PHILIPS sense and simplicity

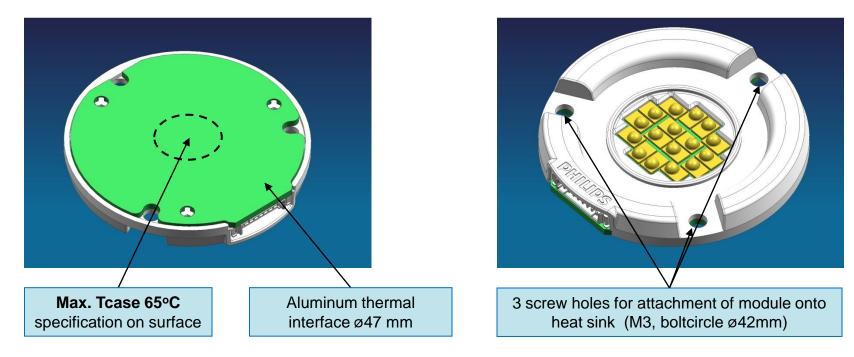
Thermal Design Guide v2.2 Fortimo SLM platform

Fortimo SLM Team GBU LED Systems Philips Lighting B.V.

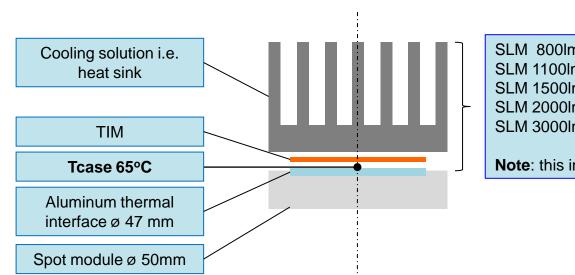
Contents

- Thermal specifications
- How to measure T_{case} at its critical temperature point T_c ?
- Thermal interface materials (TIM)
- Designing a passive cooled luminaire
- Designing an active cooled luminaire
- Complementary partners for thermal solutions (passive/ active)

Thermal specifications Fortimo SLM platform


Fortimo SLM Platform	800 lm	1100 lm	1500 lm	2000 lm	3000 lm
Dissipated thermal power (maximum)	10 W	17 W	18W	31 W	40 W
Dissipated thermal power (typical)	8 W	15 W	16 W	28 W	37 W
Max. T _{case} of module	65 °C				65 °C
Max. ambient temperature	35 °C			35 °C	
Thermal impedance requirement T_{case} to T_{ambient}	<3.0 °C/W	<1.75 °C/W	<1.65 °C/W	<0.95 °C/W	<0.75 °C/W

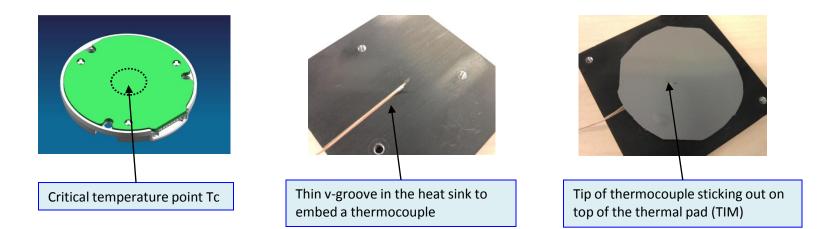
Performance requirement total cooling solution


Thermal specifications Fortimo SLM platform

- Tcase 65°C (max. surface temperature on aluminum interface)
- Max. ambient condition 35°C ambient

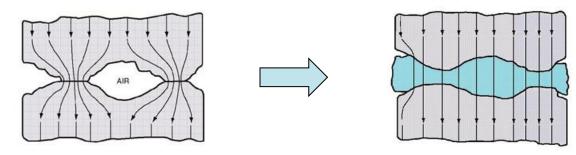
Thermal specifications Fortimo SLM platform

- A maximum surface temperature of 65°C to be guaranteed on the interface between the 'Module' and the '<u>TIM</u> + cooling solution' at maximum ambient of 35°C
- All types of *Fortimo SLM drivers will dim when a temperature over 65°C* is sensed by the SLM module.


Simplified Model

SLM 800Im 10W => Rth case to ambient \leq **3.00** [°C/W] SLM 1100Im 17W => Rth case to ambient \leq **1.75** [°C/W] SLM 1500Im 18W => Rth case to ambient \leq **1.65** [°C/W] SLM 2000Im 31W => Rth case to ambient \leq **0.95** [°C/W] SLM 3000Im 40W => Rth case to ambient \leq **0.75** [°C/W]

Note: this includes the TIM


How to measure critical temperature point T_c ?

- The Tcase should be measured at its critical temperature point, centre point at the bottom of the module
- This can be done by making a thin v-groove in the heat sink or a small drill hole in the heat sink to reach bottom of the module at its critical temperature point, make sure to measure the bottom of the module and not the TIM

Thermal Interface Materials (TIM)

- Function is to reduce thermal impedance between two solid surfaced
- Replaces air (thermal insulator c=0.024W/mK) by filling the gaps with better conductive thermal interface material (order c=1W/mK)

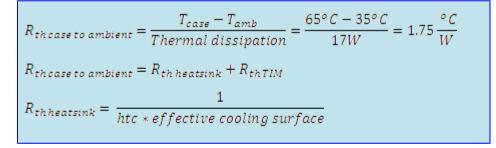
- In general:
 - Thermal pastes performs better than thermal pads
 - The higher the thermal conductivity the better
 - The thinner the TIM the better

Thermal Interface Materials (TIM)

- In practice:
 - Actual thermal impedance [°C/W] of TIM in application is more important than conductivity of material
 - Each *thermal interface* can have a significant contribution to the *total thermal impedance of module* to ambient
 - Limiting the # of thermal interfaces from module to ambient is strongly recommended

Contact information complementary partners Thermal interface materials (TIM)

The Bergquist Company		
www.bergquistcompany.com		
North American Headquarters	Contact person for Europe	
18930 W. 78th Street	Nico Bruijnis	
Chanhassen, MN 55317 USA	Phone: +31 35 538 0684	
	Cell: +31 6 5316 0688	
	E-mail: n.bruijnis@bergquist-europe.com	
Chomerics		
www.chomerics.com		
Chomerics North America	Contact person for Europe	
Parker Hannifin Corp.	Luc Coupet	
77 Dragon Court	Phone: +33 134323900	
Woburn, MA 01801	Cell: +33 670765480	
USA	E-mail: luc.coupet@parker.com	
Laird Technologies		
www.lairdtech.com		
Corporate Headquarters	Contact person for Europe	
Laird Technologies (Corporate)	Philip Blazdell	
16401 Swingley Ridge Road	Phone: +49 803124600	
Suite 700	Cell: +44 7595710316	
Chesterfield, MO 63017	E-mail: philip.blazdell@lairdtech.com	

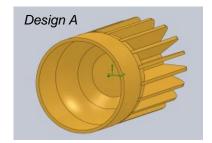

Contents

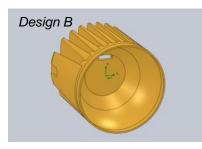
- Thermal specifications
- How to measure T_{case} at its critical temperature point T_c ?
- Thermal interface materials (TIM)
- Designing a passive cooled luminaire
- Designing an active cooled luminaire
- Complementary partners for thermal solutions (passive/ active)

Designing a passive cooled luminaire

Design based on Fortimo SLM 1100lm:

Performance requirement cooling R_{th} < 1.75 °C/W



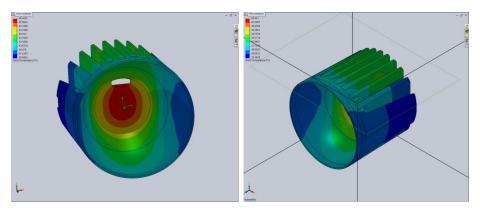

 Assuming a conservative heat transfer coefficient (htc) = 5 W/m²K and the contribution of the thermal interface material R_{th TIM} = 0.1 °C/W a first estimate of the required cooling surface can be calculated

$$Minimum \ cooling \ surface = \frac{1}{htc * R_{thheatsink}} = \frac{1}{5\frac{W}{m^2K} * 1.65^{\circ}C/W} = 0.121m^2$$

Design of Experiments (DoE)

- Based on the previous calculation a minimum surface area of 0.121m² is required
- This corresponds to a cylinder of ø120mm and 322mm long
- In order to reduce overall size of the luminaire, cooling fins should be introduced
- To optimization the thermal performance a DoE should be set up
- Example of simple DoE with CFD analysis:
 - Comparison of Design A and B
 - Effect of thermal radiation, blank metal surface or black anodized

Design of Experiments (DoE)

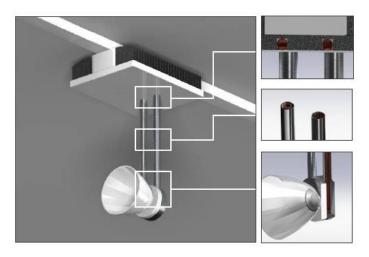

Results DoE	Design A		Design B	
Area [m ²]	0.236	0.236	0.158	0.158
Emissivity [-]	0.1	0.9	0.1	0.9
R _{th heatsink} [°C/W]	1.33	0.99	1.76	1.39
HTC average [W/m ² K]	3.2	4.3	3.6	4.6

A DoE can of course be much more extensive:

- Different material (thermal conductivity)
- Orientation; horizontal or vertical (here horizontal is assumed as worst case, so both heat sinks will also work in vertical orientation)

Detailed analysis

- Both designs are feasible, but choice is to focus on design B
- The fins are place in line with the flow direction for maximum efficiency, this way it is possible to keep the overall luminaire size and weight small.


- Analysis with CFD can further optimize the design:
 - i.e. optimization of fin thickness and fin spacing

Passive cooled luminaire designs

• After design optimization a passive luminaire design could look like this:

 Another passive cooled design, but with heat pipes:

Some design guidelines for passive cooling

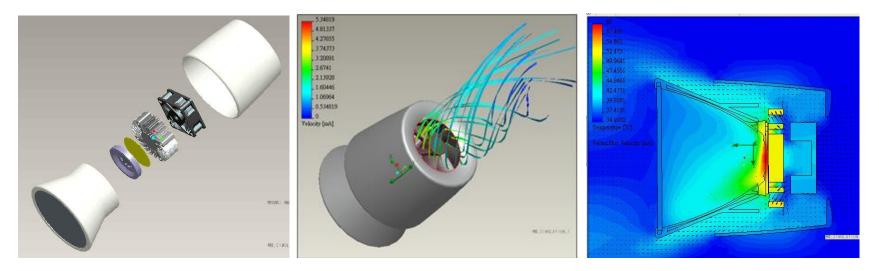
- Limit the # of thermal interfaces in the thermal path from module to ambient => strongly recommended
- Thick fins conduct heat better than thin fins
- Large spacing between fins is better than small spacing between fins
- Make cooling surfaces more effective by using proper conductive materials, appropriate thickness and sound orientation
- Thermal radiation plays a significant role => anodized surfaces are preferred over blank surfaces

Contents

- Thermal specifications
- How to measure T_{case} at its critical temperature point T_c ?
- Thermal interface materials (TIM)
- Designing a passive cooled luminaire
- Designing an active cooled luminaire
- Complementary partners for thermal solutions (passive/ active)

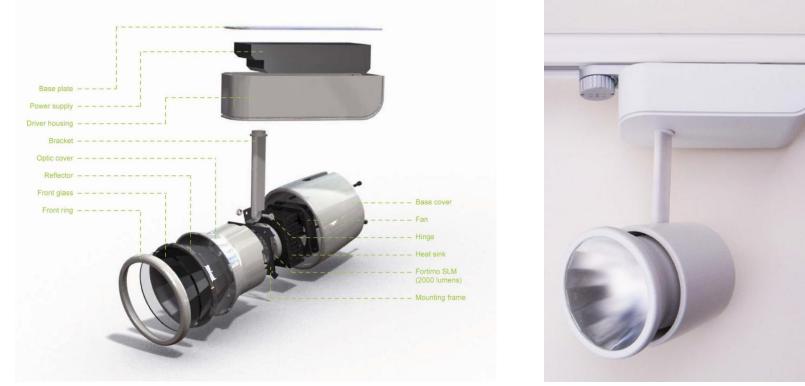
Designing an active cooled luminaire

Design based on Fortimo SLM 2000lm:


- Performance requirement cooling R_{th} < 0.95 °C/W
- Assuming passive cooling conditions:
 - Heat transfer coefficient (htc) = $5 \text{ W/m}^2\text{K}$ and
 - Contribution $R_{th TIM} = 0.1 \text{ °C/W}$

- A calculated cooling surface of 0.235m² is required
- This corresponds to the surface a cylinder of ø120mm and 624mm long!
- Goal of an active solution is to actively move air over the cooling surfaces to increase the heat transfer coefficient, therefore enabling small, compact and light weight cooling solutions (and systems)

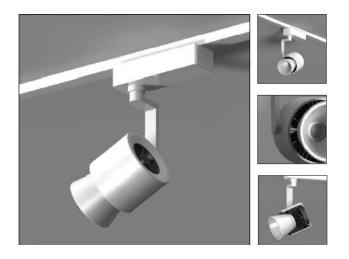
CFD analysis


- CFD analysis can be a great way to help design a good active cooled luminaire
- A possible design is shown below
- The complete cooling solution has reduced to a small, compact and light weight solution of ø70mm and 40mm in height

Active cooled luminaire designs

•Goal of an active solution is to actively move air over the cooling surfaces to increase the heat transfer coefficient, therefore enabling small, compact and light weight cooling solutions (and systems)

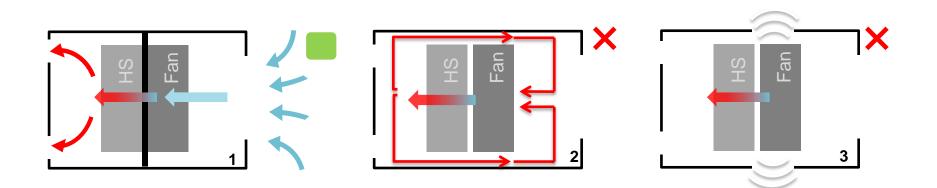
After optimization an active cooled luminaire design could look like this:


Some design guidelines for active cooling

Design considerations for active cooling are:

- Provisions in luminaire design for inlet and outlet of respectively cool and hot air
- Ensure smooth airflow from inlet to outlet and prevent restrictions in the flow path (to limit vibration, recirculation and possible noise)

Always take care to:


- Design for reliability (dusty environments)
- Design for performance (differentiator)
- Design for low noise (differentiator)

Some design guidelines for active cooling

Design considerations for active cooling are:

- Provisions in luminaire design for inlet and outlet of respectively cool and hot air (1) Ensure smooth airflow from inlet to outlet and prevent restrictions in the flow path (to limit vibration recirculation and possible noise)
- Avoid recirculation of hot air (2) inside the luminaire, which leads to lower thermal performance and higher noise level.
- Enclose fan noise avoiding unnecessary openings near the fan in the luminarie's housing (3)

Thermal solution validation

When testing the thermal performance of your luminaire pay special attention to these 2 numbers:

- Max temperature of the module Tc=65°C
- Max $\Delta T = 30^{\circ}C$ (Tc=65°C when your ambient temperature is 35°C)

Operating the system under those parameters will guarantee its proper performance in terms of:

- Lumen output
- Light consistency
- Life time

Complementary partners for thermal solutions

Overview of our complementary partners and their cooling solutions that are especially designed for the Fortimo SLM platform

- AVC (active and passive solutions)
- Sunon (active solutions)
- Nuventix (active solutions)
- Wisefull (active solutions)
- FrigoDynamics (passive solutions)

AVC Philips FORTIMO Philips FORTIMO Philips FORTIMO Philips FORTIMO SLM 1100Im Module Type: **SLM 1100Im SLM 2000Im** SLM Lexel Passive Solution **Active Solution Active Solution Active Solution** + Ø9mm heatpipe Hestsink Type: Sunflower Heatsink Sunflower Heatsink Sunflower Heatsink Sunflower Heatsink Heatsink Model: FSLM-HP1100 FSLM-A1100-G1 FSLM-A2000-G1 FSLM-A2000-G2 Total Height (mm): 105mm 30mm 40mm 40mm Heatsink + module: Heatsink Geometry: Extrusion Extrusion Extrusion Extrusion Heatsink Dimension: Ø100mm*H105mm Ø65mm*H10mm \$65mm*20mm Φ70mm*20mm Dimension Weight (kg): 0.685 0.080 0.128 0.150 AL6063-T5 Heatsink Material: AL6063-T5 AL6063-T5 AL6063-T5 Surface finish: Anodized Anodized Anodized Black Anodized 17W LED Thermal Power: 17W 31W 31W Ambient Temperature: 35°C 35°C 35°C 35°C <=65 °C <=65 °C Case Temperature: <=65 °C <=65 °C <1.75 °C AV <1.75 °C AV <= 0.95°C AV Thermal Resistance: <= 1.02°C/W Lower-noise FAN: DS0520 12L DS0520 12L DS6020 12E N/A Noise Level: N/A <21dB <21dB <23dB RPM speed: N/A 3000RPM±15% 3000RPM±15% 2200RPM±15% Available Now! Available Now! Available Now! Available Now!

Headquarter, ASIA VITAL COMPONENTS (AVC) CO., LTD.

248-27, Hsin Sheng Rd., 80672 Kaosiung City, Taiwan. China Factory:

wider West Industrial Park. Xinyang Community Shajing Branch, Baoan District, Shenzhen City, CHINA

SLM 3000Im to be released soon

Confidential

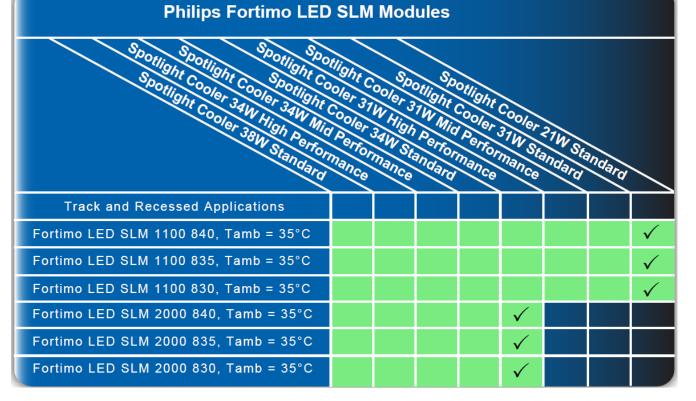
Philips Lighting B.V., GBU LED Systems, Fortimo SLM Team

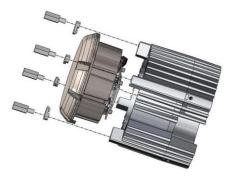
Sunon

SLM 2000lm gen 2 (TA003-10003) solution, improved for use in track luminaires

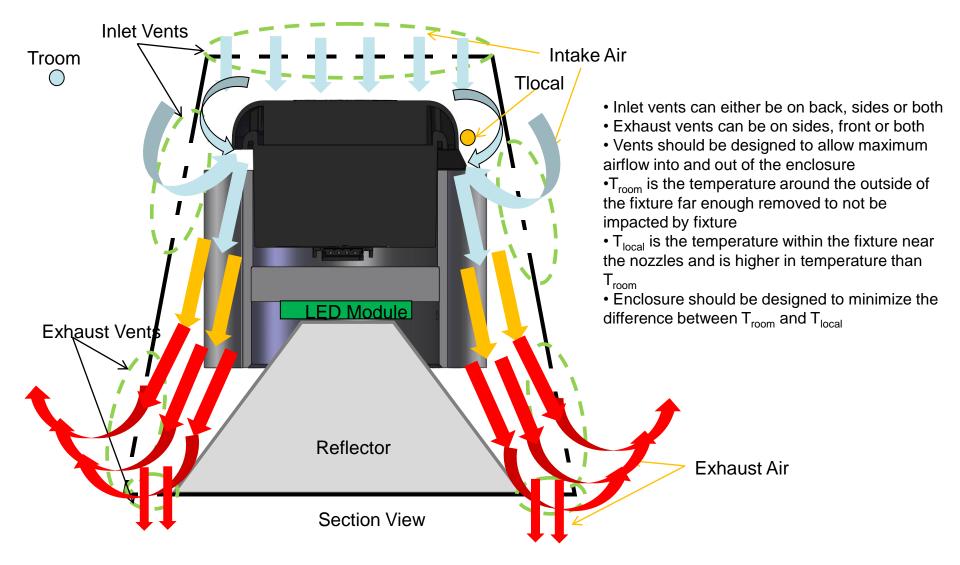
SLM 3000lm (TA004-10003)

- Prototypes available
- Limited engineering samples available end march 2011
- MP release in April 2011


SLM 1100Im + SLM 1500Im under development


Specification LED Fortimo SLM 2000lm LED Power 31W Cooling Module Model No. TA003-10001 Cooling Module Diameter ∮86x37mm Fan Dimension 60x60x15mm Fan Rating Voltage 12VDC Fan Rating Current 24mA Fan Speed 2200RPM Cooling Module Noise @ 1M 18dB(A) Heat Sink Material Aluminum Weight 235g

Nuventix



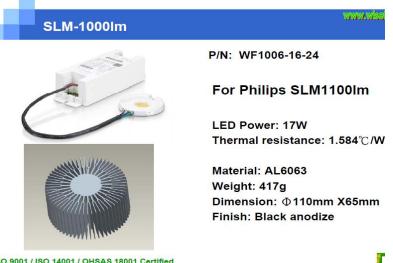
- Solution for SLM 800lm, 1100lm and 1500lm
- Solution for SLM 2000Im open air applications
- 3000lm under development

SynJet[®] Airflow Basics – Enclosure Guidelines

Wisefull Technology Ltd.

Thermal solutions for Philips LED Module

Active solution



3. Test results

Sample			Temperature(℃)		∆T(°C)	Rth(℃/w)
Heat sink #	Test runs	Testing time (min)	Та	Тс	Тс-Та	∆ T/power
	Run 1 (Free air, downward lighting direction)	30	23.9	45.4	21.5	0.693
1#	Run 2 (Free air, upward lighting direction)	30	24.0	47.0	23.0	0.742
	Run 3 (Test in luminaire, 5mm air exit width)	60	23.8	59.7	35.9	1.159
	Run 4 (Test in luminaire, 10mm air exit width)	60	24.2	56.4	32.2	1.039
2#	Run 1	30	23.7	44.7	21	0.677
	Run 2	30	24.1	46.8	22.7	0.732
	Run 3	60	24.6	60.4	35.8	1.155
	Run 4	60	23.9	56.3	32.4	1.045

Note: Rth is calculated by using 31W as the assumed heat dissipation

But also passive

ISO 9001 / ISO 14001 / OHSAS 18001 Certified Your Reliable Thermal Partner

Warfull

- Solutions for SLM 800lm, 1100lm and 1500lm
- Solution for SLM 2000lm under development

FrigoDynamics GmbH

4	Flux	Tc = 3000 K	Tc = 3500 K	Tc = 4000 K
	800 (LpW, typical lamp wattage, and thermal load)	72 lm/W	75 lm/W	79 lm/W
		11	10	10
		8.1 W	7.5 W	7.3 W
	1100 (LpW, typical	63 lm/W	65 lm/W	70 lm/W
	lamp wattage, and thermal load)	17	17	15
		13.3 W	12.9 W	11.9 W
1	1500 (LpW, typical lamp wattage, and thermal load)	70 lm/W	72 lm/W	76 lm/W
D		20	20	19
		15.7 W	15.8 W	14.5 W

Solutions for SLM 800lm, 1100lm and 1500lm

Contact information complementary partners Cooling solutions

HEADQUARTER AVC KAOHSIUNG No.248-27, Hsin-Sheng Rd., 80672 Kaohsiung City, Taiwan	Contact person for Europe Beatrice Tseng Phone: +31208932195 Cell: +31 646688175 E-mail: beatrice_tseng@avc.com.tw	Contact person for N.A. & Asia Jeff Chou Phone: +86-21-50270508 ext. 68528 Cell: +86 13916680014 E-mail: jeff_chou@avc.com.cn
Sunonwealth Electric Machine Industry Co., Ltd No.30, Lane 296 Shin-Ya Road, Chyan-Jenn Dt., Kaohsiung 806, Taiwan	Contact person for Europe Alipio Marques Phone: +33 146 154 494 Cell: +33 616 795 314 E-mail: <u>alipio.marques@sunon.fr</u>	Contact person for Asia Sandra Lin Phone: +886-7-813-5888 ext 1257 Cell: +886-911-739-507 E-mail: sandra@email.sunon.com.tw
Wisefull <u>www.wisefull.com</u> Wisefull Technology Ltd. – Your Reliable Thermal Partner	Contact person Wilson Peng No. 3, Hong-Yeh South 9 th Rd. Hong-Yeh 138 Industrial Park, Tang Xia Town, Dongguan City, Guangdong Province, P.R. China Email: weihua@wisefull.com Tel: (86)76987725315~6 Ext: 678 Fax: (86) 76986853535 Mobile: (86)13926896210	
Corporate Headquarters Nuventix Worldwide Sales Office 4635 Boston Lane Austin, Texas 78735 USA	Contact person for Europe Francois Jaegle Phone: +33 624734646 E-mail: fjaegle@nuventix.com	Contact person for US Jeff Kelly Phone: +33 624734646 E-mail: fjaegle@nuventix.com
FrigoDynamics GmbH Bahnhofstr. 16 D-85570 Markt-Schwaben Germany	Contact Person Hans Kunstwadl [h.kunstwadl@frigodynamics.com] Tel: +49-8121-973730 Fax: +49-8121-973731 Mob: +49-171-6505418	

