

使用说明书

版本: 2.0 作者: 姜琴 日期: 2005.04.12

目录

1.	概述	4
1.1	产品外型	4
1.2	简介	4
1.3	产品特性	5
1.4	技术指标	5
1.5	系统连接图	6
1.6	应用程序	6
1.7	系统要求	6
1.8	工作环境要求	7
1.9	产品包装	7
2.	相关术语	8
2.1	采样	8
2.	.1.1 采样率	8
2. 2.	.1.1 采样率	8
2. 2. 2.	 .1.1 采样率 .1.2 采样长度 .1.3 采样时间 	8
2. 2. 2. 2.	 .1.1 采样率 .1.2 采样长度 .1.3 采样时间 .1.4 采样延时 	8
 2. 2. 2. 2. 2. 	.1.1 采样率 .1.2 采样长度 .1.3 采样时间 .1.4 采样延时 .1.5 采样延时及采样长度、触发时刻的关	8
 2. 2. 2. 2. 2. 2.2 	 .1.1 采样率 .1.2 采样长度 .1.3 采样时间 .1.4 采样延时 .1.5 采样延时及采样长度、触发时刻的关 分辨率 	8
 2. 2. 2. 2. 2.2 2.2 2.3 	 .1.1 采样率 .1.2 采样长度 .1.3 采样时间 .1.4 采样延时 .1.5 采样延时及采样长度、触发时刻的关 分辨率 	8

成都中科动态仪器有限公司 由任: 028-85232490 ★ 住直: 028-85231689 ★ 地址: 成都一环路南二岛 16 是由利院成都公院

》电话: 028-	-85232490 ★ 传真: 028-85231689 ★ 地址: 成都一环路南二段 16 号中科院成都分院 ★ H	tp://www.vidts.com
2.3.	.2 外触发	9
2.3.	.3 自动触发	10
2.4	信号	10
2.5	国际单位	10
3. 札	板卡安装	12
3.1	产品型号说明	12
3.2	采集卡结构示意图	12
3.3	接插件连线说明	12
3.3.	.1 触发总线(CN1)	12
3.3.	.2 数字I/O(CN2、CN3)	13
3.4	安装步骤	13
4. 万	应用程序操作	15
4.1	安装	15
4.2	运行	16
4.2.	.1 界面操作示意图	16
4.2.	2 参数设置	16
4.2.	.3 采集过程描述	20
4.3	卸载	21
5. 丝	维护与保养	22
5.1	注意事项	22
5.2	仪器保养	22

1.概述

1.1 产品外型

图 1.1 PCI4516 外型图

1.2 简介

PCI4516采用同步并行设计,卡上集成了4片高速100Ksps16bit A/D转换器,和4个独立的高速精密运算放大及精密衰减滤波网络组 成程控增益通道,实现量程的电压信号采集。模拟输入、触发功能、 时钟同步和动态升级都是其重要的构架。每个通道的增益误差和零点 漂移都可以独立地由 DAQ 控制器微调消除,使其具有高测量精度和 相位一致性,具有较高的工作可靠性和稳定性。

模拟输入

PCI4516 分频实现 18 档采样率设置。四个通道可独立地用软件 控制增益设置量程。

PCI4516 板上带有 256KB 的 FIF0,通道最大采样深度不受限制,可以实现高精度信号的连续大容量记录功能。可以预触发和触发后的延时。

触发功能

PCI4516具有丰富的触发功能,包括软件(手动)触发、内触发、 外触发。内触发电平在当前量程范围内自由设置,可以设为上升沿、 下降沿、双电平内、双电平内外触发等模式;外触发信号符合 TTL 电

- 4 -

平标准,可以选择上升沿或下降沿有效,通过对多种模式的触发设置 确保对各种特征信号的准确捕捉。

数字输出

PCI4516 上设计了 32 路 TTL 电平数字 IO(16 个 DI, 16 个 DO)可以 用于测量和控制用户系统内的数字量。

时钟同步

采集卡设计了独立的时间基准和时钟控制器,系统内的多个采集 卡可以不同的采样频率工作。通过软件设置将系统触发线和时钟线级 联起来,采集系统在统一的时钟和触发控制下实现全同步采集。

动态升级

PCI4516采用大规模现场可编程阵列电路(FPGA)设计,集成度 和可靠性高,采集控制器(DAQ Core)由 PCI 总线接口在采集系统启动 时动态下载,支持对采集卡的远程动态升级服务,便于灵活地设计满 足特殊用户的测试功能与时序要求。

1.3 产品特性

- 并行设计, 4个独立程控增益通道 ☆
- ±100mV~±20V 大动态信号采集 ☆
- 每通道最大存储深度可扩展到无限 ☆
- 测量精度高,具有相位一致性 ☆
- 采集系统启动时动态下载,支持对采集功能的动态升级服务 ☆
- 触发功能有:软件(手动)触发、内触发、外触发 ☆
- 可级联使用多张采集卡 ☆

1.4 技术指标

采样频率(sps):	1K~100K
A/D 分辨率:	16bit
系统直流精度:	$\pm 0.05\%$ (FS)
系统交流精度:	$\pm 0.5\%$ (1KHz)
输入阻抗:	$1 M \Omega //25 pF$
通道间相差:	<1° (10KHz)

PCI4516 使用说明书

通道隔离度:	106dB
采集卡通道数:	4 通道/卡
模拟输入:	$\pm 100 \text{mV} \sim \pm 20 \text{V}$
输入信号带宽:	DC: 0~30KHz
	AC: 0.2~30KHz
存储深度(sa):	4M/CH,可扩展为无限深度
触发模式:	手动触发、外触发、内触发(上升沿、下降沿)
触发电平:	一量程~+量程可调
数字输出:	32 路 TTL 电平数字 IO(16 个 DI, 16 个 DO)

系统连接图 1.5

图 1.2 PCI4516 系统连接图

应用程序 1.6

DasView2.0 测试分析软件

1.7 系统要求

为确保 PCI4516 能正常使用,用户需具备以下条件:

支持如下操作系统中的任意一种: Windows98, Windows98 第二

- 6 -

版, Windows2000, WindowsME, WindowsXP, 或 Macintosh OS9/X 或Linux。

- 安装 DasView2.0 测试分析软件。 •
- 已安装任意型号打印机驱动程序。

1.8 工作环境要求

- 工作温度: 0~40℃
- 存储温度: -40℃~60℃
- 相对湿度: 40℃ 20%~90%RH(无结露)

1.9 产品包装

标准产品包装清单如下:

- PCI4516采集卡一张
- O9 信号线四根
- 外触发线一根
- 产品检验报告
- 光盘(DasView2.0 安装盘、PCI4516 硬件驱动、PCI4516 使用说 明书、PCI4516 用户开发指南、Demo2.0)
- DasView2.0 控制分析软件使用说明书
- 产品回馈表、质保卡
- 产品合格证
- 装箱清单
- 快速安装使用说明书

如果任一个配件丢失或被损坏,请联系我们。

2.相关术语

2.1 采样

2.1.1 采样率

采样率即为模数(A/D)转换的频率,单位是赫兹(Hz)。采样率高,则在一定时间内采样点就多,对信号的数字表达就越精确。采样率必须保证一定的数值,如果太低,则精确度就很差。设置采样率的依据 是被测信号的频率,在设置之前应该估算出被测信号的频率。

2.1.2 采样长度

采样长度指每段数据的缓存空间。

2.1.3 采样时间

采样时间指仪器可记录振动事件的时间,通过采样长度和采样率 可得采样时间。

2.1.4 采样延时

指仪器采集的信号在记录的起始点位置较触发电平前或后(时间 轴上,以触发信号到达为0时刻),延时触发分为正延时触发和负延 时触发。

- 正延时触发:无须观察信号波形的前沿部分或触发后一段时间才 会有波形出现。
- 负延时触发:主要用于观察上升,下降前沿的波形或波形以前的 信号(如:触发事件之前的有效信号等)。

IDTS 成都中科动态仪器有限公司

电话: 028-85232490 ★ 传真: 028-85231689 ★ 地址: 成都一环路南二段 16 号中科院成都分院 ★ Http://www.vidts.com

2.1.5 采样延时及采样长度、触发时刻的关系

负延时、采样长度、触发时刻之间的关系

2.2 分辨率

分辨率是 A/D 转换所使用的数字位数。分辨率越高,输入信号的细分程度就越高,能够识别的信号变化量就越小。

2.3 触发

触发功能代表着对信号的捕捉能力,根据多种不相同的条件来触 发和采集数据。使仪器开始采集和记录。包括手动触发(软件触发)、 外触发、内触发等。

2.3.1 手动触发

手动触发是指在停止采集状态下点击软件按钮或搬动仪器上的 采集开关(向右再向左)后使仪器处于等待采集状态。一次只能采集 一段波形,下次触发需要再进行手动操作。

2.3.2 外触发

专门的数字控制信号作为触发信号。属于 USB3850 的扩展功能。

2.3.3 自动触发

自动触发就是内触发,包括上升沿和下降沿内触发。启动采集后 由被捕捉信号本身使仪器触发, 当采集完一段波形后自动进入下一段 等待采集状态。

2.4 信号

信号是信息的物理表现形式,或者说是传递信息的函数。信号分 为一维信号、二维信号、矢量信号,信号的变量可以是时间,也可以 是频率、空间或其他的物理量。若信号是一个变量(例如时间)函数, 则称为一维信号: 若信号是两个变量(例如空间坐标 x, v)的函数, 则称为二维信号;推而广之,若信号是多个(例如 M 个)变量的函 数,则称为多维(M维)信号即矢量信号。

变量的取值方式有连续与离散两种。若变量(一般都看成时间) 是连续的,则称为连续时间信号;若变量是离散数值,则称为离散时 间信号。信号幅值的取值方式又分为连续与离散两种方式(幅值的离 散称之为量化),因此,组合起来应该有以下四种情况:

- 连续时间信号:时间是连续的,幅值可以是连续的也可以是离散 (量化)的。
- 模拟信号:时间和幅值都是连续的,是上一种信号的特例。
- 离散时间信号(或称序列):时间是离散的,幅值是连续的。
- 数字信号:时间是离散的,幅值是量化的。幅值是量化的,故数 字信号可用一序列的数来表示,而每个数又可表示为二进制码的 形式。

2.5 国际单位

国际单位是国际单位制采用的单位,以国际标准基准单位作基准 而成。国际单位制又名十进制,为现时世上最普遍采用的标准度量衡 单位系统。国际单位制共有7个基本单位。

皇里	常用符号	单位名称	单位符号
长度	1	米	m
质量	m	千克	kg
时间	t	秒	S
电流	Ι	安(培)	А

热力学温度	Т	开(尔文)	Κ
物质的量	n	摩(尔)	mol
发光强度	I _v	坎(德拉)	cd

3. 板卡安装

3.1 产品型号说明

PCI			产品总线类型
	45		并行4通道,采样频率10 ⁵ sps
		16	A/D 分辨率为 16bit

3.2 采集卡结构示意图

图 3.1 PCI4516 结构示意图

3.3 接插件连线说明

注:用户可根据自己需要搭接以适合你的特殊应用。

3.3.1 触发总线(CN1)

Pin	Name	Pin	Name
1	地	9	地
2	地	10	地
3	外时钟	11	保留
4	外时钟	12	保留
5	地	13	保留
6	地	14	复位
7	内触发	15	地
8	内触发	16	外触发

3.3.2 数字 I/O(CN2、CN3)

CN1 (下)			CN2 (上)				
Pin	Name	Pin	Name	Pin	Name	Pin	Name
1	地	2	地	1	地	2	地
3	输出1	4	输出2	3	输入1	4	输入2
5	输出3	6	输出4	5	输入3	6	输入4
7	输出 5	8	输出6	7	输入5	8	输入6
9	输出 7	10	输出8	9	输入 7	10	输入8
11	输出 9	12	输出 10	11	输入9	12	输入10
13	输出 11	14	输出 12	13	输入11	14	输入12
15	输出 13	16	输出 14	15	输入13	16	输入14
17	输出 15	18	输出 16	17	输入15	18	输入16
19	+5V	20	+5V	19	+5V	20	+5V

- 3.4 安装步骤
- 1. 了解本次测试。如是使用数字 I/O,则请操作 A,再依次向下进 行。

- 如果用户使用数字 I/0 接口,只需将配置的编平电缆分别插入采集卡的两 A. 个 20 芯插座内 (CN2, CN3), 然后将另外一端插到输入或输出端子板上;
- 在断电的情况下,将采集卡插入 PCI 插槽。 2.
- 固定采集卡的挡板。 3.
- 接入Q9头的信号端。 4.
- 硬件安装完毕,启动计算机运行应用程序。 5.

4.应用程序操作

以下为 DasView2.0 软件的快速入门。这些快速入门为仪器基本 功能的简短、易于理解的具体说明。学习完快速入门后,您将能够完 成设置、采集、记录的全过程操作。如需进行数据处理、打印,界面 波形窗操作等功能,请查看《DasView2.0 说明书》。

4.1 安装

- 在驱动器中插入 DasView2.0 安装光盘,运行 DasView2.0 安装程 序,(或者打开光盘,选择文件夹【DasView2.0】,用鼠标双击 DasView2.0 Setup. exe 运行程序)进入安装界面。
- 2. 遵循安装程序,安装程序将一步一步的指导你完成 DasView2.0 控制分析软件的安装。
 - ✓ 首先弹出 DasView2.0 安装界面、欢迎界面、自述信息界面
 - ✓ 选择安装程序 DasView2.0 的安装路径,可自定义,推荐使用 缺省路径
 - ✓ 选择安装程序 DasView2.0 安装方式,

【Typical】最小化安装

【Compact】标准安装

【Custom】自定义安装

- ✓ 设置安装程序组的名称
- ✓ 显示安装设置信息
- ✓ 自动完成安装,创建程序组并在桌面建立 DasView2.0 程序快 捷方式。

提示: 若安装完毕控制分析软件 DasView2.0 后不能运行,请确 认您的操作系统下是否安装了一台以上的打印机驱动程序,如果没 有,请安装一个,再启动 DasView2.0。

IDTS 成都中科动态仪器有限公司

💵 ● 电话: 028-85232490 ★ 传真: 028-85231689 ★ 地址: 成都一环路南二段 16 号中科院成都分院 ★ Http://www.vidts.com

4.2 运行

4.2.1 界面操作示意图

图 4.1 DasView2.0 主界面示意图

- 1. 菜单与工具条。
- 主波形窗:通过主波形窗可以同时操纵任意多个通道数据波形, 具有很强的搜索、对此、压缩、放大和读数、快速计算功能,便 于用户分析处理数据。
- 3. 辅助窗:包括系统日志窗,数据处理窗。
- 4. 通道控制台:包括系统、测试、信息。
- 4.2.2 参数设置

鼠标单击菜单【控制台】中的【采集设置】,或者按下《F4》,可以弹出【采集控制台】。【采集控制台】包括七个独立的设置页:【时基参数】、【触发设置】、【量程】、【耦合】、【滤波器】、【工程标定】、 【配置存储】。

1. 时基参数设置

IDTS 成都中科动态仪器有限公司

🕩 电话: 028-85232490 ★ 传真: 028-85231689 ★ 地址: 成都一环路南二段 16 号中科院成都分院 ★ Http://www.vidts.com

图 4.2 DasView2.0 时基参数设置示意图

■ 采样率设置

用鼠标单击或者拖动【采样率(Hz)】控制旋钮设置采样率,采样率数值显示在旋钮下方的编辑框中,也可以编辑框直接输入数值,数 值不能大于采集卡的采样率。数值也可以带单位字符 K(千), M(兆) 等,如:我们需要表示采样率 20M,可以在编辑框内输入 20M,也 可以输入 2000000。

技巧	采样长度设置:用鼠标单击或者拖动【采样长度 Ks】下的旋钮,设置采样长度,设采样长度显示在控制轮下方的编辑框中,也可以在编辑框直接输入数值,数值不能大于采集卡的采样长度
实例提示	当采样率、采样长度设置完成后,采样时间就设定好了。 时间 = 采样长度 / 采样率 采样长度不要设得太大,以免采样时间太长,设置前应根据实际信 号的持续时间长度来设定。

■ 采样延时设置

用鼠标单击或者拖动【采样延时(Ks)】下的控制轮,设置采样延时,设采样延时显示在控制轮下方的编辑框中,也可以编辑框直接输入数值。

实例提示	当采样率、采样长度、采样延时设置完后,采样延时时间就设定好 了。 采样延时时间 = 采样延时 / 采样率

触发方式设置 2.

采集控制台
时基参数 触发设置 量程 耦合 滤波器 工程标定 配置存储 自动存盘
 触发模式 「手动触发 「手动触发 「外触发 「上升沼内触发 「下降沿内触发 「下降沿内触发

图 4.2 DasView2.0 触发方式设置示意图

用鼠标点击采集控制台对话框的【触发设置】页,转换到触发设 置状态。鼠标单击【触发模式】下的任一种触发方式。如果选中【上 升沿内触发】或者【下降沿内触发】,可以通过拖动右边的设置条来 设置触发电平,说明:设置条的上方显示的,为当前设置量程的百分 比,右边显示的为触发的实际电压值。

技巧	使用【上升沿内触发】、【下降沿内触发】时,要考虑到测试环境的干扰大小,尽量把触发电平设至到干扰信号以上或以下,以免产生误触发;同时,又不能甚至太大,当设置电平超过信号本身,也采集不到数据波形。
实例提示	触发模式是根据你实际测试信号的类型来选定的。【手动触发】即自由触发;【外触发】为用户测试信号中可以分离出 TTL 电平,作为触发信号时使用;【上升沿内触发】、【下降沿内触发】都为信号根据设定条件,用自己本身信号特征来触发。

量程设置 3.

采集控制	16						?	
时基参数 触发设置 量程 耦合 滤波器 工程标定 配置存储 自动存盘								
量程	0.1000	0. 2500	0. 5000	1.0000	2. 0000	5.0000	10.000	20.
CH0*				√				
CH1				× -				
CH2				× -				
CH3				 Image: A second s				

图 4.3 DasView2.0 量程设置示意图

用鼠标点击采集控制台对话框的【量程】页,转换到量程设置状 态,鼠标单击通道名称右边的量程档,就可以设置每一通道的量程, 选中量程后,所在位置显示红色【√】。鼠标双击采集控制台上的通道 名称区域,设置所击通道为触发通道,在通道名称右上角显示为【*】。

耦合 4.

采集控制台				? 🔀		
时基参数 触发设置 量程 耦合 滤波器 工程标定 配置存储 自动存盘						
耦 合	直流	交流	直流地	交流地		
CH0*	✓					
CH1	 Image: A second s					
CH2	 ✓ 	6				
CH3	 ✓ 					

图 4.4 DasView2.0 偶合方式设置示意图

鼠标单击【耦合】下各通道名称右边的耦合方式,可设置耦合方 式【√】。鼠标双击采集控制台上的通道名称区域,设置所击通道为触 发通道,在通道名称右上角有【*】。

DTS 成都中科动态仪器有限公司

5. 工程标定

采集控制台 ? 🔀						
时基参数 触线	发设置 量程	耦合 滤波器	工程标定 面	2置存储 自动存盘		
通道	灵敏度	零偏	单位	电压零点		
CH0	1.0000	0.0000	A	0.0000		
CH1	1.0000	0.0000	A.	0.0000		
CH2	1.0000	0.0000	V	0.0000		
СНЗ	1.0000	0.0000	A.	0.0000		
修改值: 10000						

图 4.5 DasView2.0 工程标定设置示意图

要设置某个通道的【灵敏度】时,用鼠标单击相应的格子,当前 的数值将显示在【修改值】之后的编辑条内,这时即可通过键盘输入 有效的【灵敏度】的值。同样的【零偏】、【单位】都是一样的编辑方 法。

4.2.3 采集过程描述

1. 单次采集

鼠标单击菜单【控制台】下的【单次采集】,或工具条上的采集 按钮 → ૠ】,或者按〖F8〗键,启动单次采集过程。采集结束之后, 波形显示窗自动刷新显示的通道波形。

2. 循环采集

鼠标单击菜单【控制台】下的【循环采集】,或工具条上的采集 按钮 □ □ □ ↓ ,或者按 〖F7〗键,启动循环采集过程。第一次采集结 束之后,波形显示窗自动刷新显示波形,并且同时启动下次采集过程, 直到用户停止采集。

3. 停止采集

鼠标单击菜单【控制台】下的【停止】或者按下〖Ctrl〗+〖F8〗, 停止本次采集过程。

4.3 卸载

当程序出现异常情况时,或升级软件,都需要先卸载原来的旧软 件后再执行安装步骤。以下为操作步骤。

- 1. 首先通过资源管理器,打开控制面板,进入【添加/删除程序】。
- 在【添加/删除程序 属性】对话框的下方,找到可删除的程序清单,从中选择【DasView 2 for windows】后点击【添加/删除(R)...】 按钮,进入删除程序。程序自动完成卸载。

5.维护与保养

5.1 注意事项

- 第一次使用本仪器时,请仔细阅读有关说明,避免误操作;
- 在仪器使用过程中要注意防水、防潮,在条件比较恶劣的情况下 做好仪器的保护措施,防止仪器损伤;
- 如果需要加长信号线,请用标准屏蔽电缆,防止信号受外界干扰 和波形出现毛刺或误触发,对分析造成困难;
- 不要擅自修理仪器,如仪器出现故障,请及时与我们联系。

5.2 仪器保养

采集卡应该注意表面清洁。介意用户定期用干净、干燥的刷子将 采集卡表面掸干净, PCI 插片可用橡皮擦清洁。

用户购买产品时,可开箱检查装箱单上的物品是否齐全,并填写 《回馈表》(注:请务必填写)。在使用进程中,采集卡发生故障时, 将采集卡和《质保卡》一起寄回本公司进行维修,维修人员将对用户 提供的故障现象进行判断,得出结论后开始维修。保修条款请见质保 卡。