
Java

F O R U M N O K I A

Version 1.0; June 24, 2002

Nokia UI API Programmer's Guide

Copyright © 2002. Nokia Mobile Phones. All rights reserved. 1

Forum.Nokia.com

C o n t e n t s
1. Introduction ..Page 3

1.1 Purpose..Page 3

1.2 References..Page 3

2. User Interface Extensions..Page 4

2.1 Full-Screen Canvas..Page 4

2.2 Drawing and Filling Triangles and Polygons..Page 5

2.3 Drawing Images Reflected and Rotated ..Page 5

2.4 Transparency Support ..Page 6

2.5 Extra Ways to Create Mutable Images..Page 7

2.6 Low-Level Access to Image Pixel Data..Page 8

3. Sound Extensions ..Page 10

3.1 Playing a Single Note ..Page 10

3.2 Playing a Simple Tune ..Page 11

3.3 Sound State Model and SoundListeners ..Page 12

3.4 Volume Settings ..Page 13

4. Vibration and Screen Backlight Control..Page 13

4.1 Controlling Vibration..Page 13

4.2 Controlling Screen Backlight ..Page 14

4.3 Flashing Lights..Page 14

4.4 User Options..Page 14

Nokia UI API Programmer's Guide 2

Disclaimer

License

Forum.Nokia.com

The information in this document is provided ”as is,” with no warranties whatsoever, including any

warranty of merchantability, fitness for any particular purpose, or any warranty otherwise arising

out of any proposal, specification, or sample. Furthermore, information provided in this document is

preliminary, and may be changed substantially prior to final release. This document is provided for

informational purposes only.

Nokia Corporation disclaims all liability, including liability for infringement of any proprietary

rights, relating to implementation of information presented in this document. Nokia Corporation

does not warrant or represent that such use will not infringe such rights.

Nokia Corporation retains the right to make changes to this specification at any time, without

notice.

The phone UI images shown in this document are for illustrative purposes and do not represent any

real device.

Copyright © 2002 Nokia Corporation.

Nokia and Nokia Connecting People are registered trademarks of Nokia Corporation.

Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.

Other product and company names mentioned herein may be trademarks or trade names of their

respective owners.

A license is hereby granted to download and print a copy of this specification for personal use only.

No other license to any other intellectual property rights is granted herein.

Nokia UI API Programmer's Guide 3

1.1 Purpose

The following Programmer's Guide describes how to use Nokia's UI API, an extension to the

standard Mobile Information Device Profile (MIDP) APIs (see [MIDP]), which are available in Nokia's

MIDP 1.0-enabled phones.

MIDP 1.0 was designed for maximum portability and concentrated only on features that could be

implemented by all candidate devices. Some of those devices had no sound capabilities, hence the

MIDP 1.0 specification excluded sound features. Some had very limited graphics capabilities, hence

the MIDP 1.0 specification excluded some of the more advanced graphics features, such as

transparency. Due to this strategy, MIDP 1.0 is portable to a wide range of devices and suitable for

implementing many useful applications.

Nokia phones have sound capabilities and better graphics capabilities, so Nokia's UI API was

introduced to make these features available to MIDlet developers. It is intended that such features

will be covered by future versions of standard MIDP.

The following features provided by Nokia's UI API are important, especially for games:

• Support throughout the implementation for transparency in graphics (making non-rectangular

sprites possible)

• The playing of simple sounds

Nokia's UI API consists of four classes and two interfaces in two new packages:

• package com.nokia.mid.ui
• classes FullCanvas, DirectUtils, and DeviceControl
• interface DirectGraphics

• package com.nokia.mid.sound
• class Sound
• interface SoundListener

1.2 References

[MIDP] http://java.sun.com/products/midp

[RTPL] Ringing Tone Parser and Generator Library

http://www.forum.nokia.com (Java section)

[SMART] Smart Messaging Specification

Revision 3.0.0

http://www.forum.nokia.com (Smart Messaging section)

Version 1.0; June 24, 2002

Nokia UI API Programmer's Guide

Forum.Nokia.com

1. Introduction

The Nokia UI API adds the following features:

• A full-screen Canvas class

• Drawing and filling triangles and polygons

• Drawing images reflected or rotated

• Transparency support

• Extra ways to create mutable images

• Low-level access to image pixel data

In addition, phones implementing the Nokia UI API will support transparency in the standard MIDP

I m a g e . c r e a t e I m a g e (S t r i n g) and Image.createImage(byte[], int, int)m e t h o d s .

2.1 Full-Screen Canvas

[Class: com.nokia.mid.ui.FullCanvas]

The soft-key label area used for commands in the standard MIDP Canvas takes up a significant

amount of the screen area, as shown on the left in Figure 1. Therefore, the Nokia UI API includes the

class FullCanvas, which doesn’t accept commands and thus uses the entire screen area for

drawing. In particular, game MIDlets are likely to use FullCanvas.

If the phone needs to display an indicator (such as a network usage indicator), it will overwrite it on

top of the Canvas image, usually (but not necessarily) in the top left corner. If your MIDlet does

HTTP networking, you should bear this in mind when designing the MIDlet’s screen layout.

F u l l C a n v a s does not support adding commands, and will throw an I l l e g a l S t a t e E x c e p t i o n
if addCommand or setCommandListener methods are called. Instead, the soft keys will be

reported using Canvas's keyPressed etc. methods, and FullCanvas defines some extra key

codes for the soft keys, arrow keys, Send (the green phone key used for starting a call), and End (the

red phone key used for ending a call). In many phones, pressing the End key will immediately

terminate the MIDlet, so developers should not rely on getting key events for it.

In a well-written MIDlet, pressing any soft key will pause the action on the screen and return the

user to the MIDlet’s menu screen. This is preferable to emulating command labels yourself, as it is

likely that emulated commands will interact differently to the phone’s native commands, possibly

confusing the user.

Nokia UI API Programmer's Guide 4

Forum.Nokia.com

2. User Interface

Extensions

Figure 1: Boids MIDlet using Canvas (left) and FullCanvas (right)

Nokia UI API Programmer's Guide 5

Forum.Nokia.com

2.2 Drawing and Filling Triangles and Polygons

[Interface: com.nokia.mid.ui.DirectGraphics]

Standard MIDP 1.0 includes the ability to draw and fill rectangles, but many developers wanted the

ability to draw and fill triangles and polygons, so Nokia added this capability to the Nokia UI API.

The code sample shows how to draw a simple polygon using the Nokia UI API:

int[] polygonX = { 30, 50, 30, 10 };
int[] polygonY = { 10, 30, 50, 30 };

void paintDiamond(Graphics g)
{

DirectGraphics dg = DirectUtils.getDirectGraphics(g);
dg.drawPolygon(polygonX, 0, polygonY, 0, polygonX.length, 0);

}

The resulting image is shown in Figure 2.

One obvious use for filled triangles is 3-D graphics. However, with the Nokia UI API, the results are

not effective on black and white screens, as the 3-D illusion is lost. On color or grayscale screens, the

technique can work, but the number of triangles per second will not be great, so in practice only

simple 3-D images can be drawn.

2.3 Drawing Images Reflected and Rotated

[Interface: com.nokia.mid.ui.DirectGraphics]

In MIDP 1.0 there is no way to reuse the same image for sprites moving in different directions. This

often results in a JAR file containing many copies of the same image in different orientations, as

shown in Figure 3.

Figure 2: A simple polygon

Figure 3: Sprite images in different orientations

Nokia UI API Programmer's Guide 6

Forum.Nokia.com

Each animation frame of the walking man must be repeated twice and the space ship must be

repeated four times. This can result in a great deal of wasted precious space in the JAR file.

Instead, you can have the image just once and use the Nokia UI API to draw the image in different

orientations. To draw the man walking left, when the image file shows him walking right:

DirectGraphics dg = DirectUtils.getDirectGraphics(g);
dg.drawImage(img, x, y, anchor, DirectGraphics.FLIP_HORIZONTAL);

To draw the space ship pointing upwards, when the image file shows it pointing right:

DirectGraphics dg = DirectUtils.getDirectGraphics(g);
dg.drawImage(img, x, y, anchor, DirectGraphics.ROTATE_90);

As the code above shows, the rotation constants refer to rotation angle counter-clockwise (to rotate

90 degrees clockwise we would use DirectGraphics.ROTATE_270).

2.4 Transparency Support

The most significant transparency support in Nokia’s UI API is not actually visible in the API definition:

all phones supporting the Nokia UI API will support transparency in the standard MIDP

I m a g e . c r e a t e I m a g e (S t r i n g) and Image.createImage(byte[], int, int)
methods. PNG's "simple transparency" (i.e., tRNS chunk) is supported, as is the alpha channel, although

alpha blending (blending drawn pixels’ colors with background pixels’ colors) may be unsupported.

In practice, this means that if you create your images from PNG-format files or PNG-format byte data

with transparency, when you draw them, the transparent pixels will not be drawn. This allows you to

have non-rectangular sprites.

The images in Figure 4 clearly show the advantages of having transparent sprites: in the left image,

the man’s and ghost’s black backgrounds block out square parts of the background image, whereas in

the right image their transparent backgrounds let the background image show through and give the

appearance of non-rectangular sprites. The effect is even more visible when the sprites are in motion.

Figure 4: Opaque sprites (left) and transparent sprites (right)

Nokia UI API Programmer's Guide 7

Forum.Nokia.com

2.5 Extra Ways to Create Mutable Images

[Class: com.nokia.mid.ui.DirectUtils]

In MIDP 1.0 there is only one way to create a mutable image:

Image img = Image.createImage(100, 100); // create a 100x100 image

Unfortunately, the resulting image is full of opaque white pixels – there is no way to create an

initially transparent mutable image. Since there is no way to make a pixel transparent afterwards,

you can’t create images containing transparency this way. In particular, you can’t use this to create

a transparent mutable copy of a transparent sprite image:

Graphics g = img.getGraphics();
g.drawImage(spriteImg, 0, 0, Graphics.TOP | Graphics.LEFT);

because the resulting image will be opaque white wherever the sprite image was transparent.

With the Nokia UI API, you can create a mutable image initialized to any color, including ”transparent”:

Image img = DirectUtils.createImage(100, 100, 0x00000000);

Here the color ‘0x00000000’ is not RGB but ARGB – the most significant byte specifies the

”alpha” value: 0xFFrrggbb is fully opaque and 0x00rrggbb is fully transparent (in which case,

the value of rrggbb is irrelevant). ”Alpha” can be understood as ”opacity” (i.e., opaqueness – the

opposite of transparency). Note that it is likely that phones won’t support alpha-blending (i.e., semi-

transparent lines and images blending with the background), in which case, alpha values greater than

0 are treated as fully opaque.

As well as allowing you to create transparent sprites by drawing them using G r a p h i c s a n d

D i r e c t G r a p h i c s methods, this is useful when you want to save space in the MIDlet’s JAR file by

combining all of the sprite images into one large image (thus having the per-file overhead cost only once).

Here, you create the large image from the image file (the upper image in Figure 5), then use

DirectGraphics to create transparent images for each sprite and use drawImage with

suitable x and y offsets to draw the large image onto each of the small images (the lower images in

Figure 5). The code is shown below (note that the individual images are 12 x 12 pixels).

Figure 5: Splitting an image while retaining transparency

Nokia UI API Programmer's Guide 8

Forum.Nokia.com

Image fivemen = Image.createImage("/fivemen.png");
Image man[] = new Image[5];
for (int i = 0; i < 5; ++i) {

man[i] = DirectUtils.createImage(12, 12, 0x00000000);
Graphics g = man[i].getGraphics();
g.drawImage(fivemen, -12 * i, 0, Graphics.TOP | Graphics.LEFT);

}

This will not work with MIDP 1.0, as the small images would start with opaque white backgrounds

and drawing the transparent sprite images into them would result in sprites with non-transparent

white backgrounds. Remember not to keep a reference to the large image afterwards, so that it can

be garbage-collected.

Finally, you can create a mutable image from image byte data by:

Image img = DirectUtils.createImage(data, offset, length);

This would be useful if, for instance, you wanted to display a player’s initials on the sprites for the

car they are driving: you would create the sprite images, and then draw the initials into the images.

2.6 Low-Level Access to Image Pixel Data

[Interface: com.nokia.mid.ui.DirectGraphics]

Developers asked Nokia for low-level access to image pixel data so that they could get and set the data in

the phone’s compact internal format, rather than using, for example, PNG format. Class

D i r e c t G r a p h i c s includes several g e t P i x e l s and d r a w P i x e l s methods for doing this, but

MIDlets that take full advantage of this feature will sacrifice portability even between Nokia phone models.

The following is a simple example of a method that reverses the colors of a black and white image,

using the format TYPE_BYTE_1_GRAY_VERTICAL. All phones support getting and drawing

pixels using this format, but, for example, in a color-screen phone, getting pixels in this format will

produce data reduced to black and white.

Image createInvertedImage(Image img)
{

int width = img.getWidth();
int height = img.getHeight();
Image newImage = DirectUtils.createImage(width, height

0x00000000);

int numBytes = (width * height + 7) / 8;
byte[] pixels = new byte[numBytes];
byte[] transparencyMask = new byte[numBytes];
Graphics g = img.getGraphics();
DirectGraphics dg = DirectUtils.getDirectGraphics(g);
dg.getPixels(pixels, transparencyMask,

0, width, 0, 0, width, height,
DirectGraphics.TYPE_BYTE_1_GRAY_VERTICAL);

Nokia UI API Programmer's Guide 9

Forum.Nokia.com

for (int i = 0; i < numBytes; ++i)
pixels[i] = (byte)~pixels[i]; // invert

Graphics gNew = newImage.getGraphics();
DirectGraphics dgNew = DirectUtils.getDirectGraphics(gNew);
dgNew.drawPixels(pixels, transparencyMask,

0, width, 0, 0, width, height, 0,
D i r e c t G r a p h i c s . T Y P E _ B Y T E _ 1 _ G R A Y _ V E R T I C A L) ;

return newImage;
}

The above method will only work with mutable images, as you cannot call getGraphics on an

immutable image. The following method will create a mutable image from a file resource:

Image createMutableImage(String filename) throws IOException
{

InputStream is = getClass().getResourceAsStream(filename);
// add 1 so we won't reallocate just to read the EOF
byte[] data = new byte[is.available()+1];
int dl = 0;
int rl;
while ((rl = is.read(data, dl, data.length-dl)) = -1) {

dl += rl;
if (dl == data.length) { // buffer full

byte[] newData = new byte[dl + 1024];
System.arraycopy(data, 0, newData, 0, dl);
data = newData;

}
}
Image mutable = DirectUtils.createImage(data, 0, dl);
return mutable;

}

As another example, here is a method that uses d r a w P i x e l s and the T Y P E _ U S H O R T _ 4 4 4 4 _ A R G B
pixel data format to create a color checkerboard image with a transparent hole in the center:

Image makeCheckerboard(int width, int height, short fg, short bg)
{

short[] pixels = new short[width * height];
for (int x = 0; x < width; ++x) {

for (int y = 0; y < width; ++y) {
pixels[x+width*y] =

(((x & 4) == 0) ^ ((y & 4) == 0)) ? fg : bg;
}

}

Nokia UI API Programmer's Guide 1 0

3. Sound

Extensions

Forum.Nokia.com

// make hole in middle
for (int x = width / 4; x < 3 * width / 4; ++x) {

for (int y = height / 4; y < 3 * height / 4; ++y)
{

pixels[x+width*y] &= 0x0FFF;
}

}
Image img = Image.createImage(width, height); // white
Graphics g = img.getGraphics();
DirectGraphics dg = DirectUtils.getDirectGraphics(g);
dg.drawPixels(pixels, true, 0, width,

0, 0, width, height,
0, DirectGraphics.TYPE_USHORT_4444_ARGB);

return img;
}

This method will only work on phones that support the TYPE_USHORT_4444_ARGB format, e.g., the

Nokia 7650 phone. On other phones, an IllegalArgumentException will be thrown from the

drawPixels method. If you’re not sure that your MIDlet will be run on a phone that supports the

format you use, you should always handle that possible exception.

Class: com.nokia.mid.sound.Sound
The Nokia UI API adds the ability to play sound. There are two mandatory types of sound

supported initially:

• Single notes, specified by frequency and duration

• Simple tunes, specified using the Nokia Smart Messaging ringing tone binary format (the same

format used for downloading new ringing tones to Nokia phones)

3.1 Playing a Single Note

Playing a simple note can be done in the following way:

Sound s = new Sound(440, 1000);
s.play(1);

The parameters to the sound constructor are frequency (in Hertz) and duration (in milliseconds). The

parameter to the play method is how many times to repeat the sound (value 0 means repeat forever).

The play method does not block, but returns immediately so that the sound plays simultaneously as

your MIDlet continues to run. If you play a new sound before the current sound has finished playing

and the phone cannot play multiple concurrent sounds (S o u n d . g e t C o n c u r r e n t S o u n d C o u n t ()
returns 1), then the current sound is stopped immediately and the new sound starts. You can also

stop a sound directly by calling its stop method.

Some phones may only be able to play frequencies corresponding to musical notes – these

frequencies are listed in the JavaDoc documentation for class Sound. Not all phones can play

frequencies under 440 Hz.

Nokia UI API Programmer's Guide 1 1

Forum.Nokia.com

You need not create a new sound object each time you want to play a sound. You can call play again,

or even change the sound to be played by calling init:

s.init(494, 500);
s.play(1);

3.2 Playing a Simple Tune

The Nokia UI API also supports playing tunes from binary music data. While some phones support

extra formats such as WAV, the format initially supported and available on all models is Nokia’s binary

Ringing Tone Programming Language (RTPL), defined in the Nokia Smart Messaging Specification

[SMART], which can be downloaded from Forum Nokia. This is also the format used for downloading

new ringing tones to your phone.

RTPL defines two types of ringing tone: basic-song (named) and temporary-song (unnamed). The

Nokia UI API supports use of both types. Normally downloaded ringing tones are of the basic-song

type so that there is a name for the ringing tone in the phone menu; however, the Nokia UI API does

not use the name and you probably will prefer to use the slightly more compact temporary-song type.

A simple approach to generating RTPL tunes is to create the binary data using Nokia PC Composer,

an application included in Nokia PC Suite. If you want more flexibility and the shortest possible binary

data, you’ll need to study the Nokia Smart Messaging Specification and create a simple software tool

to generate the binary data from some kind of human-readable data file. Sample code for this

purpose can be downloaded from Forum Nokia [RTPL].

The following is an example of how to play a simple tune:

byte[] data = {
(byte)0x02, (byte)0x4A, (byte)0x3A, (byte)0x80,
(byte)0x40, (byte)0x01, (byte)0x12, (byte)0x04,
(byte)0x58, (byte)0x4D, (byte)0x85, (byte)0x58,
(byte)0x59, (byte)0x86, (byte)0x18, (byte)0x69,
(byte)0x87, (byte)0x18, (byte)0x00,

};

void playIt()
{

Sound s = new Sound(data, Sound.FORMAT_TONE);
s.play(1);

}

This will play a short scale of seven notes; typical game sound effects will be of similar lengths, but

full musical tunes will be longer (after the header, each note adds 12 bits, plus, for example, 5 bits

each time you change scale).

The phone must convert the binary data to an internal format in order to play it. This conversion uses

a fixed-length internal buffer for the converted data, and long tunes will be truncated. The length

constraint applies to the (unpublished) internal format, but for instance in the Nokia 6310i, tunes

longer than about 68 notes are truncated (i.e., notes after the 68th are not played).

Nokia UI API Programmer's Guide 1 2

Forum.Nokia.com

The following section explains one way to play longer tunes as a sequence of shorter tune parts, but

there will probably be a short delay between the parts.

3.3 Sound State Model and SoundListeners

Interface: com.nokia.mid.sound.SoundListener

Sometimes you will want new sounds to be played after existing sounds have finished playing, rather

than interrupting those sounds. This can be achieved by implementing the SoundListener
interface and keeping a queue of sounds to play next:

class MyClass implements SoundListener
{

private Vector queue = new Vector();
private Sound sound = new Sound(0, 1); // dummy values

…

MyClass()
{

sound.setSoundListener(this);
…

}

synchronized void queueSound(byte[] data)
{

if (sound.getState() != Sound.SOUND_PLAYING)
{

sound.init(data, Sound.FORMAT_TONE);
sound.play(1);

}
else
{

queue.addElement(data);
}

}

public synchronized void soundStateChanged(Sound sound,
int event)

{
if ((event == Sound.SOUND_STOPPED) && !queue.isEmpty())
{

byte[] data = (byte[])(queue.elementAt(0));
queue.removeElementAt(0);
sound.init(data, Sound.FORMAT_TONE);
sound.play(1);

}
}

}

Nokia UI API Programmer's Guide 1 3

4. Vibration and Screen

Backlight Control

Forum.Nokia.com

3.4 Volume Settings

When a Nokia phone is set to Silent, the Nokia UI API sound methods will not produce any sound.

H o w e v e r, there is no way for the user to otherwise control the volume of sound produced by MIDlets, etc.

Therefore, MIDlets that produce sound may benefit from an option (e.g., in an Options screen) to set

the volume level of sound produced. The sound level can be controlled using the setGain method

of class Sound (gain means volume level, approximately):

mySound.setGain(gain); // 0..255

A suitable way for the user to set the required volume level would be a standard MIDP Gauge control.

Class: com.nokia.mid.ui.DeviceControl
The Nokia UI API adds to MIDP the ability to control the phone's vibration feature and screen

backlight. Vibration might be used in a game to signal a collision or explosion; flashing the backlight

might be used for emphasis when the user completes a level.

4.1 Controlling Vibration

You can start the phone’s vibration feature as follows:

DeviceControl.startVibra(100, 500);

The first parameter is the frequency, measured not in Hertz but in the range 0…100. The second

parameter is the vibration duration, measured in milliseconds. The s t a r t V i b r a method does not

block, but returns immediately so that the vibration happens simultaneously as your MIDlet continues

to run. If you call startVibra again before the first vibration completes, the first vibration is interrupted

and the second vibration starts immediately. You can interrupt a vibration directly as follows:

DeviceControl.stopVibra();

Different phones may have different vibration capabilities:

• If a phone does not support vibration, the s t a r t V i b r a method will always throw an

I l l e g a l S t a t e E x c e p t i o n. Even if the phone is a model that normally supports vibration, it

won’t support vibration if, for instance, it is plugged into a desktop stand. The user may plug the phone

into the stand while your MIDlet is running, so you should always address this possible exception.

• If the phone supports only one frequency of vibration, then frequency value 0 will result in no

vibration, and values 1...100 will result in the same vibration.

• If the phone supports many frequencies of vibration, then frequency value 0 will result in no

vibration, value 1 will result in the lowest frequency vibration, value 100 will result in the highest

frequency vibration, and intermediate values will result in intermediate vibration frequencies.

Phones have implementation-defined limits to the duration of the vibration, and vibration will cut off

at that limit even if the duration parameter was greater than the limit.

Nokia UI API Programmer's Guide 1 4

Forum.Nokia.com

4.2 Controlling Screen Backlight

The phone's screen backlight will usually be on when the user is actively using the phone, for instance

playing a game. But if it has been inactive for a few seconds, it will switch off automatically to save

battery power. You can directly control this as follows:

DeviceControl.setLights(0, level);

The first parameter selects which light is affected, but currently only value 0, meaning the backlight,

has any effect. The second parameter specifies the light level in the range 0...100. Value 0 means ”off”

(or some minimum level, if the light can’t be switched completely off). Values 1...100 are mapped to the

possible brightness levels of the backlight, with larger values resulting in a brighter light. Many phones

only have one level, ”on,” so values 1...100 all mean ”on.” Other phones have more possible levels.

How this interacts with other backlight effects will depend on the phone. For instance, in the Nokia

6310i, if the backlight’s level is set to 0 then it will still switch on briefly when keys are pressed; if

the backlight’s level is set higher than 0, it will not switch off even if no keys are pressed for a while.

Use this feature with care: there is no way to know what the lighting conditions are where the user

is using your MIDlet, and no way to find out what level the user had set the backlight to before you

started changing it (so there is no way to restore it to that level afterwards).

4.3 Flashing Lights

In games, you might want to flash the phone’s lights, leaving them afterwards in whatever state they

were in previously. You can do this as follows:

DeviceControl.flashLights(1500);

The parameter defines the duration in milliseconds. The flashLights method does not block, but

returns immediately so that the flashing happens simultaneously as your MIDlet continues to run. You

can interrupt the flashing by calling flashLights(0).

Note that this method does not specify which lights it flashes – it may be the phone’s screen

backlight, some LEDs, or even possibly nothing at all. You might want to try the effect on your target

phones to see what happens.

4.4 User Options

MIDlets that use vibration and lights may benefit from an option (e.g., in an Options screen) that

allows that use to be enabled or disabled. Some users may prefer to disable these features.

Nokia UI API Programmer's Guide 1 5

Build Test Sell

1

Go to Forum.Nokia.com

Forum.Nokia.com provides the tools and resources you need for content and application development

as well as the channels for sales to operators, enterprises and consumers.

Forum.Nokia.com

Subscribe to updates

Stay abreast of news and developments through a subscription to our regional newsletters for Europe

and Africa, the Americas and Asia. Subscribing is easy and your privacy is strictly protected.

Forum.Nokia.com/newsletters

Download tools and simulators

Forum.Nokia.com/tools has links to tools from Nokia and other industry leaders including Adobe,

AppForge, Borland, Macromedia, Metrowerks and Sun.

Forum.Nokia.com/tools

Get technical support

The support area contains a library of white papers, sample code and FAQs arranged by technology.

The Nokia Knowledge Network enables you to ask questions of the global developer community.

Forum.Nokia.com/support

N K N . F o r u m . N o k i a . c o m

Test your application

The Nokia OK program provides the opportunity for your application to enjoy premium placement in

Nokia's sales channels.

Forum.Nokia.com/ok

Sell your application

Global and regional channels get your application in front of operators and XSPs, enterprises and

consumers. Go to Forum.Nokia.com/business to access all of the opportunities Nokia presents.

Forum.Nokia.com/business

Developing and marketing mobile applications with Nokia

2

3

4

5

6

Forum.Nokia.com

