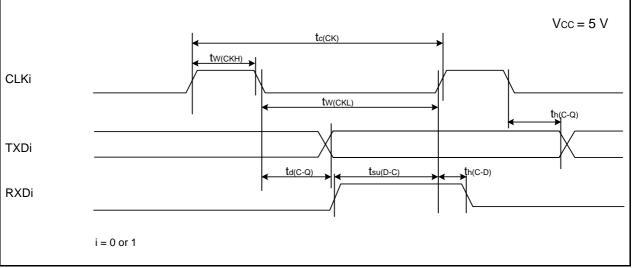

- 1. When using timer C input capture mode, adjust the cycle time to (1/timer C count source frequency x 3) or above.
- 2. When using timer C input capture mode, adjust the pulse width to (1/timer C count source frequency x 1.5) or above.

Figure 19.10 TCIN Input, INT3 Input Timing Diagram when Vcc = 5 V

Symbol	Parameter	Stan	Unit	
Symbol	Falallelei	Min.	Max.	Unit
tc(CK)	CLKi input cycle time	200	-	ns
tW(CKH)	CLKi input "H" width	100	-	ns
tW(CKL)	CLKi input "L" width	100	-	ns
td(C-Q)	TXDi output delay time		50	ns
th(C-Q)	TXDi hold time	0	-	ns
tsu(D-C)	RXDi input setup time	50	-	ns
th(C-D)	RXDi input hold time	90	-	ns

i = 0 or 1

Table 19.20 External Interrupt INT0 Input

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tw(INH)	INTO input "H" width		-	ns	
tw(INL)	INTO input "L" width	250 ⁽²⁾	_	ns	

NOTES:

1. When selecting the digital filter by the INTO input filter select bit, use an INTO input HIGH width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTO input filter select bit, use an INTO input LOW width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.

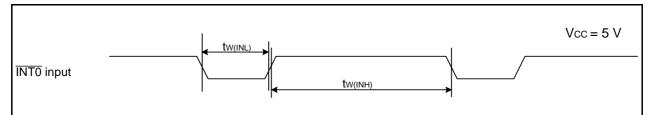


Figure 19.12 External Interrupt INTO Input Timing Diagram when Vcc = 5 V

Symbol	Parameter		Con	dition	SI	andard		Unit
Symbol			Con	Condition		Тур.	Max.	Unit
Voн	Output "H" voltage	Except Xout	Iон = -1 mA		Vcc - 0.5	-	Vcc	V
		Xout	Drive capacity HIGH	Iон = -0.1 mA	Vcc - 0.5	_	Vcc	V
			Drive capacity LOW	Іон = -50 μА	Vcc - 0.5	_	Vcc	V
Vol	Output "L" voltage	Except P1_0 to P1_3, Xout	IOL = 1 mA	·	-	-	0.5	V
		P1_0 to P1_3	Drive capacity HIGH	IOL = 2 mA	-	-	0.5	V
			Drive capacity LOW	IOL = 1 mA	-	-	0.5	V
		Xout	Drive capacity HIGH	IOL = 0.1 mA	-	-	0.5	V
			Drive capacity LOW	ΙΟL = 50 μΑ	-	_	0.5	V
VT+-VT-	Hysteresis	INT0, INT1, INT3, KI0, KI1, KI2, KI3, CNTR0, CNTR1, TCIN, RXD0			0.2	-	0.8	V
		RESET			0.2	-	1.8	V
Ін	Input "H" current	1	VI = 3 V		_	-	4.0	μA
lı∟	Input "L" current		VI = 0 V		-	-	-4.0	μA
Rpullup	Pull-up resistance		VI = 0 V		66	160	500	kΩ
Rfxin	Feedback resistance	XIN			-	3.0	-	MΩ
fring-s	Low-speed on-chip o	scillator frequency			40	125	250	kHz
VRAM	RAM hold voltage		During stop mode	•	2.0	_	-	V

 Table 19.21
 Electrical Characteristics (3) [Vcc = 3V]

1. Vcc = 2.7 to 3.3 V at Topr = -20 to 85 °C / -40 to 85 °C, f(XIN) = 10 MHz, unless otherwise specified.

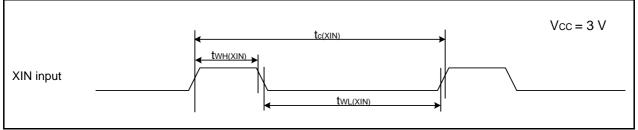

Symbol	Symbol Parameter Condition			Standard		Unit	
			Min.	Тур.	Max.	Onic	
Icc	Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode, output pins are open,	High-speed mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	8	13	mA
other pins are Vss, A/D converter is stopped		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	7	12	mA	
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	5	_	mA
		Medium- speed mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	3	_	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2.5	_	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.6	_	mA
	High-speed on-chip oscillator mode	Main clock off High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz No division		3.5	7.5	mA	
			Main clock off High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	_	mA
		Low-speed on-chip oscillator mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8 FMR47 = 1	-	100	280	μA
		Wait mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = 0	-	37	74	μA
		Wait mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = 0	_	35	70	μΑ
		Stop mode	Main clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = 0	_	0.7	3.0	μA

Table 19.22 Electrical Characteristics (4) [Vcc = 3 V] (Topr = -40 to 85 °C, unless otherwise specified.)

Timing requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Ta = 25 °C) [Vcc = 3 V]

Table 19.23 XIN Input

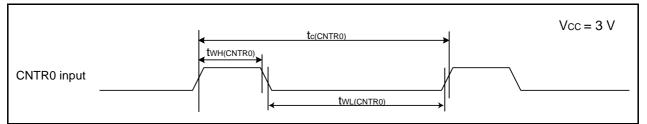

Symbol	Parameter		Standard	
Symbol	Falanielei	Min.	Max.	Unit
tc(XIN)	XIN input cycle time	100	-	ns
twh(xin)	XIN input "H" width		-	ns
twl(XIN)	XIN input "L" width	40	-	ns

Figure 19.13 XIN Input Timing Diagram when VCC = 3 V

Table 19.24 CNTR0 Input, CNTR1 Input, INT1 Input

Symbol	Parameter		Standard		
Symbol	Falanielei	Min.	Max.	Unit	
tc(CNTR0)	CNTR0 input cycle time		-	ns	
tWH(CNTR0)	CNTR0 input "H" width		-	ns	
tWL(CNTR0)	CNTR0 input "L" width	120	-	ns	

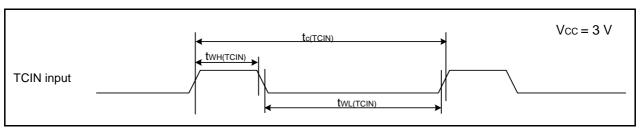

Figure 19.14 CNTR0 Input, CNTR1 Input, INT1 Input Timing Diagram when Vcc = 3 V

Table 19.25 TCIN Input, INT3 Input

Symbol	Parameter		Standard	
Symbol	Falanielei	Min.	Max.	- Unit
tc(TCIN)	TCIN input cycle time		-	ns
twh(tcin)	TCIN input "H" width		-	ns
twl(tcin)	TCIN input "L" width	600 ⁽²⁾	1	ns

NOTES:

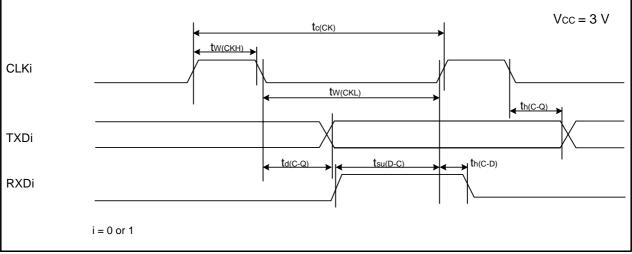

- 1. When using the timer C input capture mode, adjust the cycle time to (1/timer C count source frequency x 3) or above.
- 2. When using the timer C input capture mode, adjust the width to (1/timer C count source frequency x 1.5) or above.

Figure 19.15 TCIN Input, INT3 Input Timing Diagram when Vcc = 3 V

Symbol	Parameter	Stan	Unit	
Symbol	Falanelei	Min.	Max.	Unit
tc(CK)	CLKi input cycle time	300	-	ns
tW(CKH)	CLKi input "H" width	150	-	ns
tW(CKL)	CLKi input "L" width	150	-	ns
td(C-Q)	TXDi output delay time		80	ns
th(C-Q)	TXDi hold time	0	-	ns
tsu(D-C)	RXDi input setup time		-	ns
th(C-D)	RXDi input hold time	90	-	ns

i = 0 or 1

Table 19.27 External Interrupt INT0 Input

Symbol	Parameter	Stan	dard	Unit
Symbol	Falallelei		Max.	Onit
tw(INH)	INTO input "H" width		-	ns
tw(INL)	INTO input "L" width		_	ns

NOTES:

1. When selecting the digital filter by the INTO input filter select bit, use an INTO input HIGH width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater

2. When selecting the digital filter by the INT0 input filter select bit, use an INT0 input LOW width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater

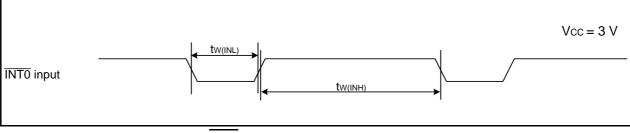


Figure 19.17 External Interrupt INTO Input Timing Diagram when Vcc = 3 V

20. Usage Notes

20.1 Notes on Clock Generation Circuit

20.1.1 Stop Mode and Wait Mode

When entering stop mode or wait mode, an instruction queue pre-reads 4 bytes from the WAIT instruction or an instruction that sets the CM10 bit in the CM1 register to 1 (stops all clocks) before the program stops. Therefore, insert at least four NOPs after the WAIT instruction or an instruction that sets the CM10 bit to 1.

20.1.2 Oscillation Stop Detection Function

Since the oscillation stop detection function cannot be used if the main clock frequency is below 2 MHz, set bits OCD1 to OCD0 to 00b (oscillation stop detection function disabled) in this case.

20.1.3 Oscillation Circuit Constants

Ask the manufacturer of the oscillator to specify the best oscillation circuit constants for your system.

20.1.4 High-Speed On-Chip Oscillator Clock

The high-speed on-chip oscillator frequency may be changed up to 10%⁽¹⁾ in flash memory CPU rewrite mode during auto-program operation or auto-erase operation.

The high-speed on-chip oscillator frequency after auto-program operation ends or auto-erase operation ends is held the state before the program command or block erase command is generated. Also, this note is not applicable when the read array command, read status register command, or clear status register command is generated. The application products must be designed with careful considerations for the frequency change.

NOTE:

1. Change ratio to 8 MHz frequency adjusted in shipping.

20.2 Notes on Interrupts

20.2.1 Reading Address 00000h

Do not read address 00000h by a program. When a maskable interrupt request is acknowledged, the CPU reads interrupt information (interrupt number and interrupt request level) from 00000h in the interrupt sequence. At this time, the acknowledged interrupt IR bit is set to 0.

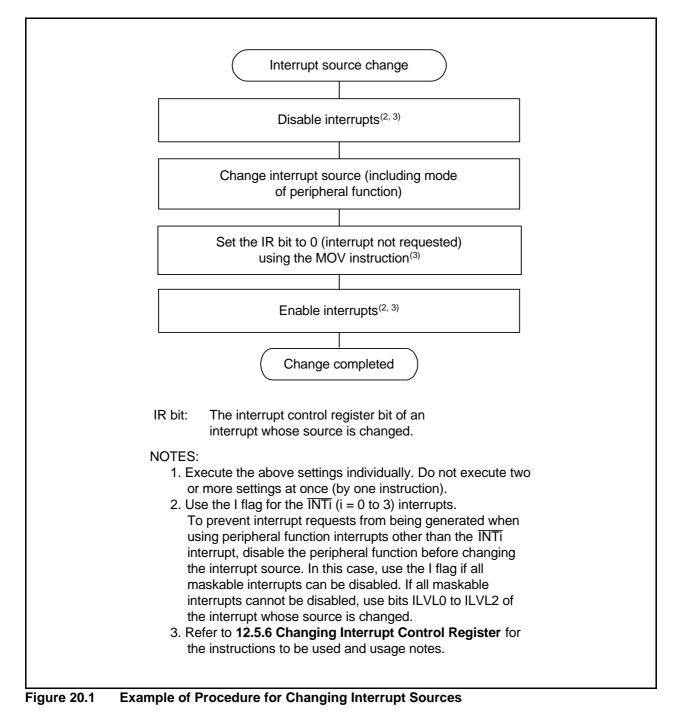
If address 00000h is read by a program, the IR bit for the interrupt which has the highest priority among the enabled interrupts is set to 0. This may cause the interrupt to be canceled, or an unexpected interrupt to be generated.

20.2.2 SP Setting

Set any value in the SP before an interrupt is acknowledged. The SP is set to 0000h after reset. Therefore, if an interrupt is acknowledged before setting a value in the SP, the program may run out of control.

20.2.3 External Interrupt and Key Input Interrupt

Either "L" level or "H" level of at least 250 ns width is necessary for the signal input to pins $\overline{\text{INT0}}$ to $\overline{\text{INT3}}$ and pins $\overline{\text{K10}}$ to $\overline{\text{K13}}$, regardless of the CPU clock.


20.2.4 Watchdog Timer Interrupt

Reset the watchdog timer after a watchdog timer interrupt is generated.

20.2.5 Changing Interrupt Sources

The IR bit in the interrupt control register may be set to 1 (interrupt requested) when the interrupt source changes. When using an interrupt, set the IR bit to 0 (no interrupt requested) after changing the interrupt source. In addition, changes of interrupt sources include all factors that change the interrupt sources assigned to individual software interrupt numbers, polarities, and timing. Therefore, if a mode change of a peripheral function involves interrupt sources, edge polarities, and timing, set the IR bit to 0 (no interrupt requested) after the change. Refer to the individual peripheral function for its related interrupts.

Figure 20.1 shows an Example of Procedure for Changing Interrupt Sources.

Changing Interrupt Control Register Contents 20.2.6

- (a) The contents of an interrupt control register can only be changed while no interrupt requests corresponding to that register are generated. If interrupt requests may be generated, disable interrupts before changing the interrupt control register contents.
- (b) When changing the contents of an interrupt control register after disabling interrupts, be careful to choose appropriate instructions.

Changing any bit other than IR bit

If an interrupt request corresponding to a register is generated while executing the instruction, the IR bit may not be set to 1 (interrupt requested), and the interrupt request may be ignored. If this causes a problem, use the following instructions to change the register: AND, OR, BCLR, BSET **Changing IR bit**

If the IR bit is set to 0 (interrupt not requested), it may not be set to 0 depending on the instruction used. Therefore, use the MOV instruction to set the IR bit to 0.

(c) When disabling interrupts using the I flag, set the I flag as shown in the sample programs below. Refer to (b) regarding changing the contents of interrupt control registers by the sample programs.

Sample programs 1 to 3 are for preventing the I flag from being set to 1 (interrupts enabled) before the interrupt control register is changed for reasons of the internal bus or the instruction queue buffer.

Example 1: Use NOP instructions to prevent I flag from being set to 1 before interrupt control register is changed

INT_SWITC	H1:	
FCLR	Ι	; Disable interrupts
AND.B	#00H,0056H	; Set TXIC register to 00h
NOP		;
NOP		
FSET	Ι	; Enable interrupts

Example 2: Use dummy read to delay FSET instruction IN

T_SWITC	H2:
---------	-----

FCLR	Ι	; Disable interrupts
AND.B	#00H,0056H	; Set TXIC register to 00h
MOV.W	MEM,R0	; <u>Dummy read</u>
FSET	Ι	; Enable interrupts

Example 3: Use POPC instruction to change I flag

INT_SWITC	H3:	
PUSHC	FLG	
FCLR	Ι	; Disable interrupts
AND.B	#00H,0056H	; Set TXIC register to 00h
POPC	FLG	; Enable interrupts

20.3 Precautions on Timers

20.3.1 Notes on Timer X

- Timer X stops counting after a reset. Set the values in the timer and prescaler before the count starts.
- Even if the prescaler and timer are read out in 16-bit units, these registers are read 1 byte at a time by the MCU. Consequently, the timer value may be updated during the period when these two registers are being read.
- Do not rewrite bits TXMOD0 to TXMOD1, and bits TXMOD2 and TXS simultaneously.
- In pulse period measurement mode, bits TXEDG and TXUND in the TXMR register can be set to 0 by writing 0 to these bits by a program. However, these bits remain unchanged if 1 is written. When using the READ-MODIFY-WRITE instruction for the TXMR register, the TXEDG or TXUND bit may be set to 0 although these bits are set to 1 while the instruction is being executed. In this case, write 1 to the TXEDG or TXUND bit which is not supposed to be set to 0 with the MOV instruction.
- When changing to pulse period measurement mode from another mode, the contents of bits TXEDG and TXUND are undefined. Write 0 to bits TXEDG and TXUND before the count starts.
- The TXEDG bit may be set to 1 by the prescaler X underflow generated after the count starts.
- When using the pulse period measurement mode, leave two or more periods of the prescaler X immediately after the count starts, then set the TXEDG bit to 0.
- The TXS bit in the TXMR register has a function to instruct timer X to start or stop counting and a function to indicate that the count has started or stopped.

0 (count stops) can be read until the following count source is applied after 1 (count starts) is written to the TXS bit while the count is being stopped. If the following count source is applied, 1 can be read from the TXS bit. After writing 1 to the TXS bit, do not access registers associated with timer X (registers TXMR, PREX, TX, TCSS, and TXIC) except for the TXS bit, until 1 can be read from the TXS bit. The count starts at the following count source after the TXS bit is set to 1.

Also, after writing 0 (count stops) to the TXS bit during the count, timer X stops counting at the following count source.

1 (count starts) can be read by reading the TXS bit until the count stops after writing 0 to the TXS bit. After writing 0 to the TXS bit, do not access registers associated with timer X except for the TXS bit, until 0 can be read from the TXS bit.

20.3.2 Notes on Timer Z

- Timer Z stops counting after a reset. Set the values in the timer and prescaler before the count starts.
- Even if the prescaler and timer are read out in 16-bit units, these registers are read 1 byte at a time by the MCU. Consequently, the timer value may be updated during the period when these two registers are being read.
- Do not rewrite bits TZMOD0 to TZMOD1, and the TZS bit simultaneously.
- In programmable one-shot generation mode, and programmable wait one-shot generation mode, when setting the TZS bit in the TZMR register to 0 (stops counting) or setting the TZOS bit in the TZOC register to 0 (stops one-shot), the timer reloads the value of the reload register and stops. Therefore, in programmable one-shot generation mode and programmable wait one-shot generation mode read the timer count value before the timer stops.
- The TZS bit in the TZMR register has a function to instruct timer Z to start or stop counting and a function to indicate that the count has started or stopped.

0 (count stops) can be read until the following count source is applied after 1 (count starts) is written to the TZS bit while the count is being stopped. If the following count source is applied, 1 can be read from the TZS bit. After writing 1 to the TZS bit, do not access registers associated with timer Z (registers TZMR, PREZ, TZSC, TZPR, TZOC, PUM, TCSC, and TZIC) except for the TZS bit, until 1 can be read from the TZS bit. The count starts at the following count source after the TZS bit is set to 1.

Also, after writing 0 (count stops) to the TZS bit during the count, timer Z stops counting at the following count source.

1 (count starts) can be read by reading the TZS bit until the count stops after writing 0 to the TZS bit. After writing 0 to the TZS bit, do not access registers associated with timer Z except for the TZS bit, until 0 can be read from the TZS bit.

20.3.3 Notes on Timer C

Access registers TC, TM0, and TM1 in 16-bit units.

The TC register can be read in 16-bit units. This prevents the timer value from being updated between when the low-order bytes and high-order bytes are being read.

Example of reading timer C: MOV.W 0090H,R0

; Read out timer C

20.4 Notes on Serial Interface

• When reading data from the U0RB register either in the clock asynchronous serial I/O mode or in the clock synchronous serial I/O mode. Ensure the data is read in 16-bit units. When the high-order byte of the U0RB register is read, bits PER and FER in the U0RB register and the RI bit in the U0C1 register are set to 0.

Example (when reading receive buffer register): MOV.W 00A6H,R0 ; Read the U0RB register

• When writing data to the U0TB register in the clock asynchronous serial I/O mode with 9-bit transfer data length, write data to the high-order byte first then the low-order byte, in 8-bit units.

Example (when reading transmit buffer register):

MOV.B	#XXH,00A3H	; Write the high-order byte of U0TB register
MOV.B	#XXH,00A2H	; Write the low-order byte of U0TB register

20.5 Precautions on Clock Synchronous Serial Interface

20.5.1 Notes on Clock Synchronous Serial I/O with Chip Select

Set the IICSEL bit in the PMR register to 0 (select clock synchronous serial I/O with chip select function) to use the clock synchronous serial I/O with chip select function.

20.5.1.1 Accessing Registers Associated with Clock Synchronous Serial I/O with Chip Select

After waiting three instructions or more after writing to the registers associated with clock synchronous serial I/ O with chip select (00B8h to 00BFh) or four cycles or more after writing to them, read the registers.

• An example of waiting three instructions or more					
Program example	MOV.B	#00h,00BBh	; Set the SSER register to 00h.		
	NOP		C C		
	NOP				
	NOP				
	MOV.B	00BBh,R0L			
• An example of waiting f	four cycles or more				
Program example	BCLR	4,00BBh	: Disable transmission		
	JMP.B	NEXT			
	NEXT:				
	BSET	3,00BBh	: Enable reception		

20.5.1.2 Selecting SSI Signal Pin

Set the SOOS bit in the SSMR2 register to 0 (CMOS output) in the following settings:

- SSUMS bit in SSMR2 register = 1 (4-wire bus communication mode)
- BIDE bit in SSMR2 register = 0 (standard mode)
- MSS bit in SSCRH register = 0 (operate as slave device)
- SSISEL bit in PMR register = 1 (use P1_6 pin for SSI01 pin)

Do not use the SSI01 pin with NMOS open drain output for the above settings.

20.5.2 Notes on I²C bus Interface

Set the IICSEL bit in the PMR register to 1 (select I²C bus interface function) to use the I²C bus interface.

20.5.2.1 Accessing of Registers Associated with I²C bus Interface

Wait for three instructions or more or four cycles or more after writing to the same register among the registers associated with the I^2C bus Interface (00B8h to 00BFh) before reading it.

• An example of waiting	three instructions	s or more		
Program example	MOV.B	#00h,00BBh	; Set ICIER register to 00h	
	NOP			
	NOP			
	NOP			
	MOV.B	00BBh,R0L		
• An example of waiting four cycles or more				
Program example	BCLR	6,00BBh	; Disable transmit end interrupt request	
	JMP.B	NEXT		
	NEXT:			
	BSET	7,00BBh	; Enable transmit data empty interrupt request	

20.6 Notes on A/D Converter

- Write to each bit (other than bit 6) in the ADCON0 register, each bit in the ADCON1 register, or the SMP bit in the ADCON2 register when A/D conversion is stopped (before a trigger occurs).
- When the VCUT bit in the ADCON1 register is changed from 0 (VREF not connected) to 1 (VREF connected), wait for at least 1 µs before starting A/D conversion.
- After changing the A/D operating mode, select an analog input pin again.
- When using the one-shot mode, ensure that A/D conversion is completed before reading the AD register. The IR bit in the ADIC register or the ADST bit in the ADCON0 register can be used to determine whether A/D conversion is completed.
- When using the repeat mode, use the undivided main clock as the CPU clock.
- If the ADST bit in the ADCON0 register is set to 0 (A/D conversion stops) by a program and A/D conversion is forcibly terminated during an A/D conversion operation, the conversion result of the A/D converter will be undefined. If the ADST bit is set to 0 by a program, do not use the value of the AD register.

20.7 Notes on Flash Memory Version

20.7.1 CPU Rewrite Mode

20.7.1.1 Operating Speed

Before entering CPU rewrite mode (EW0 mode), select 5 MHz or below for the CPU clock using the CM06 bit in the CM0 register and bits CM16 to CM17 in the CM1 register. This does not apply to EW1 mode.

20.7.1.2 Prohibited Instructions

The following instructions cannot be used in EW0 mode because they reference data in the flash memory: UND, INTO, and BRK.

20.7.1.3 Interrupts

Table 20.1 lists the EW0 Mode Interrupts and Table 20.2 lists the EW1 Mode Interrupts.

Mode	Status	When Maskable Interrupt Request is Acknowledged	When Watchdog Timer, Oscillation Stop Detection and Voltage Monitor 2 Interrupt Request is Acknowledged
EWO	During auto-erasure Auto-programming	Any interrupt can be used by allocating a vector in RAM	Once an interrupt request is acknowledged, auto-programming or auto-erasure is forcibly stopped immediately and the flash memory is reset. Interrupt handling starts after the fixed period and the flash memory restarts. Since the block during auto- erasure or the address during auto- programming is forcibly stopped, the normal value may not be read. Execute auto-erasure again and ensure it completes normally. Since the watchdog timer does not stop during the command operation, interrupt requests may be generated. Reset the watchdog timer regularly.

Table 20.1 EW0 Mode Interrupts

NOTES:

- 1. Do not use the address match interrupt while a command is being executed because the vector of the address match interrupt is allocated in ROM.
- 2. Do not use a non-maskable interrupt while block 0 is being automatically erased because the fixed vector is allocated in block 0.

Mode	Status	When Maskable Interrupt Request is Acknowledged	When Watchdog Timer, Oscillation Stop Detection and Voltage Monitor 2 Interrupt Request is Acknowledged
EW1	During auto-erasure (erase- suspend function enabled)	Auto-erasure is suspended after td(SR-SUS) and interrupt handling is executed. Auto-erasure can be restarted by setting the FMR41 bit in the FMR4 register to 0 (erase restart) after interrupt handling completes.	Once an interrupt request is acknowledged, auto-programming or auto-erasure is forcibly stopped immediately and the flash memory is reset. Interrupt handling starts after the fixed period and the flash memory restarts. Since the block during auto- erasure or the address during auto-
	During auto-erasure (erase- suspend function disabled)	Auto-erasure has priority and the interrupt request acknowledgement is put on standby. Interrupt handling is executed after auto-erasure completes.	programming is forcibly stopped, the normal value may not be read. Execute auto-erasure again and ensure it completes normally. Since the watchdog timer does not
	During auto- programming (program suspend function enabled)	Auto-programming is suspended after td(SR-SUS) and interrupt handling is executed. Auto- programming can be restarted by setting the FMR42 bit in the FMR4 register to 0 (program restart) after interrupt handling completes.	stop during the command operation, interrupt requests may be generated. Reset the watchdog timer regularly using the erase-suspend function.
	During auto- programming (program suspend function disabled)	Auto-programming has priority and the interrupt request acknowledgement is put on standby. Interrupt handling is executed after auto-programming completes.	

Table 20.2 EW1 Mode Interrupts

- 1. Do not use the address match interrupt while a command is executing because the vector of the address match interrupt is allocated in ROM.
- 2. Do not use a non-maskable interrupt while block 0 is being automatically erased because the fixed vector is allocated in block 0.

20.7.1.4 How to Access

Write 0 before writing 1 when setting the FMR01, FMR02, or FMR11 bit to 1. Do not generate an interrupt between writing 0 and 1.

20.7.1.5 Rewriting User ROM Area

In EW0 Mode, if the supply voltage drops while rewriting any block in which a rewrite control program is stored, it may not be possible to rewrite the flash memory because the rewrite control program cannot be rewritten correctly. In this case, use standard serial I/O mode.

20.7.1.6 Program

Do not write additions to the already programmed address.

20.7.1.7 Entering Stop Mode or Wait Mode

Do not enter stop mode or wait mode during erase-suspend.

20.8 Notes on Noise

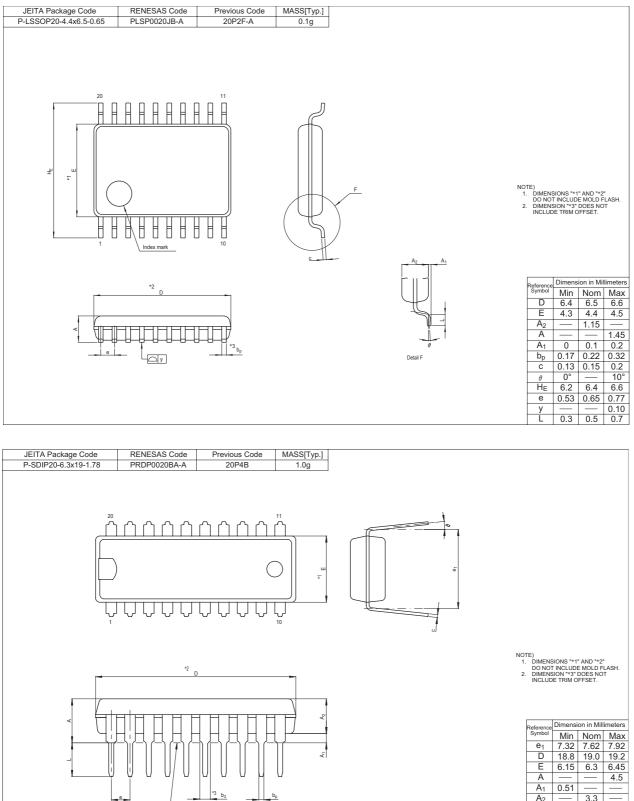
20.8.1 Inserting a Bypass Capacitor between VCC and VSS Pins as a Countermeasure against Noise and Latch-Up

Connect a bypass capacitor (at least $0.1 \ \mu\text{F}$) using the shortest and thickest wire possible.

20.8.2 Countermeasures against Noise Error of Port Control Registers

During rigorous noise testing or the like, external noise (mainly power supply system noise) can exceed the capacity of the MCU's internal noise control circuitry. In such cases the contents of the port related registers may be changed.

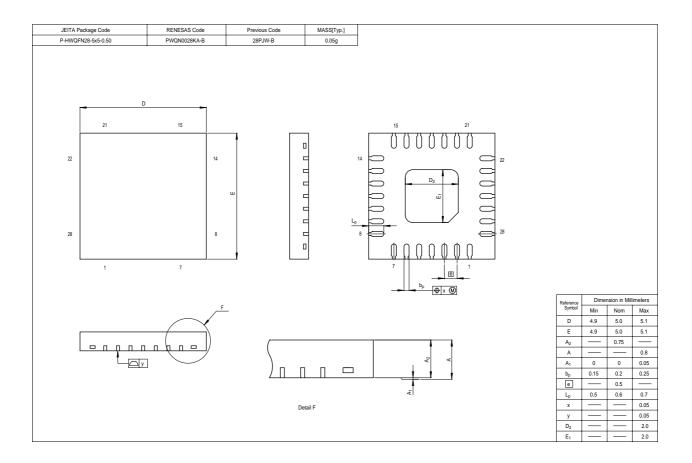
As a firmware countermeasure, it is recommended that the port registers, port direction registers, and pull-up control registers will be reset periodically. However, examine the control processing fully before introducing the reset routine as conflicts may be created between the reset routine and interrupt routines.


21. Notes on On-Chip Debugger

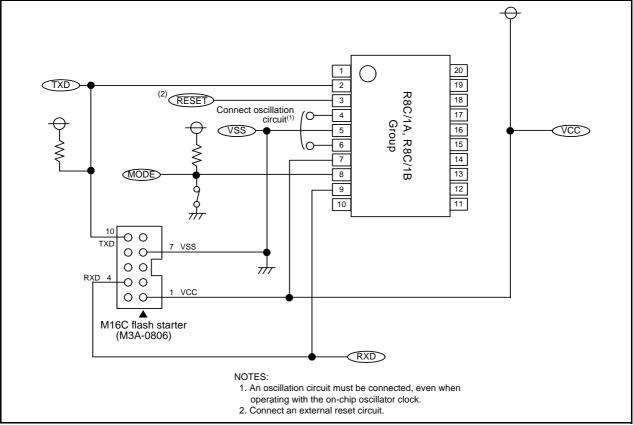
When using on-chip debugger to develop and debug programs for the R8C/1A Group and R8C/1B Group, take note of the following.

- (1) Do not access the related UART1 registers.
- (2) Do not use from addresses OC000h to OC7FFh because the on-chip debugger uses these addresses.
- (3) Do not set the address match interrupt (registers AIER, RMAD0, and RMAD1 and fixed vector tables) in a user system.
- (4) Do not use the BRK instruction in a user system.
- (5) A stack pointer of up to 8 bytes is used during user program breaks. Therefore, leave of 8 bytes free for the stack area.

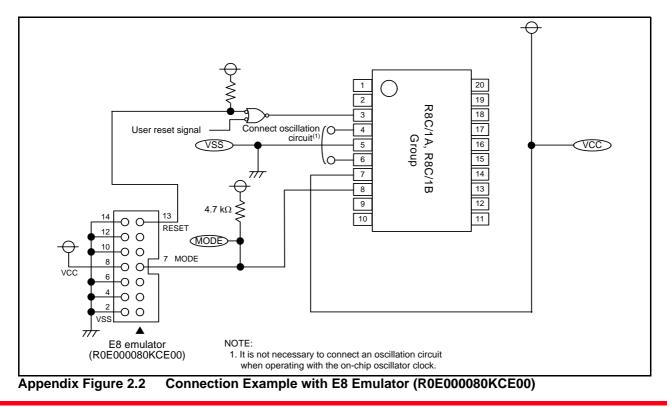
Connecting and using the on-chip debugger has some special restrictions. Refer to the on-chip debugger manual for on-chip debugger details.


Appendix 1. Package Dimensions

A ₁	0.51	—	—
A ₂	—	3.3	—
bp	0.38	0.48	0.58
b ₃	0.9	1.0	1.3
С	0.22	0.27	0.34
θ	0°	—	15°
е	1.528	1.778	2.028
L	3.0	—	—


Rev.1.10 Mar 17, 2006 Page 307 of 312 **RENESAS** REJ09B0252-0110

SEATING PLANE



Appendix 2. Connection Examples between Serial Writer and On-Chip Debugging Emulator

Appendix Figure 2.1 shows a Connection Example with M16C Flash Starter (M3A-0806) and Appendix Figure 2.2 shows a Connection Example with E8 Emulator (R0E000080KCE00).

Appendix Figure 2.1 Connection Example with M16C Flash Starter (M3A-0806)

Appendix 3. Example of Oscillation Evaluation Circuit

Appendix Figure 3.1 shows an Example of Oscillation Evaluation Circuit.

Appendix Figure 3.1 Example of Oscillation Evaluation Circuit

Register Index

Α

AD	232
ADCON0	231
ADCON1	231
ADCON2	232
ADIC	
AIER	96

С

СМО	8
CM1	9
CMPOIC	0
CMP1IC	
CSPR 10	2

D

DRR	9
-----	---

F

FMR0	253
FMR1	254
FMR4	255

Н

HRA0	 61
HRA1	 62
HRA2	 62

I

ICCR1	
ICCR2	
ICDRR	205
ICDRS	
ICDRT	204
ICIER	202
ICMR	201
ICSR	203
INTOF	88
INTOIC	
INT1IC	
INT3IC	80
INTEN	88

Κ

KIEN9	4
KUPIC8	0

0

OCD6	60
OFS101, 24	18

Ρ

P1	27
P3	27
P4	
PD1	27
PD3	27
PD4	27
PM0	53
PM1	54
PMR	28, 175, 205
PRCR	74
PREX	108
PREZ	122
PUM	123
PUR0	29
PUR1	29

R

RMAD0	96
RMAD1	

S

SORIC	
SOTIC	80
S1RIC	80
S1TIC	80
SAR	204
SSCRH	169
SSCRL	170
SSER	172
SSMR	171
SSMR2	174
SSRDR	175
SSSR	173
SSTDR	175

Т

тс	
тссо	141
TCC1	142
TCIC	
TCOUT	143
TCSS	108, 124
ТМО	
TM1	140
ТХ	108
TXIC	
TXMR	107
TZIC	
TZMR	121
TZOC	123
TZPR	122
TZSC	122

U

1
3
4
2
1
1
1
3
4
2
1
1
4

V

VCA1	45
VCA2	45
VW1C	46
VW2C	47

W

WDC	101
WDTR	102
WDTS	102

REVISION HISTORY

R8C/1A Group, R8C/1B Group Hardware Manual

Davi			Description
Rev.	Date	Page	Summary
0.10	Jun 30, 2005	-	First Edition issued
1.00	Sep 09, 2005	all pages	"Under development" deleted
		3	Table 1.2 Performance Outline of the R8C/1B Group;Flash Memory:(Data area) \rightarrow (Data flash)(Program area) \rightarrow (Program ROM) revised
		4	Figure 1.1 Block Diagram; "Peripheral Function" added, "System Clock Generation" \rightarrow "System Clock Generator" revised
		5	Table 1.3 Product Information of R8C/1A Group; "(D)" and "(D): Under development" deleted
		6	Table 1.4 Product Information of R8C/1B Group; "(D)" and "(D): Under development" deleted ROM capacity: "Program area" → "Program ROM", "Data area" → "Data flash" revised
		9	Table 1.5 Pin Description; Power Supply Input: "VCC/AVCC" → "VCC", "VSS/AVSS" → "VSS" revised Analog Power Supply Input: added
		11	Figure 2.1 CPU Register; "Reserved Area" → "Reserved Bit" revised
		13	2.8.10 Reserved Area; "Reserved Area" → "Reserved Bit" revised
		15	3.2 R8C/1B Group, Figure 3.2 Memory Map of R8C/1B Group; "Data area" \rightarrow "Data flash", "Program area" \rightarrow "Program ROM" revised
		17	Table 4.2 SFR Information(2); 004Fh: SSU/IIC Interrupt Control Register ⁽²⁾ SSUAIC/IIC2AIC XXXXX000b added NOTE2 added
		18	Table 4.3 SFR Information(3);0085h:"Prescaler Z" \rightarrow "Prescaler Z Register"0086h:"Timer Z Secondary" \rightarrow "Timer Z Secondary Register"0087h:"Timer Z Primary" \rightarrow "Timer Z Primary Register"008Ch:"Prescaler X" \rightarrow "Prescaler X Register"008Dh:"Timer X" \rightarrow "Timer X Register"0090h, 0091h:"Timer C" \rightarrow "Timer C Register" revised
		20 to 39	"5. Reset" \rightarrow "5. Programmable I/O Ports" and "6. Programmable I/O Ports" \rightarrow "6. Reset" revised
		31	Table 5.13 Port P3_4/SCS/SDA/CMP1_1 Setting "SCS" → "SCS" Table 5.14 Port P3_5/SSCK/SCL/CMP1_2 Setting "SSK" → "SSCK"

REVISION HISTORY R8C/1A Group, R8C/1B Group Hardware Manual

	Date	Description		
Rev.		Page	Summary	
1.00	Sep 09, 2005	33	Table 5.18 Unassigned Pin Handling, Figure 5.11 Unassigned Pin Handling; "Port P4_2, P4_6, P4_7" → "Port P4_6, P4_7" "VREF" → "Port P4_2/VREF" revised	
		53	Table 9.2 Bus Cycles for Access Space of the R8C/1B Group added, Table 9.3 Access Unit and Bus Operation; "SFR" \rightarrow "SFR, Data flash", "ROM/RAM" \rightarrow "Program ROM, ROM, RAM" revised	
		62	 10.2.1 Low-speed On-Chip Oscillator Clock; "The application products to accommodate the frequency range." → "The application products for the frequency change." revised 10.2.2 High-Speed On-Chip Oscillator Clock; "The high-speed on-chip oscillator frequency for details." added 	
		69	10.5.1 How to Use Oscillation Stop Detection Function; "This function cannot is 2 MHz or below." \rightarrow "This function cannot be is below 2 MHz." revised	
		70	Figure 10.9 Procedure of Switching Clock Source From Low-Speed On- Chip Oscillator to Main Clock revised	
		71	 10.6.2 Oscillation Stop Detection Function; "Since the oscillationfrequency is 2MHz or below," → "Since the oscillationfrequency is below 2MHz," revised 10.6.4 High-Speed On-Ship Oscillator Clock added. 	
		85	Figure 12.10 Judgement Circuit of Interrupts Priority Level; NOTE2 deleted	
		104	Figure 14.1 Block Diagram of Timer X; "Peripheral data bus" → "Data Bus" revised	
		117	14.1.6 Precautions on Timer X; "When writing "1" (count starts) to writing "1" to the TXS bit." \rightarrow ' "0" (count stops) can be read after the TXS bit is set to "1".' revised	
			Figure 14.11 Block Diagram of Timer Z; "Peripheral Data Bus" → "Data Bus" revised	
		135	14.2.5 Precautions on Timer Z; "When writing "1" (count starts) to writing "1" to the TZS bit." \rightarrow ' "0" (count stops) can be read after the TZS bit is set to "1".' revised	
		149	Figure 15.3 U0TB to U1TB, U0RB to U1RB and U0BRG to U1BRG Registers; "UARTi Transmit Buffer Register (i=0 to 1)" and "UARTi Receive Buffer Register (i=0 to 1)" revised	
		159	Table 15.5 Registers to Be Used and Settings in UART Mode; UiBRG: "-" \rightarrow "0 to 7" revised	
		164	Table 16.1 Mode Selection; "RE and TE Bits in SSER Register" added	
		193	16.2.8.2 Selecting SSI Signal Pin added	

REVISION HISTORY R8C/1A Group, R8C/1B Group Hardware Manual

			Description		
Rev.	Date	Page	Summary		
1.00	Sep 09, 2005	222	Figure 16.46 Example of Register Setting in Master Transmit Mode (Clock Synchronous Serial Mode); ' "• Set the IICSEL bit in the PMR register to "1" ' added		
		227	 Table 17.1 Performance of A/D Converter Analog Input Voltage: "0V to Vref" → "0V to AVCC" revised NOTE1: "When the analog input voltage FFh in 8-bit mode." added 		
		228	Figure 17.1 Block Diagram of A/D Converter; "Vref" → "Vcom" revised		
		239	Table 18.1 Flash Memory Version Performance; Program and Erase Endurance: (Program area) \rightarrow (Program ROM), (Data area) \rightarrow (Data flash) revised		
		241	 18.2 Memory Map; "The user ROM area Block A and B." → "The user ROM area (program ROM) Block A and B (data flash)." revised Figure 18.1 Flash Memory Block Diagram for R8C/1A Group revised 		
		242	Figure 18.2 Flash Memory Block Diagram for R8C/1B Group revised		
		257	18.4.3.5 Block Erase "The block erase command cannot program-suspend." added		
		270	Table 19.3 A/D Converter Characteristics; Vref and VIA: Standard value, NOTE4 revised		
		271	Table 19.4 Flash Memory (Program ROM) Electrical Characteristics NOTES3 and 5 revised, NOTE8 deleted		
		272	Table 19.5 Flash Memory (Data flash Block A, Block B) Electrical Characteristics; NOTES1 and 3 revised		
		274	Table 19.8 Reset Circuit Electrical Characteristics (When Using Voltage Monitor 1 Reset); NOTE2 revised		
		275	 Table 19.10 High-speed On-Chip Oscillator Circuit Electrical Characteristics; "High-Speed On-Chip Oscillator" → "High-Speed On-Chip Oscillator Frequency" revised NOTE2 added 		
	NOTE1 deleted		Table 19.15 Electrical Characteristics (2) [Vcc = 5V]; NOTE1 deleted		
			Table 19.22 Electrical Characteristics (4) [Vcc = 3V]; NOTE1 deleted		
		293	20.3.1 Precautions on Timer X; "When writing "1" (count starts) to writing "1" to the TXS bit." \rightarrow ' "0" (count stops) can be read after the TXS bit is set to "1".' revised		
			20.3.2 Precautions on Timer Z; "When writing "1" (count starts) to writing "1" to the TZS bit." \rightarrow ' "0" (count stops) can be read after the TZS bit is set to "1".' revised		
		296	20.5.1.2 Selecting SSI Signal Pin added		
		302	21.Precautions on On-Chip Debugger; (1) added		

REVISION HISTORY R8C/1A Group, R8C/1B Group Hardware Manual

_	_		Description	
Rev.	Date	Page	Summary	
1.10	Mar 17, 2006	_	Products of PWQN0028KA-B package included	
		1	"or SDIP" \rightarrow "SDIP or a 28-pin plastic molded-HWQFN"	
		2, 3	Table 1.1, Table 1.2; "28-pin molded-plastic HWQFN" added	
		5, 6	Table 1.3, Table 1.4; Type No. added, deleted	
		9	Figure 1.6 added	
		12	Table 1.7 added	
		16, 17	Figure 3.1, Figure 3.2; Part Number added, deleted	
		40	6.2 "When a capacitor is connected to pin 0.8VCC or more." added	
		57	Figure 10.1 revised	
		66	Table 10.2; CM1 Register; CM17, CM16 revised	
		101	Figure 13.2; Option Function Select Register: NOTE 1 revised, NOTE 2 revised Watchdog Timer Control Register: NOTE 1 deleted	
		110	Table 14.3; NOTE 1 added	
		139	Figure 14.25 revised	
		146	Table 14.12; NOTE 1 revised	
		151	Figure 15.3; NOTE 3 added	
		153	Figure 15.5; NOTE 1 added	
		166	Table 16.1 revised	
		167	Table 16.2; NOTE 1 deleted	
		175	Figure 16.8 SS Transmit Data Register; The last NOTE 1 deleted	
		182, 186, 190	16.2.5.2, 16.2.5.4, 16.2.6.2 "When setting the microcomputer tocontinuous transmit is enabled." deleted	
		183, 187	Figure 16.14 NOTE 2 deleted	
		235	Table 17.3 revised	
		240	17.7 added	
		248	18.3.2; "To disable ROM code protect" revised Figure 18.4; NOTE 1 revised, NOTE 2 added	
		253	Figure 18.5; NOTE 6 added	
		263	Table 18.5; Value after Reset revised	
		265	Figure 18.15 revised	
		275	Table 19.4; "Topr" \rightarrow "Ambient temperature", Conditions: Vcc = 5.0 V at Topr = 25 °C deleted, NOTE 8 added	
		276	Table 19.5; "Topr" \rightarrow "Ambient temperature", Conditions: Vcc = 5.0 V at Topr = 25 °C deleted, NOTE 9 added	
		279	Table 19.10; NOTE 3 added	
		280	Table 19.12; Standard of tSA and tOR revised, NOTE: 1. vcc = 2.2 to \rightarrow 2.7 to	

Rev.	Date	Description			
		Page	Summary		
1.10	Mar 17, 2006	284	Table 19.13; NOTE: 1. Vcc = 2.2 to \rightarrow 2.7 to		
		286, 290	Table 19.15, Table 19.22; The title revised, Condition of Stop Mode "Topr = $25 \degree$ C" added		
		288, 292	Table 19.19, Table 19.26; Standard of td(C-Q) and tsu(D-C) revised		
		307,308	Package Dimensions revised, added		
		309	Appendix Figure 2.1 revised		
		310	Appendix Figure 3.1 revised		

R8C/1A Group, R8C/1B Group Hardware Manual

Publication Date	e :		Jun 30, 2005 Mar 17, 2006
Published by : Sa Re		0	c Planning Div. nology Corp.

© 2006. Renesas Technology Corp., All rights reserved. Printed in Japan

R8C/1A Group, R8C/1B Group Hardware Manual

Renesas Technology Corp. 2-6-2, Ote-machi, Chiyoda-ku, Tokyo, 100-0004, Japan