

LME49870

44V Single High Performance, High Fidelity Audio Operational Amplifier

General Description

The LME49870 is part of the ultra-low distortion, low noise, high slew rate operational amplifier series optimized and fully specified for high performance, high fidelity applications. Combining advanced leading-edge process technology with state-of-the-art circuit design, the LME49870 audio operational amplifier delivers superior audio signal amplification for outstanding audio performance. The LME49870 combines extremely low voltage noise density $(2.7\text{nV}/\sqrt{\text{Hz}})$ with vanishingly low THD+N (0.00003%) to easily satisfy the most demanding audio applications. To ensure that the most challenging loads are driven without compromise, the LME49870 has a high slew rate of $\pm 20\text{V}/\mu\text{s}$ and an output current capability of $\pm 26\text{mA}$. Further, dynamic range is maximized by an output stage that drives $2k\Omega$ loads to within 1V of either power supply voltage and to within 1.4V when driving 600Ω loads.

The LME49870's outstanding CMRR (120dB), PSRR (120dB), and $\rm V_{OS}$ (0.1mV) give the amplifier excellent operational amplifier DC performance.

The LME49870 has a wide supply range of ±2.5V to ±22V. Over this supply range the LME49870 maintains excellent common-mode rejection, power supply rejection, and low input bias current. The LME49870 is unity gain stable. This Audio Operational Amplifier achieves outstanding AC performance while driving complex loads with values as high as 100pF.

The LME49870 is available in 8-lead narrow body SOIC. Demonstration boards are available for each package.

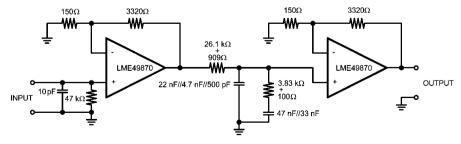
Key Specifications

■ Power Supply Voltage Range ±2.5V to ±22V

■ THD+N
(A. = 1 V ... = 3V ...

 $(A_V = 1, V_{OUT} = 3V_{RMS}, f_{IN} = 1kHz)$

$R_L = 2k\Omega$	0.00003% (typ)
$R_L = 600\Omega$	0.00003% (typ)
■ Input Noise Density	2.7nV/√Hz (typ)
■ Slew Rate	±20V/μs (typ)
■ Gain Bandwidth Product	55MHz (typ)
■ Open Loop Gain (R _L = 600Ω)	140dB (typ)
■ Input Bias Current	10nA (typ)
■ Input Offset Voltage	0.1mV (typ)
■ DC Gain Linearity Error	0.000009%

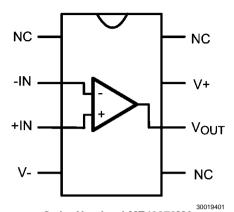

Features

- Easily drives 600Ω loads
- Optimized for superior audio signal fidelity
- Output short circuit protection
- PSRR and CMRR exceed 120dB (typ)

Applications

- High quality audio amplification
- High fidelity preamplifiers, phono preamps, and multimedia
- High performance professional audio
- High fidelity equalization and crossover networks with active filters
- High performance line drivers and receivers
- Low noise industrial applications including test, measurement, and ultrasound

Typical Application



Note: 1% metal film resistors, 5% polypropylene capacitors

Passively Equalized RIAA Phono Preamplifier

300194k5

Connection Diagrams

Order Number LME49870MA
See NS Package Number — M08A

LME49870 Top Mark

NZXTT L49870 MA

30019402

N — National Logo

Z — Assembly Plant code

X — 1 Digit Date code

TT — Die Traceability

L49870 — LME49870

MA — Package code

Absolute Maximum Ratings (Notes 1, 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Power Supply Voltage

 $(V_S = V^+ - V^-)$ 46V Storage Temperature -65°C to 150°C Input Voltage (V-) - 0.7V to (V+) + 0.7V Output Short Circuit (Note 3) Continuous Power Dissipation Internally Limited

ESD Rating (Note 4)

ESD Rating (Note 5)

Pins 1, 4, 7 and 8 200V Pins 2, 3, 5 and 6 100V Junction Temperature 150°C Thermal Resistance θ_{1A} (SO) 145°C/W

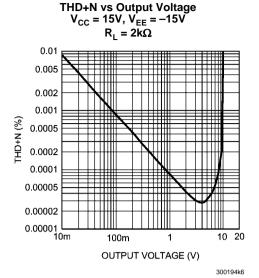
Operating Ratings

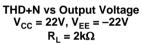
Temperature Range

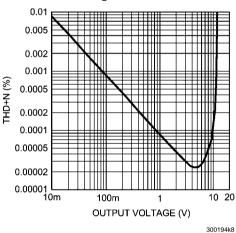
 $\begin{aligned} & T_{\text{MIN}} \leq T_{\text{A}} \leq T_{\text{MAX}} & -40^{\circ}\text{C} \leq T_{\text{A}} \leq 85^{\circ}\text{C} \\ & \text{Supply Voltage Range} & \pm 2.5 \text{V} \leq \text{V}_{\text{S}} \leq \pm 22 \text{V} \end{aligned}$

Electrical Characteristics for the LME49870 (Note 1) The following specifications apply for $V_S = \pm 18V$ and $\pm 22V$, $R_L = 2k\Omega$, $R_{SOURCE} = 10\Omega$, $f_{IN} = 1kHz$, $T_A = 25^{\circ}C$, unless otherwise specified.

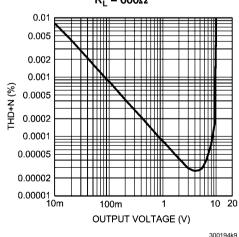
2000V

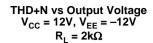

	Parameter	Conditions	LME49870		1
Symbol			Typical	Limit	Units (Limits)
			(Note 6)	(Note 7)	
		$A_V = 1$, $V_{OUT} = 3V_{rms}$			
THD+N	Total Harmonic Distortion + Noise	$R_L = 2k\Omega$	0.00003		% (max)
		$R_L = 600\Omega$	0.00003	0.00009	
IMD	Intermodulation Distortion	$A_V = 1$, $V_{OUT} = 3V_{RMS}$ Two-tone, 60Hz & 7kHz 4:1	0.00005		%
GBWP	Gain Bandwidth Product		55	45	MHz (min)
SR	Slew Rate		±20	±15	V/µs (min)
FPBW	Full Power Bandwidth	$V_{OUT} = 1V_{P-P}$, $-3dB$ referenced to output magnitude at f = 1kHz	10		MHz
t _s	Settling time	$A_V = -1$, 10V step, $C_L = 100pF$ 0.1% error range	1.2		μs
e _n	Equivalent Input Noise Voltage	f _{BW} = 20Hz to 20kHz	0.34	0.65	μV _{RMS} (max)
	Equivalent Input Noise Density	f = 1kHz	2.5	4.7	nV / √ Hz
		f = 10Hz	6.4		(max)
i _n	Current Noise Density	f = 1kHz	1.6		pA / √Hz
		f = 10Hz	3.1		<u> </u>
V _{OS}	Offset Voltage	V _S = ±18V	±0.12		mV (max)
		V _S = ±22V	±0.14	±0.7	mV (max)
ΔV _{OS} /ΔTemp	Average Input Offset Voltage Drift vs Temperature	-40°C ≤ T _A ≤ 85°C	0.1		μV/°C
PSRR	Average Input Offset Voltage Shift vs Power Supply Voltage	$V_S = \pm 18V, \Delta V_S = 24V (Note 8)$	120		dB (min)
		$V_S = \pm 22V$, $\Delta V_S = 30V$	120	110	db (IIIII)
I _B	Input Bias Current	$V_{CM} = 0V$	10	72	nA (max)
ΔI _{OS} /ΔTemp	Input Bias Current Drift vs Temperature	–40°C ≤ T _A ≤ 85°C	0.2		nA/°C
I _{os}	Input Offset Current	$V_{CM} = 0V$	11	65	nA (max)
V _{IN-CM}	Common-Mode Input Voltage Range	V _S = ±18V	+17.1 -16.9		V (min) V (min)
		V _S = ±22V	+21.0 -20.8		

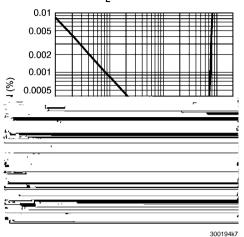

Symbol	Parameter	Conditions	LME	LME49870	
			Typical	Limit	Units (Limits)
			(Note 6)	(Note 7)	
CMRR	Common-Mode Rejection	V _S = ±18V -12V≤Vcm≤12V	120		dB (min)
		V _S = ±22V -15V≤Vcm≤15V	120	110	dB (min)
7	Differential Input Impedance		30		kΩ
Z_{IN}	Common Mode Input Impedance	-10V <vcm<10v< td=""><td>1000</td><td></td><td>MΩ</td></vcm<10v<>	1000		MΩ
A _{VOL}	Open Loop Voltage Gain	$V_{S} = \pm 18V$ $-12V \le Vout \le 12V$ $R_{L} = 600\Omega$ $R_{L} = 2k\Omega$ $R_{L} = 10\Omega$ $V_{S} = \pm 22V$ $-15V \le Vout \le 15V$ $R_{L} = 600\Omega$ $R_{L} = 2k\Omega$ $R_{L} = 10\Omega$	140 140 140 140 140 140	125	dB dB dB dB
		$R_L = 600\Omega$ $V_S = \pm 18V$ $V_S = \pm 22V$			

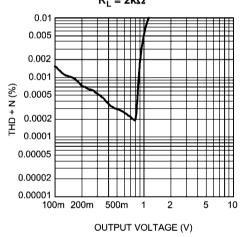

R V_{OUTMAX}

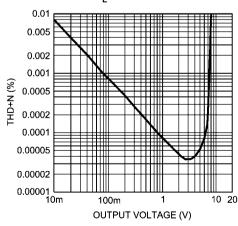
Maximum Output Voltage Swing


Typical Performance Characteristics

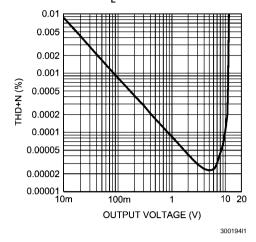





THD+N vs Output Voltage V_{CC} = 15V, V_{EE} = -15V R_L = 600 Ω



THD+N vs Output Voltage V_{CC} = 2.5V, V_{EE} = -2.5V R_L = $2k\Omega$


300194i4

THD+N vs Output Voltage V_{CC} = 12V, V_{EE} = -12V R_L = 600 Ω

30019410

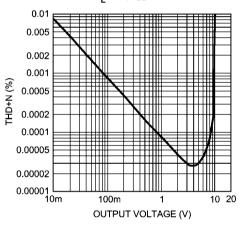
THD+N vs Output Voltage V_{CC} = 22V, V_{EE} = -22V R_{I} = 600 Ω

0.002 0.001 0.0005 0.0002 0.00005 0.00005

THD+N vs Output Voltage $V_{CC} = 2.5V$, $V_{EE} = -2.5V$

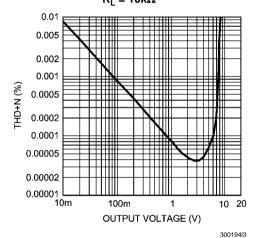
 $R_1 = 600\Omega$

0.01

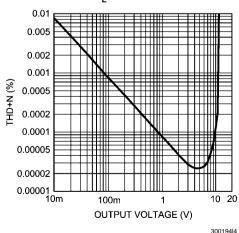

0.005

0.00001 100m 200m

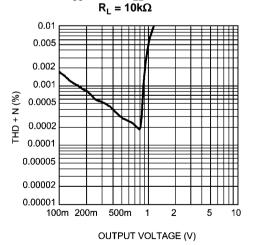
OUTPUT VOLTAGE (V)


300194i6

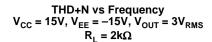
THD+N vs Output Voltage V_{CC} = 15V, V_{EE} = -15V R_L = 10k Ω

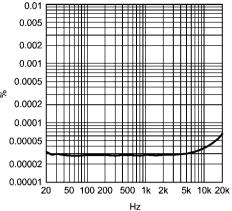

THD+N vs Output Voltage $V_{CC} = 12V, \, V_{EE} = -12V$ $R_L = 10k\Omega$

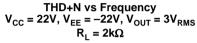
500m

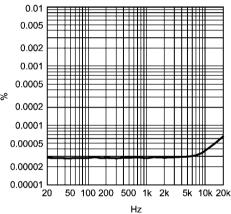


300194l2

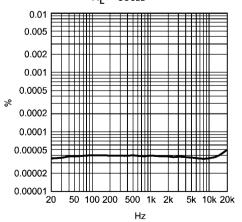

THD+N vs Output Voltage V_{CC} = 22V, V_{EE} = -22V R_{I} = 10k Ω

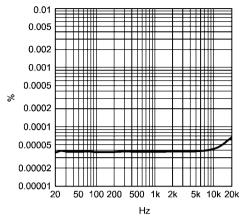



THD+N vs Output Voltage $V_{CC} = 2.5V$, $V_{EE} = -2.5V$

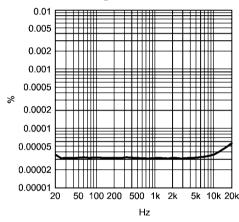


300194i5

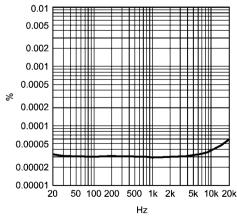


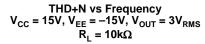


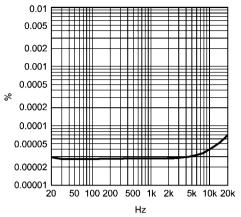
THD+N vs Frequency
$$\begin{aligned} V_{\text{CC}} &= 12\text{V}, \, V_{\text{EE}} = -12\text{V}, \, V_{\text{OUT}} = 3\text{V}_{\text{RMS}} \\ R_{\text{L}} &= 600\Omega \end{aligned}$$



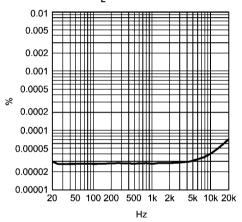
300194k3

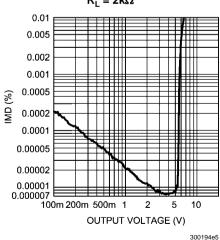

$$\begin{aligned} & \text{THD+N vs Frequency} \\ V_{\text{CC}} &= 12 V, \, V_{\text{EE}} = -12 V, \, V_{\text{OUT}} = 3 V_{\text{RMS}} \\ & R_{1} = 2 k \Omega \end{aligned}$$



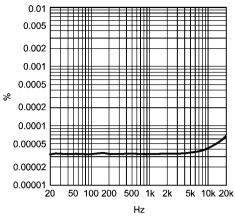

THD+N vs Frequency
$$\begin{aligned} V_{CC} = 15V, \, V_{EE} = -15V, \, V_{OUT} = 3V_{RMS} \\ R_L = 600\Omega \end{aligned}$$

THD+N vs Frequency
$$\begin{aligned} V_{CC} &= 22V, \, V_{EE} = -22V, \, V_{OUT} = 3V_{RMS} \\ R_L &= 600\Omega \end{aligned}$$



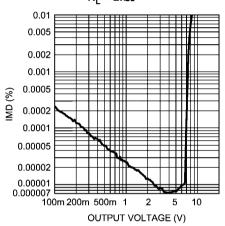

30019467

THD+N vs Frequency V_{CC} = 22V, V_{EE} = -22V, V_{OUT} = $3V_{RMS}$ R_L = $10k\Omega$

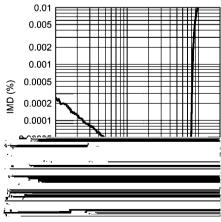


30019468

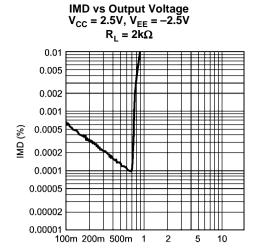
IMD vs Output Voltage V_{CC} = 12V, V_{EE} = -12V R_L = 2k Ω



THD+N vs Frequency $\begin{aligned} V_{CC} = 12V, \, V_{EE} = -12V, \, V_{OUT} = 3V_{RMS} \\ R_L = 10k\Omega \end{aligned}$


30019466

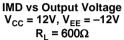
$$\begin{split} & \text{IMD vs Output Voltage} \\ & \text{V}_{\text{CC}} = 15\text{V}, \, \text{V}_{\text{EE}} = -15\text{V} \\ & \text{R}_{\text{L}} = 2\text{k}\Omega \end{split}$$



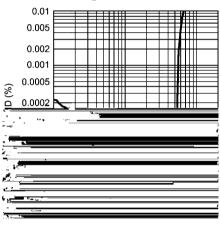
300194e6

IMD vs Output Voltage V_{CC} = 22V, V_{EE} = -22V R_L = 2k Ω

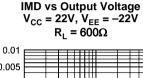
300194e7

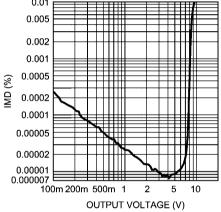


300194e4



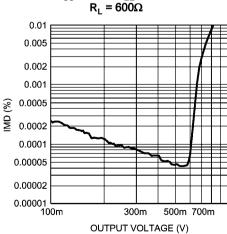
IMD vs Output Voltage $V_{CC} = 15V$, $V_{EE} = -15V$


300194e

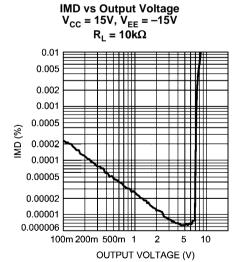


OUTPUT VOLTAGE (V)

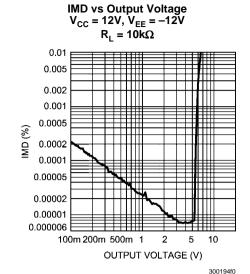
300194e0

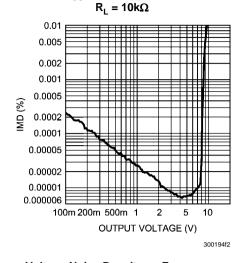


300194e3

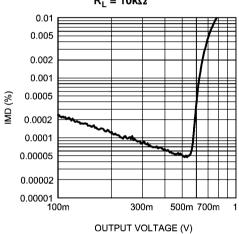

IMD vs Output Voltage

$$V_{CC} = 2.5V$$
, $V_{EE} = -2.5V$
 $R_{c} = 6000$

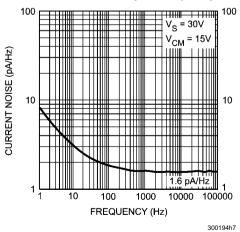


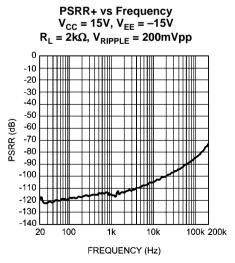

9

300194e1


300194f1

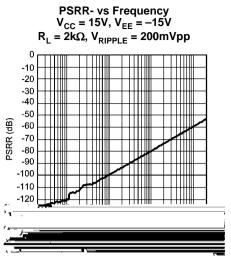
IMD vs Output Voltage $V_{CC} = 22V$, $V_{EE} = -22V$

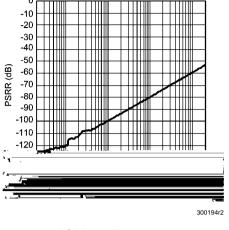

 $\begin{aligned} & \text{IMD vs Output Voltage} \\ & \text{V}_{\text{CC}} = 2.5\text{V}, \, \text{V}_{\text{EE}} = -2.5\text{V} \\ & \text{R}_{\text{L}} = 10\text{k}\Omega \end{aligned}$

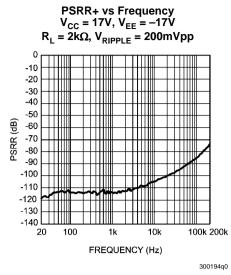


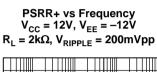
FREQUENCY (Hz)

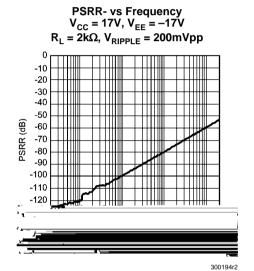
Current Noise Density vs Frequency

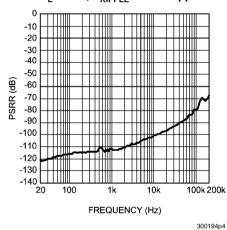

30019416

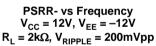


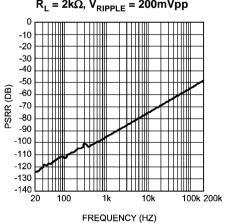


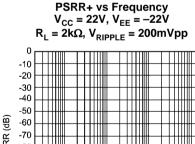

300194p7

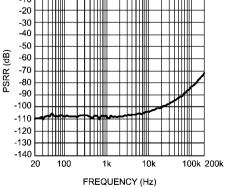

300194h6

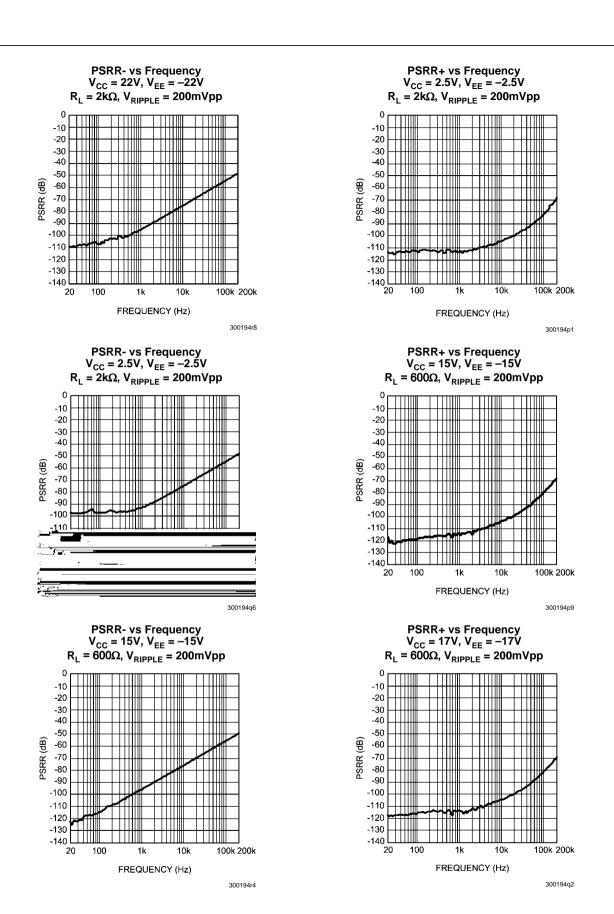


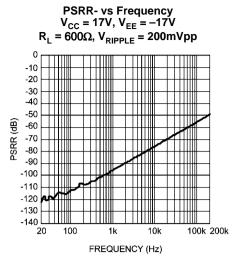


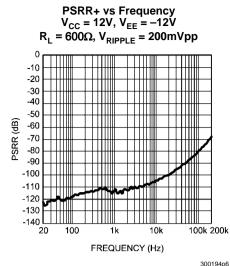


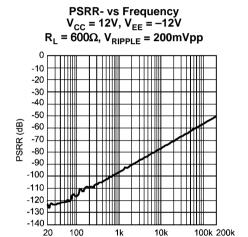





300194q9

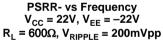

11

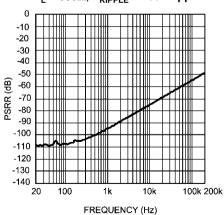

300194q3



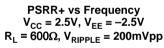
300194r7

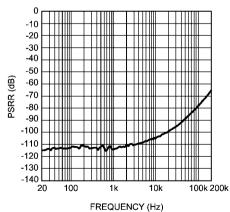
300194r1

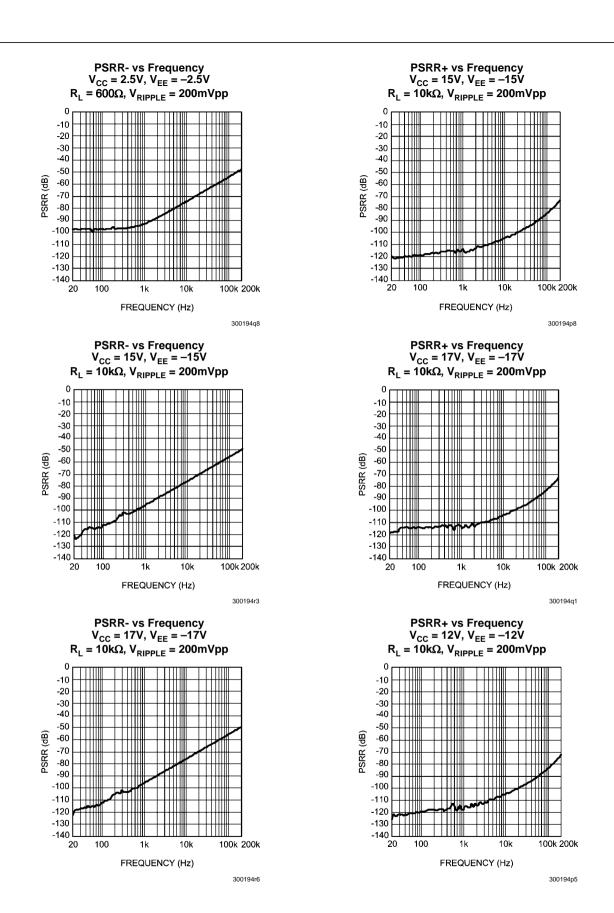


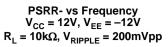


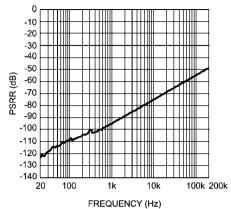
FREQUENCY (Hz)


 $\begin{array}{l} \text{PSRR+ vs Frequency} \\ \text{V}_{\text{CC}} = 22\text{V}, \, \text{V}_{\text{EE}} = -22\text{V} \\ \text{R}_{\text{L}} = 600\Omega, \, \text{V}_{\text{RIPPLE}} = 200\text{mVpp} \end{array}$ -10 -20 -30 -40 -50 PSRR (dB) -60 -70 -80 -90 -100 -110 -120 -130 -140 100k 200k 20 100 1k 10k FREQUENCY (Hz)

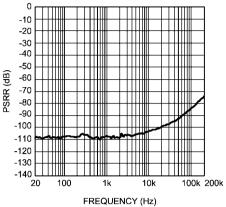

300194q5

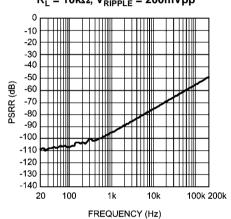



300194s0



300194p3

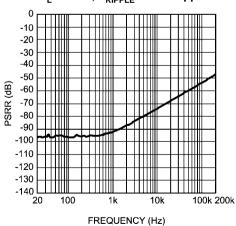



300194r0

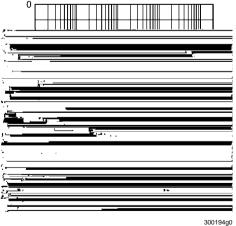
$\begin{aligned} & \text{PSRR+ vs Frequency} \\ & \text{V}_{\text{CC}} = 22\text{V}, \, \text{V}_{\text{EE}} = -22\text{V} \\ & \text{R}_{\text{L}} = 10\text{k}\Omega, \, \text{V}_{\text{RIPPLE}} = 200\text{mVpp} \end{aligned}$

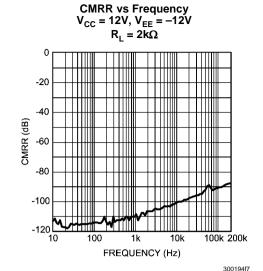
300194q4

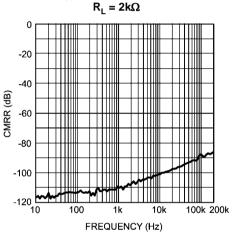
PSRR- vs Frequency $V_{CC} = 22V, V_{EE} = -22V$ $R_L = 10k\Omega$, $V_{RIPPLE} = 200mVpp$


300194r9

PSRR+ vs Frequency $V_{CC} = 2.5V, V_{EE} = -2.5V$ $R_L = 10k\Omega$, $V_{RIPPLE} = 200mVpp$

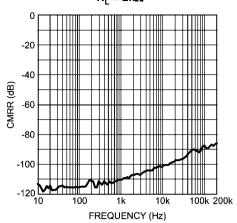

300194p2


PSRR- vs Frequency $V_{CC} = 2.5V, V_{EE} = -2.5V$ $R_L = 10k\Omega$, $V_{RIPPLE} = 200mVpp$


300194q7

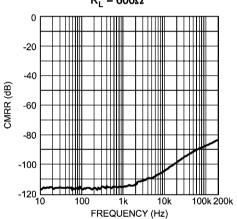
CMRR vs Frequency $V_{CC} = 15V, V_{EE} = -15V$ $R_L = 2k\Omega$

CMRR vs Frequency $V_{CC} = 2.5V$, $V_{EE} = -2.5V$

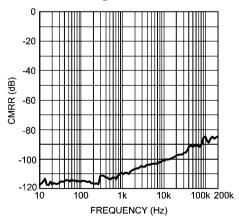

CMRR vs Frequency V_{CC} = 12V, V_{EE} = -12V R_L = 600 Ω

300194f4

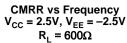
300194f9

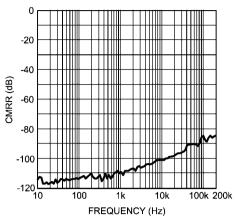


CMRR vs Frequency V_{CC} = 22V, V_{EE} = -22V R_L = 2k Ω

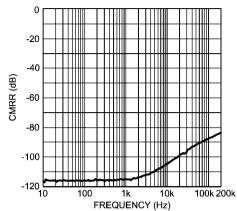

300194g3

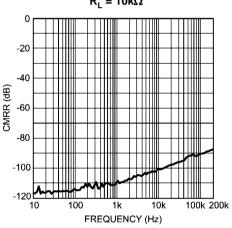
CMRR vs Frequency V_{CC} = 15V, V_{EE} = -15V R_L = 600 Ω

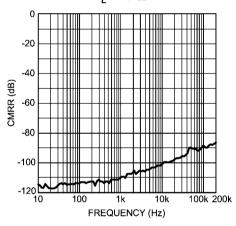



30019409

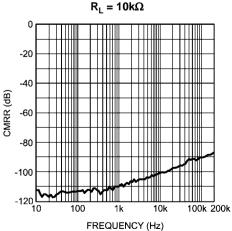
CMRR vs Frequency V_{CC} = 22V, V_{EE} = -22V R_L = 600 Ω


300194g5

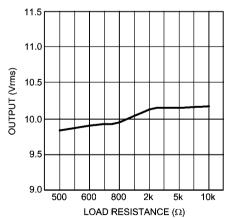

300194f6


30019408

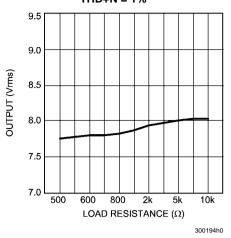
CMRR vs Frequency V_{CC} = 12V, V_{EE} = -12V R_L = 10k Ω


300194f8

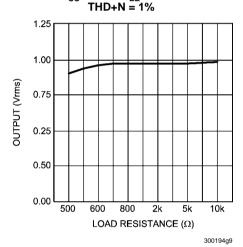
CMRR vs Frequency
$$V_{CC}$$
 = 22V, V_{EE} = -22V R_L = 10k Ω


300194g4

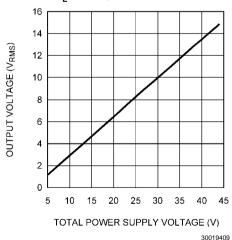
CMRR vs Frequency V_{CC} = 2.5V, V_{EE} = -2.5V R_L = 10k Ω

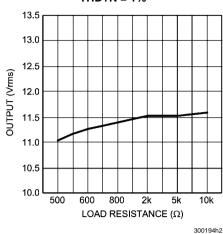

300194f5

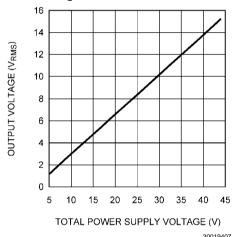
Output Voltage vs Load Resistance V_{CC} = 15V, V_{EE} = -15V THD+N = 1%



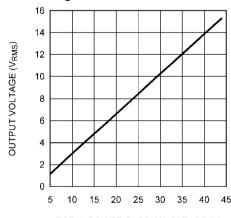
300194h1


Output Voltage vs Load Resistance $V_{CC} = 12V, V_{EE} = -12V$ THD+N = 1%


Output Voltage vs Load Resistance $V_{CC} = 2.5V, V_{EE} = -2.5V$

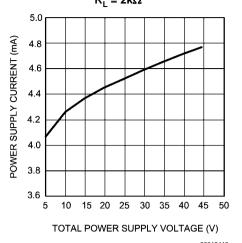

Output Voltage vs Total Power Supply Voltage $R_1 = 600\Omega$, THD+N = 1%

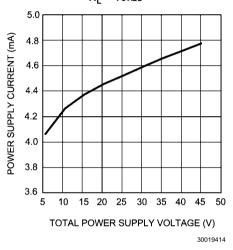
Output Voltage vs Load Resistance $V_{CC} = 22V$, $V_{EE} = -22V$ THD+N = 1%



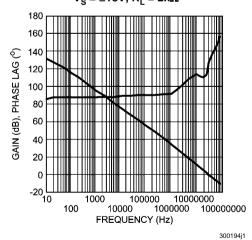
Output Voltage vs Total Power Supply Voltage $R_1 = 2k\Omega$, THD+N = 1%

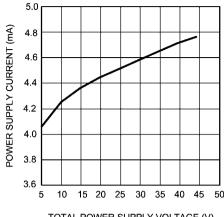
30019407


Output Voltage vs Total Power Supply Voltage $R_1 = 10k\Omega$, THD+N = 1%

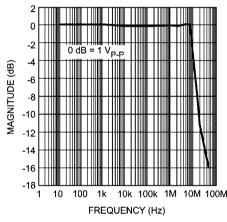

TOTAL POWER SUPPLY VOLTAGE (V)

30019408

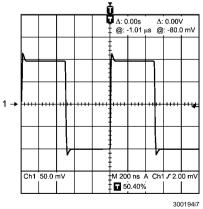

Power Supply Current vs Total Power Supply Voltage $R_1 = 2k\Omega$


Power Supply Current vs Total Power Supply Voltage $R_L = 10k\Omega$

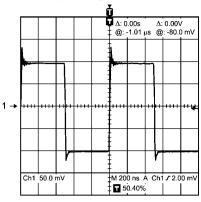
Gain Phase vs Frequency $V_S = \pm 18V, R_1 = 2k\Omega$



Power Supply Current vs Total Power Supply Voltage $R_1 = 600\Omega$


TOTAL POWER SUPPLY VOLTAGE (V)

Full Power Bandwidth vs Frequency $V_S = \pm 18V$, $R_L = 2k\Omega$



300194i0

Small-Signal Transient Response $A_V = 1, C_L = 10pF$

Small-Signal Transient Response $A_V = 1$, $C_L = 100pF$

300194i8

Application Information

DISTORTION MEASUREMENTS

The vanishingly low residual distortion produced by LME49870 is below the capabilities of all commercially available equipment. This makes distortion measurements just slightly more difficult than simply connecting a distortion meter to the amplifier's inputs and outputs. The solution, however, is quite simple: an additional resistor. Adding this resistor extends the resolution of the distortion measurement equipment.

The LME49870's low residual distortion is an input referred internal error. As shown in Figure 1, adding the 10Ω resistor connected between the amplifier's inverting and non-inverting

inputs changes the amplifier's noise gain. The result is that the error signal (distortion) is amplified by a factor of 101. Although the amplifier's closed-loop gain is unaltered, the feedback available to correct distortion errors is reduced by 101, which means that measurement resolution increases by 101. To ensure minimum effects on distortion measurements, keep the value of R1 low as shown in Figure 1.

This technique is verified by duplicating the measurements with high closed loop gain and/or making the measurements at high frequencies. Doing so produces distortion components that are within the measurement equipment's capabilities. This datasheet's THD+N and IMD values were generated using the above described circuit connected to an Audio Precision System Two Cascade.

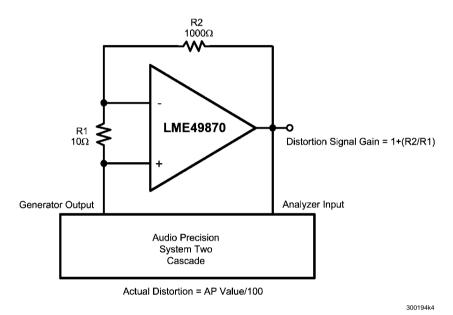
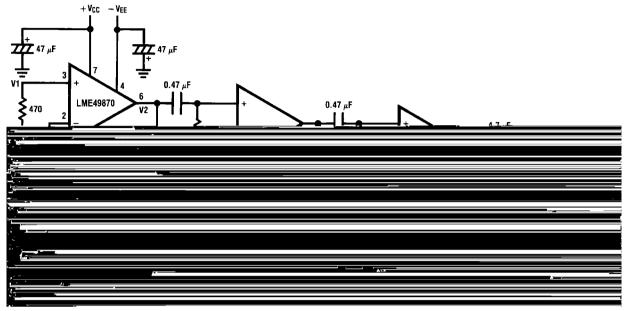
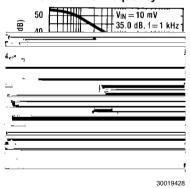



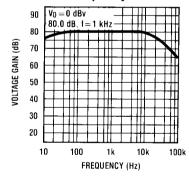
FIGURE 1. THD+N and IMD Distortion Test Circuit

The LME49870 is a high speed op amp with excellent phase margin and stability. Capacitive loads up to 100pF will cause little change in the phase characteristics of the amplifiers and are therefore allowable.

Capacitive loads greater than 100pF must be isolated from the output. The most straightforward way to do this is to put a resistor in series with the output. This resistor will also prevent excess power dissipation if the output is accidentally shorted.

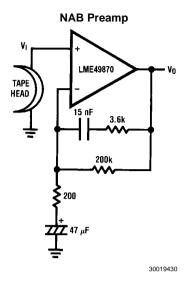


30019427

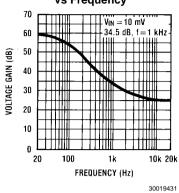

Complete shielding is required to prevent induced pick up from external sources. Always check with oscilloscope for power line noise.

Noise Measurement Circuit Total Gain: 115 dB @f = 1 kHz Input Referred Noise Voltage: e_n = V0/560,000 (V)

RIAA Preamp Voltage Gain, RIAA Deviation vs Frequency

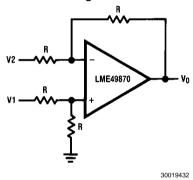


Flat Amp Voltage Gain vs Frequency

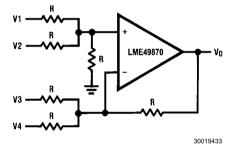


30019429

TYPICAL APPLICATIONS

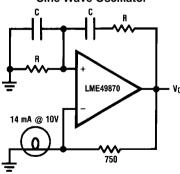


NAB Preamp Voltage Gain vs Frequency



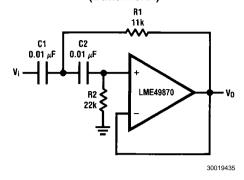
 $A_{V} = 34.5$ F = 1 kHz E_n = 0.38 μV A Weighted

Balanced to Single Ended Converter


Adder/Subtracter

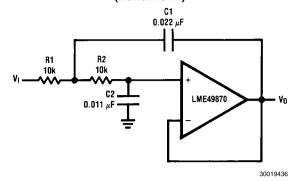
 $V_O = V1-V2$

Sine Wave Oscillator


 $V_0 = V1 + V2 - V3 - V4$

30019434

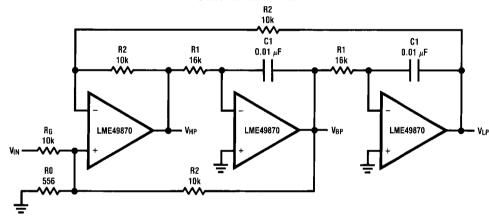
$$f_0 = \frac{1}{2\pi BC}$$


Second Order High Pass Filter (Butterworth)

$$R1 = \frac{\sqrt{2}}{2w-C}$$

Illustration is $f_0 = 1 \text{ kHz}$

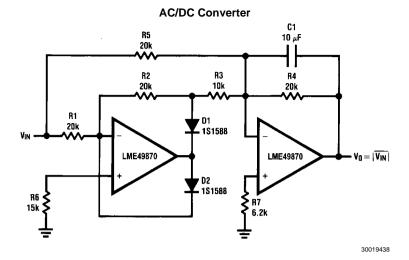
Second Order Low Pass Filter (Butterworth)

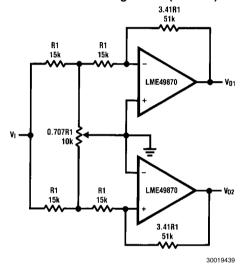


$$C1 = \frac{\sqrt{2}}{\omega_0 R}$$

$$C2 = \frac{C1}{2}$$

Illustration is f₀ = 1 kHz


State Variable Filter


30019437

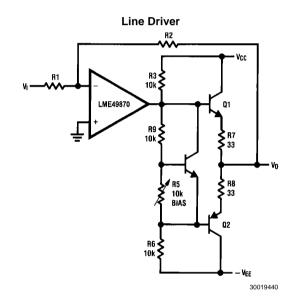
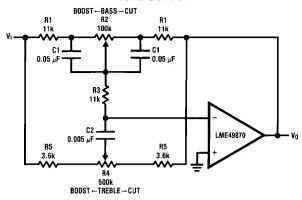
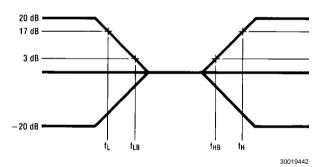

$$f_0 = \frac{1}{2\pi C 1 R 1}, Q = \frac{1}{2} \left(1 + \frac{R2}{R0} + \frac{R2}{RG} \right), A_{BP} = QA_{LP} = QA_{LH} = \frac{R2}{RG}$$

Illustration is $f_0 = 1 \text{ kHz}$, Q = 10, $A_{BP} = 1$



2 Channel Panning Circuit (Pan Pot)

Tone Control



30019441

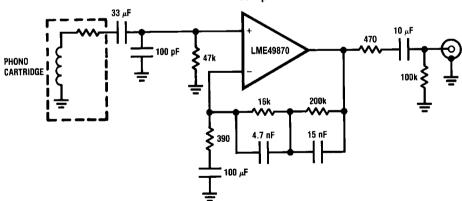
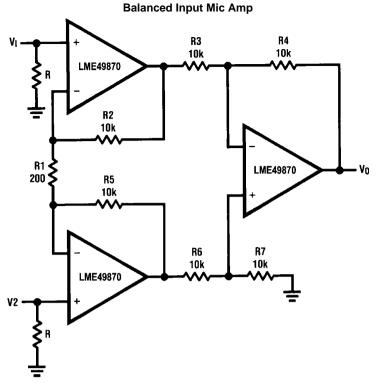

$$\begin{split} f_L &= \frac{1}{2\pi R2C1}, f_{LB} = \frac{1}{2\pi R1C1} \\ f_H &= \frac{1}{2\pi R5C2}, f_{HB} = \frac{1}{2\pi (R1 + R5 + 2R3)C2} \end{split}$$

Illustration is:

$$f_L = 32 \text{ Hz}, f_{LB} = 320 \text{ Hz}$$

 $f_H = 11 \text{ kHz}, f_{HB} = 1.1 \text{ kHz}$



RIAA Preamp

30019403

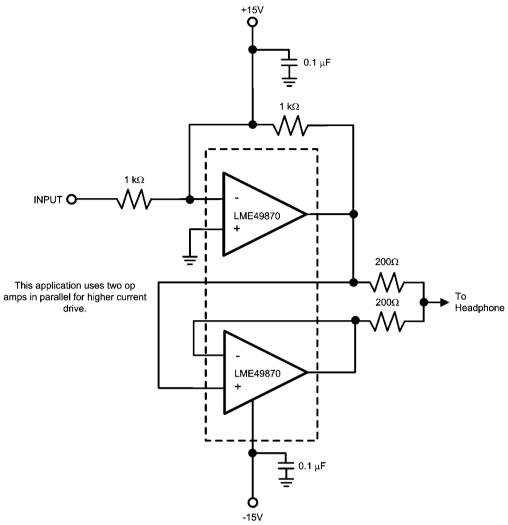
 $\begin{array}{l} A_v = 35 \text{ dB} \\ E_n = 0.33 \text{ } \mu\text{V} \\ \text{S/N} = 90 \text{ dB} \\ \text{f} = 1 \text{ kHz} \\ \text{A Weighted} \\ \text{A Weighted}, \text{ V}_{\text{IN}} = 10 \text{ mV} \\ \text{@f} = 1 \text{ kHz} \end{array}$

30019443

If R2 = R5, R3 = R6, R4 = R7
V0 =
$$\left(1 + \frac{2R2}{R1}\right) \frac{R4}{R3} (V2 - V1)$$

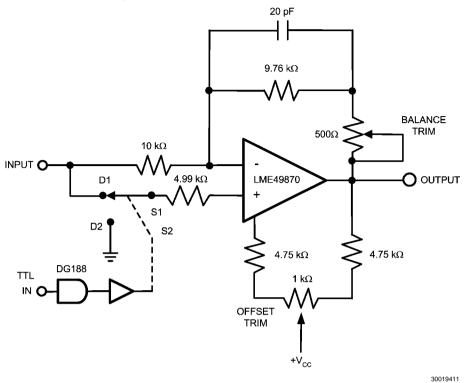
Illustration is: V0 = 101(V2 - V1)

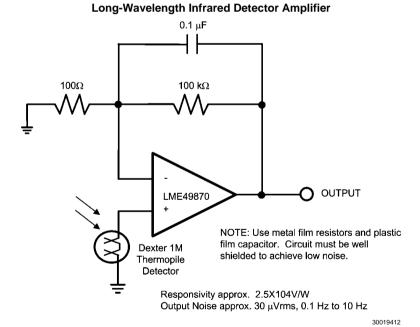
fo (Hz)	C ₁	C ₂	R ₁	R ₂
32	0.12µF	4.7µF	75kΩ	500Ω
64	0.056µF	3.3µF	68kΩ	510Ω
125	0.033µF	1.5µF	62kΩ	510Ω
250	0.015µF	0.82µF	68kΩ	470Ω
500	8200pF	0.39µF	62kΩ	470Ω
1k	3900pF	0.22µF	68kΩ	470Ω
2k	2000pF	0.1µF	68kΩ	470Ω
4k	1100pF	0.056µF	62kΩ	470Ω
8k	510pF	0.022µF	68kΩ	510Ω
16k	330pF	0.012µF	51kΩ	510Ω


30019444

Note 9: At volume of change = ±12 dB

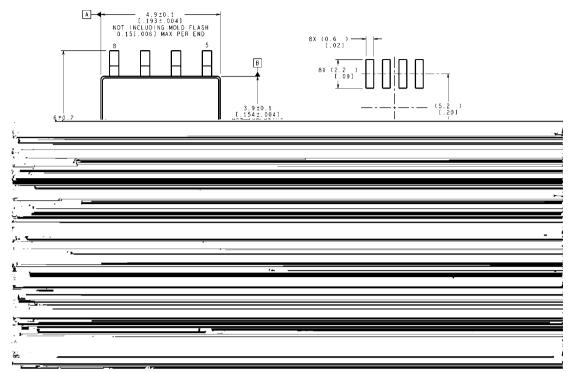
Q = 1.7


Reference: "AUDIO/RADIO HANDBOOK", National Semiconductor, 1980, Page 2-61


Headphone Amplifier

30019410

High Performance Synchronous Demodulator



Revision History

Rev	Date	Description
1.0	09/20/07	Initial release.
1.1	09/27/07	Updated Notes 1–7 (per National standard).
1.2	12/20/07	Deleted all Crosstalk vs Frequency curves.
1.3	01/14/08	Edited some graphics.

Physical Dimensions inches (millimeters) unless otherwise noted

Narrow SOIC Package Order Number LME49870MA NS Package Number M08A

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

Pr	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH	www.national.com/webench	
Audio	www.national.com/audio	Analog University	www.national.com/AU	
Clock Conditioners	www.national.com/timing	App Notes	www.national.com/appnotes	
Data Converters	www.national.com/adc	Distributors	www.national.com/contacts	
Displays	www.national.com/displays	Green Compliance	www.national.com/quality/green	
Ethernet	www.national.com/ethernet	Packaging	www.national.com/packaging	
Interface	www.national.com/interface	Quality and Reliability	www.national.com/quality	
LVDS	www.national.com/lvds	Reference Designs	www.national.com/refdesigns	
Power Management	www.national.com/power	Feedback	www.national.com/feedback	
Switching Regulators	www.national.com/switchers			
LDOs	www.national.com/ldo			
LED Lighting	www.national.com/led			
PowerWise	www.national.com/powerwise			
Serial Digital Interface (SDI)	www.national.com/sdi			
Temperature Sensors	www.national.com/tempsensors			
Wireless (PLL/VCO)	www.national.com/wireless			

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2008 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email:

hew.feedback@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com German Tel: +49 (0) 180 5010 771 English Tel: +44 (0) 870 850 4288 National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com