

©1995 National Semiconductor Corporation TL/F/7561

RRD-B30M105/Printed in U. S. A.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage	10V
Input Voltage	10V
Output Voltage	V _{CC}
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$
Output Current (I _{OUT})	—25 mA
Maximum Power Dissipation* at 25°C	
Cavity Package	1371 mW
Molded Package	1280 mW
Lead Temperature (Soldering, 4 seconds) 260°C
*Derate cavity package 9.14 mW/°C above 25°C; 10.24 mW/°C above 25°C.	derate molded package

Operating Conditions					
	Min	Max	Units		
Supply Voltage					
V _{CC}	3.2	8.8	V		
V _{SS}	6.5	8.8	V		
Temperature T _A					
DS75493	0	+70	°C		
DS55493	-55	+ 125	°C		

Electrical Characteristics (V_{SS} \ge V_{CC}) (Notes 2 and 3)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
I _{IN}	Input Current	$V_{SS} = Max, V_{IN} = 8.8V, V_{CC} = Open, V_{CE} = 0V$				3.2	mA
		$I_{OUT} = R_{SET} @ 0V, V_{CE} = 8.8V$				3.6	mA
I _{CE}	Chip Enable Input Current	$\label{eq:VCC} \begin{split} V_{CC} &= \text{Max}, \text{V}_{SS} = \text{Max}, \text{V}_{CE} = \text{8.8V}, \text{All Other Pins} \\ \text{to GND} \end{split}$				2.1	mA
IOUT	Output Current	l _{OUT} @ 2.15V, R _L = 50Ω	$\begin{split} & V_{CC} = Min, V_{SS} = 6.5V, \\ & I_{CE} = 80 \; \muA, V_{IN} = 6.5V \\ & Through\; 1.0 \; k\Omega \end{split}$	-8	-13		mA
			$V_{CE} = 0V, V_{IN} = 8.8V$		-16	-20	mA
I _{OL}	Output Leakage Current	$\begin{split} I_{OUT} &= R_{SET} @ 0V, \\ Measure Current to Gnd, \\ V_{SS} &= 8.8V \end{split}$	$\label{eq:VCC} \begin{array}{l} V_{CC} = \text{Min}, V_{CE} = 0 V \\ V_{IN} = 8.8 V \mbox{ Through} \\ 100 \Omega \end{array}$			-200	μΑ
			$V_{CE} = 6.5V$ Though 1.0 k Ω , V _{IN} = 8.8V			-100	μΑ
ICC	Supply Current, V _{CC}	$V_{CC} = Max, V_{SS} = Max$, All Other Pins to Gnd				40	μA
I _{SS}	Supply Current	V _{CC} = 0V, All Other Pins to Gnd				40	μA
		$V_{CC} = Min, V_{SS} = 8.8V$	$\label{eq:lour_local} \begin{array}{l} I_{OUT} @ 2.15V, V_{CE} = 8.8V \\ Through 100 k\Omega, \\ R_L = 50\Omega \end{array}$		0.5	1.5	mA
			$I_{OUT} = Open, R_{SET} = Open, V_{CE} = 0V$			1.4	mA

Switching Characteristics $T_A = 25^{\circ}C$, nominal power supplies unless otherwise noted

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd(OFF)}	Propagation Delay to a Logical "0" From Input to Output	(See AC Test Circuit		170	300	ns
t _{pd(ON)}	Propagation Delay to a Logical "1" From Input to Output	(See AC Test Circuit)		11	100	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Unless otherwise specified min/max limits apply across the 0°C to +70°C range for the DS75493 and across the -55°C to +125°C range for the DS55493.

Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted. All values shown as max or min on absolute value basis.

SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tei: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0.180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tei: (+49) 0.180-530 85 85 English Tei: (+49) 0.180-532 78 32 Français Tei: (+49) 0.180-532 78 32 Italiano Tei: (+49) 0.180-532 78 58 Italiano Tei: (+49) 0.180-534 16 80	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2736-9960 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tei: 81.043-299.2309 Fax: 81-043-299-2408
---	--	--	--

0.843-0.870

12 11 10 9

0.040

(1.016)

ТҮР

0.018 ±0.003

(0.457 ±0.076)

+

0.250 ±0.005

(6.350 ±0.127)

t

 0.130 ± 0.005

(3.302 ±0.127)

0.125-0.140 (0.508)

(3.175-3.556)

90°±4

0.145-0.200 (3.683-5.080)

0.020

N16A (REV E)

13

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.